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Abstract: In order to implement a quantum circuit on an NISQ device, it must be transformed into a
functionally equivalent circuit that satisfies the device’s connectivity constraints. However, NISQ
devices are inherently noisy, and minimizing the number of SWAP gates added to the circuit is crucial
for reducing computation errors. To achieve this, we propose a subgraph isomorphism algorithm
based on the timing weight priority of quantum gates, which provides a better initial mapping
for a specific two-dimensional quantum architecture. Additionally, we introduce a heuristic swap
sequence selection optimization algorithm that uses a distance optimization measurement function
to select the ideal sequence and reduce the number of SWAP gates, thereby optimizing the circuit
transformation. Our experiments demonstrate that our proposed algorithm is effective for most
benchmark quantum circuits, with a maximum optimization rate of up to 43.51% and an average
optimization rate of 13.51%, outperforming existing related methods.

Keywords: quantum circuit transformation; qubit mapping; subgraph isomorphism; heuristic
optimization

1. Introduction

Quantum computing, a new computing paradigm that leverages the superposition
and entanglement features of quantum mechanics, has the potential to solve many problems
faster than classical computers, such as integer factorization [1] and linear equations [2].
Currently, quantum computing has entered the era of noisy intermediate-scale quantum
(NISQ) devices [3]. In contrast to the idealized quantum circuit model, physical quantum
architectures have a connectivity constraint, limiting the set of allowable two-qubit gates
between specific pairs of qubits. To ensure that a quantum circuit is functionally equiva-
lent to the desired computation and satisfies the connectivity constraint, quantum circuit
transformations must be applied. However, NISQ devices suffer from crosstalk noise,
which results from unexpected interactions or uncorrected control of qubits. This noise
compromises the fidelity of the final circuit execution results [4]. Therefore, minimizing the
number of SWAP gates added to the circuit during the transformation process is a critical
task for circuit optimization.

The process of transforming a quantum circuit can be divided into two sub-procedures.
The first involves finding an initial mapping, which maps logical qubits to physical qubits.
The second sub-procedure involves handling quantum gates that violate the interaction
constraint in the current mapping by inserting SWAP gates to lead to neighboring qubits.
However, determining the minimal number of SWAP gates required for the quantum circuit
transformation is an NP complete problem [5]. To solve this problem, various methods have
been proposed [6–15]. One type of method formulates the problem mathematically and uses
solvers such as integer linear programming [16], satisfiability module theory [4], constraint
planning [17], or Boolean solvers [18] to find solutions. These methods are effective for

Entropy 2023, 25, 465. https://doi.org/10.3390/e25030465 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25030465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7325-2506
https://orcid.org/0000-0002-5110-3881
https://doi.org/10.3390/e25030465
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25030465?type=check_update&version=1


Entropy 2023, 25, 465 2 of 11

small quantum circuits. The second type of method uses heuristic algorithms to solve
the problem. For example, the backward traversal-based mapping method SABRE [6],
Monte Carlo tree search [8], A* search algorithm [7,19], good initial mapping generation [9],
Bridge gate insertion [10], reversibility-based comparison of forward and reverse circuit
transformation processes [11], greedy algorithm [12], simulated annealing [13], subgraph
isomorphism-based mapping [14], and an algorithm based on dynamic look-ahead heuristic
cost functions [15] have been proposed. These heuristic algorithms use different evaluation
functions to determine the best mapping strategy, based on various factors such as the
number of two-qubit quantum gates, the depth of the circuit, the distance between the
control qubit and the target qubit, or the topology of the quantum circuit. Some methods
also consider the dependency of quantum gates in the circuit and prioritize the execution
of preceding gates.

In this paper, we follow a similar approach to the literature [14] by using the number of
additional CNOT gates as a metric for measurement, and we utilize subgraph isomorphism
as the basic algorithm in the initial mapping. However, in addition to this, we consider
the execution order of the quantum gates in the logical quantum circuit during the initial
mapping process. Furthermore, we propose a forward-looking heuristic algorithm during
the routing process to compare the quantum gate interaction distances, particularly in
cases where the interactability rates are equal, to find a better routing path. The proposed
method achieves the final transformation of logical quantum circuits to executable physical
quantum circuits.

