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Abstract: Micro-expression recognition (MER) is challenging due to the difficulty of capturing
the instantaneous and subtle motion changes of micro-expressions (MEs). Early works based on
hand-crafted features extracted from prior knowledge showed some promising results, but have
recently been replaced by deep learning methods based on the attention mechanism. However, with
limited ME sample sizes, features extracted by these methods lack discriminative ME representations,
in yet-to-be improved MER performance. This paper proposes the Dual-branch Attention Network
(Dual-ATME) for MER to address the problem of ineffective single-scale features representing MEs.
Specifically, Dual-ATME consists of two components: Hand-crafted Attention Region Selection
(HARS) and Automated Attention Region Selection (AARS). HARS uses prior knowledge to manually
extract features from regions of interest (ROIs). Meanwhile, AARS is based on attention mechanisms
and extracts hidden information from data automatically. Finally, through similarity comparison
and feature fusion, the dual-scale features could be used to learn ME representations effectively.
Experiments on spontaneous ME datasets (including CASME II, SAMM, SMIC) and their composite
dataset, MEGC2019-CD, showed that Dual-ATME achieves better, or more competitive, performance
than the state-of-the-art MER methods.

Keywords: micro-expression recognition; attention mechanism; regions of interest

1. Introduction

As an important nonverbal cue for emotional understanding, facial micro-expressions
(MEs) are very brief and involuntary facial expressions that usually last from 0.04 to 0.2 s [1].
In contrast to ordinary expressions, MEs are considered the unconscious leakage of genuine
feelings when people try to hide them. Therefore, MEs can help reveal hidden emotions
and have promising applications in many fields, such as clinical diagnosis [2] and national
security [3].

Micro-expression recognition (MER) has attracted more and more attention from
researchers in recent decades as a critical way of understanding human emotions [4].
In addition to traditional human-based psychological studies, many researchers have tried
to investigate automatic MER methods based on computer vision techniques. In recent
years, research on MER has gradually progressed with the development of published
ME datasets [5–12]. There are two main approaches: methods based on Hand-crafted
features [13–18] and methods based on Deep learning [19–25]. However, a crucial research
issue for these two methods is extracting salient and discriminative features from MEs.
Firstly, the subtle and fleeting properties of MEs require improvement in the representa-
tiveness of both manual features and deep learning-based features. Secondly, while deep
learning has demonstrated strong capabilities of feature learning, it relies on extensive data
for training. The number of spontaneous annotated ME samples is limited to only just
over 2000, which limits the ability of deep learning networks to extract high-level features
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related to MEs. Thus, extracting discriminative features of MEs remains an area of ongoing
exploration.

Enhancing MER performance by expanding the data scale is highly challenging.
The data collection and annotation for ME is especially complicated. With limited data,
single-scale features may not be sufficient for discriminating different categories of MEs.
Combining multiple channels and effectively integrating various scale features, it is possible
to improve the model’s ability to learn ME features.

In order to learn ME characteristics efficiently, we propose a simple and effective
method called Dual -branch ATtention network for Micro-Expression recognition (Dual-
ATME), which uses feature selection, based on both Hand-crafted Attention Region Selec-
tion (HARS) and Automated Attention Region Selection (AARS), for MER. Our proposed
method includes three sub-modules: Data preprocessing, Dual-ATME module and Feature
fusion for ME classification.

In data preprocessing, to better capture the ME motion information, we computed dual-
scale optical flow features between the onset and apex frames. Precisely, one scale feature
is from the full face and the other is from the HARS-based puzzled counterpart. In the
Dual-ATME module phase, in order to simultaneously learn global and local ME features,
we utilize the bi-Inception network for HARS-based and AARS-based (full-face) feature
extraction, respectively. Furthermore, in order to be able to better focus on ME-related
features in the full-face learning network, we employ a combined channel and spatial
attention mechanism module. After obtaining the features at both scales, we narrow the
distance between them by means of similarity comparison, which empowers the network to
refine the ME features common to both. Finally, emotional category prediction is performed
by fusing the HARS-based and AARS-based features.

The main contributions of our work are as follows:

• We propose the Dual-ATME framework, which extracts HARS- and AARS-based
features to perform MER. By adding a parallel artificially-selected ROI ME feature
learning module to a standalone deep attention mechanism, we enable the proposed
Dual-ATME to effectively learn more discriminative ME features. In particular, based
on experimental results, we find that manual feature extraction, based on prior knowl-
edge, is essential for MER with limited data size.

• We design a simple and effective joint loss to optimize feature discrimination in
our proposed framework. In particular, in addition to the traditional loss for ME
classification, we use a similarity comparison loss to close the distance of the dual-
scale ME features in the embedding space.

• Our Dual-ATME method is extensively evaluated on multiple ME datasets. The exper-
imental results showed that our method demonstrates superior, or comparable, MER
performance to state-of-the-art (SOTA) methods on the composite dataset benchmark
and single dataset evaluation.

The rest of this paper is organized as follows. Section 2 introduces related work
on MER. Section 3 presents the details of our proposed algorithm. Section 4 reports the
experimental results on the composite dataset benchmark and single dataset evaluation,
as well as ablation studies and visual analysis of our proposed modules. Finally, Section 5
discusses the conclusions and future research directions.

