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Abstract: We introduce a new non-black-box method of extracting multiple areas in a high-dimensional
big data space where data points that satisfy specific conditions are highly concentrated. First,
we extract one-dimensional areas where the data that satisfy specific conditions are mostly gathered
by using the Bayesian method. Second, we construct higher-dimensional areas where the densities of
focused data points are higher than the simple combination of the results for one dimension, and
then we verify the results through data validation. Third, we apply this method to estimate the
set of significant factors shared in successful firms with growth rates in sales at the top 1% level
using 156-dimensional data of corporate financial reports for 12 years containing about 320,000 firms.
We also categorize high-growth firms into 15 groups of different sets of factors.

Keywords: variable selection; feature selection; high-growth firms; Bayesian method; big data

1. Introduction

We consider the general problem of extracting areas in a high-dimensional data space
where points that satisfy specific conditions are concentrated. Generally, as factors as-
sociated with a specific condition are often unknown, we use the most available factors
and examine their relevance to a particular condition [1]. However, the majority of the
factors used are irrelevant or redundant, resulting in problems such as reduced accuracy
of the analysis and increased analysis time [1,2]. Therefore, we are reducing the number
of variables, a process called variable selection. Variable selection has various advantages,
such as accuracy increase, analysis time reduction, and overfitting avoidance [2–4]. Many
models have been proposed for this variable selection and used in various fields [4–6]. In
recent years, machine learning models have been used to improve the accuracy of variable
selection. For example, Genuer used random forests [7] to select significant variables in
high-dimensional classification problems [8]. Grandvalet proposed a model that automati-
cally performs relevance judgments and feature selection on support vector machines [9]
and showed its effectiveness in facial expression recognition tasks [10]. However, machine
learning models also have disadvantages; for example, generally their results are difficult
to understand logically due to the complexity of these models and their black-box struc-
ture [11,12]. In addition, to the best of our knowledge, a general method for exhaustively
extracting areas where the data that satisfy specific conditions are highly concentrated has
not been established in the study of big data.

In this paper, we propose a new method based on a non-black-box model to solve this
general problem. We use indicators calculated using the Bayesian method and Szymkiewicz-
Simpson coefficient as evaluation measures for variable selection and extraction of pairs of
variables, respectively. The Bayesian method is a data analysis method that uses existing
information [13,14]. This point differs from the likelihood method and gives the advantage
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of more flexible model assumptions and facilitating statistical inference even for complex
problems [15,16]. We use the Bayesian method, which is used in various fields, including
ecology and seismology [14,15,17–19], to construct the posterior distribution of a specific
indicator. Then we use the lower limit of the confidence interval as a new indicator for
the evaluation measure. As a basic tool of data analysis, we introduce the Szymkiewicz–
Simpson coefficient, which quantitatively evaluates the degree of overlap between two
sets [20].

In this study, we analyze the factors that contribute to a firm’s high growth as an
example of the application of this model. Firm growth is significant and attracts the
attention of investors and banks [21,22]. Demirgüç-Kunt clarified that a firm’s growth is
related to the financial and legal system [23]. Baum extracted venture growth factors with
structural equation modeling and data on 17 predictor variables [24]. We analyze the factors
of a firm’s growth using machine learning models in recent years. Van Witteloostuijn and
Kolkman analyzed the factors that contribute to a firm’s growth using random forests [25].
Among them, the phenomenon of high growth is heterogeneous, and Delmar showed that
it can be classified into seven groups via cluster analysis [26]. Coad forecasted high-growth
firms with Lasso [27], a machine learning model [28]. We identify high-growth patterns
using our model and verify them with Delmar’s and Coad’s results.

The remainder of this paper is organized as follows. Section 2 explains the dataset
and defines each firm’s growth rate in sales and high-growth firms. Section 3 describes the
mathematical basis used in this methodology and methods. We first determine the posterior
distribution of the probability that a firm will grow high within a particular area using
the Bayesian method and then define the existence probability of high-growth firms. We
also provide proof of the formulas used in Section 4 and the subsequent sections. Section 4
describes step-by-step the results of the method and classifies the high-growth firms into 15
groups based on different factors. In Section 5, we discuss the advantages, considerations,
concerns, comparison with previous studies, and indicators of analysis. Finally, Section 6
describes our results and the potential applications of our method.

2. Data

In this study, we use the corporate financial dataset provided by TEIKOKU DATA-
BANK, Ltd. (TDB). In Japan, companies often ask a third-party corporate credit research
organization to obtain information about a firm when they are looking for new business
partners to expand sales or to check the business condition of existing business partners.
TDB is one of the largest corporate credit research providers in Japan and has been provid-
ing corporate credit research for more than a century [29]. In this study, we use 12 years of
data from 2005 to 2016 with sales data existing for the next three years contained in this
corporate financial dataset. The data include about 320,000 firms with 1.7 million data
points. The first 10 years of the 12 years of data are used for the analysis, and the remaining
2 years are used for validation. Note that the dataset is not complete, and some financial
items are missing in some firms. In such cases, we simply neglect missing items in our
analysis. As a result, the number of firms in each financial item becomes equal to the total
number of firms minus the number of missing data for the item.

We focus on the rate of increase in sales for each firm, which is defined by the following
equation:

Growth rate in sales =
Current sales after 3 years

Current sales
(1)

In this paper, we define high-growth firms as ones whose growth rate is in the top 1%
of all firms in each analysis or verification data. Specifically, a high-growth firm has a
growth rate of 4.913 times or higher for the analysis data and 4.428 times or higher for
the validation data. We use our method to extract the conditions commonly satisfied by
these high-growth firms in financial items. We exclude financial items that have a very
strong correlation (correlation coefficient of higher than 0.95) with the current sales used in
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the definition of growth rate in sales to avoid false correlations. We consider 156 financial
items, such as the capital and current ratio in general.

To verify whether high-growth firms are dense not by coincidence, we randomly
shuffle the 10 years of data from 2005 to 2014 for comparison. Namely, we create five
sets of randomly shuffled data by using the command “shuffle” in Python for each of the
156 financial items with pseudorandom numbers generated by PCG64 [30].

We apply our method explained in the following Section 3 to the 10 years of real data
and the five sets of randomly shuffled data.

3. Method

In this section, we explain the definition of the existence probability of high-growth
firms used in the analysis and show how to calculate the existence probability of high-
growth firms when the conditions are independent (in Section 3.1). We describe the
analytical procedure of our method (in Section 3.2).

3.1. Mathematical Basis

Let q be the existence probability of high-growth firms in a specific area J, a be
the number of high-growth firms, and b be the number of non-high-growth firms. The
probability of occurrence conditioned by q, f (a, b|q), fulfills the following equation:

f (a, b|q) =
(

a + b
a

)
qa(1− q)b (2)

Then, using Bayesian analysis with the prior distribution π(q), the posterior distribution
π(q|a, b) of q conditioned by a and b is given as follows:

π(q|a, b) =
π(q) f (a, b|q)∫ 1

0 π(q) f (a, b|q)dq
(3)

Here, we use the conjugate prior π(q) ∝ qα(1− q)β, which is a beta distribution with
parameters α + 1 and β + 1, for the prior distribution of binomial distribution to re-
duce computational effort during the analysis. In addition, we condition that E[q|a = 0,
b = 0] = r and α + β = 0; that is the expectation of probability q in the case of no sample
data is equal to r = 0.01. Then, α = −β = 2r− 1, and π(q|a, b) is obtained as follows:

π(q|a, b) =
Γ(a + b + 2)

Γ(a + 2r)Γ(b− 2r + 2)
qa+2r−1(1− q)b−2r+1 (4)

From this posterior distribution, we estimate the lower bound of the probability of the
existence of high-growth firms with a 99% confidence interval. That is, we regard the
existence probability in the area J with a and b by the value of y, which is determined by
solving the following equation, the inverse of the regularized incomplete beta function.

