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Abstract: Tri-training expands the training set by adding pseudo-labels to unlabeled data, which
effectively improves the generalization ability of the classifier, but it is easy to mislabel unlabeled data
into training noise, which damages the learning efficiency of the classifier, and the explicit decision
mechanism tends to make the training noise degrade the accuracy of the classification model in the
prediction stage. This study proposes the Tri-training algorithm for adaptive nearest neighbor density
editing and cross-entropy evaluation (TTADEC), which is used to reduce the training noise formed
during the classifier iteration and to solve the problem of inaccurate prediction by explicit decision
mechanism. First, the TTADEC algorithm uses the nearest neighbor editing to label high-confidence
samples. Then, combined with the relative nearest neighbor to define the local density of samples to
screen the pre-training samples, and then dynamically expand the training set by adaptive technique.
Finally, the decision process uses cross-entropy to evaluate the completed base classifier of training
and assign appropriate weights to it to construct a decision function. The effectiveness of the TTADEC
algorithm is verified on the UCI dataset, and the experimental results show that compared with the
standard Tri-training algorithm and its improvement algorithm, the TTADEC algorithm has better
classification performance and can effectively deal with the semi-supervised classification problem
where the training set is insufficient.

Keywords: Tri-training; training noise; nearest neighbor editing; local density; cross entropy

1. Introduction

Data mining refers to the process of finding specific rules and obtaining valuable
information from data. Data mining methods include supervised learning, unsupervised
learning, and semi-supervised learning [1–3]. Supervised learning uses labeled data to train
classifiers and requires enough training data to ensure model performance; unsupervised
learning does not require a priori information about the data and uses the idea of clustering
samples with a high degree of similarity in the same clusters. Still, the accuracy of the
model is difficult to guarantee. In the era of big data, the volume of data is growing
exponentially, and it is easier to obtain large amounts of unlabeled data, which often
requires a lot of human, material, and financial resources to assign labels to these data. Semi-
supervised learning combines the advantages of supervised learning and unsupervised
learning—breaking the boundary of traditional methods of using only one kind of data
and using unlabeled data to assist labeled data for learning, which has become one of the
research hotspots in the field of data mining [4]. Semi-supervised learning has been widely
used in image processing [5], medical diagnosis [6], false comment detection [7], network
security [8], etc.

Semi-supervised classification learning is a method that employs semi-supervised
learning models to solve classification problems, which can guarantee the performance of
classification models even when labeled data are insufficient. The main semi-supervised
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classification methods currently available include disagreement-based methods [9], genera-
tive methods [10], graph-based methods [11], and discriminative methods [12], etc. The
disagreement-based method utilizes unlabeled data through multiple classifiers and adds
pseudo-labels to the unlabeled data as a platform for information interaction among multi-
ple classifiers during the training process. The generative method assumes that the data
are all generated by the same generative model. The sample and class labels are generated
by probability distributions of certain structural relationships, and the unlabeled data can
be associated with learning objectives with the help of model parameters. A graph-based
method maps data onto a connected graph by knotting geometric relationships between
samples and constructing kernel functions to carry out information transfer of labels on
the graph. The discriminative method learns decision boundaries by training both labeled
and unlabeled samples through a maximum interval algorithm so that the learned classi-
fication hyperplane is at the maximum distance from the sample interval. Among them,
the disagreement-based method is less affected by model assumptions and data size issues
and is more widely applicable.

The semi-supervised classification methods based on the idea of disagreement orig-
inated from the co-training algorithm [13] proposed by Blum et al. The algorithm uses
different views of labeled data to train two initial classifiers, and each classifier selects
a number of unlabeled data with high confidence to add pseudo-labels to the training
set of the other one and improves the classification performance by training each other.
The algorithm requires at least two sufficiently redundant and conditionally independent
views of the data, but in practical problems, it is difficult to satisfy this condition. To
solve the problem of sufficiently redundant views of data, Zhou et al. [14] proposed the
Tri-training algorithm, which generates three classifiers from a single-view training set
to learn from each other to train the classification model. The algorithm does not require
enough redundant views, which effectively reduces the data requirements and improves
the efficiency and generalization ability of the algorithm.

Tri-training algorithm improves the performance of the classification model by expand-
ing the training sets of three classifiers to each other; similar to the co-training algorithm, the
performance of classifiers in the early iterative process is weak, and the multiple classifiers
labeling the same unlabeled samples are prone to inconsistent class labeling. Secondly, the
accumulation of mislabeled samples makes the performance of each classifier different, and
the explicit decision mechanism using the voting method is prone to make the prediction
results inaccurate.