2. Related Work
2.1. Micro-Expression Recognition

MER is a challenging task that involves recognizing and interpreting subtle facial
movements that convey emotions. Generally, these methods could be roughly categorized
into hand-crafted methods and deep learning methods.

2.1.1. Hand-Crafted Methods

Hand-crafted methods capture the distinctive features of MEs by manually designing
visual descriptors, which are then fed into a classifier for emotion recognition. Local binary
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pattern from three orthogonal planes (LBP-TOP) [13] combines the temporal and spatial
properties of the three orthogonal planes and is broadly deployed in ME analysis. Due to
its low computational complexity, many improved methods based on LBP-TOP have been
proposed. Liong et al. [14] extracted LBP-TOP based on facial regions of interest (ROIs),
which further improved the performance of LBP-TOP. Huang et al. successively proposed
Spatiotemporal local quantized pattern (STCLQP) [15] and discriminative spatiotemporal
LBP, with revisited integral projection (DiSTLBP-RIP) [16], revealing discriminative infor-
mation about MEs. Furthermore, using optical flow algorithms to extract motion features
for MER has also made adequate progress. Liu et al. [17] proposed using the Main direction
mean optical flow (MDMO) to reduce the dimensionality of features. Liong et al. [18]
proposed the Bi-weighted oriented optical flow (Bi-WOOF), which applies two schemes to
locally and globally weight the Histogram of oriented optical flow (HOOF) [26] descriptors.
Bi-WOOF improves the efficiency of MER by representing the motion changes of the whole
ME clip using only the disparities of the onset and apex frames. However, hand-crafted
feature extraction methods rely on specialized knowledge and complex parameter-tuning
processes. In addition, these methods have inferior robustness and find it difficult to adapt
to the impact of data change.

2.1.2. Deep Learning Methods

Deep learning-based methods use neural networks to learn and extract features from
the data automatically. In recent decades, deep neural networks have achieved prominent
results in computer vision and have greatly inspired the exploration of deep learning for
MER. The milestone work based on deep learning for MER was [27], which employed
CNN networks and transfer learning methods for MER. However, due to the small sample
size, end-to-end methods have difficulty extracting salient features directly and their per-
formance did not surpass some hand-crafted methods. However, by using deep learning
techniques to further mine hand-crafted features, such as using optical flow as the input
of deep network for feature learning [21–23,28–31], the performance of MER further im-
proved. Gan et al. [29] proposed OFF-apexNet, which extracts optical flow features from
each video’s onset and apex frames and then feeds the horizontal and vertical compo-
nents of optical flows into a dual-stream CNN. Based on OFF-apexNet, Liong et al. [19]
proposed the Shallow triple stream three-dimensional CNN (STSTNet). Besides the hori-
zontal and vertical optical flows, STSTNet also extracted a hand-crafted feature, i.e., optical
strain, achieving the SOTA performance for the composite dataset evaluation benchmark.
Zhou et al. [20] designed the Dual-inception Network using horizontal and vertical optical
flow features extracted from the onset and apex frames. In FR [32], Zhou et al. fused
expression-shared and expression-specific features for MER, further improving perfor-
mance. In addition, Xia et al. [22,31] modeled the spatio-temporal variation of ME using
recurrent convolutional networks (RCNs).

These methods have achieved SOTA performance on MER tasks. In particular, meth-
ods based on ROIs improve the performance by selecting the local regions related to
ME [33]. However, the small sample size and subtle characteristics of ME samples limit the
combination of deep learning and MER. Hence, learning ME features effectively is critical
to further improving the performance of MER.

2.2. Attention Mechanism in Computer Vision

The attention mechanism plays an essential role in human perception analysis [34,35].
It is based on the principle of assigning higher weights to salient regions in an image
and suppressing the useless features. In computer vision, attention mechanisms have gained
significant attention because of the ability to effectively focus on the representations of ROIs in
images or videos. Recently, these methods have been applied to various visual tasks, such as im-
age classification, object detection and facial expression analysis [36–38]. Rodriguez et al. [39]
fused spatial attention maps with multi-scale information from diverse convolutional lay-
ers to represent the importance of each region in the image. Wang et al. [40] proposed a
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Residual attention network (RAN) with stacked attention modules to produce attention-
aware features. By refining the feature map, RAN achieves prominent performance, while
being robust to noisy inputs. Hu et al. [41] proposed the Squeeze-and-Excitation network,
using global average pooling features to compute inter-channel attention. Based on this,
CBAM [42] exploited both spatial and channel attention modules, further improving the
performance of image classification and object detection. CBAM demonstrates that exploit-
ing both spatial and channel attention is superior to using only the channel counterpart.

Furthermore, for MER, attention mechanisms direct the model to focus on critical facial
regions and suppress irrelevant facial regions and backgrounds. ME-PLAN [38] combines
a 3D residual prototype network and a local attention module to learn a precise prototype
of ME features while focusing on local facial movements. Su et al. [43] accentuated the
key facial components most relevant to MEs to enhance spatial encoding and capture
motive information and non-rigid deformation more effectively. In MMNet [44], Li et al.
introduced a Continuous Attention module and a Position Calibration module based on
the vision transformer [45], allowing for efficient capture of ME features by focusing on
local, subtle muscle movements. Recent methods have also focused on incorporating
spatio-temporal and channel information to represent MEs better [46–48]. Wang et al. [48]
proposed a dual-stream spatio-temporal attention network (DSTAN) that captures MEs’
appearance features and discriminative motion areas. Moreover, DSTAN utilizes a temporal
attention mechanism to model the importance of ME clips in a temporal sequence, further
boosting the performance of MER. The attention mechanism-based approach described
above showed promising results on visual tasks by adaptively enforcing the model to
weight different features for the input.

