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Abstract: Non-additive (or non-extensive) entropies have long been intensively studied and used in
various fields of scientific research. This was due to the desire to describe the commonly observed
quasi-power rather than the exponential nature of various distributions of the variables of interest
when considered in the full available space of their variability. In this work we will concentrate on
the example of high energy multiparticle production processes and will limit ourselves to only one
form of non-extensive entropy, namely the Tsallis entropy. We will discuss some points not yet fully
clarified and present some non-obvious consequences of non-extensiveness of entropy when applied
to production processes.
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1. Introduction

Entropy plays an important role in the study of the production mechanism of ele-
mentary particles observed in hadronic and nuclear collisions. This is the case both in
the modelling of these processes based on thermodynamics (that is, on the description of
distributions of all kinds of observables characterizing multiparticle production processes)
and in their description in the language of statistical models (i.e., mainly on the description
of their multiplicity distributions).

Over time, more and more new experimental results appeared, which began clearly to
indicate that the originally used Boltzmann entropy (in the first case) or Shannon entropy
(treated as a measure of information in the second), did not describe the results in the entire
range of measured values. Experimentally observed distributions depart from the expected
exponential form (in the first case) and from the Poissonian distribution (in the second) [1,2].
This was generally taken as an indication that different mechanisms operate, resulting in
the occurrence of various types of correlations and fluctuations, and these do not fit into
the scheme of equilibrium thermodynamics or the Shannon information measure [3]. This
meant that it was necessary either to add appropriate conditions to the definition of the
Boltzmann-Shannon entropy used, or to extend the very concept of entropy so that in its
new form it could be applied to more complex systems without any additional conditions
(their operation would be replaced by a new form of the entropy formula and by some new
parameters appearing in it).

A multitude of new definitions of entropy and related measures of information have
appeared in various fields of science (see, for example, [3–7] and references cited therein).
In most cases, their distinguishing feature is their non-extensiveness. Here we will consider
only the case of Tsallis entropy [5] Sq, which for q = 1 becomes Boltzmann-Shannon entropy,
S = Sq=1:
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Sq = −
∫

dx f (x) lnq f (x) = − 1
1− q

∫
dx f (x)

[
1− f q−1(x)

]
q→1
=⇒ S = −

∫
dx f (x) ln f (x), (1)

which is currently the most widely-used to describe the particle production processes
mentioned above (in fact, Tsallis entropy was introduced independently before and then
rediscovered by Tsallis in thermodynamics [8,9]. It should be mentioned that from the
point of view of information theory, the entropies S = Sq=1 and Sq are related to a different,
specific way of collecting information about the object of interest [10]. This observation has
recently been used in cognitive science [11]). The reason for this is the quasi-power nature
of the Tsallis distribution fq(x) that is obtained from it,

fq(x) = expq(−x) = (2− q)[1− (1− q)x]
1

1−q
q→1
=⇒ f (x) = exp(−x), (2)

and, as it was shown a long time ago in [12–14], it is this type of distribution that is most
suitable for describing the distributions of various variables in the full observable range
of their variability. In fact, there are a variety of systems that do not comply with the
standard equilibrium theory and that fit under the description of non-extensive entropy,
thus suggesting that the entropic index q could be a convenient manner for quantifying
some relevant aspects of complexity [5].

The Tsallis distribution is obtained by maximizing the Tsallis entropy using some
constraints imposed on the distribution function sought. It turns out that in the com-
monly used version this procedure leads to a rather surprising result, namely that the
non-extensiveness parameter q appearing in the definition of entropy is, in a sense, dual to
the non-extensiveness parameter q′ obtained from the description of the observed distri-
butions. As we show in (Section 2), this result is confirmed by the simultaneous analysis
of multiparticle production processes in nucleon and nuclear collisions. In (Section 3) we
show how by properly redefining the functions expq(x) and lnq(y) this problem of duality
can be avoided.