To address the problem that expanding the training set is prone to forming training
noise, Deng et al. [15] uses the remove-only editing operation to identify and remove the
mislabeled samples that may arise from each iteration and proposed a Tri-training algorithm
based on adaptive editing in combination with an adaptive strategy. Zhao et al. [16] use an
active learning approach based on uncertainty and representativeness to sample unlabeled
samples and proposed a group verification pseudo-label sample method and a security
verification method., and select the labeled category with a low error rate as the final
sample label by secondary validation. Li et al. [17] combine integrated learning with a
Tri-training algorithm, estimate the confidence of unlabeled data by integrated learning,
and use the confidence to weight the unlabeled samples to train the classifier, which reduces
the influence of training noise on the classification model. Hu et al. [18] improved the access
condition of the training set, estimated the prediction probability of unlabeled samples
using the classifier, and dynamically adjusted the prediction probability threshold for the
same unlabeled samples by tracking the sample distribution after each training round,
reducing the noise while maintaining the sample class balance. Wang et al. [19] used an
asymmetric tri-training model to expand the training set by estimating confidence and
setting expert thresholds and combined the training sets of three classifiers to train a fourth
classifier for decision target values using their common features and special features.

To address the prediction inaccuracy problem of explicit decision mechanism,
Zhang et al. [20] introduced the ideas of cross entropy and convex optimization to improve
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the Tri-training algorithm, using cross entropy instead of the classification error rate to
reflect the difference between the predicted distribution and the true distribution. The
authors used the hinge loss function to estimate the degree of difference between the
predicted and true values of the model and combined it with the convex optimization
method to find the classifier weights under the minimum degree of difference to improve
the accuracy of the model prediction. Mo et al. [21] assigned weights to the newly labeled
data by Euclidean distance and entropy values, constructed a decision function based on
the weight of each classifier’s accuracy and used a weighted voting method to predict the
target values.

In order to better eliminate the training noise that impairs the learning ability of
classifiers and improve the decision-making ability of classification models, this paper
proposes a Tri-training for adaptive nearest neighbor density editing and cross-entropy
evaluation (TTADEC). The structure of this paper is as follows: Section 2 outlines the Tri-
training algorithm and its shortcomings; Section 3 discusses the new algorithm proposed
in this paper in detail; Section 4 conducts simulation experiments on several UCI datasets
and analyzes the performance of the algorithm; Section 5 concludes the paper.

2. Basic Concepts
2.1. Tri-Training Algorithm

Tri-training is a semi-supervised classification method based on the idea of divergence,
which solves the problem of sufficient redundancy of data views in the co-training algo-
rithm, which is not required for data views. The algorithm essentially uses a combination of
multiple classifiers to combine the outputs of each classifier to obtain stronger performance
than using a single classifier.

The basic idea of the Tri-training algorithm is as follows: first, three base classifiers are
generated by randomly sampling training samples from single-view labeled data L through
the bootstrap method; second, the training set of the three base classifiers is expanded, and
any two base classifiers have the same prediction result for the unlabeled data sample x,
then x is added to the training set of the third base classifier; finally, the base classifier is
updated under the condition that the iterative process is satisfied until the base classifier
error rate no longer changes and the training process is completed. The specific process is
shown in Figure 1.
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The Tri-training algorithm expands the training set to update the base classifier after
each round of iteration to satisfy the constraints. Taking the expanded base classifier h1
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training set as an example, assume that Lt and Lt−1 are the expanded training sets for
rounds t and t− 1, respectively, and the training noise rate ηt of the base classifier h1 in
round t iteration is shown in Equation (1).

ηt =
ηL
∣∣L∣∣+et

1

∣∣Lt
∣∣

|L ∪ Lt| (1)

where ηL is the noise rate of the initial label data L and et
1 is the upper limit of the error rate

of the joint classifier consisting of the base classifier h2 and h3 in the round t iteration.
According to the learnable theory in the literature [22], through Equation (2), the

relationship between the training set size m, noise rate η and classification error rate ξ can
be found as 1

ξ ∝ m(1− 2η)2.
c

ξ2 = m(1− 2η)2 (2)

Zhou et al. [13] proved that the classifier performance is improved when the newly
expanded training set has enough samples and the constraints of Equation (3) are satisfied.