The process of transforming a quantum circuit can be divided into two main steps:
(i) initial qubit mapping and (ii) insertion of SWAP gates. In the initial qubit mapping step,
we first assign a timing weight to each edge in the circuit’s interaction graph and then use a
subgraph isomorphism algorithm based on these timing weights to find an initial mapping
between the logical qubits and physical qubits. In the SWAP gates insertion step, there may
be several possible sequences of SWAP gates that can be applied. To determine the best
sequence, we define an interactivity value and a distance optimization measure for each
sequence. We propose a sequence selection optimization algorithm based on maximizing
the distance measure optimization function, which selects the SWAP gates sequence with
the highest value. The experimental results demonstrate the effectiveness of our algorithm.

The paper is structured as follows. In Section 2, we provide definitions and notations
related to quantum gates and circuits. Section 3 presents our initial mapping algorithm
based on timing weight subgraph isomorphism. In Section 4, we propose a SWAP gate
sequence selection optimization algorithm for quantum circuit transformation. In Section 5,
we evaluate our approach on benchmark quantum circuits and compare it with a state-of-
the-art method. We conclude the paper in Section 6.

2. Preliminaries

In this section, we provide the fundamental definitions and notations related to
quantum circuits.

2.1. Quantum Gate and Quantum Circuit

In quantum computing, quantum bits (qubits) are the fundamental unit of quantum
information [20]. In contrast to classical bits, which only have two states (0 and 1), the state
|φ〉 of a qubit is a superposition of the two states |φ〉 = α|0〉+ β|1〉, where |α|2 + |β|2 = 1.
Quantum gates are used to operate on qubits in quantum computers. Single-qubit gates
operate on a single qubit, while two-qubit gates operate on two qubits. A two-qubit gate
g is denoted as g = 〈p, q〉 and indicates that g operates on qubits p and q. The CNOT
gate (see Figure 1a) is an example of a two-qubit gate, where p is the control qubit and q
is the target qubit. If p is in state 1, the CNOT gate flips the state of q, and if p is in state
0, q remains unchanged. A SWAP gate 〈p, q〉 exchanges the states of p and q, and can be
realized by cascading three CNOT gates (see Figure 1b).
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(a) (b)

Figure 1. The CNOT gate and the SWAP gate. (a) A CNOT gate. (b) A SWAP gate and its realization
by CNOT gates.

Quantum circuits are used to describe quantum algorithms and are composed of qubits,
quantum gates, measurement gates, classical registers, and so on. We use LC = (Q, C) to
denote a quantum circuit, where Q and C represent the set of qubits and the set of quantum
gates in the circuit, respectively. Since the CNOT gate and all single-qubit gates are widely
used as universal quantum gates set, and the single-qubit gates are compliant with the
connectivity constraint, we only consider quantum circuits composed of two-qubit gates in
this paper.

Example 1. Figure 2 depicts a quantum circuit LC = (Q, C), where Q = {q0, q1, q2, q3} and
C = {g0 = 〈q2, q0〉, g1 = 〈q3, q2〉, g2 = 〈q0, q3〉, g3 = 〈q0, q2〉, g4 = 〈q3, q2〉, g5 = 〈q0, q3〉,
g6 = 〈q3, q1〉, g7 = 〈q0, q1〉}, consisting of four qubits and eight CNOT gates.

q0

q1

q2

q3

g0 g1 g2 g3 g4 g5 g6 g7

Figure 2. A quantum circuit with four qubits and eight CNOT gates.