Our attention module draws on the design structure of CBAM, focusing on salient
features of facial regions from both channel and spatial perspectives. With this simple and
effective design, we improve the network’s discriminative ability for different emotional
categories of ME features while avoiding overfitting.

3. Proposed Method
3.1. Framework Overview

Figure 1 illustrates the overview of our proposed Dual-ATME framework, which
consists of three modules: Data preprocessing, Dual-ATME module and Feature fusion
for classification module. The Dual-ATME utilizes a dual-branch Inception network as the
backbone. It employs Hand-crafted Attention Region Selection (HARS) and Automated
Attention Region Selection (AARS) to focus on facial discriminative features in manual and
automated manners, respectively.

In particular, during data preprocessing, for each original ME clip, we obtain the
optical flow features xi

entire for the full face and the puzzled counterpart xi
puzzled after HARS.

Next, in the Dual-ATME module, we feed xi
entire and xi

puzzled into the dual-branch backbone
network for independent feature learning. Then, we execute the contrastive loss Lcon
to pull the distance between HARS-based and AARS-based features from the same ME
samples closer, while pushing away the distance between different ME samples. Finally,
feature fusion for the ME classification module is performed for expression-refined feature
fusion and label prediction.
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(a) Data preprocessing (b) Dual-ATME module (c) Feature fusion for classification
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Figure 1. The overview of our proposed Dual-ATME.

3.2. Data Preprocessing

In this subsection, we introduce the processes of face cropping, HARS and optical
flow-based feature extraction.

3.2.1. Face Cropping

In the ME clip, the ME movement starts at the onset frame and reaches its highest
intensity at the apex frame. Studies have shown that by comparing these two frames,
ME features can be effectively extracted while avoiding redundant information [20,22,49].
Therefore, we only used the onset and apex frames to capture ME movement changes
and to simplify the process. In other words, a pair of onset and apex represented one ME
sample in our study.

For each pair of onset and apex frames, we first used the Dlib tool [50] to detect 68
facial landmarks for the onset frame, denoted as φ = {φj

i |i = 1, ..., N; j = 1, ..., 68}, where
N represents the total number of ME samples and the range of j represents the 68 facial
landmarks, as shown in Figure 2.

Then, based on Equation (1), we performed face alignment:

θ = atan2(dy, dx)× 180/π

= atan2(φ45
i (y)− φ36

i (y), φ45
i (x)− φ36

i (x))× 180/π
(1)

where atan2() is the azimuth calculation function, dy and dx denote the vertical and
horizontal offsets of the line between the two eyes, respectively. We then flipped the face
image in the opposite direction of θ and, then, re-performed the face key point detection.

Next, we determined the cropping face region based on the updated coordinates of the
facial landmarks. Specifically, for the left, right and bottom boundaries of the face region
in ith ME samples, we used the landmarks on the sides of the cheeks and the lower jaw,
that is, φ1

i , φ15
i and φ8

i . In addition, for the top boundary, we first calculated the average
distance between the left and right sides below the eyebrows and above the eyes, i.e.,

d = [(φ38
i (y)− φ20

i (y)) + (φ43
i (y)− φ23

i (y))]/2 (2)

Then, the top boundary was defined as φ19
i + d, conserving an expansion area above

the eyebrows. Finally, we cropped the face region based on these landmarks.
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Figure 2. Face cropping and HARS based on 68 detected facial landmarks. Specifically, the eyebrows
and the mouth regions were selected for further ME local feature learning.

3.2.2. Hand-Crafted Attention Region Selection (HARS)

The facial regions with the most muscle activity when MEs occur are the eyebrow and
mouth regions [31,51,52]. In other words, these regions contribute most of the discrimina-
tive ME information. Furthermore, we conducted a statistical analysis of facial action units
(AUs) on ME samples from the CASME II and SAMM datasets of MEGC2019. Based on the
AU annotations provided for each ME sample by CASME II and SAMM, we counted and
ranked the occurrences of AUs. As shown in Figure 3, it was observed that AUs with higher
frequencies were concentrated in the areas around the eyebrows and mouth. Therefore,
to reduce the influence of interference from irrelevant regions on MER, our proposed HARS
treats the eyebrow and mouth regions as ROIs for local feature extraction. In this way, we
can extract more semantic ME-related information.

First, based on the landmarks of the mouth and the eyebrows, we performed region
detection and cropping to obtain the boundary borders of each ROI (shown as red dotted
boxes in Figure 2). Specifically, for the left eyebrow of the i-th ME sample, we calculated
the distance between φ19

i and φ37
i as le_h and the distance between φ17

i and φ21
i as le_l.