r =
Γ(a + b + 2)

Γ(a + 2r)Γ(b− 2r + 2)

∫ y

0
qa+2r−1(1− q)b−2r+1dq (5)

We apply this 99% confidence value for the extraction of one to multi-dimensional areas.
Here, we prove the basic equation, which is used in the following sections for the

extraction of two- or higher-dimensional areas. We consider particular conditions 1 to n and
let A1 to An be flag variables that specify these conditions. For example, An = 1 implies
that condition n is fulfilled. In addition, let X be a flag variable that indicates whether
high growth has occurred. We assume that A1 to An are independent of each other and
also independent under the condition of X = 0, namely, for non-high growth cases. The
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probabilities of satisfying the conditions from 1 to n, P(A1 = 1, A2 = 1, . . . , An = 1), and
from 1 to n under X = 0, P(A1 = 1, A2 = 1, . . . , An = 1|X = 0), are given as follows:

P(A1 = 1, A2 = 1, . . . , An = 1) =
n

∏
i=1

P(Ai = 1) (6)

P(A1 = 1, A2 = 1, . . . , An = 1|X = 0) =
n

∏
i=1

P(Ai = 1|X = 0) (7)

Then, under the conditions from 1 to n fulfilled, the existence probability of high-growth
firms P(X = 1|A1 = 1, A2 = 1, . . . , An = 1) can be calculated using these equations with
Bayes’ formula as follows:

P(X = 1|A1 = 1, A2 = 1, . . . , An = 1) = 1− ∏n
i=1 1− P(X = 1|Ai = 1)
(1− P(X = 1))n−1 (8)

3.2. Method

We consider the financial data as a distribution of points in a 156-dimensional space
with 156 financial items as variables and then search for areas with high concentra-
tions of points of high-growth firms. Figure 1 shows an image of this model if it were
two-dimensional.

0 20 40 60 80 100
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Figure 1. Schematic of our method if it were two-dimensional. The red dots represent high-growth
firms, the blue dots represent non-high-growth firms, and the orange and green boxes are the areas to
be extracted as high density areas.

Our analysis involves five steps:

Step1 Extraction of one-dimensional areas for each financial item;
Step2 Reduction of areas containing similar data points;
Step3 Extraction of two-dimensional areas;
Step4 Extraction of higher-dimensional areas;
Step5 Grouping.

3.2.1. Step1. Extraction of one-dimensional areas for each financial item

In Step1, we extract high-concentration areas of high-growth firms in one dimen-
sion. A schematic of this step is presented in Figure 2. First, we project the points in a
156-dimensional space onto a single coordinate axis. Second, we segment the data into
non-overlapping intervals, including at least 5% of the data. Third, in each separated area,
we calculate the existence probability of high-growth firms using Equation (5) with the
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numbers of high-growing and non-high-growth firms. Subsequently, we extract areas
where the existence probability is higher than 0.01 with the 99% confidence. It should
be noted that the proportion of high-growth firms in each financial item depends on the
number of missing data, and there are items whose whole proportions of high-growth
firms exceed 0.01. For such financial items, we set the threshold values of extraction by the
value of the whole proportion for each item instead of 0.01. The schematic of the procedure
up to this point is presented in Figure 2a. In this case, four areas are extracted: [a, b), [b, c),
[f, g), and [h, i).

When multiple areas are extracted in one dimension, we check the possibility of
combining the areas. The schematic of this procedure is presented in Figure 2b. For the
extracted areas that are adjacent to each other, they are combined, as schematically shown
by the interval [a, c) in Figure 2b. If there is an unselected area in between, as shown
by the interval [g, h) in Figure 2a, the existence probability of high-growth firms in the
connected area is calculated by using Equation (5). If it exceeds 0.01, these areas are merged,
as shown by the interval [f, i) in Figure 2b. This process is continued until no more areas
can be combined.

a b c d e f g h i

(a)

a c f i

(b)

Figure 2. Schematic of Step1. (a) We divide the axis into non-overlapping segmented areas where
at least 5% of the data points are included. For each area, we calculate the existence probability
using Equation (5), and if it is higher than 0.01, the area is colored in red. In this case, four areas are
extracted: [a, b), [b, c), [f, g), and [h, i). (b) We merge neighboring areas into one area as shown for
[a, c), and [f, i) if the merged area’s existence probability is higher than 0.01.

3.2.2. Step2. Reduction of areas containing similar data points

In Step2, we reduce overlapping areas, which are extracted in Step1 based on the
similarities defined below. Let us denote the set of firms in area A extracted from financial
item ã as Ã. Note that the whole space is 156-dimensional, and this area is defined by
the restricted range only for item ã; thus, all other items can take any value in this set. If
another item b̃ is similar to item ã, then firms B̃ in the extracted area B may overlap with
Ã. For a quantitative evaluation of such overlap, we introduce the Szymkiewicz–Simpson
coefficient defined as follows:

Szymkiewicz− Simpson coe f f icient =
|Ã ∩ B̃|

min(|Ã|, |B̃|)
(9)

We calculate this indicator for all combinations of two areas chosen from the areas extracted
in Step1 and observe the cumulative distribution function of this indicator. From the shape
of the distribution, we introduce a threshold value of this indicator and delete these areas
with higher indicators than the threshold. Detailed processes are discussed in Section 4.2.

3.2.3. Step3. Extraction of two-dimensional areas

In Step3, we extract the two-dimensional areas where the existence probability of
high-growth firms is higher. Subsequently, we calculate the existence probability of high-
growth firms for all two-dimensional areas characterized by the direct product of the two
conditions chosen from the areas after Step2. When the probability of a two-dimensional
area estimated by using Equation (5) is less than that calculated using Equation (8), which
assumes the independence of two financial items, then the two-dimensional area is aborted.
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3.2.4. Step4. Extraction of higher-dimensional areas

In Step4, we extract high-dimensional areas where the existence probability of high-
growth firms is higher than the value of independent direct products estimated using
Equation (8). For the two-dimensional area chosen in Step3 with the highest existence
probability of high-growth firms, we add another one-dimensional condition that is chosen
from Step2 and not already used in two-dimensional conditions. For all conditions in
Step2, we calculate the existence probabilities of the combined three-dimensional areas
using Equation (5) and choose the case that provides the highest existence probability of
high-growth firms. If this probability is higher than the value estimated using Equation (8)
and the existence probability of high-growth firms before adding the condition, then we
assume that the new three-dimensional area’s density of high-growth firms is significantly
higher than the case of independent direct products. Thus, we adopt this three-dimensional
area. If this condition is not fulfilled, then the two-dimensional area condition is kept
two-dimensional. We proceed to the process for the 2nd candidate of the two-dimensional
area chosen in Step3 and repeat the same procedure, followed by the 3rd and 4th, etc.,
to all two-dimensional candidates. For the newly adopted three-dimensional area, we
add another one-dimensional condition chosen from Step2 as before and construct four-
dimensional areas. We find the case that provides the highest existence probability of
high-growth firms. Similarly, if the probability estimated using Equation (5) is higher
than the value of Equation (8), we adopt the four-dimensional area. These processes of
finding higher-dimensional areas are completed if there remains no combination of a higher-
dimensional area that satisfies a certain condition; that is the probability of high-growth
firms estimated using Equation (5) exceeds the value of Equation (8), and the existence
probability of high-growth firms is higher than before the condition is added.

For the areas obtained in these processes, we verify whether the existence probability
of high-growth firms is also increased in the data for validation. The procedure is used
to add conditions in the same order as the conditions for the areas obtained in these
processes until the existence probability of high-growth firms stops increasing. Using
this procedure, we examine the validity of the obtained higher-dimensional areas and
select high-dimensional areas that are non-local and have a high existence probability of
high-growth firms. For the selected areas, the following process is followed to determine
the areas of focus:

1. Remove high-dimensional areas that have the same set of conditions.
2. Remove similar high-dimensional areas where all firms in the area match, despite not

being under the same conditions.
3. If the inclusion relationship is established, remove the area with the smallest number

of firms.