|L ∪ Lt|
(

1− 2
ηL
∣∣L∣∣+et

1

∣∣Lt
∣∣

|L ∪ Lt|

)2

> |L ∪ Lt−1|

1− 2
ηL

∣∣∣L∣∣∣+et−1
1

∣∣∣Lt−1
∣∣∣

|L ∪ Lt−1|

2

(3)

when
∣∣Lt
∣∣>∣∣Lt−1

∣∣, Equation (4) can be introduced under the constraints of Equation (3):

0 <
et

1

et−1
1

<

∣∣Lt−1
∣∣

|Lt| < 1 (4)

The Tri-training algorithm expands the training set according to Equation (3), and
the pseudo-labeled samples are labeled for base classifier h2 and h3 are added to the base
classifier h1 training set when the constraints are satisfied, and vice versa, the training set
does not change. The training sets of base classifiers h2 and h3 are added in the same way
until the iterative process does not satisfy the constraints, the training process ends, and
the base classifier does not change anymore.

2.2. Nearest Neighbor and Relative Nearest Neighbor

Nearest neighbor is a classification algorithm based on the distance between samples
in a neighborhood, which determines the class of samples to be tested by a voting method
according to the nearest neighbor label.

Definition 1. k Nearest Neighbor (KNN). Any sample point i in the dataset, the nearest k samples
from which is the set of k nearest neighbors of sample i, denoted as knn(i).

The relative nearest neighbor is then the correlation between sample k nearest neighbor.
The shared area is part of the sample k nearest neighbor that is shared with the other sample
k nearest neighbor, and the rest is the non-shared area, and the more samples in the shared
area indicate the higher similarity between the two samples. The shared regions include
shared nearest neighbors and natural nearest neighbors, which are defined as follows.

Definition 2. Shared Nearest Neighbor (SNN). The set of k nearest neighbors of any sample i
and j in the dataset, the set of nearest neighbors of sample i and sample j are knn(i) and knn(j)
respectively, and the set of common nearest neighbors of sample i and sample j is called their shared
nearest neighbor set, denoted as:

SNN(i, j) = knn(i) ∩ knn(j) (5)
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Definition 3. Natural Nearest Neighbor (NNN). Any sample i and j in the dataset, sample i and
sample j have the set of k nearest neighbors as knn(i) and knn(j) respectively, knn(i) contains
sample j and knn(j) contains sample i, then sample i and sample j are called natural nearest neighbor
set and are denoted as:

NNN(i, j) =
{

1 , i ∈ knn(j) and j ∈ knn(i)
0 , others

(6)

Shared nearest neighbors and natural nearest neighbors have been widely used in
model optimization, machine learning and other fields. For example, Zhao et al. [23]
defined the similarity between samples by shared nearest neighbors and natural nearest
neighbors. The experiments showed that they could indicate the similarity degree of
samples more accurately and improve the accuracy of sample assignment; Zhu et al. [24]
incorporated shared nearest neighbors into single-cell clustering and defined the weights
of edges by the ratio of shared nearest neighbors to nearest neighbors, and integrated the
structural information of the graph to achieve the improvement of single-cell clustering
accuracy. The samples within the shared region can be used indirectly as the similarity
judging index. The more samples within the region indicate the higher similarity of the
two samples and the higher possibility of belonging to the same kind.

3. TTADEC Algorithm

To address the shortcomings of Tri-training, the TTADEC algorithm is proposed in this
paper. This section will introduce the TTADEC algorithm in detail, including the nearest
neighbor editing, sample local density and adaptive sample expansion techniques used in
the training process, the decision function of the algorithm and the algorithm steps.

3.1. Nearest Neighbor Editing

By analyzing the training process of the Tri-training algorithm, it can be found that
the algorithm is prone to mislabeling unlabeled data as training noise in the early iteration
process, which hinders the learning ability of the base classifier, resulting in the ineffective
improvement of the base classifier’s performance. If the mislabeled samples can be identi-
fied and removed during the iterative process, more accurate hypotheses can be obtained,
and the base classifier can predict the unlabeled samples more accurately afterwards.

For this purpose, the nearest neighbor idea is introduced to label the suspicious noisy
samples in the iterative process. In most cases, the closer the samples are to each other, the
higher their similarity and the higher the probability of belonging to the same class. The
TTADEC algorithm expands the training set by considering the labeling of samples in the
nearest neighbor range.