Then, in order to capture a richer set of information around the left eyebrow, we expanded
1/4 · le_l to the left and right sides of the left eyebrow, while expanding 1/4 · le_h upwards
to the top of the left eyebrow. Additionally, to reduce interference from the eye area, we
set the lower boundary of the left eyebrow area to φ37

i (y)− 1/4 · le_h. We obtained the
boundary of the left eyebrow region through these steps, i.e.,

[φ19
i (y)− 1

4
· le_h : φ27

i (y)− 1
4
· le_h, φ17

i (x)− 1
4
· le_l : φ21

i (x) +
1
4
· le_l]

Symmetrically, the boundary of the right eyebrow region was

[φ24
i (y)− 1

4
· re_h : φ44

i (y)− 1
4
· re_h, φ22

i (x)− 1
4
· re_l : φ26

i (x) +
1
4
· re_l]

For the mouth area, we calculated the distance between the bottom of the nose (φ33
i )

and the top of the lips (φ51
i ) as m_h and the distance between the two corners of the mouth

(φ48
i and φ54

i ) as m_l. Given the four basic landmarks of the lip (φ48
i , φ51

i , φ54
i and φ57

i ),
we expanded 1/4 ·m_l horizontally and 1/2 ·m_h vertically. Finally, the boundary of the
mouth region was

[φ51
i (y)− 1

2
·m_h : φ57

i (y) +
1
2
·m_h, φ48

i (x)− 1
4
·m_l : φ54

i (x) +
1
4
·m_l]
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Figure 3. AU statistics for the ME sample of the MECG2019 dataset.

Second, after obtaining the boundary coordinates of the eyebrow and mouth regions,
we cropped three ROIs for each ME sample: the left eyebrow, right eyebrow and mouth
region. Finally, we concatenated the resized left and right eyebrows horizontally and then
vertically concatenated them with the mouth. The final puzzled counterpart of the ME
sample was formed, as shown in the middle part of Figure 1b.

It is worth noting that, as shown in Figure 1, HARS-based and AARS-based feature
extraction are parallel in our proposed network. That is, in addition to the ROI-based
puzzled counterpart obtained by HARS, we introduce full face-based AARS, described
in Section 3.3.2, thus, achieving MER under the similarity comparison of the two kinds
of features.

3.2.3. Optical Flow Extraction

As previously mentioned, the action information in ME is very subtle and it is difficult
to extract features of RGB ME samples for MER directly. Based on the theory of brightness
constancy [53], optical flow is an appropriate feature to represent action information. We
used the TV-L1 [54] algorithm to extract the optical flow features.

Specifically, we estimated and extracted the optical flow information for each ME clip
between their onset and apex frames. Inspired by Liong et al. [19], we extracted horizontal
and vertical optical flows (u, v) and further added optical strain to form the final optical
flow image, which enriches the motion variations of MEs. Specifically, optical strain, as a
derivative of optical flow, is capable of approximating the intensity of facial deformation
and is less affected by factors such as lighting conditions and skin color. It can be defined
as:

ε =
1
2
[∇O f + (∇O f )

T ] (3)

where O f = [u, v]T denotes the optical flow vector, including horizontal and vertical
components and ∇ denotes the derivative of O f .

In sum, the final constructed optical flow feature in our study was (u, v, ε) ∈ R3×w×h.
For the whole face, we estimated the optical flow feature xentire between the onset and apex
frames (Ie

onset, Ie
apex ) using the TV-L1 algorithm as follows:

xentire = (ue, ve, εe) = TV-L1(Ie
onset, Ie

apex) (4)

Similarly, for HARS-based puzzled counterparts of onset and apex frames (Ip
onset,

Ip
apex), the optical flow feature xpuzzled was obtained as:

xpuzzled = (up, vp, εp) = TV-L1(Ip
onset, Ip

apex) (5)
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3.3. Dual-ATME Module

The Dual-ATME consists of two components: the Dual-branch Inception feature
extraction module and the ME feature similarity estimation module. The Dual-branch
Inception feature extraction module extracts multi-scale features from the ME sample (full
face) and its puzzled counterpart. In particular, we apply AARS on full face-based sub-
network to learn ME features effectively. Subsequently, the ME feature similarity estimation
module estimates the similarity between extracted features and constrains the similarity of
the same group of features to be as high as possible.

3.3.1. Backbone: Dual-Branch Inception Feature Extraction Module

Differences in emotion types and individual expressions for ME can lead to diverse
distribution of ME movements on the face. Hence, it is challenging to adapt fixed-size
convolution kernels in traditional CNNs to each ME sample. Larger kernels are more
suitable for extracting global information, while smaller kernels perform better in extracting
local information. To learn both local and global ME features, we used the Dual-branch
Inception module as the backbone to extract multi-scale features of MEs based on optical
flow input.

As shown in Figure 4, each branch of our Dual-branch Inception module consists of a
bi-Inception module, composed of two Inception blocks [55]. An Inception block combines
feature maps of different sizes and receptive fields, enabling the network to capture richer
information. Specifically, the single Inception block uses three different sizes of convolution
kernels, namely 1× 1, 3× 3 and 5× 5, to obtain feature maps of various sizes. Additionally,
1× 1 convolution layers are inserted between the 3× 3 and 5× 5 convolution layers to
reduce the number of channels in the feature map, thus reducing the computational cost.
In our Dual-branch Inception module, the filters for the first and second layers were set to
6 and 12, respectively. Furthermore, we used max-pooling to aggregate the information
from the feature maps after each Inception block in each layer. Therefore, in our constructed
bi-Inception module, the dimension of the output from the first and the second Inception
blocks were 24× 14× 14 and 48× 7× 7, respectively.