Tsallis entropy Sq is nonadditive, namely

Sq(AB) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), (3)

where A and B are two systems independent in the sense that f (AB) = f (A) f (B) and the
parameter q is simply a measure of the degree of this non-additivity (note that we tacitly
assume here and in all subsequent considerations that q is the same in both systems). If,
hypothetically, we extended this reasoning to the system of ν independent components
(again, with the same q), A1, A2, . . . , Aν such that f (∏ν

i=1 Ai) = ∏ν
i=1 f (Ai), then we would

have some kind of non-linear non-additivity (in parameter q), because now

Sq

(
ν

∏
i=1

Ai

)
=

ν

∑
i=1

(
ν

i

)
(1− q)(i−1)

i

∏
j=1

Sq
(

Aj
)
. (4)

To better understand the role of the parameter q, let us additionally consider the
non-additive versions of conditional probability and conditional entropy. Let us say that
the considered system can be divided into two subsystems, A and B, and that pij(A, B) is
the joint normalized probability of finding A in state i and B in state j. Then the conditional
probability B with A being in the i− th state, pij(B|A), is given by Bayes’ multiplication law,

pij(A, B) = pi(A)pij(B|A), (5)
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and the corresponding conditional Shannon entropy is

S(A, B) = S(A) + S(B|A). (6)

By analogy to Equation (3) we can now write the corresponding conditional non-additive
Tsallis entropy as

Sq(A, B) = Sq(A) + Sq(B|A) (7)

where
Sq(B|A) = Sq(B)[1 + (1− q)Sq(A)] (8)

(note that because Sq(B|A) ≤ Sq(B) one must have q ≥ 1). This allows us to interpret the
nonextensivity parameter q in terms of the conditional entropy as

q = 1 +
Sq(B)− Sq(B|A)

Sq(B)Sq(A)
, (9)

and turns out to be crucial for nonadditive (quantum) information theory [15].
In practical applications, the non-extensiveness of the entropy manifests itself in the

quasi-power character of the distributions obtained from it, i.e., in the case considered
here in the appearance of the non-extensiveness parameter q in the Tsallis distribution.
However, there is a problem here that we discuss in Sections 2 and 3, namely that for a
certain type of constraints, the parameters q in the definition of entropy and q′ in the Tsallis
distribution are not identical but dual to each other, i.e., q + q′ = 2. Usually, the meaning of
the non-extensiveness parameter is related to Tsallis distributions rather than to entropy
as above. These, in turn, can be obtained in many ways, depending on the details of the
described physical process and even from the Shannon entropy, if only the appropriate
constraints are applied. We discuss this issue in more detail in Section 4. Section 5 contains
our summary and conclusions.

2. From Tsalis Entropy to Tsalis Distribution

The Tsallis distribution (2) (valid for 0 ≤ x < ∞; 1 ≤ q ≤ 3/2) is obtained by
maximizing the Tsallis entropy (1) using the following constraints [16]:∫

dx f (x) = 1;
∫

dxx f q(x) = 〈x〉q. (10)

In most cases, it is this form of distribution that is used phenomenologically to describe the
various distributions measured in high-energy multiple particle production experiments
(with x = X/T and the scaling factor T is usually identified with the temperature and
X denotes the energy or momentum of the measured particles; it also appears in the
normalization as 1/T). As shown in Figure 1, using this form of Tsallis distribution one
obtains from measurements of different observables (rapidity, multiplicity and transverse
momentum) and for high enough energies q′ > 1 (for low energies, conservation laws are
important and they can sometimes push the parameter q′ to the q′ < 1 region). In addition,
note that the values of q obtained from different observables are different (but always
q′ > 1). These differences are due to the influence of two factors. The first is whether
q′ is estimated from the temperature fluctuations obtained from data already averaged
over other fluctuations or from data taking other fluctuations into account as well, and the
second is that in different analyzes q′ is obtained in other regions of the phase space.
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Figure 1. (Color online) Energy
√

s dependencies of the parameters q obtained from different
observables. Squares: q obtained from multiplicity distributions f (N) [17,18] (fitted by q = 0.88 +

0.063 ln[
√
(s)]). Circles: q obtained from different analyses of the transverse momenta distribution

f (pT). Data points are, respectively, from a compilation of p + p data (full symbols) [19], from CMS
data (half filled circles at high energies) [20,21] (fitted by q = 0.95 + 0.021 ln[

√
(s)]. Triangles: q

obtained from analyses of rapidity distributions f (y) [22,23] (and fitted by q = 0.92 + 0.071 ln[
√
(s)].