3.2.5. Step5. Grouping

In Step5, we define groups of the high-dimensional areas selected in Step4 using
hierarchical clustering using the Ward method [31] with the measure of the dissimilarity
between areas given as follows:

dissimilarity = 1− |À ∩ B̀|
min(|À|, |B̀|)

(10)

where À and B̀ are groups of high-growth firms belonging to areas A and B, respectively.
We set the dissimilarity threshold to a value where most high-dimensional areas in the
same group contain the same condition. The detailed process is discussed in Section 4.5.

4. Results

We define the abbreviated names for commonly used financial items, conditions, and
units in Table 1.
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Table 1. Abbreviated names of items, units, and indicators.

Abbreviated Name Item Name

OIR Ordinary income to revenue ratio
CLR Current liabilities to revenue ratio
OITC Ordinary income to total capital ratio

LR Liabilities to revenue ratio
NIR Net income to revenue ratio

CACL Current assets to current liabilities ratio
LACL Liquid assets to current liabilities ratio
CGSR Cost of goods sold to revenue ratio
GPE Gross profit per employee
TCR Total capital to revenue ratio
FAR Fixed assets to revenue ratio
FAFL Fixed assets to fixed liability ratio
NOLR Non-operating loss to revenue ratio

IR Inventories to revenue ratio
CAR Current assets to revenue ratio
APR Accounts payable to revenue ratio
ARR Accounts receivable to revenue ratio
PPER Property, plant and equipment to revenue ratio
NCLR Not current liabilities to revenue ratio

DR Depreciation to revenue ratio
CFS Compared to all firms in the same industry
IC Industry comparison
DT After discounting and transferring
DA In data for analysis
DV In data for verification

NAE-nD Number of areas extracted in n-D
NDEHA Number of dimensions of each high-dimensional areas

NC Number of conditions
NF Number of firms

NHF Number of high-growth firms
EPHF Existence probability of high-growth firms

M Months
T Thousands of yen

4.1. Extraction of One-Dimensional Areas for Each Financial Item

Step1 extracted 197 areas of 143 financial items. The top five areas with the highest
existence probability of high-growth firms are presented in Table 2.

Table 2. Top five areas in the 197 areas of 143 financial items extracted in Step1. The extracted areas are
from lower to upper limits. The lower and upper limits are denoted by percentage points within the
financial item. The existence probability of high-growth firms (EPHF) in an area is calculated using
the number of high-growth firms in the area, the number of all firms in the area, and Equation (5).
The abbreviated names used in this table are defined in Table 1.

Item Name Lower Limit Upper Limit NHF NF EPHF

OIR (CFS) 0.0% 6.7% 4219 96,108 0.042

OIR (IC) 0.0% 6.7% 4206 96,248 0.042

CLR (M) 91.9% 100.0% 4309 117,124 0.036

OITC (IC) 0.0% 6.6% 3509 95,920 0.035

LR (M) 90.8% 100.0% 4650 132,567 0.035

The areas with the first and second highest existence probability of high-growth firms
have a value of about 0.042. This implies that they are more than four times more densely
populated with high-growth firms than normal ones. Two areas were extracted for each of
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the 54 financial items. The distribution of the existence probability of high-growth firms
and details of the areas extracted for one example of those financial items are presented in
Figure 3 and Table 3.

Figure 3. Existence probability of high-growth firms in each of the segmented areas, projected on the
axis of the ratio of net income to sales (before amortization and after tax, %). The horizontal axis is
the quantile from the beginning to the end of the segmented area, and the vertical axis is the existence
probability of high-growth firms within the segmented area. The red dashed line represents 0.01,
the percentage of high-growth firms in the overall area. For this financial item, the orange and green
areas were extracted as the areas with densely populated high-growth firms, and the blue area was
not extracted because it was not densely populated with high-growth firms. For the orange area,
two areas were initially extracted: the 0–5.0% and 15.0–28.9% areas. These two areas and the areas
in between where the existence probability of high-growth firms is low were merged into one area,
as shown in Figure 2b.

Table 3. Two areas extracted in the ratio of net income to sales (before amortization and after tax, %),
orange and green, respectively, in Figure 3. The extracted areas are from lower to upper limits, which
are denoted by percentage points within the financial item. The existence probability of high-growth
firms of an area is calculated using the number of high-growth firms in the area, the number of all
firms in the area, and Equation (5). The abbreviated names used in this table are defined in Table 1.

Area Lower Limit Upper Limit NHF NF EPHF

orange 0.0% 28.9% 7203 417805 0.017

green 94.6% 100.0% 1439 77645 0.017

These orange and green areas are where high-growth firms are about 1.7 times more
dense than normal ones. These areas are the two edges of the financial items, and it is
thought that firms grow high due to different factors.

For validation, we performed the same one-dimensional extraction on five random
data. We extracted 11, 11, 12, 13, and 13 areas, respectively. No multiple areas were
extracted within a single financial item. The area with the highest existence of high-growth
firms in these areas was about 1.08 times more dense than normal ones. These areas are
used in Step2.

4.2. Reduction of Areas Containing Similar Data Points

Similar areas were deleted in Step2 for the 197 areas of 143 financial items extracted
in Step1. The result of calculating Equation (9) for all combinations of the 197 areas is
presented in Figure 4.
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Figure 4. Cumulative distribution function of the values calculated for all combinations by using
Equation (9). The horizontal axis is the value of the Szymkiewicz–Simpson coefficient, and the vertical
axis is the cumulative distribution. The red dashed line represents 0.825, where the shape of the
cumulative distribution function changes. This value was used as the threshold value.

Figure 4 shows that the cumulative distribution function changes its slope around
when the value of the Szymkiewicz–Simpson coefficient is 0.825. This value was used as the
threshold value. In the combination of areas where the value of the Szymkiewicz–Simpson
coefficient is greater than this value, the area with the smallest existence probability of
high-growth firms was deleted. For example, the combination of an area with a turnover
of current debt (months) of 7.44 or higher and an area with an increase/decrease in an
investment of less than 0 (thousands of yen) resulted in a Szymkiewicz–Simpson coefficient
value of 0.916. Therefore, we compared the existence probability of high-growth firms and
removed the area with an investment volume of less than 0 (thousands of yen), which was
a lower area. We finally extracted 67 areas of 51 financial items.

For the five random data, the highest Szymkiewicz–Simpson coefficient was about 0.24
in the combination obtained from the areas of financial items obtained in each. Considering
that this is smaller than the threshold value of 0.825 in the data for analysis and that no
similarity exists among the financial items and among the areas as the data were randomly
shuffled, none of the areas were removed. The 11, 11, 12, 13, and 13 areas obtained in Step1
were used in Step3–Step5.

4.3. Extraction of Two-Dimensional Areas

The 67 areas of 51 financial items extracted in Step2 were used to extract the two-
dimensional areas. We checked all possible combinations, and the top five two-dimensional
areas with the highest existence probability of high-growth firms are presented in Table 4.

In the two-dimensional area where the existence of high-growth firms is in the first
and second places, high-growth firms are about 20 times more dense than normal ones.
Table 4 displays how many times the existence of high-growth firms is compared to when
the two conditions are independent (Column Ratio), and these five areas are about five
times as high. Therefore, some synergy must exist in the combination of these conditions.
Figure 5 presents the extracted two-dimensional area of the first rank.
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Table 4. Top five two-dimensional areas in Step3. The existence probability of high-growth firms of
an area is calculated using the number of high-growth firms in the area, the number of all firms in the
area, and Equation (5). The ratio in this table is the existence probability of high-growth firms in two
dimensions divided by the existence probability of high-growth firms calculated given that the two
conditions are independent using Equation (8). The abbreviated names used in this table are defined
in Table 1.