Following the suggestion in [19], the inputs of the two bi-Inception blocks are optical
flow features, including xi

entire ∈ R3×28×28 and its corresponding puzzled counterpart
xi

puzzled ∈ R3×28×28, respectively. In particular, as presented in the Dual-ATME module in
Figure 1,

• xi
entire enters the upper branch, where the bi-Inception network automatically extracts

discriminative facial features with the help of the AARS module (See Section 3.3.2).
• xi

puzzled enters the lower branch. As mentioned before, the puzzled counterparts are
manually obtained with good discriminability through HARS. Moreover, experiments
also demonstrated that adding an attention block to this branch did not significantly
improve performance (See Table 1). Thus, we did not implement an Attention block in
the lower branch to reduce the model parameters.

1×1 Conv

3×3 Conv1×1 Conv

5×5 Conv1×1 Conv

1×1 Conv
3×3 

Max Pool

1×1 Conv

3×3 Conv1×1 Conv

5×5 Conv1×1 Conv

1×1 Conv
3×3 

Max Pool

3×28×28

Input 

feature

2×2

Max Pool

2×2

Max Pool

Output 

feature

24×28×28 24×14×14 48×14×14 48×7×7

Figure 4. Bi-Inception block in our Dual-ATME.
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Table 1. Ablation studies for the proposed modules of our method on the MEGC2019-CD dataset,
including HARS and AARS and their combined version, i.e., our Dual-ATME. Note that w/ is an
abbreviation for with and A. is an abbreviation for Attention. The best results are highlighted in bold.

Module MEGC2019-CD CASME II SMIC SAMM
HARS HARS (w/ A.) AARS UAR UF1 UAR UF1 UAR F1 UAR UF1
X × × 0.645 0.648 0.776 0.785 0.565 0.563 0.572 0.576
× × X 0.633 0.632 0.768 0.796 0.533 0.535 0.503 0.516
× X X 0.662 0.662 0.777 0.784 0.619 0.614 0.515 0.527
X × X 0.680 0.679 0.751 0.765 0.658 0.646 0.538 0.562

The core of the Dual-branch Inception module extracts different feature maps by using
two deep convolutional layers simultaneously, improving the robustness and classification
performance of the model. For the two feature maps extracted by the Dual-branch Inception
module, on the one hand, we conducted ME feature comparison learning (described in
Section 3.3.3) to pull the ME sample and its puzzled counterpart closer. On the other hand,
the two feature maps were cascaded after the Dual-branch Inception module by channel
dimension and then sent to the classification module (described in Section 3.4).

3.3.2. Automated Attention Region Selection (AARS)

As introduced in Section 3.2.2, we propose two Attention Region Selection modules,
i.e., HARS and AARS. Contrary to manual ROI selection in HARS, AARS exploits the
attention mechanism to automatically focus on the crucial features of the original facial
region from the channel and spatial dimensions, respectively and assigns higher weights to
these features.

Precisely, we deployed the Convolutional Block Attention Module (CBAM) [42] atten-
tion mechanism module. CBAM was chosen because it includes not only channel attention
but also spatial attention to further enhance valuable features in the feature map and
suppresses unnecessary features.

The architecture of CBAM in our study is illustrated in Figure 5. The output of the
bi-Inception Module Ve_t = Inc(xentire) ∈ R48×7×7 is given as the input to CBAM. We
fed Ve_t through the Channel Attention Module (CAM) and the Spatial Attention Module
(SAM) in sequence, to obtain the refined features Ve = M(Ve_t).

×× ××

Input feature Output featureConvolutional Block Attention Module (CBAM)

++

Channel Attention Module (CAM)

MaxPool

AugPool
MLP

Channel Att.

(MC)

Spatial Attention Module (SAM)

MaxPool,
AugPool

Spatial Att.

(MS)

Figure 5. The overview of CBAM. The module has two sub-modules: Channel Attention Module
(CAM) and Spatial Attention Module (SAM).

In detail, CAM outputs the channel attention map using the max-pooling and average-
pooling in a weight-shared network, as well as the output of a Multi-layer Perceptron
(MLP). SAM pools the output of CAM along the channel axis and passes it through a
convolutional layer to obtain the spatial attention map. The CAM and SAM are as follows:

• CAM. As shown in the left of Figure 5, we first extracted the spatial context information
from Ve_t by passing through the max-pooling and the average-pooling layers. Then,
the features were fed into a weight-shared MLP with two hidden layers. Finally,
the two features output from the MLP were summed element-wise and the result
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activated by sigmoid to obtain the channel attention features Mc. The channel attention
weight function Mc(·) can be represented as:

Mc(Ve_t) = σ(MLP(Max(Ve_t)) + MLP(Avg(Ve_t))) (6)

where σ denotes the sigmoid function and Max(·) and Avg(·) denote max-pooling
and average-pooling, respectively.

• SAM. Subsequently, as shown in the right of Figure 5, the input feature for SAM was
Ve_tc = Mc(Ve_t) · Ve_t. Then, we applied max-pooling and average-pooling to Ve_tc
along the channel dimension. Next, we concatenated the generated feature maps
along the channel dimension and applied convolutional and sigmoid operations to
obtain the final spatial attention feature map Ms. The spatial attention weight function
Ms(·) can be represented as:

Ms(Ve_tc) = σ([Max(Ve_tc); Avg(Ve_tc)]) (7)

where [·; ·] denotes stacking two feature maps along channel dimension.