However, this is not the only possible choice of constraints. Instead, using constraints
in the form which seems to be more natural from the point of view of physical interpretation,
namely that ∫

dx f (x) = 1;
∫

dxx f (x) = 〈x〉 (11)

obtain [16]

f (x) = q′
[
1− (1− q′)x

] 1
q′−1 ; 0 ≤ x < 1/(1− q′); 1/2 < q′ ≤ 1. (12)

These two different definitions pertain to two different schemes of the nonextensive sta-
tistical mechanics [24]. It should be noted that [25] proposes a parametric technique that
shows the equivalence of different schemes (including those discussed here), and [26] once
again shows the relationship of both averaging schemes (i.e., Equations (10) and (11)) with
duality q↔ 1/q. Now note that for

q′ = 2− q, (13)

distribution f (x) from Equation (12) becomes f (x) from Equation (2) (note that in addition
to the additive duality represented by Equation (13), multiplicative duality, q↔ 1/q, was
also considered [27,28] shows the potential physical application of a combination of both
types of duality to study cosmic ray physics). This means that the imposition of these
constraints leads to a situation in which the non-extensiveness parameter q appearing in the
definition of entropy is dual to the non-extensiveness parameter q′ obtained from describing
the observed distributions. The problem of this duality has been raised many times (for
example in [29–31]), but it does not seem to have been put to the experimental test yet,
at least not in the field of multiparticle production. It turns out, however, that experiments
measuring the multiplicities and distributions of particles produced in nuclear (AA) and
nucleon (nn) collisions are very useful for this purpose, because they simultaneously
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measure the multiplicities (enabling the estimation of the entropy produced) and particle
distributions, and thus allow for the simultaneous determination and comparison of the
non-extensiveness of the above mentioned relevant parameters and to verify the hypothesis
of their duality.

Nuclear collisions are usually described by increasingly complex statistical models that
try to account for all possible collective effects [32–34]. Because, however, for our purposes,
the mutual relation between the entropies of AA and nn collisions will be important,
to estimate the entropy in the nuclear collision, it will therefore be more convenient to use
the phenomenological description based on the assumption that it can be described by a
certain superposition of collisions of single nucleons (taking into account only nucleons
that collided at least once and assuming that their collisions are independent—these are the
so-called “wounded nucleons”) [35]. (The reason for this choice may be the fact that, despite
its apparent simplicity, this model is still able to describe a surprisingly large number of
experimental results [36,37]).

In this approach, the total observed multiplicity N is the sum of the multiplicities
ni=1,...,ν of particles emitted from ν individual sources, and the average total multiplicity
〈N〉 is the product of the average number of sources, 〈ν〉, and the average multiplicity from
the source, 〈ni〉, (which here is assumed to be the same for each source):

N =
ν

∑
i=1

ni, and 〈N〉 = 〈ν〉〈ni〉. (14)

The identity of the sources assumed here means that their entropies are equal, so using the
relationship (4) the entropy ν of such sources is

S(ν)
q =

ν

∑
k=1

(
ν

k

)
(1− q)(k−1)

[
S(1)

q

]k
=

[
1 + (1− q)S(1)

q

]ν
− 1

1− q
. (15)

In further considerations, ν will denote the number NP of nucleons of the incident nucleus
participating in the collision (i.e., participants), and ν = NW/2, where NW is the number of
wounded nucleons. Continuing in the same vein and assuming that the total entropy is
proportional to the average multiplicity of particles produced in the collision,

S = α〈N〉, (16)

we can relate the average multiplicities in nuclear (AA) and nucleon (NN) collisions,
namely

α〈N〉AA =

[
1 + (1− q)α〈N〉pp

]NP − 1
1− q

. (17)

This simple dependence already allows for some preliminary assessment of the q parameter.
It turns out that the observed NAA grows non-linearly with NP, 〈N〉AA > NP〈N〉pp [38].
Considering this observation from the point of view of entropy, it is clear that we must
have q < 1 here.

