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Abstract: The adversarial attack is crucial to improving the robustness of deep learning models; they
help improve the interpretability of deep learning and also increase the security of the models in
real-world applications. However, existing attack algorithms mainly focus on image classification
tasks, and they lack research targeting object detection. Adversarial attacks against image classifi-
cation are global-based with no focus on the intrinsic features of the image. In other words, they
generate perturbations that cover the whole image, and each added perturbation is quantitative and
undifferentiated. In contrast, we propose a global-to-local adversarial attack based on object detection,
which destroys important perceptual features of the object. More specifically, we differentially extract
gradient features as a proportion of perturbation additions to generate adversarial samples, as the
magnitude of the gradient is highly correlated with the model’s point of interest. In addition, we
reduce unnecessary perturbations by dynamically suppressing excessive perturbations to generate
high-quality adversarial samples. After that, we improve the effectiveness of the attack using the
high-frequency feature gradient as a motivation to guide the next gradient attack. Numerous experi-
ments and evaluations have demonstrated the effectiveness and superior performance of our from
global to Local gradient attacks with high-frequency momentum guidance (GLH), which is more
effective than previous attacks. Our generated adversarial samples also have excellent black-box
attack ability.

Keywords: information security; artificial intelligence; adversarial attack; object detection; migration
attacks

1. Introduction

Information security concerns various fields, such as deep learning [1], homomorphic
encryption [2], IoT [3], and others. Advancements in deep neural networks (DNNs) have
fundamentally driven the application of object detection [4] in the real world, such as face
recognition [5], intelligent transportation [6], industrial detection [7], and intelligent medical
imaging [8]. The current deep learning-based object detection algorithms can be divided
into one-stage and two-stage models. For one-stage, the model extracts feature directly
to anticipate the classification and location of objects in the network, such as YOLO [9]
and SSD [10]. For two-stage, the model first generates region proposals by selective search
algorithm; subsequently, the samples are classified by the convolutional neural network,
such as R-CNN [11]. Although object detection is advancing by leaps and bounds, there are
concerns about its security. For adversarial attacks [12], only a small perturbation needs to
be added to interfere with the judgment of the model. Adversarial attacks and adversarial
defenses [13] complement each other, and studying adversarial attacks not only analyzes
the security of object detection models but also provides high-quality training samples for
model robustness. Therefore, it is urgent to study adversarial samples for object detection.
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However, there are few types of research about adversarial attacks for object detection
tasks. The reason is that the adversarial attack for object detection is more complex com-
pared to the adversarial attack for classification, which only requires a loss function. The
first complexity is the gap between the datasets of object detection and image classification.
Classified datasets frequently contain only a single object, whereas datasets for object
detection, such as Microsoft Common Objects in Context (MS COCO) [14], usually contain
multiple classes of targets in which objects cover one another and repeat perturbations
can affect one another, leading to a weaker attack. The background accounts for a larger
proportion compared to the target. Moreover, excessive perturbation is easily wasted on
the background and increases the overhead of the attack. The second complexity is the
significant structural discrepancies of the models. Concerning the output prediction of
object detection, an alternative sub-optimal bounding box in the vicinity of the attacked
bounding box possibly gets detected even if a bounding regression box is successfully
assaulted. In addition, a large number of generated bounding boxes makes the cost of the
attack more expensive and enhances the difficulty of the attack.

To solve the above problems, we propose an adversarial concerning global to local
gradient attacks with high-frequency momentum guidance that focuses on object detection.
Previous approaches use a norm to constrain the amount of perturbation, yet this constraint
is reacting to the computer’s sensing of that perturbation. Contrast samples are meant
to deceive not only the machine but also the human senses. Therefore, we compare the
distortion of the picture from a global perspective and introduce SSIM [15] and PSNR
metrics to determine the effect of the perturbation on the image, which better reflects the
intuition of the human eyes.

From a local perspective, we differentially add perturbations for features to destroy
important perceptual features of the target. The final effect is shown in Figure 1. In other
words, our local perturbation effectively pinpoints the region of interest predicted by the
object detection model. This is because gradients represent the feature information that the
model recognizes in the object. We achieve the optimal attack perturbation by suppressing
the positive gradient information. Moreover, at the same time, we introduce the Fourier
transform to extract the high-frequency image of the post-attack image, which is fed into the
model to obtain the high-frequency feature information. Using this high-frequency feature
information as momentum to guide the next gradient attack is equivalent to correcting the
direction of the attack. Our contribution points are as follows:

• We propose a generalization of object detection-based adversarial attacks that target
images by dynamic gradient features. Our approach almost defeats the judgment of
the object detection model in a white-box attack. For the black-box attack, our attack
also achieves excellent results on object detection models with different structures.

• A local dynamic constraint module is proposed to alleviate the problem of excessive im-
age similarity fluctuations after the attack by limiting the high-gradient perturbations,
which reduces the perturbations to the background by eliminating the low-gradient
information. On the whole, the similarity of the adversarial sample is improved.