Finally, the final output feature (Ve) of the CBAM module (M(·)) can be expressed as:

Ve = M(Ve_t)

= Ms(Ve_tc) · (Mc(Ve_t) ·Ve_t)

= Ms(Mc(Ve_t) ·Ve_t) · (Mc(Ve_t) ·Ve_t)

(8)

3.3.3. ME Feature Similarity Estimation

Cosine similarity [56] can be used to measure the similarity or dissimilarity between
two embedding vectors and is commonly used in fields such as machine learning, natural
language processing and computer vision. In our study, we wanted to measure the simi-
larity between the ME feature maps of the full face and its puzzled counterpart. Hence,
we used L2 normalized cosine similarity for the comparison. First, we normalized the
two feature maps from −1 to 1. Then, the L2 normalized cosine similarity sim(·, ·) was
calculated as follows:

sim(Ve, Vp) =
Ve ·Vp

‖Ve‖ ·
∥∥Vp

∥∥ (9)

where Ve = M(Ve_t) = M(Inc(xentire)) and Vp = Inc(xpuzzled). The value of sim(Ve, Vp)
varies from -1 to 1, where 1 indicates a perfect match and−1 indicates a complete mismatch.
If the value is 0, it suggests that the two vectors are orthogonal (perpendicular) to each
other and have no correlation. Therefore, to evaluate the difference between two features,
we set the contrastive loss as:

Lcon = 1− sim(Ve, Vp) (10)

This way, different versions of the same ME sample (full-face and puzzled) were
matched in the high-level representation space to achieve instance-level approximation.

3.4. Feature Fusion for ME Classification

In the feature fusion stage, two 48× 7× 7 dimensional features Ve and Vp from the
dual-ATME module are concatenated along the channel dimension to get a 96× 7× 7
feature. Next, we flatten the feature into a one-dimensional vector and feed it into the final
classification module, which consists of two fully-connected layers. To prevent overfitting,
we include a Dropout layer with a probability of 0.5 after the first fully-connected layer.
The output of the last fully-connected layer is passed through a softmax activation to obtain
the ME category predictions.
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3.5. Joint Loss Function

In the proposed Dual-ATME, the ME feature similarity estimation (contrastive module)
and the classification module are jointly trained. Thus, the joint loss function of the entire
network is represented as follows:

L = Lcls + λLcon (11)

where Lcls and Lcon denote the classification loss and contrastive loss, respectively. λ
represents the regularization parameter, which determines the weight of Lcon in the overall
loss. Following the setting in [22], we perform the Focal loss [57] as the classification
loss. Focal loss could effectively reduce the loss weight for well-classified examples and
focus on complex examples with higher losses, improving the recognition performance on
unbalanced datasets. By optimizing the joint loss, Dual-ATME can extract discriminative
features for MER.

4. Experiments

In this section, we first describe our experimental configuration, which includes
datasets, validation protocols and experimental settings. Next, we compare Dual-ATME
with SOTA MER methods. We also conducted adequate ablation studies to demonstrate
the effectiveness of each module in our framework. Finally, we provide an attention
visualization analysis of Our Dual-ATME.

4.1. Datasets and Validation Protocols
4.1.1. Datasets

MEGC2019-CD. A 3DB-combined dataset called MEGC2019-CD was proposed by
Micro-Expression Grand Challenge (MEGC2019) for Composite Dataset Evaluation (CDE).
It is a composite of three spontaneous datasets: SMIC, CASME II and SAMM, with three
emotion categories: Negative (containing Repression, Anger, Contempt, Disgust, Fear
and Sadness), Positive (i.e., Happiness) and Surprise). The detailed information of these
three datasets is described as follows and shown in Table 2.

SMIC. The Spontaneous Micro-Expression Corpus (SMIC) consists of three different
portions captured by different types of cameras: a conventional visual camera (VIS), a near-
infrared camera (NIR) and a high-speed camera (HS). We only used the HS subset of SMIC,
captured by a high-speed camera and consistent with CASME II and SAMM. The SMIC-HS
subset contains 164 video clips from 16 subjects, recorded using a 100 fps high-speed
camera with a resolution of 640 × 480. All MEs in SMIC are divided into three categories:
Negative (70), Positive (51) and Surprise (43).

CASME II. The Chinese Academy of Sciences Micro-Expression II (CASME II) dataset
contains 255 ME samples from 26 participants, captured using a 200 fps high-speed camera.
The raw resolution of each frame is 640 × 480 and the facial region is 280× 340 pixels.
The CASME II dataset is divided into seven categories: Disgust (63), Fear (2), Happiness
(32), Repression (27), Sadness (7), Surprise (25) and Others (99). In MEGC2019-CD, it is
re-classified into three classes: Negative (88, including Disgust and Repression), Positive
(32) and Surprise (25).

SAMM. The Spontaneous Actions and Micro-Movement (SAMM) dataset consists
of 159 ME clips from 29 participants, captured using a high-speed camera at 200 fps.
The original resolution for each ME frame in SAMM is 2040× 1088 and the facial area is
approximately 400× 400 pixels. This dataset includes eight raw emotion classes: Anger (57),
Contempt (12), Disgust (9), Fear (8), Happiness (26), Sadness (6), Surprise (15) and Others
(26). In MEGC2019-CD, it is re-grouped into three categories: Negative (92, including
Anger, Contempt, Disgust, Fear and Sadness), Positive (26) and Surprise (15).
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Table 2. The emotion categories of MEGC2019-CD.