However, this is only a very rough estimate, because, strictly speaking, formula (17) is
not fully correct with respect to the Sq entropy. We will therefore return to Equation (15)
denoting now the entropy for the whole particle production process by s and the corre-
sponding non-extensiveness parameter by q̃, and their equivalents for nucleon collisions
by S and q, respectively. The relation (15) for N particles now looks like this:

s(N)
q̃ =

[
1 + (1− q̃)s(1)q̃

]N
− 1

1− q̃
q̃→1−→ N · s(1)q̃ = αN (18)
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where s(1)q̃ = α is the entropy for a single particle. In the A + A collision with ν nucleons
participating Equation (15) results in

S(ν)
q =

[
1 + (1− q)S(1)

q

]ν
− 1

1− q
(19)

where S(1)
q is the entropy for a single nucleon. Denoting multiplicity in single N + N

collisions by n, one can write that the respective entropy is

S(1)
q = S(1)

q̃ =

[
1 + (1− q̃)s(1)q̃

]n
− 1

1− q̃
, (20)

whereas the entropy in A + A collisions for N produced particles is

S(N)
q̃ =

[
1 + (1− q̃)s(1)q̃

]N
− 1

1− q̃
. (21)

This means therefore that
S(N)

q̃ = S(ν)
q . (22)

Parameters q and q̃ are usually not the same. However, from analyzes in [38,39]
one obtains that for NN collisions (where NP = 1) q̃ = 1. On the other hand, for q̃ = q
Equation (22) corresponds to the situation encountered in superpositions as now one obtains[

1 + (1− q)s(1)q

]N
=
[
1 + (1− q)s(1)q

]nν
or N = nν. (23)

In the general case, we obtain the formula for the ratio N/(ν · n))

N
ν · n =

1
νn · ln c1

ln

[(
c2cn

1 + 1− c2
)ν − (1− c2)

c2

]
, (24)

where
c1 = 1 + (1− q̃)s(1)q̃ ; c2 =

1− q
1− q̃

, (25)

which for N = 〈NAA〉 >, n = 〈Npp〉 and ν = NP is presented in Figure 2 for different
reactions (see [40] for more details). Note that for energies

√
s > 7 GeV one has c1 > 1. This

means that q̃ < 1 and (because c2 > 0) also q < 1, confirming therefore previous estimates
based on Equation (17).

This, however, is as much as can be said for sure, because while the distributions can
give exact values of the parameter q′, the same cannot be said about q except that q < 1 (at
least in a certain energy range). We still have too many free parameters here, e.g., unknown
a priori entropy s(1)q . Therefore, while the statement that mostly we have q′ > 1 and q < 1
seems certain, it is not known how exactly (if at all) the duality q′ + q = 2 (13) is satisfied.
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Figure 2. (Color online) Energy dependence of the charged multiplicity for nucleus-nucleus collisions
divided by the superposition of multiplicities from proton-proton collisions using Equation (24)
with c2 = 1.7 and with c1 depending on energy

√
s according to c1(s) = 1.0006 − 0.036s−1.035.

Experimental data on multiplicity are taken from the compilation of Ref. [41].

3. More Thorough Screening of Duality

We will now deal with the problem of duality in more detail. Figure 3 shows the
entropies Sq obtained from the distributions (12) for 0.5 < q′ ≤ 1,

Sq =
qq − (2q− 1)
(1− q)(2q− 1)

, (26)

(here, q′ was changed to 2q− 1), and for 1 ≤ q < 1.5,

Sq =
1− (2q− 1)q

1− q
. (27)

0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5
0 . 1

1

1 0

S q

q

  S q = [ q q - ( 2 q - 1 ) ] / [ ( 1 - q ) ( 2 q - 1 ) ]
  S q = [ 1 - ( 2 q - 1 ) q ] / ( 1 - q )
          S q = 1 / q   f o r   f ( x ) = e x p ( - x )
          S q = 1

Figure 3. (Color online) Tsallis entropy for different nonextensivity parameter (see text for details).