The specific idea is as follows: assume that the training set expanded from the unla-
beled dataset U in the process of t iteration is Lt, and the initially labeled dataset is L. For
each sample x in the training set Lt, select its k nearest neighbors knn(x) in L∪ Lt according
to the nearest neighbor rule, and observe whether the proportion of samples in knn(x) with
the same label as x satisfies the threshold α. If the condition is satisfied, the accuracy of
sample x with a pseudo-label is considered high, and the sample x in Lt is labeled as a
high-confidence sample; conversely, the accuracy of the sample adding a pseudo-label is
considered low, and the sample x in Lt is labeled as a suspicious noise sample.

3.2. Local Density of Relative Nearest Neighbors

The pre-selected samples of the expanded training set are obtained by sampling from
the unlabeled dataset U. For sample regions that are in a dense degree, it is easier to use
the nearest neighbor idea to determine whether the samples are suspicious noise, while
the sparse sample regions do not work well using the nearest neighbor idea. As shown
in Figure 2, let Figure 2a,b be the training data of rounds t and t + 1, respectively, and
the blue samples are pre-selected samples. When the pre-selected samples are in a dense
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area, it is more accurate to use the nearest neighbor approach to discriminate the noisy
samples because the closer they are, the higher the probability of belonging to the same
class of clusters. On the one hand, it is difficult to accurately predict the labels of the sparse
samples in the initial iteration process because of the weak learning ability of the base
classifier. This is due to insufficient training data; on the other hand, the distance between
the sparse samples is large, the probability of belonging to the same cluster is low, and the
nearest neighbor is easy to misidentify the pseudo labels. At the same time, as the number
of iterations increases, the samples in the sparse region in the round t will change due to
the continuous expansion of the training set. The denseness of the region they belong to
will change afterwards, as shown in Figure 2c, the region where the yellow samples are
located becomes more dense after the round t + 1 iteration, and the inaccurate prediction
of the unlabeled samples in the early iteration process will have an important impact on
the labeling of suspicious noise samples afterwards.
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Based on the above analysis, the TTADEC algorithm proposes the concept of sample
local density, which is used to measure the density of the region to which the sample
belongs, and does not label the expanded samples whose local density does not meet the
threshold ρ, so as to reduce the problem of easy labeling errors in the early iteration process.
The local density of samples needs to pay attention to the local information of samples,
which can be reflected by the samples in the neighborhood. Therefore, the local density of
samples can be determined by defining the similarity between samples and their neighbors,
while the density difference between samples can be defined by the similarity between
samples.

The sample similarity of the TTADEC algorithm considers the number of samples in
the shared area and the distance between samples in the neighborhood range, while the
sample local density is defined by summing up the sample similarity, and the formulas of
sample similarity and local density are given below.

Definition 4. Sample similarity. Any sample i and j in the dataset, the sample similarity is defined
as follows:

Sim(i, j) =
(
|SNN(i, j)|

k
+ NNN(i, j)

)
∑

u∈[knn(j),j]
e−diu + ∑

u∈[knn(i),i]
e−dju

2(k + 1)

 (7)

where dij is the Euclidean distance between samples i and j, the right bracket of Sim(i, j) reflects the
density of the region in which the samples are located. The closer the distance, the larger the value
and the denominator is the normalization parameter; |SNN(i, j)| the left bracket of Sim(i, j) is the
number of shared nearest neighbors. NNN(i, j) is to determine whether samples i and j belong to
natural nearest neighbors, shared nearest neighbors and natural nearest neighbors highlight the
degree of similarity between samples, so the shared nearest neighbors and natural nearest neighbors
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are weighted to calculate the sample similarity, only when samples i and j have shared nearest
neighbors or mutual natural nearest neighbors, there is similarity between samples.

Definition 5. Sample local density. The local density of any sample i in the dataset is the sum of
the similarity of sample i to the rest of the samples.

ρi = ∑ Sim(i, j), j ∈ [1, 2, . . . , N] (8)

where N is the number of pre-selected samples in the current iteration. A high local density of
samples not only reduces the error rate when adding pseudo-labels to the base classifier, but also
improves the accuracy of the nearest neighbor method in labeling suspicious noisy samples.

3.3. Adaptive Sample Expansion

The TTADEC algorithm mechanically uses the nearest-neighbor idea and the local
density of samples to expand the training set, which may sometimes damage the perfor-
mance of the base classifier. If the sample size of a given iteration is not large enough,
not only is the performance of the base classifier not improved, but the constraints of the
iterative process are also not satisfied. In this regard, the TTADEC algorithm introduces an
adaptive expansion of the training samples in terms of the mislabeling rate at.