Datasets Negative Positive Surprise Total

SMIC [5] 70 51 43 164
CASME II [6] 88 32 25 145

SAMM [7] 92 26 15 133
MEGC19-CD (In total) [10] 250 109 83 442

4.1.2. Validation Protocols

Validation Protocol: Leave-one-subject-out (LOSO) cross-validation is a type of cross-
validation where each subject in a dataset is used as the test set once, while the remaining
subjects are used as the training set. This method is useful when the subjects in the datasets
may have inherent differences. Considering the small sample size in MEGC2019-CD and
the significant variation in subjects, we used the LOSO cross-validation method to evaluate
the model’s performance.

Evaluation Metrics: To evaluate the performance of different methods on the CDE
benchmark, we used three metrics: accuracy (Acc), unweighted average recall (UAR)
and unweighted F1-score (UF1). These metrics were used to measure the performance on
both the composite and individual datasets. The Acc, UAR and UF1 are defined as follows:

Acc =
TPc

Ntotal
(12)

UAR =
1
C

C

∑
i=1

TPc

Nc
(13)

UF1 =
1
C

C

∑
i=1

2× TPc

2× TPc + FPc + FNc
(14)

where C is the number of classes, Nc is the number of samples with the c-th class, Ntotal
is the total samples and TPc, FPc and FNc are the number of true positive, false positive
and false negative samples in the c-th class, respectively.

4.2. Experimental Setting

For each dataset, we used the Dlib [50] tool to detect 68 facial landmarks and used
these landmarks to crop the facial regions. During training, the facial images were resized
to 28× 28 to serve as the input to the network, with random horizontal flipping applied for
data augmentation. During testing, the input images were only resized to 28× 28 and then
fed into the trained model. Our Dual-ATME method was implemented using the Pytorch
toolbox, with the backbone network being bi-Inception blocks [55].

The number of training epochs in our Dual-ATME framework was set as 60. The Adam
optimizer was employed, with β1 and β2 set to 0.5 and 0.999, respectively. The initial learn-
ing rate was 0.001 and a cosine learning rate schedule was applied. For each training itera-
tion, 128 ME samples were used in a mini-batch. All experiments were conducted on a sin-
gle NVIDIA-RTX-4090 GPU. Our code is available at https://github.com/HaoliangZhou/
Dual-ATME (accessible since 27 February 2023).

4.3. Experimental Results

We compared our proposed method with hand-crafted feature extraction methods
and classical deep learning methods on the widely used ME datasets SMIC-HS, CASME II
and SAMM. We also performed CDE on their combined dataset MEGC2019-CD.

In terms of the choice of comparison methods, among the hand-crafted feature-based
methods, we compared our proposed method with LBP-TOP [13] and Bi-WOOF [18].
Among the deep learning methods, we chose the SOTA methods from the MEGC2019
and MER projects with open source code, including STSTNet [19], Dual-Inception [20],

https://github.com/HaoliangZhou/Dual-ATME
https://github.com/HaoliangZhou/Dual-ATME
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RCN(_a,_w,_c and _f) [22], KFC-MER [43] and MMNet [44]. Given the transient and subtle
nature of ME samples, preprocessing operations on the images can significantly affect the
results. To ensure comparability and fairness, we reproduced all these methods using
the same inputs and data configuration, including the same number of samples, classes
and cross-validation protocol. In addition, we used full-face images as the model input
when implementing these methods.

Table 3 provides a comprehensive experimental results overview of all methods on the
MEGC2019-CDE dataset. Among the hand-crafted MER methods, the best algorithm was
LBP-TOP, which had a UAR and UF1 of 0.5753 and 0.5857, respectively. The RCN_a method
achieved the highest UAR and UF1 performance of 0.6351 and 0.6339 among the deep
learning methods. Besides these methods, our proposed Dual-ATME, combining HARS
and AARS, achieved the best performance on the MEGC2019-CD dataset. In addition, it
performed the best on all datasets, except CASME II (n.b. shown in bold) and was second
best on CASME II, slightly behind RCN_a. In most cases, our method outperformed its
competitors significantly, with a UAR and UF1 that were 4.42% and 4.49% higher than the
second-best method (RCN_a), respectively.

Table 3. Performance comparisons among different methods on the MEGC2019-CD dataset. The best
results are highlighted in bold. All the results of the SOTA methods were obtained by reproducing
the experiments.

Methods MEGC2019-CD CASME II SMIC SAMM
Acc UAR UF1 Acc UAR UF1 Acc UAR UF1 Acc UAR UF1