• A momentum guidance method based on high-frequency gradient features is proposed
to filter the Fourier-transformed images by high-frequency filtering. The gradient
information of the processed image is added as momentum to the next iteration of the
perturbation. The overall effect of the attack is improved.

In this paper, we propose a global-to-local adversarial attack based on object detec-
tion. Section 2 focuses on the related work of the thesis and the benchmark formulation.
Section 3 presents the details of our proposed method. Section 4 is a detailed experimental
demonstration and visualization of our proposed method. Finally, the last section is a
summary and outlook.
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Detection

Clean sample test results Clean sample heat map

Detection

HFB-LFA eps Adversarial sample test results Adversarial sample heat map

Figure 1. The adversarial attack against YOLOR: A clean image of the detection results in YOLOR is
shown in the first row along with the model attention heat map. As we added local perturbations
(we enlarged the perturbations and adjusted the color balance for visual effect), the detection results
showed a huge deviation, which we can observe more visually in the heat map as the model
attention changes.

2. Related Work
2.1. Gradient-Based Classification Attacks

Since Szegedy et al. [12] proved the existence of adversarial examples, several adver-
sarial attack algorithms have been induced to study the weaknesses of neural networks.
The study of the classification model’s adversarial attacks was also pioneered and the BFGS
attack was proposed. Goodfellow et al. [16] found that the gradient information can be
used as a guide for the attack and created the FGSM adversarial attack method. Although
FGSM found the direction of the attack, it was often extremely troublesome to design
the size of the perturbation. Therefore, the iterative version of I-FGSM [17] was worked
out afterward. By iterating the subtle perturbations many times, it was easier to find the
optimal perturbation value. However, this method was not as strong as FGSM in terms of
migration capability and had significant limitations. The project gradient descent attack
(PGD) [18], on the other hand, added a random initial perturbation to I-FGSM to avoid
encountering the saddle point problem. Naturally, this perturbation was also bounded by
the paradigm and had the same problem of weak mobility. Huang et al. [19] used feature
differences to improve antagonistic sample mobility. Although gradient attack has been a
great success in the field of classification, the application of this method to object detection
has not been effective.

2.2. Query-Based Classification Adversarial Attack

The query-based black box attack relies only on the predicted scores to estimate the
prediction of the gradient, which therefore requires multiple queries to estimate the approx-
imate result. Ru et al. [20] used Bayesian optimization to find successful perturbations with
high query efficiency by selecting the best dimensionality reduction angle of the search
space for the attack. Du et al. [21] employed meta-learning to approximate the gradient
estimation, which greatly reduced the number of queries required. However, all these
methods required estimating gradient information. Moon et al. [22] proposed an efficient
discrete substitution method to optimize query consumption. Chen et al. [23] proposed
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using meta-learning to reduce the number of black-box attack queries. Furthermore, this
method was without computing the gradient. But these black box attack methods required
certain query information and were not powerful enough for the effect of the attack.

2.3. Patch-Based Object Detection Adversarial Attack

Brown et al. [24] first proposed an adversarial patch for object detection by training
the patch to make the classification output of the model wrong. However, the patch
only focused on the classifier. In addition, this method had a significant impact on the
image. In contrast, Liu et al. [25] performed the attack by adding the patch in the upper
left corner of the image. The backpropagation during training only updated the patch
and disabled the detection frame. The method performance has not been excellent in
recent models. Lee et al. [26] improved on the former by adding an adversarial patch
preprocessing to focus the model’s attention on the adversarial patch. Nonetheless, the
method relied too much on the model structure. Thys et al. [27] used 2D printing techniques
to hide humans from the detection system. Yet, the method was weakly generalized and
allowed attacks only against a single target. Hu et al. [28] proposed AdvTexture, based
on previous research, which used wearable clothes to evade the detection of multi-angle
attacks in the physical world. None of the above methods provides an interpretable basis for
object detection and cannot improve the model’s robustness to provide adversarial samples.

2.4. White-Box Based Object Detection Adversarial Attack

Existing object detection white-box counterattack methods mainly implement attacks
by changing the classification loss. DAG [29] and CAP [30] implement attacks mainly by
spoofing the RPN network of two-stage object detection models. To achieve migration,
UEA [31] and TOG [32] attack both one-stage and two-stage detectors with metastable
adversarial perturbations. Nevertheless, the above method has a weak migration.

Selection loss for object detection is composed of three components: confidence,
bounding regression box, and classification. Thus the adversarial attack based on white-box
object detection is also based on three predictions to generate adversarial samples.

The first part is the confidence loss of object detection. The attack confidence loss
allows either adding false targets or hiding real objectives and is formulated as follows:

Lobj =
s

∑
i=1

[O`BCE(1, Ci) + (1−O)`BCE(0, Ci)], (1)

where Ci represents the model’s confidence prediction output; O represents the accuracy of
detecting the corresponding object; and `BCE stands for binary cross entropy.