Item Name EPHF(1D) Item Name EPHF(1D) EPHF(2D) Ratio

CLR (M) 0.036 CACL (%) 0.013 0.199 5.142

CLR (M) 0.036 LACL (%) 0.012 0.196 5.232

CSGR (%) 0.025 GPE (T) 0.020 0.177 5.147

TCR (M) 0.022 FAR (M) 0.019 0.174 5.647

FAFL (%) 0.024 FAR (M) 0.023 0.173 4.702

Figure 5. Extracted two-dimensional area of the first rank. The vertical and horizontal axes are
divided by the current liabilities to revenue ratio (months) and the current assets to current liabilities
ratio (%), respectively. The size of the circle represents the number of firms in the area, and the radius
is scaled in a logarithmic scale. The colors of the circles represent the proportion of high-growth firms
in the area. It is drawn in the order of yellow, orange, red, brown, and black, starting from the lowest
to the highest. The green box at the right top is the area extracted as the two-dimensional area with
the highest concentration of high-growth firms. The blue box at the left bottom is the area that was
not extracted because the existence probability of high-growth firms in this area is lower than that of
high-growth firms using Equation (8) if the two conditions are independent.

The green box area at the right top in Figure 5 is the area that satisfies the green areas
in the turnover of current debt and the current ratio in the one-dimensional axes. It is
20 times more densely populated with high-growth firms than normal ones. It was also
extracted as a two-dimensional area with the highest existence probability of high-growth
firms. Meanwhile, the blue box area in Figure 5 is the area that satisfies the orange areas
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in the turnover of the current debt and the current ratio in the one-dimensional axes.
The existence probability of high-growth firms in this area is 0.014. This value is lower than
that of high-growth firms when the two conditions are independent, as calculated using
Equation (8). Therefore, this area was not extracted as a two-dimensional area.

We obtain 2211 two-dimensional areas using the 67 conditions used for the 67 areas ex-
tracted in Step2. Among them, we extracted 1036 areas that are more densely concentrated
with high-growth firms than that when the conditions were independent.

For the five random data, we check whether high-growth firms are densely populated
in the two-dimensional areas using the conditions used for the areas extracted in Step2.
The number of areas extracted as areas where the existence probability of high-growth
firms is higher than that of high-growth firms calculated using Equation (8), under the
condition that the two conditions are independent were 3, 4, 6, 7, and 9. Even in the
area with the highest concentration of high-growing firms in any of the random data, the
concentration of highest-growing firms is about 1.7 times the normal concentration. It was
also about 1.5 times higher than when all conditions were independent, indicating no
strong synergistic effect. These two-dimensional areas extracted as densely populated with
high-growth firms in the random data are used in the analysis in step 4.

4.4. Extraction of Higher-Dimensional Areas

For the 1036 two-dimensional areas extracted in Step3, we extract 1036 high-dimensional
areas by repeatedly adding the 67 conditions used in the 67 areas extracted in Step2.
The top two high-dimensional areas that are extracted are presented in Tables 5 and 6.

Table 5. Eight-dimensional area with the first highest existence probability of high-growth firms
among the extracted high-dimensional areas. The ratio in this table is the existence probability of
high-growth firms in the n-dimensional area divided by that of high-growth firms calculated under
conditions where the n-conditions are independent using Equation (8); n is the number of conditions
in the row (Column NC). The abbreviated names used in this table are defined in Table 1.

NC Item Name (Threshold) NHF EPHF Ratio

1 NOLR (%) (≤0) 3715 0.031 1.000
2 IR (M) (≤0) 2447 0.066 1.276
3 CAR (M) (≥10.2) 664 0.161 2.182
4 OITC (IC) (≤2) 217 0.408 4.194
5 GPE (T) (≤2727) 112 0.530 4.984
6 FAR (M) (≥10.19) 40 0.673 5.699
7 APR (M) (≤0) 33 0.748 5.382
8 CLR (M) (≥7.44) 26 0.779 4.837
9 OIR (CFS) (≤2) 26 0.779 4.133

Table 6. Seven-dimensional area with the second highest existence probability of high-growth firms
among the extracted high-dimensional areas. The ratio in this table is the existence probability of
high-growth firms in the n-dimensional area divided by that of high-growth firms calculated under
conditions where the n-conditions are independent using Equation (8); n is the number of conditions
in the row (Column NC). The abbreviated names used in this table are defined in Table 1.

NC Item Name (Threshold) NHF EPHF Ratio

1 ARR (DT) (M) (≤0.25) 4336 0.028 1.000
2 Revenue to total capital ratio (IC) (≤3) 1790 0.058 1.604
3 OITC (IC) (≤2) 550 0.215 3.548
4 PPER (M) (≤0.16) 136 0.475 6.658
5 NCLR (M) (≤0) 92 0.606 7.117
6 Investment and financing returns (%) (≤0.02) 60 0.683 7.272
7 DR (%) (≤0) 37 0.771 7.322
8 OIR (CFS) (≤2) 36 0.765 5.690
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The existence probability of high-growth firms decreased when the 8th and 9th condi-
tions were added to the areas in Tables 5 and 6. Therefore, the areas with the 7th and 8th
dimensions in Tables 5 and 6 were extracted as areas with a high concentration of high-
growth firms. The existence probability of high-growth firms in these high-dimensional
areas is about 0.77. This implies that high-growth firms in these areas are about 77 times
more dense than normal ones. They are also about 5–7 times higher than that when
all conditions were independent. Therefore, we can assume that some synergistic ef-
fects occur in the combinations of these conditions. As shown in Tables 5 and 6, we
extract the high-dimensional areas from the 1036 two-dimensional areas obtained in Step3.
The distribution of the existence probability of high-growth firms in the high-dimensional
areas finally obtained is presented in Figure 6.
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Figure 6. Distribution of the existence probability of high-growth firms in the high-dimensional areas.
The vertical axis and horizontal axes are the proportion of 1036 areas and the existence probability of
high-growth firms, respectively. The red line represents 0.01, the percentage of high-growth firms in
the overall area.

As shown in Figure 6, 90% of the 1036 high-dimensional areas were able to extract
areas where the high-growth firms are dense at 30 times or higher than the normal density.
We have also extracted four areas where the high-growth firms are dense at less than three
times the normal density, and all of these areas were two-dimensional ones. Subsequently,
areas with a small number of data are called local ones. These areas became localized
at the two-dimensional level, and no further high-dimensional areas could be extracted.
Our method searched the entire area exhaustively, and the extracted areas include the
local ones.

For the 1036 high-dimensional areas obtained in these processes, we verified whether
the existence probability of high-growth firms is also increased in the data for validation.
The verification procedure is to add conditions in the same order as the conditions for the
areas obtained in these processes until the existence probability of high-growth firms stops
to increase. As specific examples, the results of the verification in the areas of Tables 5 and 6
are presented in the Tables 7 and 8, respectively.

In the validation for both areas, the existence probability of high-growth firms de-
creased when the 5th condition was added. Thus, we confirmed the robustness of the
results up to the four-dimensional area in these areas. In this validation, the existence
probability of high-growth firms in the one-dimensional area in both validation results was
almost the same as that when the data for analysis were used. The existence probability
of high-growth firms in the four-dimensional area when the data for verification were
used was about 0.33 and 0.21 for Tables 7 and 8, respectively. Although these values are
lower than when using the data for analysis, we can assume that high-growth firms are
concentrated at a high density, which cannot be considered coincidental. The reason for
the lower existence probability of high-growth firms in the four-dimensional area, com-
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pared to that for analysis, and the failure of these areas to maintain robustness in the
five-dimensional area can be attributed to the fact that the data for verification are one-fifth
the number of data for analysis. That is the number of high-growth firms in the area at the
four-dimensional area is about 15.7% and 14.0% in Tables 7 and 8 for validation compared
to that for analysis. Thus, the number of high-growth firms in the area is reduced, and
the results are no longer stable and robust in high dimensions. The same verification was
conducted for the remaining 1034 high-dimensional areas. The distribution of the number
of dimensions for which the existence probability of high-growth firms was maximized in
the data for analysis and verification was checked (Figure 7).