2.2. Dependency Graph and Interaction Graph

Given a quantum circuit LC = (Q, C), we define two graphs: the dependency graph,
DG, and the interaction graph, IG. DG is a directed acyclic graph whose nodes are the
gates in C. There is a directed edge from gate gi to gate gj in DG if gi operates on a qubit q
and gj is the next gate that operates on q after gi. IG is an undirected graph whose nodes
are the qubits in Q. There is an edge between two qubits qi and qj in IG if they are operated
by some gate. Figure 3 shows the dependency graph and interaction graph of the quantum
circuit in Figure 2. The dependency graph captures the dependencies between gates in the
circuit, while the interaction graph shows the connectivity of qubits in the circuit.

g0 g2 g4 g6

g1 g3 g5 g7

q0 q2

q1 q3

(a) (b)

Figure 3. The dependency graph and interaction graph of the quantum circuit in Figure 2. The de-
pendency graph, shown in (a), is a directed acyclic graph with nodes representing gates in the circuit
and directed edges representing dependencies between gates. The interaction graph, shown in (b), is
an undirected graph with nodes representing qubits in the circuit and edges representing interactions
between qubits.
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The dependency graph is a useful tool to represent the execution order of quantum
gates in a quantum circuit, while the interaction graph is commonly used to represent the
interaction relationships between qubits in a quantum circuit [14].

3. Initial Qubit Mapping

A physical quantum device can be represented by its coupling graph CG, which is an
undirected graph (V, E) where each qubit in the device is a node in V, and there is an edge
(qi, qj) ∈ E between two nodes qi and qj if they can be operated by a two-qubit gate in the
device. For instance, Figure 4 shows the coupling graph of IBM QX20 Tokyo.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Figure 4. The coupling graph of IBM QX20 Tokyo.

Given a quantum circuit LC = (Q, C) and a coupling graph CG = (V, E), an initial
mapping π is an injection from Q to V. To find an effective initial mapping, it is important
to consider the following two conditions when designing the algorithm:

1. Logical qubits that interact frequently should be mapped to physically adjacent qubits.
2. Qubits with high execution priority, based on the order of quantum gates in the circuit,

should be mapped to adjacent physical qubits.

By taking into account these conditions, we can design an initial mapping algorithm that can
improve the performance and efficiency of quantum circuit execution on physical devices.

3.1. Timing Weight

To further improve the effectiveness of the initial mapping algorithm, we can introduce
another metric called timing weight. The timing weight takes into account the execution
order of quantum gates and the interaction relationships between qubits in the quantum
circuit. In this subsection, we define the timing weight for quantum gates and edges
in the interaction graph and explain how it can be used to design an improved initial
mapping algorithm.

Definition 1. Given a quantum circuit LC = (Q, C), where Q = {q0, q1, . . . , qm} and
C = {g0, . . . , gn−1}, the timing weight, ki, for each quantum gate gi is

ki = n− i, (1)

where 0 ≤ i ≤ n− 1 is the execution order of gi.

Definition 2. Let IG be the interaction graph of LC. For each edge (p, q) in IG, where p, q are
qubits in LC, the timing weight, ω(p,q), of (p, q) is

ω(p,q) = ∑
gi=〈p,q〉

ki + ∑
gj=〈q,p〉

k j, (2)

where ki(k j) is the timing weight of gi(gj).

The timing weight measures the importance of a quantum gate in the execution order
of a quantum circuit, with lower weights assigned to gates executed later. The timing
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weight of an edge in the interaction graph represents the total timing weight of the gates
that interact through that edge.

Example 2. Figure 5 displays the timing weights of the gates in the circuit of Figure 2 and the
timing weights of the edges in its interaction graph. The edge (q0, q2) has the largest weight,
indicating that the gates associated with these qubits are executed first in the circuit. As q0 and q2
contain the most CNOT gates in the circuit, they should be mapped as nearest neighbors.

q0

q1

q2

q3

g0 g1 g2 g3 g4 g5 g6 g7

q0 q2

q1 q3

13

9
1 11

2

ki = 8 7 6 5 4 3 2 1

(a) (b)

Figure 5. The timing weights of gates and edges. (a) The timing weight of each gate in the circuit of
Figure 2. (b) The timing weight of each edge in the interaction graph of the circuit.