The second part is the loss function of the bounding regression box. Attacking this loss
function allows the prediction box of object detection to move away from the target, which
means that the predicted and actual errors should be amplified. The equation is as follows:

Lbbox =
s

∑
i=1

[`SE(ti
x − ĝi

x) + `SE(ti
y − ĝi

y)

+`SE(
√

ti
w −

√
ĝi

w) + `SE(
√

ti
h −

√
ĝi

h)],

(2)

where ti
x denotes the x-coordinate of the center of the bounded regression box predicted

by the model. In addition, ti
y denotes the y-coordinate, and ti

w denotes the width value of
the predicted bounded regression box. Moreover, ti

h denotes the height of the predicted
bounded regression box, and ĝi

x,ĝi
y,ĝi

w,ĝi
h indicate the coordinates of the real label. Finally,

`SE represents the sum of squared errors.
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This is concluded by the classification loss of the objectives. Attacking the classification
loss function then misleads the model to misclassify the target. The formula is shown below:

Lcls =
s

∑
i=1
O

k

∑
c=1

`BCE(pc
i , p̂c

i ), (3)

where pc
i represents the classification information predicted by the model; p̂c

i represents
the real target classification information; k represents the total k predicted categories; and s
indicates that the image has s detected targets. However, the above methods are all attack
methods derived from classification adversarial attacks and do not target the features of
the object detection dataset.

3. Methods
3.1. Overall Framework

An overall structure of our proposed GLH method is shown in Figure 2. The algorithm
flow is shown in Algorithm 1.

Attack order

3P YOLOR

bbox loss

confidence loss

class loss

AGA_Eps

+

Fourier transform
High-frequency

Low-frequency
YOLOR

High-frequency img

High-bbox loss

High-confidence loss
High-class loss

High-bbox loss

High-confidence loss

U Iterative 

input image

2

HFB_Eps

: Padding imgP

U : Unpadding img

: Add

3

1 2

LFA_Eps

1

12

+

3

Figure 2. GLH: object detection against attack overall architecture.

Algorithm 1 GLH.

Input: clean samples IC, perturbation value λ,µ, number of iterations T, F ′(.) indicates
that high-frequency image information was acquired using the Fourier transform.

Output: Adversarial samples xadv
1: ρh f b = 0
2: Ii

A = IC
3: for i = 0→ T − 1 do
4: ρl f a = Hardshrink(Dclip(∇Lsum

S ), λ)

5: Ii+1
A = Ii

A + µ(ρl f a + ρh f b)

6: ρh f b = ε ∗ tanh(∇ Lsum
F ′ (Ii+1

A )
)

7: xadv = Ii
A

8: end for
9: return xadv

The section in blue shows the single perturbation generation process. Before feeding
the model into the image, the padding operation is first performed to complement to
640 × 640 size, because YOLOR [33] performs data enhancement for data with inconsistent
image size. One of the scaled image sizes will be interpolated, thereby the generated
adversarial samples will be affected by the interpolation to reduce the attack effect. Subse-
quently, we input the processed images into the model to get three predictions, in which we
calculate the global gradient information we need by the three corresponding loss functions.
By the variance AGA_Grad of this global gradient information, we selectively generate
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perturbations. To generate high-quality samples with dynamic constraints, we obtain
local perturbation LFA_Eps with the original image after the previous padding, which
is performed by adding an operation to obtain the attached image. Eventually, inverse
padding is performed to obtain the original size image.

The green part is the high-frequency momentum guidance module. We get the con-
frontation sample for Fourier change and input the high-frequency image into the model to
get the corresponding loss function. We calculate the high-frequency perturbation as the
momentum guidance for the next perturbation.

3.2. Adaptive Gradient Attack

With image classification tasks, images in datasets are almost exclusively of a single
class (e.g., CIFAR-10, ImageNet [34], and ILSVRC [35]). The proportion of the target is high,
therefore the adversarial sample generation for classification often gets the direction of
the perturbation through the gradient. That is, by superimposing the same perturbation
for the direction of the gradient, the gradient of the image can be moved away from the
normal range. In object detection, the datasets contain many objects with random size
and distribution, for which the perturbation addition method of image classification attack
cannot perform satisfactorily on the object detection task.

Therefore, we design an adaptive gradient attack to perform specific perturbations for
different targets of different images. We find that the gradient information represents the
region of interest of the model. Our proposed adaptive gradient attack (AGA) method uses
the gradient information obtained from each iteration as a quantifier of the perturbation.
The generalized equation of the method is shown as follows:

Ii+1
n = Clip(0,1){Ii

n + ε∇Lsum

S
}, Min(A

N

∑
n=0

Ii+1
n ). (4)

Because the number of targets in the same image is different, we ask for the average
loss of the number of targets s to obtain the gradient information. Furthermore, the size of
this gradient can be used as the scale of our perturbation to control the overall perturbation
size by ε; A represents the AP metric of the computed image. In addition, our goal is to
reduce the AP value of the N samples in the datasets as much as possible while reducing
the image corruption as much as possible.