Table 7. Validation result for the high-dimensional area of Table 5 with the highest existence prob-
ability of high-growth firms. We add conditions in the same order as in Table 5 until the existence
probability of high-growth firms stops to increase. The abbreviated names used in this table are
defined in Table 1.

NC Item Name Threshold NHF EPHF

1 NOLR (%) ≤0 551 0.031
2 IR (M) ≤0 379 0.064
3 CAR (M) ≥0.122 106 0.074
4 OITC (IC) ≤2 34 0.334
5 GPE (T) ≤2727 10 0.204

Table 8. Validation result for the high-dimensional area of Table 6 with the second-highest existence
probability of high-growth firms. We add conditions in the same order as in Table 6 until the existence
probability of high-growth firms stops to increase. The abbreviated names used in this table are
defined in Table 1.

NC Item Name Threshold NHF EPHF

1 ARR (DT) (M) ≤0.25 680 0.029
2 Revenue to total capital ratio (IC) ≤3 233 0.046
3 OITC (IC) ≤2 79 0.183
4 PPER (M) ≤0.16 19 0.208
5 NCLR (M) ≤0 11 0.207
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Figure 7. Distribution of the number of dimensions for which the existence probability of high-growth
firms was maximized in the data for analysis and verification. The vertical and horizontal axes are
the number of dimensions in verification data and analysis data, respectively. The numbers represent
the number of areas with each dimension in the analysis and validation data. The colors indicate that
the darker the red color, the higher the value, i.e., the greater the number of areas.
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The numbers in Figure 7 represent the number of areas with each dimension in the
analysis and validation data. For example, 77 with a vertical axis of 4 and a horizontal axis
of 7 indicates that 77 areas have been extracted in seven-dimensional areas for analysis and
verified to four-dimensional areas. Specifically, the area in Table 5 is contained in 72 with
a vertical axis of 4 and a horizontal axis of 8, and that in Table 6 is contained in 77 with a
vertical axis of 4 and a horizontal axis of 7 in Figure 7. Figure 7 presents that many high-
dimensional areas of more than three dimensions are robust for verification. In addition,
we can observe a relationship whereby the areas with higher dimensionality for analysis
also maintain a higher dimensionality for validation. There was also a 10-dimensional area
for which robustness was confirmed up to nine dimensions for verification. The details of
this area are provided in Table 9.

Table 9. Ten-dimensional area for which robustness was confirmed in up to nine dimensions for
verification. The abbreviated names used in this table are defined in Table 1.

NC Item Name (Threshold) NHF (DA) EPHF (DA) NHF (DV) EPHF (DV)

1 Revenue (T) (≤108,917) 9577 0.032 1253 0.041
2 NOLR (%) (≤0) 3156 0.056 450 0.065
3 CAR (M) (≥10.2) 1046 0.134 143 0.123
4 OITC (IC) (≤2) 338 0.278 51 0.234
5 PPER (M) (≤0.16) 137 0.471 25 0.317
6 LR (M) (≥14.13) 78 0.562 17 0.358
7 NCLR (M) (≤0) 63 0.672 11 0.371
8 Revenue to total capital ratio (IC) (≤ 3) 59 0.691 11 0.404
9 IR (M) (≤0) 37 0.694 10 0.464

10 LACL (%)(≤41.45) 18 0.700 3 0.144
11 OIR (CFS) (≤2) 18 0.700

The area in Table 9 is the area where the high-growth firms are about 70 times more
densely populated than usual for the analysis. This area maintains robustness up to nine
dimensions. In the data for verification, the high-growth firms are about 46 times denser
than usual in this nine-dimensional area. We also extracted high-dimensional areas that
can retain such robustness.

There are 165 areas where the increase in the existence probability of high-growth
firms stops at one-dimensional areas for validation, despite that for analysis they are
high-dimensional areas with six or more dimensions. In addition, in about half of the
1036 high-dimensional areas, an increase in the existence probability of high-growth firms
stopped at three dimensions or less in the data for verification. Therefore, our method
exhaustively searches the entire range and extracts local areas.

In the following, we focus on somewhat larger areas wherein the number of high-
growth firms includes more than 1% (145 firms) of the total number of high-growth firms in
the four-dimensional area in the data for analysis. There were 160 such high-dimensional
areas. The areas in Tables 5 and 9 are included in these 160 areas, but the area in Table 6 is
not. The distributions of the number of dimensions with the maximum existence probability
of high-growth firms in the 1036 high-dimensional areas and the 160 non-local high-
dimensional areas for verification are presented in Figure 8a,b.
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(b)(a)

Figure 8. Distribution of the number of dimensions with the maximum existence probability of high-
growth firms for verification. The vertical axis and horizontal axes are the proportion of 1036 areas in
(a) and 160 areas in (b) and the number of dimensions, respectively. (a) In the 1036 high-dimensional
areas. (b) In the 160 high-dimensional areas, which include more than 145 high-growth firms.

As shown in Figure 8, the distribution of the number of dimensions that maximizes
the existence probability of high-growth firms in the data for validation has changed
significantly by narrowing down from 1036 high-dimensional areas to 160 high-dimensional
areas, which include more than 145 high-growth firms. In most of the 160 areas, the number
of dimensions in which the existence probability of high-growth firms is maximized in
data for verification is four-dimensional or higher. Therefore, in these 160 areas, the
robustness can be assumed to be up to four-dimensional. Focusing on these 160 areas,
1–3 in Section 3.2.4 of the method are performed on these areas. The first corresponds to
40 areas, the second to zero areas, and the third to two areas. We finally focused on the
118 four-dimensional areas.

We extracted high-dimensional areas from each of the 29 two-dimensional areas extracted
by the five random data. Consequently, we extracted seven three-dimensional areas and
22 two-dimensional areas. The results using the random data are presented in Table 10.

Table 10. Results using random data. EPHF represents the value of the existence probability of
high-growth firms in the area where the existence probability of high-growth firms is the highest
among the extracted high-dimensional areas.

Data NAE-1D NAE-2D NDEHA EPHF

1 11 3 2, 2, 3 0.0140

2 11 7 2, 2, 2, 2, 2, 2, 3 0.0226

3 12 9 2, 2, 2, 2, 2, 2, 2,
3, 3 0.0161

4 13 4 2, 2, 2, 2 0.0167

5 13 6 2, 2, 2, 3, 3, 3 0.0152

Table 10 shows that we did not extract any high-dimensional areas in any random data.
The area with the highest existence probability of high-growth firms among all the random
data was the area where high-growth firms were 2.3 times more densely populated than
usual. A comparison of the results with the data for analysis indicates that the high-growth
firms are much more densely populated than in the random data. Considering that the
random data extracted a maximum of only nine areas, the data for analysis, which extracted
1036 high-dimensional areas, showed that the high-growth firms were densely concentrated
in many areas. Therefore, we can assume that strong relations exist between high-growing
factors of firms and financial items.
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4.5. Grouping

We define groups of the 118 four-dimensional areas selected in Step4 via hierarchical
clustering with the ward method, Step5. The result is presented in Figure 9.

⑮⑭⑬⑫⑪⑩⑨⑧⑦⑥⑤④③②①

Figure 9. Dendrogram of the result of hierarchical clustering for the 118 four-dimensional areas.
The vertical and horizontal axes are the dissimilarity defined using Equation (10) and the result
of grouping the 118 four-dimensional areas, respectively. We divided the 118 four-dimensional
areas into 15 groups (Groups 1© to 15©). Four-dimensional areas belonging to the same group have a
common color. For example, Group 1© has green. Groups 2© to 15© are cyclically painted in six colors.