3.2. Initial Mapping Based on Timing Weight

To construct an initial mapping for a quantum circuit LC and a coupling graph CG,
we first compute the interaction graph IG of LC with timing weights assigned to each
edge. If IG is isomorphic to a subgraph of CG, we can construct an initial mapping from
the isomorphism without adding any SWAP gates. However, when IG cannot be directly
mapped to CG, we use a partial subgraph isomorphism based on timing weight. This means
that edges with larger timing weights are given higher priority in the mapping process.

The timing weight of each edge in IG not only indicates the qubits with more CNOT
executions but also the execution order of the CNOT gates in the circuit. Thus, it is an
important factor in finding an optimal initial mapping that provides a better precondition
for subsequent quantum circuit transformations. We propose an initial mapping algorithm
based on timing weight subgraph isomorphism, as outlined in Algorithm 1. The algorithm
takes LC and CG as inputs and constructs an initial mapping by searching every edge from
the one with the highest timing weight.

Algorithm 1 outlines the steps for constructing an initial mapping based on timing
weight subgraph isomorphism. To begin, we initialize the set of edges Edgeset of IG. Lines
2–8 compute the interaction graph, IG, of LC with timing weights for all edges. Line 9
sorts the edges from the largest timing weight to the smallest timing weight. Lines 10–16
construct a graph ig starting from the edge with the largest timing weight and add the edge
to ig if there is a subgraph isomorphism from ig to CG. If there is no subgraph isomorphism,
the edge is skipped. This process is repeated until all the edges in Edgeset are traversed.
Finally, an initial mapping is constructed from ig and saved in results. It is important to
note that the initial mapping obtained may not be unique, as it depends on the subgraph
isomorphism found from ig to CG in the algorithm.
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Algorithm 1 Initial mapping based on timing weight subgraph isomorphism

Input: A quantum circuit LC = (Q, C) and a coupling graph CG = (V, E).
Output: An initial mapping from Q to V.
1: Initialize: results← ∅; Edge_set← ∅
2: for each gate gi ∈ LC do
3: ki ← |C| − i
4: if gi = 〈p, q〉 or gi = 〈p, q〉 then
5: ω(p,q) ← sum(ki)

6: Edge_set← [(p, q), ω(p,q)]
7: end if
8: end for
9: Edge_set.sort()

10: while Edge_set 6= ∅ do
11: if ig ∪ Edge_set.pop() is isomorphic to a subgraph of CG then
12: ig← ig ∪ Edge_set.pop()
13: else
14: skip(Edge_set.pop())
15: end if
16: end while
17: results← mapping(ig, CG)
18: return results

Example 3. By applying Algorithm 1 to the quantum circuit shown in Figure 2 and the coupling
graph of IBM QX20 shown in Figure 4, we can obtain three initial mappings (colored in red) as
shown in Figure 6. It is important to note that the initial mapping obtained may not be unique, as it
depends on the subgraph isomorphism found from the algorithm.

q1 q0 2

5 q3 7

q2 11 12

q1 1 2

q3 q0 7

q2 11 12

q1 q0 q3

5 q2 7

10 11 12

π1 π2 π3

Figure 6. Three initial mappings from the circuit in Figure 2 to IBM QX20.

4. Quantum Circuit Transformation and Optimization

Given the quantum circuit LC, the coupling graph CG, and the mapping π from LC
to CG, we need to ensure that every quantum gate in LC is mapped to adjacent qubits in
CG. If a gate violates this interaction condition, we can add SWAP gates to the circuit to
make the two qubits operated by the gate adjacent. This process can be repeated for every
edge in CG. We use SWAP(e) to denote the application of a SWAP gate on the two ends of
e. After performing a swap operation, a new mapping π′ can be obtained by updating π.
For instance, in Figure 6, the initial mapping π1 is {q0 → 1, q1 → 0, q2 → 10, q3 → 6}. We
can apply SWAP(5, 6) and SWAP(1, 6) to obtain the mapping π2 = {q0 → 6, q1 → 0, q2 →
10, q3 → 5}.