For the weights assigned to the three loss functions of Lsum, we also adjusted them by
adding the hyperparameters α, β, and γ. The formula is shown next:

Lsum = αLobj + βLbox + γLcls, (5)

The value of Lsum was also adjusted as follows: the hyperparameters α, β, and γ
were added. Because we are based on the white-box attack of YOLOR, we take the preset
hyperparameters of the model: α is taken as 0.7, β is taken as 0.05, and γ is taken as 0.3.
To be fair in the experimental setting, the experiments we compare are all with the same
parameters. In the subsequent ablation experiments, a comparison of the values of these
parameters will be made.

Simultaneously, we also visualize and compare our proposed AGA perturbation with
the perturbation generated by I-FGSM. To ensure that the visualization is more obvious,
we do not put a constraint on the perturbation for ε. As shown in Figure 3, it is evident that
our proposed method is more target-focused and suitable for object detection attacks.
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AGAI-FGSMOriginal image
Figure 3. The middle perturbation image is generated by I-FGSM without the parametric constraint,
whereas the one on the right is our proposed AGA perturbation generation method. Comparing the
original images, we can see that the AGA perturbation generated by gradient adaptation focuses
more on perturbing the region of interest of the model.

3.3. Local Gradient Feature Attack

The established object detection adversarial method is iteratively attacked, and we
obtain unusually powerful attack results. However, we find that, if we go unconstrained in
using the gradient information, although we obtain amazing results in the attack, a part
of the sample perturbation drastically affects the image. The similarity of the attacked
image fluctuates dramatically compared to the original image, which is detrimental to our
work. This is explained by the fact that too numerously perturbed images cannot be used
as suitable adversarial samples to train the model robustness. Moreover, this adversarial
sample does not prove that the pixel point we attack is the knowledge learned by the
model. Therefore, we introduce a dynamic constraint module to limit the perturbations
and constrain the extremes of the gradient according to the number of iterations, which
substantially improves the stability of the adversarial sample similarity after discarding the
excessive attack perturbations. It is also proven in our subsequent ablation experiments.
The equation of our perturbation generation is shown as follows:

ρ = εHardshrink(Dclip(∇
Lsum

S
), λ), (6)

where

Dclip(x) =

{
x, x <= δ +

√
δ ∗ (N + 1);

0, x >= δ +
√

δ ∗ (N + 1).
(7)

Hardshrink(x, λ) =


x, x > λ;
x, x < −λ;
0, otherwise.

(8)

In addition, we define how the perturbation ρ is generated, as shown in Equation (6).
Moreover, ∇ represents the acquisition of gradient information. We use Dclip to constrain
the upper limit of the gradient, as in Equation (7), as well as every time the perturbation
reaches the limit, we set it to (0, 1), because too high a perturbation will destroy the image.
In addition, it is considered that information with a low gradient is of little help to the
prediction of the model. Therefore, it is not necessary to design perturbations based on
excessively small gradients. Instead, we use the Hardshirk activation function to suppress
the information with relatively low gradient information, as in Formulation (8). For the
value of δ, we use a hyperparameter of 50, and N represents the number of iterations.
The idea is to use an upper bound on this perturbation that increases with the number of
iterations, but to constrain the perturbation by limiting the growth rate at each iteration.
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Of course, a single attack cannot find the optimal attack direction. Therefore, we
need to iterate over each attack to generate the best adversarial sample. The formula is
as follows:

Ii+1
n = Clip(0,1){Ii

n + ρ}, Min(A
N

∑
n=0

Ii+1
n ). (9)

Therefore, we attack by iterating the attack steps; Ii
n stands for the last image, and

ρ is the currently computed perturbation. As the range of pixel values after the image
normalization process is (0,1), we finally constrain the image to a normal range using the
Clip function.

The visual comparison of the method is also performed, as shown in Figure 4: it can be
seen that our method is more focused on the object and less perturbing to the background.

AGA AGA + LFAOriginal image
Figure 4. The middle image represents the perturbation generated by the AGA method, whereas the
right image is the perturbation generated by adding LFA. Compared with the original image, we can
see that the perturbation with LFA is more focused on the target and focuses more carefully on the
area of interest of the model.