We set the dissimilarity threshold used for grouping in Figure 9 to a value that has a
condition common to most of the grouped four-dimensional areas. Thus, the threshold was
set to 1, except for the one group on the left, which is grouped because 34 of the 36 four-
dimensional areas have the same condition. Finally, we divided the 118 four-dimensional
areas into 15 groups. The conditions common to each of the 15 groups are presented in
Table 11. We focused on Groups 1©, 2©, 12©, and 14©, which are characteristic among the
15 groups.

Here, 34 of the 36 four-dimensional areas in Group 1© have the common condition
of small gross profit per capita (less than 2727). The small value indicates that the firms
in these 34 areas have small sales and poor operating efficiency. The remaining two four-
dimensional areas have the condition that the total capital (compared to all firms in the
same industry) is small (smaller than three) and the turnover of total capital (month) is
large (larger than 17.79). The total capital (compared to all firms in the same industry) is
the value evaluated by TDB and takes the value 0–10. The small value indicates that the
total capital is very small compared to other firms in the same industry. The turnover of
total capital (month) is the value of total capital divided by sales. Specifically, a large value
of that indicates that sales are smaller than the total capital, given that the total capital is
very small. Therefore, these two areas extract firms with very small sales and low efficiency.
Therefore, the 36 four-dimensional areas in Group 1© extract firms with small sales and low
operating efficiency. These firms are considered to have improved their operations and
increased their sales significantly after three years.
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Table 11. Conditions common to each of the 15 groups. The abbreviated names used in this table
are defined in Table 1. If the variables common to a group include those with an alphabet in front
of the variable name, all four-dimensional areas in the group have in common that one or more of
them are satisfied. For example, all four-dimensional areas in Group 5© contain the condition of the
turnover of current assets and one or more of either (a) or (b). If the variables common to a group
include variables with an alphabet with tilde in front of the variable name, all four-dimensional areas
in the group have in common that two or more conditions are satisfied in them. For example, all
four-dimensional areas in Group 15© contain two or more of the conditions ã, b̃, or c̃.

Group Item name Threshold

1© GPE (T) ≤2727

2© ARR (DT) (M) ≥3.86

3©
PPER (M)

(a) Financial account to revenue ratio (%)
(b) DR (%)

≤0.00
≤0.00
≤0.00

4© Cash and deposits to revenue ratio (days)
OITC (IC)

≥130.33
≤2.00

5©
CAR (M)

(a) Interest coverage ratio (times)
(b) Capital to revenue ratio (M)

≥10.20
≤−8.49
≤−0.81

6©

OITC (IC)
(a) CACL (%)
(b) NCLR (M)

(c) Capital to revenue ratio (M)

≤2.00
≤78.68
≤0.00
≤−0.81

7© CAR (M)
Non-operating income to revenue ratio (%)

≥10.20
≥4.62

8© CAR (M)
DR (%)

≥10.20
≤0.00

9©
PPER (M)

(a) TCR (M)
(b) Revenue to total capital ratio (IC)

(c) OIR (CFS)

≤0.16
≥17.79
≤3.00
≤2.00

10© IR (M) ≤0.00

11©

CAR (M)
(ã) Non-operating income to revenue ratio (%)

(b̃) OITC (IC)
(c̃) APR (M)

≥10.2
≤0.00
≤2.00
≤0.00

12© ARR (DT) (M) ≤0.25

13©
CAR (M)

(a) Financial account to revenue ratio (%)
(b) Investment and financing returns (%)

≥10.20
≤0.03
≤0.02

14©
CAR (M)

IR (M)
Non-operating income to revenue ratio (%)

≥10.20
≤0.00
≤0.05

15©
(ã) Total capital (CFS)

(b̃) Investment and financing returns (%)
(c̃) Capital to revenue ratio (M)

≤3
≤0.02
≥8.53

Next, we focus on Group 2© and Group 12©. These two groups are characterized by
different areas of the single variable of the trade receivables (discounted and transferred)
turnover periods (months) as shown in Figure 10. Therefore, there is no firm that belongs
to both Group 2© and Group 12©.
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⑮⑭⑬⑫⑪⑩⑨⑧⑦⑥⑤④③②①

Figure 10. An example of the relation between the groups and a financial item. Group 2© is char-
acterized by the green area of the item, the accounts receivable to revenue ratio (discounted and
transferred) (months), on the other hand, Group 12© is characterized by the orange area.

We consider what type of firms each group is extracting. Group 2© has in common
the condition that the value of the trade receivables (discounted and transferred) turnover
periods (months) is large. This large value implies that the ratio of trade receivables to
sales is significant. That is, a firm takes a long time to convert its receivables into cash;
thus, firms with insufficient working capital are extracted. In addition, the conditions
that the ratio of ordinary income to total assets (industry comparison), turnover of total
capital (industry comparison), and ratio of ordinary income to net sales (compared to all
firms in the same industry) are bad are extracted together. Thus, we have extracted firms
in Group 2© that do not have enough working capital and whose profitability is worse.
These firms could have improved their operations to afford working capital, which would
have led to higher sales. Group 12© has in common the condition that the value of the
trade receivables (discounted and transferred) turnover periods (months) is small. This
small value indicates that, in contrast to Group 2©, firms in Group 12© can afford working
capital. In addition, the conditions that the ratio of ordinary income to total assets (industry
comparison) and the ratio of ordinary income to net sales (compared to all firms in the same
industry) are bad are extracted together. Therefore, firms in Group 12©with low profitability
were able to use their surplus working capital to increase sales after three years.

Finally, we focused on Group 14©. The shared conditions are presented in Table 11. That
is, these conditions include the absence of inventories, almost no non-operating income,
and very large current assets. In Japan, current assets generally comprise of the following
three elements [32]:

• Liquid assets: Short-term fixed deposits, securities, trade notes receivable, trade
accounts receivable;

• Inventories: Assets expected to sell on to earn revenue from sales of goods, prod-
ucts, etc.;

• Others: Short-term loans receivable.

Short-term fixed deposits are those with a maturity of one year or less from the closing
date. Securities are those with a maturity of one year or less or those held for the short term
for trading purposes. Trade notes receivable are promissory notes received as payment
for transactions with customers. Trade accounts receivable are accounts receivable from
customers for business transactions. Liquid assets are the collective category of these four
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assets. Inventories are assets that decrease in quantity in the short term that are sold to earn
revenue. Short-term loans receivable are loans with a maturity of one year or less from the
closing date. Current assets are collectively liquid assets, inventories, and short-term loans
receivable. Shared conditions indicate that Group 14© firms have large short-term fixed
deposits, trade notes receivable, trade accounts receivable, and short-term loans receivable.
Therefore, these firms have more assets that can be cashed in within a year. In addition,
the conditions of small revenues, small gross profit per employee, and small ordinary
income to revenue ratio are extracted together. Hence, we can assume that the firms in
Group 14© are financially robust and have increased their operating efficiency by making
capital investments, developing human resources, and increasing employment, resulting in
a significant increase in sales after three years.

5. Discussion

We discussed the advantages of using our method. In this study, we first extracted
one-dimensional areas, then deleted similar ones, and finally combined the conditions char-
acterizing those areas to extract higher-dimensional crowded data satisfying specific rules.
Our method has two advantages. The first is the possibility of extracting combinations of
synergistic conditions. In the one-dimensional area extracted in this study, high-growth
firms in the most densely populated area were about four times more densely populated
than usual, and the average was about 1.7 times more densely populated than usual.
However, by combining the conditions, our method can extract areas where the density
of high-growth firms is much higher than when the conditions were independent. For
example, the two-dimensional area with the highest existence probability of high-growth
firms in Table 4 is five times more densely populated with high-growth firms than that
when the conditions are independent. Further, the high-dimensional area with the second
highest existence probability of high-growth firms in Table 6 is seven times more densely
populated with high-growth firms than that when all conditions are independent. Thus,
our method can exhaustively extract combinations that seem to have synergistic effects.