4.1. Swap Sequence Selection

During the quantum circuit transformation process, a sequence of SWAP gates is
added to ensure that every gate in the circuit satisfies the interaction condition with respect
to the coupling graph. However, this sequence is not unique, and we aim to find the
shortest sequence that minimizes the number of gates in the resulting circuit.
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Let π be a mapping from the quantum circuit LC to the coupling graph CG, and let

a = (SWAP(e1), SWAP(e2), . . . , SWAP(en))

be a sequence of SWAP gates, where each ei(1 ≤ i ≤ n) is an edge of CG. We use
gex to denote the number of gates in LC that are executable after applying the sequence
a from mapping π. To measure the effectiveness of the transformation, we define the
interactivity value:

Gval(π, a) =
gex

len(a)
, (3)

where len(a) = n is the number of SWAP gates in a. A larger value of Gval(π, a) indicates
that the sequence a is more effective in transforming the circuit. Therefore, we aim to find
the sequence b that maximizes Gval(π, b) for a given mapping π.

Now let us consider an example to see how the swap sequence selection algorithm
works in practice.

Example 4. Consider the quantum circuit shown in Figure 2 and the initial mapping π1 =
q0 → 1, q1 → 0, q2 → 10, q3 → 6 in Figure 6. The first quantum gate that violates the interactive
constraint is g0 = 〈q2, q0〉. To address this issue, we explore four different swap ways and the
number of gates that can be executed for each one, as follows:

1. SWAP(5, 6), SWAP(1, 6): seven gates can be executed;
2. SWAP(2, 6), SWAP(10, 6): seven gates can be executed;
3. SWAP(1, 7), SWAP(10, 6): four gates can be executed;
4. SWAP(0, 1), SWAP(5, 0): six gates can be executed.

We can then evaluate the validity of each sequence using the metric Gval , and obtain Gval(π1, 1) =
7/2, Gval(π1, 2) = 7/2, Gval(π1, 3) = 2, and Gval(π1, 4) = 3. Based on these values, we
conclude that the candidate sequences are (i) and (ii).

4.2. Sequence Selection Optimization

For large-scale quantum circuits, there are often multiple swap sequences that sat-
isfy the interactivity constraint, as shown in Example 4. In this subsection, we propose
a sequence selection optimization algorithm to find a better swap sequence from the
candidate sequences.

Given the quantum circuit LC, the coupling graph CG, and the mapping π from
LC to CG, we use distph(g, π) to denote the length of the shortest path between π(p)
and π(q) in CG for every gate g = 〈p, q〉 in LC. Let a be a sequence of SWAP gates,
and let π[a] denote the new mapping obtained by applying a to π. We define the set
S = {g | distph(g, π[a]) < distph(g, π)}, which contains the gates whose execution order is
affected by the sequence a. We then define the distance optimization measure as follows:

Ωg(π, a) = ∑
gi∈S

ki, (4)

where ki is the timing weight of gi.
The value of Ωg(π, a) depends on the timing weight of every gate in S. A gate gi with

a large value of ki means that gi has a high execution order. Therefore, Ωg(π, a) indicates
the priority of the sequence a; a sequence with a larger Ωg(π, a) should be selected first.
To select the best swap sequence, we compute the Ωg(π, a) values for each candidate
sequence using Equation (4), and choose the sequence with the largest value. The swap
sequence selection optimization algorithm is presented in Algorithm 2. The inputs of the
algorithm are a quantum circuit, a coupling graph, and an initial mapping. The output is a
transformed quantum circuit that is compliant with the connectivity constraint.
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Algorithm 2 Sequence selection optimization algorithm