Let us note that for values of q outside the range of variability declared for a given
entropy, Sq < 1, i.e., it is always lower than unity, which is less than the Shannon entropy.
From Figure 3 it can be seen that the entropy formula Sq, which could be used in the entire
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allowable range of the parameter q, describing both q cases and 2− q dual to them, must
contain both elements of (26) and (27), i.e., have the following form:

Sq =
1

1− q
(1− |1− q|)q − 1

q− |1− q| . (28)

The corresponding Tsallis distribution is now

f (x) =
1− |1− q′|

[1 + |1− q′|x]
1
|1−q′ |

. where 0.5 < q′ < 1.5. (29)

A natural question arises as to what should be modified and how in such a case?
What we would like to suggest here is the use of appropriately modified definitions of the
expq(x) and lnq(x) functions, namely to replace expq(x) defined in Equation (2) by

expq(x) = [1 + κx]
1
κ where κ = (q− 1)sign(x) (30)

and, accordingly,

lnq(y) =
yκ − 1

κ
where κ = (q− 1)sign(y− 1). (31)

This form works for all x and q values, and there are no additional restrictions on the
admissible values of the q parameter depending on whether x > 0 or x < 0. Formally, this
corresponds to replacing q → q′ = 2− q when changing the sign of x. Figure 4 shows
behaviour of the functions expq(x) and lnq(x). Note that using this form we now have

expq(−x) · expq(x) = 1 (32)

and the ocupation numbers of particles nq(x) and antiparticles nq(−x) satisfy relation

nq(−x) + nq(x) = −ζ (33)

for all values of q (ζ = +1 for bosons and −1 for fermions). The naive replecement
of the Euler-exponential with another, deformed exponential function (namely given by
Equation (2)) can lose the particle-hole symmetry, inherent in the traditional Fermi distri-
bution above and below the Fermi level. Previously, these relationships had a dual form,

expq(−x) · exp2−q(x) = 1 and nq(x) + n2−q(−x) = −ζ. (34)

- 2 . 0 - 1 . 5 - 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
0 . 1

1

1 0

ex
p q

(x)

x

 q = 0 . 7
 q = 1 . 0
 q = 1 . 3

0 . 0 1 0 . 1 1 1 0 1 0 0
- 1 0
- 8
- 6
- 4
- 2
0
2
4
6
8

1 0

ln q
(x)

X

 q = 0 . 7
 q = 1 . 0
 q = 1 . 3  

Figure 4. (Color online) Illustration of the behavior of the function expq(x) defined by Equation (30)
and the function lnq(x) defined by Equation (31) for different values of the parameters q.



Entropy 2023, 25, 474 9 of 13

This means that such an approach avoids not only the problem of duality discussed
earlier in Section 2, but also preserves the particle-hole symmetry concerning distribution
above and below the Fermi level which is fundamental in field theory and was discussed
in [42,43].

In the above considerations, we must remember that the modified functions expq(x)
and lnq(y) are not differentiable everywhere because the functions sign(x) (in the first case)
and sign(1− y) (in the second) have a discontinuity at x = 0 or y = 1. Therefore, by their
derivatives for x = 0 (or y = 1), we understand their limits for x → 0 (or y → 1). In this
approach, the first derivatives expq(x) and lnq(y) are the same for x = 0 and y = 1 as the
first derivatives exp(x) and ln(y), while their n-th derivatives already depend on q in the
following way:

lim
x→0

dn expq(x)

dxn =
n

∏
i=1

[i− (i− 1)]q] (35)

and

lim
y→1

dn lnq(y)
dyn =

n

∏
i=2

(−i + q). (36)

4. Other Sources of Tsallis Distribution

Note that since Equation (2) describes the data in the entire measured area of phase
space, i.e., both those associated with the thermal approach and those associated with hard
collisions, the justification of this formula cannot be reduced to the Tsallis entropy only.
It is worth noting that for each probability distribution the appropriate form of entropy
can be given and for each probability distribution one can also give the constraints which,
when used together with the Shannon entropy, lead to this probability distribution [44].
For our considerations, it is important to note that when selecting the constraints in such a
way that they best take into account the most important dynamic features of the examined
system, one could basically stop at the Shannon entropy [45]. For example, condition
〈x〉 = const provides to the usual exponential distribution, 〈x2〉 gives Gaussian distribution,
〈ln(x)〉 = const gamma distribution, whereas 〈ln

(
1 + x2)〉 gives a Cauchy distribution.