Second, our method can also extract local areas and robust high-dimensional ones.
In this study, we focused on somewhat larger areas to analyze universal factors, but
we also extracted local areas. For example, we extracted the areas on the left side in
Figure 6 where the existence probability of high-growth firms is lower than other extracted
high-dimensional areas. We also extracted the high-dimensional areas at the bottom in
Figure 7 that can only validate up to low dimensions due to insufficient data for verification.
Contrary to this study, we can use our method if we want to focus on local and specific
cases, rather than universal ones. In addition, we can extract localized areas and areas with
robustness. For example, we extracted the high-dimensional area with strong robustness
(Table 9). We can use our method when we want to focus on something universal, as in
this study.

We discussed some of the considerations for this study. After the extraction of high-
dimensional areas, we selected four dimensions as the number of dimensions that could
withstand verification. First, we discussed regarding the extraction of high-dimension areas.
Meanwhile, we extracted the areas of seven or more dimensions, in the data for verification,
more than half of all extracted areas where the increase in the existence probability of
high-growth firms stopped at three dimensions (see Figure 8a). There are two reasons for
this. The first one is that there were cases where the number of firms was small in the
initially extracted areas because our method performed an exhaustive search that includes
local areas. The second one is that the increase in the existence probability of high-growth
firms tends to stop since the data for verification is one-fifth of the data for analysis in
terms of the number of data. Therefore, if it is not a local area, we can increase the number
of dimensions that allow verification by increasing the data for verification to about the
same number as that for analysis. Second, we discussed the number of dimensions that
we used. While increasing the number of dimensions that allow verification by increasing
the data for verification, considering that the area tends to be localized is necessary. In
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this study, to focus on areas where firms universally tend to high growth, we focused on
160 four-dimensional ones where more than 1% of the total number of high-growth firms
existed. Considering that we initially extracted 1036 high-dimensional areas, clearly that our
method can easily extract localized areas. Therefore, determining to what dimensionality
the results should be validated and used as universal results is necessary.

We also discussed some concerns when using our method. In this study, we first
extracted one-dimensional areas, then deleted similar ones, and finally combined the
conditions characterizing those areas to extract higher-dimensional crowded with data
satisfying specific rules. However, if the densification occurs in the way shown in the
following Figure 11a,b, we miss dense areas.

(a) (b)

Figure 11. Examples of missing dense areas with this method. The colored areas are where data
that satisfy specific conditions are densely distributed. (a) Example of missing in two dimensions.
(b) Example of missing in three dimensions.

In Figure 11a,b, we divided each axis into three parts. Data satisfying specific con-
ditions were densely populated in the colored areas in these figures. In Figure 11a,
the case of the missing dense area is when the existence probability of data satisfying
specific conditions in areas (1)∼(3), (4)∼(6), and (7)∼(9) is equal. In this case, when pro-
jected onto the Y-axis, we cannot extract the area on the Y-axis. Thus, we cannot extract
the two-dimensional areas (3), (5), and (7). We also consider the case where (1)∼(3) >
(4)∼(6) > (7)∼(9) in terms of the density of data satisfying specific conditions between
areas (1)∼(3), (4)∼(6) and (7) ∼(9). We consider areas (7)∼(9) as the areas where data
satisfying the specified conditions are not dense on the Y-axis, and we cannot extract area
(7). The possibility exists that a similar phenomenon may occur in the third dimension and
beyond. In the case of Figure 11b, as in the previous case, if the existence probability of
data satisfying specific conditions is equal in the three divisions in any of the X-, Y-, and
Z-axis directions, we cannot extract the colored areas in Figure 11b.

We can consider a possible method to address this concern to start focusing on two
or higher dimensions, rather than focusing on one dimension. In a pair that selects two
from all variables, we can address this by dividing the area, calculating the existence
probability of data satisfying specific conditions in each area, and extracting the areas with
a higher density of data satisfying certain conditions than normal ones. In Figure 11a, we
can extract areas (3), (5), and (7) by calculating the existence probability of data satisfying
specific conditions in each of areas (1)∼(9). In Figure 11b, we can extract the colored areas
by calculating the existence probability of data satisfying specific conditions in each of
the 27 areas. Meanwhile, since this method requires considering all variable partitions
and calculating the probability in each of them, we predicted a significant increase in
computational cost. Specifically, we considered the case where we divide each financial
item by 5% as in this study and searched in two dimensions, as shown in Figure 11a,
to avoid missing anything in dense areas. In this case, we divided each financial item
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by a maximum of 20 and considered the 12,090 combinations of selecting two from all
156 financial items. Therefore, it is necessary to calculate the existence probability of data
satisfying specific conditions in a maximum of 400 areas in each combination, totaling a
maximum of about 4.8 million areas. We also considered the case of focusing on three
dimensions, as shown in Figure 11b. We considered the 620,620 combinations of selecting
three from all 156 financial items. Therefore, it is necessary to calculate the existence
probability of data satisfying specific conditions in a maximum of 8000 areas in each
combination, totaling a maximum of about 3 billion areas. Thus, the computational cost
increases exponentially as we increase the number of dimensions that we begin to focus
on. Therefore, we consider this method of addressing this problem when only a few
variables exist. However, even if we searched exhaustively for a specific dimension,
the same problem can occur above that dimension and beyond. Specifically, Figure 11b
shows an example where a miss occurs in some three-dimensional areas, regardless of
whether one starts looking at a one-dimensional or two-dimensional area. Therefore, we
must discuss which dimension to examine exhaustively and which dimension and beyond
to ignore invisible relationships.

We compared some popular existing methods with our method for comparison. In
high-dimensional areas, when data satisfying specific conditions are concentrated in mul-
tiple areas, we call the problem of extracting all areas the multimodality problem. In the
special case that there is only one highly concentrated area in the whole space, we call
it a unimodality problem. For unimodality problems, we can extract the dense area by
using popular methods such as multiple regression analysis or support vector machines.
However, these methods are not suitable for the analysis of high-growth firms in this study,
as we showed in Section 4, there are at least 15 dense areas in the 156-dimensional space.
In addition, other popular methods, neural networks [33], are black-box methods, making
it impossible to interpret the results in terms of important financial items. Random forests
are also popular in big data analysis; however, they are unsuitable for the present problem
of extracting important factors in the form of sets of variables. Our method can extract
the sets of important factors for multimodality problems and is suitable for the analysis of
high-growth firms.

We also compared the factors extracted in this study to Coad’s previous study [28].
In that study, they used cluster analysis, which is strong for multimodality problems, to
analyze the important factors of high-growth firms. Although the high-growth firms in the
previous study are about 2% of the total data, we note that the definitions of high-growth
firms and the variables used are very different. The previous study found that firms with
low inventories, higher previous employment growth, and higher short-term liabilities are
more likely considered high-growth firms. As previous employment growth is excluded
from the financial item of this study, we analyzed other results. We identified the factor of
low inventory as a universal factor in Group 10© and Group 14© of this study (see Figure 9 and
Table 11). We extracted the factor of higher short-term liabilities in the high-dimensional
area of Table 9. Therefore, we can assume that we have extracted the same results as in the
previous studies.

We also compared the factors extracted in this study to that of Delemar’s previous
study [26]. In that study, they used Lasso, which is strong for unimodality problems, to
analyze the important factors involved in forecasting high-growth firms. We note that the
definition of high-growth firms differs from the previous study and the variables used are
also very different. After comparing the results with this assumption, we extracted similar
results to the previous study for increasing employment. In the previous study, increasing
employment was part of the factors for the seven clusters of high-growth firms. The firms
in Group 14© in this study are financially robust and have increased their operating efficiency
by making capital investments, developing human resources, and increasing employment.
Therefore, we believe that the result extracted in this study is similar to the previous one.
The previous study focused on revenue growth. However, in this study, we extracted the
areas that focused on this as localized areas, with the number of high-growth firms being
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less than 100 in any two-dimensional ones. The study was different from previous studies
that extracted revenue growth as universal.