Definition 6. Mislabeling rate. The ratio of the number of incorrectly removed samples to the total
number of removed samples for an arbitrary iterative process.

at =

∣∣Lt
∣∣−∣∣Lt

n
∣∣

|Lt| (9)

where
∣∣Lt

n
∣∣ is the number of samples for which the classifier predicts consistent results, and the

degree to which the samples are screened indirectly affects the constraints under which Equation
(3) holds. The number of noisy samples in the training set after the adaptive technique is et

1at
∣∣Lt
∣∣,

which is brought into Equation (1) to obtain.

ηt
de =

ηL
∣∣L∣∣+et

1at
∣∣Lt
∣∣∣∣L ∪ Lt

de

∣∣ (10)

Theorem 1. In the round t iteration, Lt
de is the pre-selected sample set after nearest neighbor editing

and local density screening, and the error rates ξt and ξt
de after training the classifier using data

L ∪ Lt and L ∪ Lt
de satisfy the property ξt

de < ξt when the mislabeling rate at ≤ 1− |L
t|−|Lt

de|
2et |Lt | . In

the round t iteration, assuming that Lt
de is the pre-selected sample set after nearest neighbor editing

and local density screening, when the mislabeling rate satisfies at ≤ 1− |L
t|−|Lt

de|
2et |Lt | , the error rates

ξt and ξt
de after training the classifier using data L ∪ Lt and L ∪ Lt

de satisfy the property ξt
de < ξt

according to Equations (2) and (10).

In summary, the classifier is trained on the filtered data samples when the mislabeling

rate at ≤ 1− |L
t|−|Lt

de|
2et |Lt | during the iteration, otherwise, the classifier is not updated.

3.4. Decision Functions

The Tri-training algorithm uses “majority voting” to predict the target sample labels,
and this explicit estimation makes the weights consistent across base classifiers. If the
performance of the base classifier is poor, this explicit labeling confidence is not accurate
enough, resulting in incorrect classification results. In most cases, the learning environment
is not consistent across base classifiers, and it is difficult to obtain three classifiers with
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the same performance. The classifier with strong learning power cannot provide more
information in the decision process, while the classifier with weak learning power tends
to make the classification results worse. For this reason, For this purpose, the TTADEC
algorithm decision process uses optimization methods to evaluate the performance of each
classifier and assign appropriate weights to them.

The population intelligent algorithm is the mainstream method to solve optimization
problems at present, which solves realistic optimization problems by simulating the group
behavior of animals in nature, and the common population intelligence algorithms include
firefly algorithm [25,26], particle swarm algorithm [27] and wolf pack algorithm [28,29],
etc. Although population intelligence algorithms solve optimization problems with high
accuracy, the corresponding time complexity is also high. Cross entropy is also a method for
solving optimization problems, and compared with the population intelligence algorithm,
the optimization method using cross-entropy is much lower in time complexity than
the former. Most of the semi-supervised classification problems in real life are real-time
problems, and for this reason, the TTADEC algorithm chooses cross-entropy to optimize
the decision function.

The relative entropy [30] can be used to measure the variability of two probability
distributions, and given that the true distribution of the sample set is P and the model
predicted distribution is Q, the relative entropy of P and Q is defined as Equation (11).

DKL(P||Q) =
n
∑

i=1
P(xi) log

(
P(xi)
Q(xi)

)
=

(
−

n
∑

i=1
P(xi) log Q(xi)

)
−
(
−

n
∑

i=1
P(xi) log P(xi)

)
= H(P, Q)− H(P)

(11)

where H(P, Q) is the cross-entropy, and H(P) is the information entropy. The smaller the
value of DKL, the closer the distributions of P and Q. When DKL = 0, the distributions of
P and Q are the same. In the actual classification problem, the true sample distribution
P of the training data is known, the information entropy is kept constant, and only the
cross-entropy H(P, Q) needs to be considered to evaluate the classifier performance.

In the TTADEC algorithm, the performance of base classifiers varies after learning,
and the cross-entropy is used to evaluate the performance of each classifier and assign
the corresponding weight to it, and the target sample is decided by weighted voting of
classifiers. The cross-entropy of classifiers is calculated using the training set by extracting
the dataset L′ from the dataset L using bootstrap sampling, predicting the distribution of
the dataset L′ using the classifier hi, and obtaining the cross-entropy Hi from the true and
predicted distributions of the dataset L′. TTADEC, the weight function of the classifier, and
the classification decision function in the algorithm are defined as follows:

ωi = 1− Hi/
3

∑
j=1

Hj , i = (1, 2, 3) (12)

h(x) = sgn

(
3

∑
i=1

ωihi(x)/
3

∑
i=1

ωi

)
(13)

Compared with the Tri-training algorithm, the TTADEC algorithm enables classifiers
with strong learning power to provide more information through the classifier-weighted
decision method and reduces the impact of weak classifiers prone to mislabeling, which
improves the overall performance of the classification model to a certain extent.