In general, for some function h(x), the maximum entropy density for f (x) satisfying the
constraint

∫
dx f (x)h(x) = const has the form f (x) = exp[λ0 + λh(x)] where parameters

λ0 and λ are fixed by the requirement of normalization for f (x) and by the above constraint.
To obtain the Tsallis distribution in this way,

f (x) =
2− q

x0

[
1− (1− q)

x
x0

] 1
1−q

(37)

we need to use a constraint like this:〈
ln
[

1− (1− q)
x
x0

]〉
=

q− 1
2− q

. (38)

The Tsallis distribution understood as a quasi-power distribution can also be obtained
in many ways without referring to any form of entropy [46]. We will now discuss a few of
them in more detail.

Superstatistics. This approach extends the exponential description, f (E) = 1
T exp(− E

T ),
characterized by some parameter of the scale, T, by allowing fluctuations of this parame-
ter [47]. In particular, if they are described by a gamma distribution,

g
(

1
T

)
=

1

Γ
(

1
q−1

) T0

q− 1

(
1

q− 1
T0

T

) 2−q
q−1

exp
(
− 1

q− 1
T0

T

)
, (39)
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the total result is a Tsallis distribution [29,48], the fq(E) = 2−q
T

[
1− (1− q) E

T

] 1
1−q , where

the parameter q characterizing the strength of fluctuations in T is given by its variance,
ω2

T = Var(T)
〈T〉2 = q− 1. Since in thermal models ω2

T is related to the heat capacity CV , one
possible meaning of the parameter q is its relationship to the heat capacity, q = 1 + 1/CV
(note that here q > 1 always). Other classes of generalized statistics can also be obtained,
and with small variance of fluctuations they all behave universally [47].

Preferential attachment. This approach describes a situation where the scale parame-
ter depends linearly on the variable under consideration, as is the case when preferential
attachment correlations are encountered in the system under consideration, e.g., when
x0 → x0 + (q− 1)x . This changes the equation defining the distribution, resulting in the
Tsallis distribution with q > 1 [49,50],

d f (x)
dx

=
f (x)
x0
→ d f (x)

dx
=

f (x)
x0 + (q− 1)x

→ f (x) =
2− q

x0

[
1− (1− q)

x
x0

] 1
1−q

. (40)

Tsallis distribution from multiplicative noise. The Tsallis distribution may also
mean that the described process has a stochastic character defined by the additive, γ(t),
and multiplicative, ξ(t), noise and described by the Langevin equation,

dp
dt

+ γ(t)p = ξ(t). (41)

The corresponding Fokker-Planck equation has the form

∂ f
∂t

= −∂(K1 f )
∂p

+
∂2(K2 f )

∂p2 , (42)

K1 = E(ξ)− E(γ)p and K2 = Var(ξ)− 2Cov(ξ, γ)p + Var(γ)p2, (43)

and for stationary solutions
d(K2 f )

dp
= K1 f . (44)

When both noises are uncorrelated (i.e., when Cov(ξ, γ) = 0) and when there is no drift
caused by additive noise (i.e., E(ξ) = 0) the solution to Equation (44) is the Tsallis distribu-
tion in p2 [51]:

f (p) =
[

1 + (q− 1)
p2

T

] q
1−q

where T =
2Var(ξ)

E(γ)
, q = 1 +

2Var(γ)
E(γ)

. (45)

The Tsallis distribution with p (as in Equation (2)) and not p2 is obtained for the more
complicated case of T = T(q) when [46]

T(q) = (2− q)[T0 + (q− 1)T1] where T0 = −Cov(ξ, γ)

E(γ)
and T1 =

E(ξ)
2E(γ)

. (46)

Note that T now depends non-linearly on q, which significantly makes the Tsallis distribu-
tion more flexible, allowing for the analysis and comparison of various types of processes
(cf. [46]).

At this point, it is worth noting that there is a relationship between the type of
noise and the condition imposed in MaxEnt. In the case of Shannon entropy, a condition
imposed on the arithmetic mean corresponds to additive noise, while the use of a condition
imposed on the geometric mean corresponds to multiplicative noise and leads to a power
distribution [52].