Input: A quantum circuit LC, a coupling graph CG, and an initial mapping π0.
Output: A quantum circuit PC that is compliant with connectivity constraint of CG.
1: Initialize: swap← ∅; a← ∅; π ← π0; PC ← ∅
2: for each gate g = 〈p, q〉 ∈ LC do
3: if distph(g, π) = 1 then
4: LC ← LC.remove(g)
5: PC ← PC.add(g)
6: else
7: max Gval ← Gval(π, (a, SWAP)).sort()
8: (compute the Gval for all possible SWAP gates and save the largest ones)
9: for each SWAP ∈ max Gval do

10: swap← max Ωg(π, (a, SWAP))
11: (compute the Ωg for all sequences in max Gval and take one of the largest)
12: end for
13: a← (a, swap)
14: π ← π[swap]
15: PC ← PC.add(sawp)
16: PC ← PC.add(g)
17: LC ← LC.remove(g)
18: end if
19: end for
20: return PC

The algorithm starts by initializing the necessary variables. It adds all quantum gates
that meet the connectivity constraint in PC and removes them from LC according to their
execution order in the current mapping, as described in Lines 3–5. If no gate can be added
to PC, indicating that SWAP gates must be inserted, the algorithm computes the Gval for all
possible SWAP gate sequences and saves those with the largest value in max Gval , as shown
in Line 7. Next, Lines 9–12 compute the Ωg for all sequences in max Gval and selects the
one that has the largest value. Finally, Lines 13–17 update LC, PC, π, and a based on the
SWAP gates added.

To illustrate how the sequence selection optimization algorithm works, let us consider
the following example.

Example 5. In Example 4, we compare the two SWAP gate sequences (i) and (ii), which have the
same Gval value. Using Equation (4), we obtain the following distances and cost values:

π1 : distph(g0, π1) = distph(g3, π1) = distph(g6, π1) = 2
distph(g1, π1) = distph(g2, π1) = distph(g4, π1) = 1
distph(g5, π1) = distph(g7, π1) = 1

π1[(i)] : distph(gi, π1[(i)]) = 1 (0 ≤ i ≤ 6), distph(g7, π1[(i)]) = 2
Ωg(π1, (i)) = 8 + 5 + 2 = 15

π1[(ii)] : distph(gi, π1[(ii)]) = 1 (0 ≤ i ≤ 5), distph(g6, π1[(ii)]) = 2,
distph(g7, π1[(ii)]) = 1
Ωg(π1, (ii)) = 8 + 5 = 13

Since both sequences have the same Gval value, we choose the sequence with the higher values
according Algorithm 2. Therefore, we choose sequence (i) as the optimal swap sequence.

5. Evaluation

To assess the effectiveness of the proposed methods, we now turn to evaluate their
performance on a variety of quantum circuits. We provide experimental results and
comparisons with existing approaches in this section.
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The proposed methods were implemented in Python, and the experiments were con-
ducted on a Windows 10 machine with an Intel Core i7 processor and 16 GB of RAM.
The quantum circuits used in the experiments were publicly available benchmarks evalu-
ated in [14]. The experimental comparison baseline is the number of CNOT gates inserted
by the quantum circuit transformation. In this paper, we classify quantum circuits with less
than 1000 gates as small scale, those with greater than 1000 and less than 10,000 gates as
medium scale, and those with more than 10,000 gates as large scale.

Tables 1–3 show the results of the experiments for small scale, medium scale, and large
scale circuits, respectively. The first column in each table lists the benchmark, the sec-
ond column “QubitNu” shows the number of qubits in the circuit, and the third column
“GateNu” shows the number of CNOT gates in the circuit. The fourth and fifth columns,
labeled “AuxGt”, show the number of auxiliary CNOT gates added by the transformation
algorithm in [6,14], respectively, and serve as the main comparative baseline for the ex-
periments. The sixth column shows the number of auxiliary CNOT gates added by the
algorithm proposed in this paper. The seventh and eighth columns, labeled “Comp.”, show
the optimization rate compared with the literature [6,14]. The last row of each table shows
the average optimization rate.