3.5. Procedures

Algorithm 1 gives the pseudo-code of the proposed TTADEC algorithm., and the
symbols are explained as shown in Table 1.
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Algorithm 1 Pseudo-code of the TTADEC

Input: unlabeled dataset U, labeled dataset L, test set T.
Output: h(x) (final training results).
1: data preprocessing, data normalization and construction of distance matrix D.
2: Li ← bootstrap(L) .
4: while stopping condition is not met do
5: h(x)← update(hi) .
6: selecting some samples U′ from the dataset U to add pseudo-labels.
7: obtaining the local density ρi of sample xi in U′

8: obtaining the k nearest neighbors of sample xi.
9: obtaining L through Equations (8) and (10).
10: end while
11: L′ ← bootstrap(L) .
12: H ← ∑ h(L′) log y
13: ω ← based on Equation (12)
14: h(x)← based on Equation (13)
14: return h(x).

Table 1. Symbol Description.

Symbols Description

U Unlabeled dataset
L Labeled dataset
T Test set
D Distance matrix
Li Initial training set of each classifier
ρi Local density
at Mislabeling rate
L′ Public dataset for weight acquisition
ωi Weighting factor

4. Experiment and Analysis
4.1. Experiment Settings

To verify the effectiveness of the TTADEC algorithm, the algorithm performance was
tested using the dataset in the UCI machine learning library [31]. We compare the TTADEC
algorithm with the Tri-training algorithm [13], the Tri-training algorithm for adaptive
data editing (ADE-Tri-training) [15], the Tri-training algorithm based on cross entropy
(TCE) [20], the safe Tri-training algorithm (ST) [20], and the safe Tri-training algorithm
based on cross entropy (STCE) [20] for comparison. The experimental environment is
Intel(R) Core (TM) i5-6300HQ CPU @ 2.30 GHz, 12 G RAM, Windows 10 64-bit OS and
Python 3.7 programming environment.

The experiments were conducted on nine datasets, and the basic information is shown
in Table 2. These datasets are widely used to test various classification algorithms and
vary in overall distribution, which can simulate different situations and compare the
performance of algorithms in different scenarios. A total of 9 datasets have different sample
sizes, number of attributes, class proportions, etc. Experiments on them can verify the
generalizability of algorithms to different problems.
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Table 2. Experimental dataset.

Dataset Size Attribute Positive Negative

australian 690 14 44.5 55.5
wdbc 569 30 37.3 62.7

abalone 4177 8 32.1 67.9
bupa 345 6 42.0 58.0

electrical 10,000 13 36.2 63.8
german 1000 24 30.0 70.0

haberman 306 3 26.5 73.5
heart 270 13 44.4 55.6
spectf 267 44 20.6 79.4

In this paper, four evaluation metrics are chosen to assess the algorithm performance,
including accuracy, recall, precision, and F-measure. For semi-supervised learning, the
data used in the experiments are few labeled data, and most of them are unlabeled data.
Among them, 80% of the dataset is selected as the training set D and 20% as the test set
T to verify the algorithm performance, 20% of D is the labeled dataset L, and 80% is the
unlabeled dataset U.

The data were preprocessed before the experiment, including missing value processing
and data normalization. Among them, missing values are filled by the average of valid data
in the same dimension, and data normalization is performed by the maximum minimization
method of Equation (14).

xij
∗ =

xij −min(xj)

max(xj)−min(xj)
(14)

where xij is the value of the j− th attribute in the i − th sample, and xj is the set of the
j− th attribute in all the data. Data normalization is helpful to eliminate the influence of
too large a gap between data of different dimensions on the experimental results.

4.2. Hyperparametric Analysis

In order to analyze the influence of the parameters α and ρ on the experiment, this
paper uses the control variable method to select the appropriate parameters, in which the
value of α is too small will make the confidence of the nearest neighbor editing too low, too
high is easy to cause the number of pre-selected samples is not enough, for this control α
value in 0.45 ∼ 0.7 for the experiment; ρ value affects the probability of being mislabeled,
control ρ value in 0 ∼ 0.1 for the experiment.