Conditional probability. The methods for obtaining the Tsallis distribution presented
so far are basically limited to cases with q > 1. Cases with q < 1 can only be observed
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in constrained systems. Consider for example N independent energies, Ei=1,...,N , where

each of them follows the Boltzman distribution, gi(Ei) = 1
λ exp

(
− Ei

λ

)
, and their sum,

E = ∑N
i=1 Ei, has a gamma distribution, gN(E) = 1

λ(N−1)

(
E
λ

)N−1
exp

(
− E

λ

)
. However, if the

available energy is bounded, E = Nα = const, these energies will no longer be independent
and will be described by conditional probabilities in the form of Tsallis distributions with
q < 1:

f (Ei|E = Nα) =
g1(Ei)gN−1(Nα− Ei)

gN(Nα)
=

2− q
λ

[
1− (1− q)

Ei
λ

] 1
1−q

, (47)

λ =
αN

N − 1
, q =

N − 3
N − 2

< 1. (48)

One could obtain a Tsallis-like distribution with q > 1 only if the scale parameter λ
fluctuates in the same way as in the case of superstatistics.

Statistical physics. A Tsallis distribution with q < 1 also follows from statistical
physics. Consider an isolated system with energy U = const and ν degrees of freedom
(particles). We choose one of them with energy E � U, then the rest of the system has
energy Er = U − E. If this particle is in one well-defined state then the number of states of
the entire system is Ω(Er), and the probability that the energy of the selected particle is E is
P(E) ∝ Ω(U − E). Expanding ln Ω(U − E) around U and keeping only the first two terms
one obtains

ln P(E) ∝ ln Ω(E) ∝ −βE =⇒ P(E) ∝ e−βE, (49)

that is a Boltzman distribution with

β =
1

kBT
de f
=

∂ ln Ω(Er)

∂Er
. (50)

However, it is usually expected that Ω(Er) ∝
(

Er
ν

)α1ν−α2
with α1, α2 ∼ O(1). Choosing

α1 = 1 and α2 = 2 (because the number of states in the reservoir has decreased by one),
therefore

∂kβ

∂Ek
r

∝ (−1)kk!
ν− 2
Ek+1

r
= (−1)kk!

βk−1

(ν− 2)k . (51)

This allows us to write the probability of selection of energy E as:

P(E) ∝
Ω(U − E)

Ω(E)
= C

(
1− 1

ν− 2
βE
)(ν−2)

= β(2− q)[1− (1− q)βE]
1

1−q , (52)

that is, in the form of the Tsallis distribution with q = 1− 1
ν−2 ≤ 1, such as in the case of

conditional probability above.

5. Summary and Conclusions

Entropy has always played an important role in the study of the production mecha-
nisms of particles produced in high-energy hadronic and nuclear collisions, either in their
description based on thermodynamics [2] or in descriptions using elements of information
theory [4].

In the application of the non-extensive approach, we encounter the problem of a
certain duality manifested in the parallel occurrence of the parameter q and 2− q, which is
best illustrated by the parallel description of particle production processes in nucleon and
nuclear collisions discussed in Section 2. The second manifestation of duality appears in an
attempt at a non-extensive description of quantum statistical distributions. As suggested
by the results of [42,43] they are inconsistent with the conventional description using Tsallis
distributions (and prefer the nonextensive Kaniadakis distribution). The point here is the
necessity to preserve the particle-hole symmetry requiring that exp(−x) · exp(x) = 1, while
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using the original q-exponential Tsallis distribution it leads to expq(−x) · exp2−q(x) = 1.
In Section 3 we propose a new formula defining the non-extensive function expq(x) which
restores this symmetry and we have a nonextensive version of particle-hole symmetry
again which restores this symmetry in the form expq(−x) · expq(x) = 1.

From a more technical perspective, it is worth noting that both Shannon’s and Tsallis’
entropies have the same generating function, f (x) = ∑i px

i , and that the difference in their
forms is just due to the form of adopted differentiation operator. For standard first-order
differentiation, d f (x)/dx , we obtain the Shannon entropy, whereas adopting the Jackson
q-derivative, Dq f (x) = f (qx)− f (x)

qx−x , yields the Tsallis entropy. In fact, other expressions for
entropy can be obtained by using yet other forms of differentiation operators [7].
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