3.4. Fourier High-Frequency Momentum Guidance

It was discovered that the high-frequency information of an image represents the
semantic information of that image. Additionally, even if we remove the low-frequency
texture information, the model can still detect the target of that image normally. Therefore,
we design a high-frequency gradient bootstrap to reinforce the gradient attack. The specific
idea is that we save the high-frequency feature gradient of the attack image after the first
iteration of the attack, as well as add a perturbation of the high-frequency feature gradient
to guide the image to change in the next step of adding perturbation to the attack. The
formula of this high-frequency feature gradient can be expressed as the following equation:

F (u, v) =
∫ +∞

−∞

∫ +∞

−∞
f (x, y)e−j2π(ux+vy)dxdy, (10)

F ′(u, v) = F (u, v) ∗C(x, y), (11)

where

C(x, y) =

{
0, 270 < x < 370, 270 < y < 370;
1, else.

(12)

For the image f (x, y) after our first attack, we obtain its frequency domain image
F(u, v) by Fourier variation; j represents the imaginary part unit. We get its high-frequency
frequency domain image F′(u, v) by setting the high-pass filter C(x, y). In addition, for
the area of the high-frequency filter, we choose 1000, due to the image size being fixed to
640 × 640, so the range of the central filter is 270 to 370. We get its characteristic image by
reducing it. We then get its high-frequency time domain image F′(x, y) by inverse Fourier
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transform. The contour features can be seen clearly. The inverse Fourier formula is shown
below:

F ′(x, y) =
∫ +∞

−∞

∫ +∞

−∞
f (x, y)ej2π(ux+vy)dudv. (13)

Our high-frequency momentum perturbation is generated as shown below:

ρh f b = ε ∗ tanh(∇ Lsum

F ′(x, y)
). (14)

We input this image into the model to get the loss of this image to get the high-
frequency feature gradient, this gradient we will use as a guide to change the direction
of the next gradient change. To better express what we do, we express the flow of our
methods through pseudo-code, as shown in Figure 5.

High-frequency feature

YOLOR (Get gradient direction)

Previously added perturbation direction High-frequency momentum guidance

Original image

Fourier transform

Figure 5. The green arrow represents the direction of gradient perturbation addition without the
addition of high-frequency guidance. After adding the pink arrow, which is the high-frequency
momentum guidance, the gradient attack is corrected to the blue arrow direction.

4. Experiments

To guarantee the fairness of comparison with other methods, all weights for the loss
function use common uniform metrics to compare methods.

4.1. Experimental Details

Datasets: Common objects in context, referred to as COCO [14], is a dataset published
by Microsoft focused on image recognition. COCO is large and rich in object detection,
segmentation, and captioning datasets, mainly taken from complex everyday scenes. It is
used for object instances, object key points, and image captions. MS COCO is divided into
80 categories. Altogether, when we use COCO2017, YOLOR’s training set has 118,287 im-
ages. Moreover, the validation set for the attack has a total of 5000 images. The experiments
are conducted on top of the validation set to ensure fairness.
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Experimental environment: The experiments are run on the same CPU: Intel(R) Xeon(R)
Gold 5220 CPU at 2.20 GHz and the GPU device Quadro RTX 5000 to ensure fairness.

Hyperreference settings: To compare the boosting effect of our proposed method, an
identical (α, β, γ) = (0.7, 0.05, 0.3) is used to choose the hyperparameters of the loss function.
This parameter is based on the default scale of YOLOR. In addition, for the selection of IoU,
we use the same GIOU [36] for all our compared methods. The hyperparameters S1 and
S2 are chosen to compare the superiority of our method more intuitively with parameters
S1 = (ε = 0.15/255, i = 10) and S2 = (ε = 0.2/255, i = 10), respectively. At the same time,
S3 = (ε = 0.4/255, i = 39) is the adversarial sample that we believe to be the best for the
adversarial sample generated by our method with the minimum of perception, which is
the adversarial sample we use as a migration attack experiment.

4.2. Evaluation Indicators

Disturbance Impact Index: Used for previous classification models and classification
datasets, such as ImageNet [34]. Gradient-based attacks are global attacks, so the norm can
reflect the perturbation limit of the attack on the image. In contrast, for the COCO datasets,
the background occupies far more pixels than the target pixels. The norm constraint is to
constrain each pixel as a whole, whereas in the actual attack, it is not necessary for us to
attack all the pixels. Therefore, we introduced SSIM and PSNR metrics that are closer to
human observation to judge the size of interference.

Structure Similarity Index Measure (SSIM) [15]: Mainly measures the similarity of
images from three aspects: brightness, contrast, and structure. Due to SSIM being a
perception model, it is more in line with the intuitive feeling of the human eye.

Peak signal-to-noise ratio (PSNR): This metric is an engineering term that represents
the ratio of the maximum possible power of a signal to the destructive noise power that
affects its representation accuracy. To measure the image quality after processing, we
usually refer to the PSNR value to measure whether a processing program is satisfactory.