Experiment 1 control ρ = 0.06, the accuracy of the TTADEC algorithm was obtained
on 9 datasets when α = 0.45, 0.50, 0.55, 0.60, 0.65, 0.70. The experimental results are shown
in Figure 3. It can be seen from the Figure that, in most cases, the α value is more accurate
in the interval 0.55 ∼ 0.65. Experiment 2 control α = 0.55 to obtain the accuracy of the
TTADEC algorithm when ρ = 0.02, 0.04, 0.06, 0.08, 0.10 on 9 datasets, and the experimental
results are shown in Figure 4. It can be seen from the figure that, in most cases, ρ takes
the highest accuracy when the value is in 0.06. In overview, considering the time cost of
the algorithm is set to the median of the interval as 0.6 and is taken as 0.06 for subsequent
experiments.
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4.3. Performance Analysis

Experiments were conducted on nine UCI datasets, with α taking the value of 0.60 and
ρ taking the value of 0.06, and the experimental results are shown in Tables 3–6.
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Table 3. Accuracy.

Dataset Tri-Training ADE-
Tri-Training TCE ST STCE TTADEC

australian 0.8022 0.8391 0.8206 0.8266 0.8497 0.8759
wdbc 0.9379 0.9363 0.9510 0.9441 0.9580 0.9735

abalone 0.8083 0.8198 0.7799 0.7837 0.8038 0.8371
bupa 0.5971 0.6097 0.5632 0.5517 0.5977 0.6364

electrical 0.9753 0.9900 0.9944 0.9940 0.9960 0.9995
german 0.7116 0.7227 0.7320 0.7400 0.7460 0.7437

haberman 0.7049 0.7044 0.5513 0.6923 0.5385 0.7405
heart 0.7632 0.7636 0.7206 0.7647 0.7794 0.8113
spectf 0.6415 0.7198 0.6418 0.5672 0.6269 0.7258

Table 4. Recall.

Dataset Tri-Training ADE-
Tri-Training TCE ST STCE TTADEC

australian 0.7422 0.8083 0.7765 0.8077 0.7826 0.9038
wdbc 0.9359 0.9533 0.9857 0.9718 1.0000 0.9646

abalone 0.6120 0.6240 0.5455 0.5551 0.6143 0.6607
bupa 0.6126 0.6927 0.8000 0.6818 0.6875 0.7357

electrical 0.9746 0.9990 0.9945 0.9923 0.9935 0.9995
german 0.6750 0.4454 0.5067 0.5185 0.5652 0.7553

haberman 0.3693 0.2636 0.1724 0.2778 0.1875 0.4846
heart 0.7165 0.8236 0.6471 0.7097 0.7059 0.7912
spectf 0.6147 0.4102 0.3429 0.2778 0.3421 0.6356

Table 5. Precision.

Dataset Tri-Training ADE-
Tri-Training TCE ST STCE TTADEC

australian 0.6685 0.8713 0.8462 0.8077 0.9231 0.7966
wdbc 0.8866 0.9457 0.9200 0.9200 0.9200 0.9777

abalone 0.6408 0.7128 0.6094 0.5898 0.5352 0.7114
bupa 0.3276 0.2880 0.2553 0.3191 0.4681 0.5166

electrical 0.9577 0.9989 0.9902 0.9913 0.9956 0.9996
german 0.8833 0.6462 0.5588 0.6176 0.5735 0.8659

haberman 0.2333 0.3053 0.3125 0.3125 0.3750 0.4333
heart 0.9112 0.8048 0.7586 0.7586 0.8276 0.9285
spectf 0.6928 0.8751 0.9231 0.7692 1.0000 0.9523

Table 6. F-measure.

Dataset Tri-Training ADE-
Tri-Training TCE ST STCE TTADEC

australian 0.7490 0.8356 0.8098 0.8077 0.8471 0.8268
wdbc 0.9359 0.9488 0.9517 0.9452 0.9583 0.9689

abalone 0.5644 0.6206 0.5756 0.5720 0.5720 0.7258
bupa 0.5126 0.4634 0.3871 0.4348 0.5570 0.5660

electrical 0.9746 0.9920 0.9923 0.9918 0.9945 0.9993
german 0.5450 0.7835 0.5315 0.5638 0.5693 0.7577

haberman 0.2843 0.2320 0.2222 0.2941 0.2500 0.4571
heart 0.7410 0.7016 0.6984 0.7333 0.7619 0.8333
spectf 0.5458 0.6484 0.5000 0.4082 0.5098 0.7478
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From Tables 3–6, it can be concluded that on the three evaluation metrics of accuracy,
recall, and F-measure, most of the datasets performed well on the TTADEC algorithm. On
the accuracy metric, TTADEC has 8 datasets with the best results; on the F-measure metric,
TTADEC has 7 datasets with the best results; on the recall metric, TTADEC has 6 datasets
with the best results; and on the precision metric, TTADEC algorithm performs slightly
worse with 5 datasets with the best performance.