In order to evaluate the effectiveness of the proposed quantum circuit transformation
optimization algorithm, we compare the experimental results with two previous algorithms,
Sabre [6] and Topgraph [14]. Sabre is integrated in the IBMQ quantum cloud platform,
which represents the current optimal level of IBMQ, and Topgraph is the basis of algorithm
improvement in this paper. Therefore, they are selected as the baselines for the experiments
in this paper. From the experimental results in the three tables, it is evident that the
quantum circuit transformation optimization algorithm in this paper outperforms Sabre,
with the highest average optimization rate reaching 70.15%. In comparison with Topgraph,
the algorithm proposed in this paper achieves a minimum average optimization rate of
4.30% on small-scale circuits and 21.79% on large-scale circuits. Although two quantum
circuits in the medium-scale circuit are not optimized, the average optimization rate still
reaches 22.04%. Overall, the proposed algorithm has a significant optimization effect on
circuits of any scale, with the larger circuits showing more obvious optimization.

Table 1. The experimental results on small-scale circuits.

Benchmark AuxGt
in [6]

AuxGt
in [14] AuxGt

Comp.

Circuit QubitNu GateNu With [6] With [14]

4mod5_v1_22 5 21 0 0 0 0.00% 0.00%
mod5mils_65 5 35 0 0 0 0.00% 0.00%
decod24v2_43 4 52 0 0 0 0.00% 0.00%

4gt13_92 5 66 0 0 0 0.00% 0.00%
qft_10 10 200 54 39 33 38.89% 15.38%
qft_16 16 512 186 153 117 37.10% 25.53%

ising_model_10 10 480 0 0 0 0.00% 0.00%
ising_model_13 13 633 0 0 0 0.00% 0.00%
ising_model_16 16 786 0 0 0 0.00% 0.00%

rd84_142 15 343 105 72 66 37.14% 8.33%

Average 11.31% 4.72%
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Table 2. The experimental results on medium-scale circuits.

Benchmark AuxGt
in [6]

AuxGt
in [14] AuxGt

Comp.

Circuit QubitNu GateNu With [6] With [14]

sym6_145 7 3888 1272 513 405 68.16% 21.05%
z4_268 11 3073 1365 630 363 73.41% 42.38%

radd_250 13 3213 1275 555 576 54.82% −3.78%
cycle10_2_110 12 6050 2622 1194 969 63.04% 18.84%

adr4_197 13 3439 1614 630 648 59.85% −2.86%
misex1_241 15 4813 1521 786 444 70.81% 43.51%

rd73_252 10 5321 2133 1095 732 65.68% 33.15%
square_root_7 15 7630 2598 1338 1017 60.85% 23.99%

Average 64.58% 22.04%

Table 3. The experimental results on large-scale circuits.

Benchmark AuxGt
in [6]

AuxGt
in [14] AuxGt

Comp.

Circuit QubitNu GateNu With [6] With [14]

co14_215 15 17,936 8982 4257 2658 70.41% 37.56%
rd84_253 12 13,658 6147 2352 1827 70.28% 22.32%
sqn_258 10 10,223 4344 1578 1212 72.10% 23.19%

sym9_193 11 34,881 16,653 5589 5361 67.81% 4.08%

Average 70.15% 21.79%

6. Conclusions

In this paper, we proposed a timing-based optimization algorithm for quantum circuit
transformation that defines a timing weight for every edge in the interaction graph of the
circuit. By using a subgraph isomorphism algorithm based on timing weights, we can
obtain a high-quality initial mapping. We also proposed a sequence selection optimization
algorithm based on the distance measure optimization function for selecting the best SWAP
gate sequence. The experimental results show that our algorithm outperforms the existing
benchmarks for arbitrary scale quantum circuits, demonstrating its effectiveness. However,
there are other factors that can affect the execution of quantum computation, such as
quantum gate execution errors and qubit coherence time, which could be incorporated into
a study for comprehensive consideration. Our future research direction will be to adapt the
algorithm in this paper to account for these factors.
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