Performance Indicators: Regarding the evaluation metrics for object detection, we
use COCO’s target recognition evaluation criteria: P is the accuracy rate, which is used
to measure the percentage of correct predictions among all predictions; R is the recall
rate, which is the number of all correct predictions as a percentage of the total targets;
the AP metric considers both accuracy and completeness, so the area under the PR curve
is used to represent a performance metric of the object detection model for this dataset.
Its default IoU range is (0.5:0.95). The AP50 metric represents the AP performance of the
model if the IoU is greater than 0.5. performance; AP75 is the AP performance for the more
stringent case of IoU greater than 0.75; APS, APM, APL, respectively, represent the detection
performance of small (area < 322), medium (322 <area < 962), and large (area > 962) targets
in the IoU range (0.5, 0.95). Table 1 shows the AP metrics of the adversarial samples we
generated by YOLOR compared with the I-FGSM and PGD methods. Table 2 shows the
recall performance comparison of the above methods comparison.

Table 1. Performance of AP metrics on the COCO2017 dataset for the control sample.

Model Constraints Size APval APval
50 APval

75 APval
S APval

M APval
L SSIM PSNR

YOLOR-CSP - 640 49.20% 67.60% 53.70% 32.90% 54.40% 63.00% - -
I-FGSM [17] L∞ 640 30.70% 45.70% 32.30% 14.40% 32.30% 46.60% 0.879 34.19

PGD [18] L∞ 640 30.40% 45.40% 31.90% 13.90% 31.80% 46.00% 0.881 34.24
GLH(ε,i) ∈ S1 - 640 25.10% 38.60% 26.00% 9.90% 25.30% 40.70% 0.897 36.02

I-FGSM [17] - 640 23.10% 35.40% 24.00% 9.10% 23.70% 37.50% 0.835 31.94
PGD [18] - 640 21.60% 33.30% 22.50% 8.00% 22.20% 35.40% 0.831 32.09

GLH(ε,i) ∈ S2 - 640 19.00% 29.80% 19.20% 6.60% 18.70% 32.50% 0.859 34.03

GLH(ε,i) ∈ S3 - 640 4.90% 8.30% 4.80% 0.80% 3.50% 12.10% 0.700 27.82
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Table 2. Performance of AR metrics on the COCO2017 dataset for the control sample.

Method Constraints Size ARval
max=1 ARval

max=10 ARval
max=100 ARval

S ARval
M ARval

L SSIM PSNR

YOLOR-CSP - 640 37.60% 61.80% 67.20% 50.80% 72.70% 81.00% - -
I-FGSM [17] L∞ 640 27.70% 47.40% 53.20% 31.50% 57.50% 71.60% 0.879 34.19

PGD [18] L∞ 640 27.50% 47.10% 52.90% 30.70% 57.40% 70.30% 0.881 34.24
GLH(ε,i) ∈ S1 - 640 24.00% 42.40% 48.00% 26.30% 51.50% 66.60% 0.897 36.02

I-FGSM [17] - 640 23.60% 41.60% 46.90% 25.20% 50.60% 65.30% 0.835 31.94
PGD [18] - 640 22.70% 40.10% 45.70% 24.30% 49.10% 63.70% 0.831 32.09

GLH(ε,i) ∈ S2 - 640 20.30% 36.70% 42.00% 21.10% 44.80% 60.30% 0.859 34.03

GLH(ε,i) ∈ S3 - 640 8.80% 17.80% 20.90% 5.80% 19.90% 34.90% 0.700 27.82

4.3. Generalizability Comparisons

As the existing object detection attack methods are only applicable in reality to evade
detection, to demonstrate the effectiveness of our method more intuitively, we first repro-
duce the I-FGSM and PGD in a classification attack and apply it to the attack on the object
detection model. To ensure fairness, all of our experiments attack both the confidence and
bounding regression box of the object detection model as well as the classification results.
In addition, they all use the same parameter selection of (α, β, γ) = (0.7, 0.05, 0.3). By way
of comparison reference, we use the same 10 iteration times. The performance metrics are
given by the authors we use in this section of experiments to compare the effectiveness of
our work. To prove our conclusions more rigorously, all our experiments are built based on
what has been replicated.

Attack effect experiment: From the first row of our main experiment results, Table 1,
we can see that YOLOR-CSP obtains a robust AP performance of 49.2% on clean images.
The second and third rows represent the performance impact of the adversarial samples
generated by I-FGSM and PGD on YOLOR that we use as a reference. They both use
infinite norm de-constraint with a constraint range of 8/255. It is evident that both methods
generate adversarial samples with extremely high similarity, with an average SSIM close
to 0.9, as well as a high peak signal-to-noise ratio. However, there is no significant impact
on the YOLOR attack. As our method is an object-focused attack with no parametric to
constrain the perturbation, we use the GLH method with higher S1 parameters for both
SSIM and PSNR than the previous two. Compared with I-FGSM and PGD, our method
GLH improves the attacks by 18.2% and 17.4%, respectively. This indicates that our attacks
are not only superior to other methods but also that the perturbations generally have less
impact on the images.