To evaluate the comprehensive performance of each algorithm, the Friedman test [32]
was introduced to evaluate the algorithms comprehensively. The larger the rank mean
value of the Friedman test, the better the performance of the algorithm is indicated. Table 7
shows the rank mean values of each algorithm by the Friedman test.

Table 7. Rank mean values of indexes in six algorithms.

Evaluation Indicators Tri-Training ADE-
Tri-Training TCE ST STCE TTADEC

Accuracy 2.44 3.44 2.56 2.67 4.00 5.89
Recall 2.89 3.89 2.78 2.78 3.22 5.44

Precision 2.67 3.89 2.56 2.67 4.00 5.22
F-measure 2.44 3.78 2.33 2.50 4.28 5.67

Mean 2.61 3.75 2.56 2.65 3.87 5.55

From Table 7, it can be seen that the TTADEC algorithm has the highest rank mean
value of all four evaluation metrics relative to other comparison algorithms, and the
algorithm performance is TCE, Tri-training, ST, ADE-Tri-training, STCE, and TTADEC
algorithms in order from low to high. Among them, the classification performance of
Tri-training and TCE algorithms is poor; STCE and ADE-Tri-training algorithms have the
middle performance; TTADEC algorithm has the most obvious classification effect.

Compared with the Tri-training algorithm, the ADE-Tri-training algorithm improves
the training set expansion mechanism, and from the results of the rank mean, the adap-
tive editing expansion mechanism can improve the performance of the algorithm. TCE
algorithm is to replace the joint classifier error rate during iteration, and from the results,
the use of cross-entropy replacement error rate is less effective. ST algorithm constructs a
function to optimize the decision weights in the algorithm’s decision process, and the effect
of using this strategy alone is average, but it works better when used in combination with
cross-entropy. TTADEC improves the ADE-Tri-training editing strategy by considering the
sample information around the pre-selected samples and adding local density screening to
expand the training set. This makes the added pseudo-labels less prone to errors, while
the adaptive expansion will avoid the situation that the expanded training set is not large
enough. The decision process to construct the decision function can also avoid the situa-
tion that poorly learned classifiers affect the prediction results, from the results show that
TTADEC is the best performer.

In summary, combining the nearest neighbor editing technique of data density and the
decision method of classifier weighting can improve the performance of classification models.

5. Conclusions

To address the poor performance of the early classifier of the Tri-training algorithm, the
iterative process is prone to mislabeling the pre-selected samples in the expanded training
set to form training noise and the inaccuracy of the explicit decision mechanism, this paper
proposes the Tri-training algorithm for adaptive nearest neighbor density editing and cross
entropy evaluation. The training phase of TTADEC algorithm screens pre-expanded sam-
ples by nearest neighbor editing and sample local density, dynamically expands the training
set using adaptive techniques to reduce training noise during the iterative process, and the
decision phase uses cross-entropy evaluation classifier to construct a decision function to
improve the overall performance of the classification model. Experimental results on the
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UCI datasets show that the TTADEC algorithm has significantly improved the classification
performance, effectively reduced the training noise formed during the classifier iterations,
and improved the prediction inaccuracy of the explicit decision mechanism.

In this study, the training noise is reduced by the nearest neighbor idea in the training
phase, which can show that supervised learning can assist semi-supervised learning for
research; secondly, it is positive to study semi-supervised classification algorithms for
industries such as e-commerce and network security, which can reduce data collection costs
while ensuring accuracy.

In this paper, we use the nearest neighbor idea to improve the algorithm needs to rely
more on the neighborhood information, and it does not perform well in classifying data
with uneven density distribution. After that, we will improve the classification performance
for data with poor density distribution, and also improve the correctness of suspicious
noise selection. In the future, collective intelligence [33], swarm intelligence [34] or density
peak clustering [35] approach may be used to settle the problem in our research.
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