Finally, we analyzed the indicators used in our method. For the 15 groups extracted
using our method, we found the poor operating efficiency for most groups. The possible
reason is that we used the top 1% of all firms in sales growth rate as the definition of
high-growth firms. Firms with approximately four times or higher sales after three years
often have either a pattern; that is, firms with poor operating efficiency have succeeded
in improving their sales or sales are small from the start. Thus, we may need to change
the definition of high-growth firms. In addition, we measured firm growth in this study
using the absolute one in sales over three years. As sales are not a perfect indicator [26],
some studies used the number of employees [21,34] and both the number of employees
and sales [35]. Therefore, discussing which items we should use as a measure of growth
and what should be the definition of a high-growing firm is necessary.

6. Conclusions

We introduced a new non-black-box method of extracting multiple areas in a high-
dimensional big data space where data points that satisfy specific conditions are highly
concentrated. We analyzed high-growth firms in all industries as an example of the
applications in this study. We categorized the high-growth firms into 15 groups of different
sets of factors. Conducting factor analysis of high-growth firms in specific industries or
firms that have gone bankrupt by using this method is feasible. In addition, this method is
not limited to corporate data and can be applied to various fields of analysis, including the
use of medical data for predicting diseases based on genetic changes.

Author Contributions: Conceptualization, H.T. and M.T.; methodology, H.T.; software, T.W.; valida-
tion, H.T., M.T. and T.W.; formal analysis, T.W.; investigation, T.W.; resources, M.T.; data curation,
T.W.; writing—original draft preparation, T.W.; writing—review and editing, H.T. and M.T.; supervi-
sion, M.T.; project administration, M.T.; funding acquisition, M.T. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Center for TDB Advanced Data Analysis and Model-
ing, Tokyo Institute of Technology for academic research purposes. TEIKOKU DATABANK, Ltd.
supported our research by providing the data related to Japanese business firms.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. The data were
obtained from TEIKOKU DATABANK, Ltd. (chuo-ku, Tokyo 104-8685 ) and are available from the
authors with the permission of TEIKOKU DATABANK, Ltd.

Acknowledgments: We thank Takaya Ohsato (TEIKOKU DATABANK, Ltd.) for the discussions
and TEIKOKU DATABANK, Ltd., Center for TDB Advanced Data Analysis and Modeling at Tokyo
Institute of Technology, for providing data and financial support.

Conflicts of Interest: TEIKOKU DATABANK, Ltd. did not participate in the research or the prepara-
tion of the manuscript, except for the data collection.

References
1. Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156.
2. Kira, K.; Rendell, L.A. A practical approach to feature selection. In Machine Learning Proceedings 1992; Elsevier: Amsterdam,

The Netherlands, 1992; pp. 249–256.
3. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
4. Saeys, Y.; Inza, I.; Larranaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517.
5. Jain, A.; Zongker, D. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach.

Intell. 1997, 19, 153–158.
6. Liu, H.; Li, J.; Wong, L. A comparative study on feature selection and classification methods using gene expression profiles and

proteomic patterns. Genome Inform. 2002, 13, 51–60.
7. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.
8. Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236.



Entropy 2023, 25, 488 23 of 23

9. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999.
10. Grandvalet, Y.; Canu, S. Adaptive scaling for feature selection in SVMs. Adv. Neural Inf. Process. Syst. 2002, 15.
11. Shah, A.D.; Bartlett, J.W.; Carpenter, J.; Nicholas, O.; Hemingway, H. Comparison of random forest and parametric imputation

models for imputing missing data using MICE: A CALIBER study. Am. J. Epidemiol. 2014, 179, 764–774.
12. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.

Nat. Mach. Intell. 2019, 1, 206–215.
13. Antoniak, C.E. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat. 1974, 2,

1152–1174.
14. Beaumont, M.A.; Rannala, B. The Bayesian revolution in genetics. Nat. Rev. Genet. 2004, 5, 251–261.
15. Pella, J.; Masuda, M. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull. 2001, 99, 151–151.
16. Martinez, E.Z.; Achcar, J.A. Trends in epidemiology in the 21st century: Time to adopt Bayesian methods. Cad. Saúde Pública

2014, 30, 703–714.
17. Ellison, A.M. Bayesian inference in ecology. Ecol. Lett. 2004, 7, 509–520.
18. Yazdani, A.; Kowsari, M. Bayesian estimation of seismic hazards in Iran. Sci. Iran. 2013, 20, 422–430.
19. Yamada, K.; Takayasu, H.; Takayasu, M. Estimation of economic indicator announced by government from social big data.

Entropy 2018, 20, 852.
20. Vijaymeena, M.; Kavitha, K. A survey on similarity measures in text mining. Mach. Learn. Appl. Int. J. 2016, 3, 19–28.
21. Evans, D.S. The relationship between firm growth, size, and age: Estimates for 100 manufacturing industries. J. Ind. Econ. 1987,

35, 567–581.
22. Lang, L.; Ofek, E.; Stulz, R. Leverage, investment, and firm growth. J. Financ. Econ. 1996, 40, 3–29.
23. Demirgüç-Kunt, A.; Maksimovic, V. Law, finance, and firm growth. J. Financ. 1998, 53, 2107–2137.
24. Baum, J.R.; Locke, E.A.; Smith, K.G. A multidimensional model of venture growth. Acad. Manag. J. 2001, 44, 292–303.
25. Van Witteloostuijn, A.; Kolkman, D. Is firm growth random? A machine learning perspective. J. Bus. Ventur. Insights 2019,

11, e00107.
26. Delmar, F.; Davidsson, P.; Gartner, W.B. Arriving at the high-growth firm. J. Bus. Ventur. 2003, 18, 189–216.
27. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. (Methodol.) 1996, 58, 267–288.
28. Coad, A.; Srhoj, S. Catching Gazelles with a Lasso: Big data techniques for the prediction of high-growth firms. Small Bus. Econ.

2020, 55, 541–565.
29. Teikoku Databank Ltd. Our Profile and History. 2022. Available online: https://www.tdb-en.jp/company/profile.html (accessed

on 31 January 2023).
30. O’Neill, M.E. PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation.

ACM Transactions on Mathematical Software. 2014. Available online: https://www.pcg-random.org/pdf/toms-oneill-pcg-
family-v1.02.pdf (accessed on 30 January 2023).

31. Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244.
32. Sakurai, H. Financial Accounting Lecture, 22nd ed.; Chuokeizai-Sha Holdings, Inc.: Chiyoda-ku, Tokyo, 2021; pp. 91, 92, 139, 140.

(In Japanese)
33. Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1998.
34. Evans, D.S. Tests of alternative theories of firm growth. J. Political Econ. 1987, 95, 657–674.
35. Davidsson, P. Continued entrepreneurship: Ability, need, and opportunity as determinants of small firm growth. J. Bus. Ventur.

1991, 6, 405–429.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.tdb-en.jp/company/profile.html
https://www.pcg-random.org/pdf/toms-oneill-pcg-family-v1.02.pdf
https://www.pcg-random.org/pdf/toms-oneill-pcg-family-v1.02.pdf

	Introduction
	Data
	Method
	Mathematical Basis
	Method
	Step1. Extraction of one-dimensional areas for each financial item
	Step2. Reduction of areas containing similar data points
	Step3. Extraction of two-dimensional areas
	Step4. Extraction of higher-dimensional areas
	Step5. Grouping


	Results
	Extraction of One-Dimensional Areas for Each Financial Item
	Reduction of Areas Containing Similar Data Points
	Extraction of Two-Dimensional Areas
	Extraction of Higher-Dimensional Areas
	Grouping

	Discussion
	Conclusions
	References