To achieve better attacks, we liberate the infinite parametric constraints of I-FGSM
and PGD, and the performance is significantly enhanced. However, YOLOR still has 23.1%
and 21.6% of AP performance. Because these methods only consider the direction of the
gradient and do not quantify the magnitude of the perturbation, the attacks against the
object detection model are far from satisfactory. Our method with parameter S2 is 17.7%
and 12.0% more effective than I-FGSM and PGD, respectively, and our similarity is still
higher than the first two.

To achieve the ultimate attack effect, we use parameter S3 to perform high-performance
damage to the image while ensuring that the SSIM is not lower than 0.7. We can see that the
effect of our attack makes the model lose 90% of the AP performance, basically knocking
down the model’s judgment. Our later migratory experiments all use this parameter for
the attack.

Recall attack experiment: In Table 2, we test the effect of the adversarial sample on the
recall. Here, max = n means retaining the top n prediction boxes in confidence ranking on
each graph of the test set separately. We can see that our method still outperforms I-FGSM
and PGD in each metric. We can see that at max = 1, our GLH (S3) with the parameter
setting almost crushes the object detection module and the recall rate drops from 37.6%
to 8.8%, directly reducing the model’s recall metric by 76.5%. In addition, in the case of
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higher fault tolerance max = 10 and max = 100, our method discriminates to reduce the
recall index of the model by 71.19% and 68.89%. In addition, for small targets, the AP
metric after our attack is only 5.8%, which means that our method enables the model to
ignore almost all small targets. Moreover, for medium targets, there is also only a 19.9%
recall metric left, which almost loses the ability to judge. As for the recall metric for large
targets, although we only reduce it to 34.9%, we also reduce the performance by 56.9%
compared to a clean image, achieving an extremely significant attack effect. The reason for
this is that our attacks are focused on objects, so the attack effect is especially effective for
small and medium targets. For large objects, more scrambling is needed to interfere with
its judgment, therefore the scrambling of the image is also increased, which also achieves a
strong attack effect.

Transportability experiments: The adversarial sample we implemented through
YOLOR is also highly transferable. To support our view, we chose models from recent
years or more representative models for testing. Moreover, we find that our generated
adversarial samples also achieve surprising results in black-box attacks, as shown in Table 3:
our YOLOR-based adversarial samples also obtain quite high transferability for different
backbone YOLO models. Starting from the table, we can see that for the YOLOv5, we
reduce its performance from 37.40% to 15.30%, which corresponds to a performance loss of
59.09%. For YOLOX [37] and YOLOv4 [38], which have the same backbone as YOLOv5,
they have a performance loss of 54.29% and 73.9%. As for the different backbone models
YOLOv6 [39] and YOLOv7 [40], which are the newest and most powerful models in the
YOLO family, they lose 57.30% and 68.09% of performance, respectively, for the black-box
attacks we generate against the samples.

Table 3. Migration attacks for the YOLO family.

YOLOR-CSP [33] YOLOv4-pacsp-s [38] YOLOv5-s YOLOX-s [37] YOLOv6-s [39] YOLOv7 [40]

Backbone DarkNet53 DarkNet53 DarkNet53 DarkNet53 EfficientRep ELANNet

Base 49.20% 38.90% 37.40% 39.60% 43.80% 51.40%

YOLOR-CSP 4.90% 10.30% 15.30% 18.10% 18.70% 16.40%

More importantly, against the non-YOLO models, our attacks also have strong migra-
tion attack performance, as shown in Table 4. For the detection performance of DETR [41]
and EffcientDet [42], our adversarial samples likewise cause a high-intensity black-box
attack effect on this model.

Table 4. Migration attacks on other models.

DETR [41] Efficientdet-d5 [42] Mask R-CNN [43]

Backbone Resnet50 EfficientNet Resnet50

Base 42.00% 50.00% 30.90%

YOLOR-CSP 15.70% 22.00% 8.50%

Module ablation: To ensure the effectiveness of each module, rigorous ablation ex-
periments are conducted, as shown in Table 5. To better express the effectiveness of the
work we have done, we use the GLH with S3 parameters as a sample of ablation exper-
iments. We can see that after using our established object detection attack generalized
AGA, the attack effect is especially powerful, whereas the similarity is only 0.668, as the
gradient information of individual images is quite different. When we check the quality of
the adversarial sample generation, most of the adversarial samples are perturbed overly
severely. The samples with too severe perturbation, which have excessive initial gradients,
result in perturbations that are unusual from the normal adversarial samples after iteration.
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The image distortion is already noticeable to our human eyes for such samples. For these
adversarial samples, this perturbation is substandard.

Table 5. Module ablation experiment.

LFA HFB AP SSIM PSNR

Clean 0.492 - -
AGA 0.053 0.668 24.81
AGA X 0.071 0.733 29.08
AGA X 0.053 0.668 24.80
AGA X X 0.070 0.733 29.08

Symbol XRepresents the addition of the module.

After using the LFA module, we found that the similarity between the attacked image
and the original image is improved substantially. To represent the performance of our
module more intuitively, we counted the number of samples in each similarity range, as
shown in Figure 6.
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AGA + LFA

Figure 6. Overall similarity distribution after perturbing images.

It is observed that in the gradient attack without adding the LFA module, there are
extraordinarily many samples with the SSIM less than 0.5. In addition, such images are
indistinguishable by the human eye, because the unrestricted perturbation is extraordinarily
powerful for the destruction of the images. Although it obtains an amazing attack effect, we
think this kind of antagonistic sample is meaningless. The adversarial sample should focus
on the attack effect as well as the overall similarity distribution. as well as after adding the
LFA module, we can see that the similarity of the images mostly exceeds 0.5.

IoU ablation: In the adaptive gradient attack module, we set the parameter O, which
represents a criterion for measuring the accuracy of detecting the corresponding object.
In addition, all our experiments have taken the value of O as GIOU. GIoU’s performance
of our selected curve is better while sacrificing only the subtle similarity. As shown in
Table 6. Whereas EIoU has extremely powerful performances but sacrifices too much
similarity, the confrontation samples need to guarantee better similarity before we consider
the performance improvement. Therefore, our parameter O takes GIoU.

Table 6. IoU ablation experiment.

Model IoU AP SSIM PSNR

YOLOR-CSP EIoU [44] 6.10% 0.699 28.05
YOLOR-CSP DIoU [45] 7.30% 0.734 29.14
YOLOR-CSP CIoU [46] 7.20% 0.735 29.14
YOLOR-CSP GIoU [36] 7.10% 0.733 29.09
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Parametric ablation: For the third part of Equation (5), we set three hyperparameters
α, β, and γ. We adjusted the values of each parameter separately and analyzed the effect of
each parameter on the results by the experimental results, as shown in Figure 7. For the
weights of confidence loss α and boundary regression box loss β, it is observed that the
effect on the attack increases significantly with the increase of the parameters. However,
it is also affecting the similarity of the images. At the same time, we can see that the
SSIM also starts to decrease with the value of the parameters. This is explained by the fact
that our parameters affect the output of this loss function and also increase the amount
of perturbation, whereas the classification loss weights γ. It is apparent to us that as γ
increases, although the attack effect is also enhanced, it is also obvious that the effect of this
parameter on the image is enormous. For classification, more images need to be disturbed
to guide the category into another class. Nevertheless, for the effect, it is considered more
cost-effective to attack the confidence and bounding regression boxes.

obj bbox cls

Figure 7. Superparametric ablation in Lsum and δ.

For a more visual presentation of the functionality of the LFA module, we verified the
effect of the δ parameter on the AP and tested the effect of δ from 10 to 100. As illustrated
in Figure 8, the effect of the parameter on AP has been significantly reduced when δ is
taken to 40, as well as the trend of AP reduction being leveled off. However, to avoid the δ
parameter leveling off before 40, our main experimental values are used at 50 to avoid the
effect of the parameter.

Figure 8. Attentional heat map based on YOLOR model. The clean image is represented on the
far left, whereas the second graph shows the heat map of the clean image output under YOLOR’s
object detection, with red representing the location of the model’s attention and blue representing the
model’s attention to the non-focused region. The 10 pairs of graphs on the right side represent the
change in the attention of the image after each attack from iteration 1 to 10.
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4.4. Visualization

To more visually represent what we have done, we used EigenCAM [47] to visualize
our attack process. As shown in Figure 8, the leftmost side shows the original clean
image. In addition, the detection model is used to generate a heat map by obtaining the
detection results.

We can see that the model’s attention is on the salad itself, basically focusing on the
detected target. Moreover, after the attack, the model’s attention to that image started to
change. As the number of attacks increases, we find that after the fifth iteration, the attention
of the image has deviated far from the normal value, as well as after the tenth iteration of
the attack, the target has completely failed to recognize the image. Thus, this experiment
proves that our attack is quite effective and lethal for the model of object detection.

5. Conclusions

In this work, we proposed GLH to obtain gradient information from a global per-
spective and focus perturbations on objects to generate adversarial samples from a local
perspective. Moreover, the quality of the adversarial samples is improved by dynamic
constraints and high-frequency momentum. We sufficiently demonstrate the advantages of
our proposed method in white-box attacks and black-box attacks in our experiments. In
addition, the adversarial samples we generate can serve as the basis for the interpretability
of deep neural networks, as we destroy the model’s region of attention to that image, i.e.,
the learned features. Whereas adversarial attacks against object detection have been rarely
studied so far, our work aims to lead the research on adversarial attacks from classifi-
cation tasks to the field of object detection, as well as to promote researchers’ research
on robustness against object detection and improve the application of object detection
in reality.
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