LBP-TOP [13] 0.643 0.575 0.586 0.786 0.716 0.723 0.555 0.535 0.544 0.594 0.434 0.436
Bi-WOOF [18] 0.661 0.593 0.604 0.773 0.698 0.713 0.592 0.574 0.580 0.624 0.439 0.443
ResNet18 [58] 0.643 0.575 0.586 0.786 0.716 0.723 0.555 0.535 0.544 0.594 0.434 0.436
STSTNet [19] 0.688 0.610 0.624 0.821 0.745 0.769 0.543 0.529 0.532 0.712 0.505 0.531
Dual-Incep [20] 0.680 0.631 0.629 0.814 0.754 0.774 0.575 0.571 0.571 0.649 0.493 0.496
RCN_a [22] 0.681 0.635 0.634 0.834 0.804 0.806 0.567 0.558 0.556 0.654 0.500 0.502
RCN_w [22] 0.661 0.590 0.600 0.758 0.681 0.706 0.567 0.552 0.554 0.669 0.479 0.489
RCN_c [22] 0.681 0.598 0.616 0.779 0.708 0.737 0.573 0.553 0.558 0.706 0.479 0.503
RCN_f [22] 0.667 0.595 0.607 0.772 0.698 0.727 0.561 0.545 0.547 0.684 0.487 0.499
KFC-MER [43] 0.313 0.235 0.255 0.276 0.220 0.229 0.345 0.251 0.283 0.316 0.246 0.240
MMNet [44] 0.601 0.514 0.528 0.766 0.699 0.719 0.457 0.438 0.441 0.594 0.342 0.326
Dual-ATME 0.720 0.680 0.679 0.817 0.751 0.765 0.646 0.658 0.646 0.714 0.538 0.562

In addition, Figure 6 shows the confusion matrix of our Dual-ATME on CASME II,
SAMM, SMIC and the MEGC2019-CD datasets. On the MEGC2019-CD datasets, Dual-
ATME obtained accuracies of 0.80, 0.57 and 0.65 for “Negative”, “Positive” and “Surprise”,
respectively. In addition, by comparing the three single datasets, we found that Dual-
ATME achieved the highest performance in CASME II, i.e., obtaining 0.93, 0.62 and 0.72
for “Negative”, “Positive” and “Surprise”, respectively. However, in SAMM, Dual-ATME
showed the lowest accuracy values in recognizing positive and surprise emotion categories.
The reason was that the SAMM dataset had fewer samples than the other two datasets.
Moreover, SAMM contains 13 ethnic groups. The rich diversity of subjects, i.e., differences
in subjects, can affect the experimental results of LOSO-cross-validation.

From the perspective of different emotional categories, the ME recognition perfor-
mance on specific emotion type would be empirically improved with more sample data.
This is because the deep learning-based model is data-driven, meaning that representa-
tional features need to be learned from as much data as possible. As shown in Figure 6,
the number of “Negative” samples outnumbered the “Positive” and “Surprise” in each
dataset. Thus, the model consistently achieved the highest recognition performance in the
“Negative” category compared to the other two categories.



Entropy 2023, 25, 460 14 of 19

Figure 6. Confusion matrices for MER with Dual-ATME on CASME II, SAMM, SMIC and the
MEGC2019-CD datasets.

4.4. Ablation Study

To demonstrate the effectiveness of our method, we conducted ablation studies to
assess the contribution of the proposed modules and components to the final performance.
For all experiments, we evaluated the performance using the MEGC2019-CD dataset.

4.4.1. Effectiveness of the Proposed Modules

To evaluate the performance of the crucial modules in Dual-ATME, we conducted
ablation studies for HARS and AARS on the MEGC2019-CD dataset. As reported in
Table 1, standalone HARS and AARS only achieved sub-optimal performance. Moreover,
HARS obtained higher performance than AARS on MER, demonstrating that manual
feature extractionm based on prior experiencem plays an essential role in cases of limited
data size. The reason is that with limited data, neural networks may not have enough
samples to learn complex representations from raw data. In contrast, hand-crafted features,
based on prior experience, are more likely to capture the salient information for emotion
category identification.

As shown in Figure 7, the Grad-CAM-based [59] feature visualization also proved
the above conclusion. Specifically, AU12 represents the upturned corners of the mouth
and it was found that the network focused better on the mouth region in the puzzled
counterpart. Additionally, the combination of HARS and AARS could achieve collaborative
enhancement. As shown in the first row of Figure 7, for this ME sample, AARS only focused
on the left corner of the mouth in the full-face image (column (b)). However, the Puzzled
image of HARS, based on prior knowledge, was less disturbed, so it not only focused on
the left corner of the mouth, but also on the right corner (column (d)). Thus, better MER
performance was achieved by fusing the features of HARS and AARS in parallel.
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Figure 7. Optical flow (x) and Attention map (V) visualization in our Dual-ATME of the whole face
and puzzled conterpart in CASME II, SAMM, SMIC datasets. (Emotion type: Positive, AU12)

Overall, Dual-ATME combines HARS and AARS and achieved the best results among
all variations. HARS-based features are designed to capture concrete, human-understandable
concepts, while AARS-based features automatically capture more abstract and data-driven
concepts. Combining these two types of features can achieve collaborative enhancement
and improve overall performance.

4.4.2. Different Combinations of Face Regions

To validate the effectiveness of the HARS selection strategy based on the eyebrows and
mouth regions, we conducted experiments on different combinations of facially discrete
areas, including eyebrows, cheeks, nose and mouth. Specifically, we designed the following
four combinations: (a) eyebrows + nose, (b) eyebrows + mouth, (c) cheeks + nose, (d) cheeks
+ mouth and (e) full-face. Thus, the inputs of our Dual-ATME framework were full-face.

As shown in Table 4, the combination of eyebrows and mouth achieved the best
performance on MEGC2019CD, SMIC and SAMM datasets, indicating that variations in
the eyebrows and mouth regions are more prominent when ME occurs. This result was
further supported by the statistical results based on psychological AU annotation shown in
Figire 3, which demonstrated the reasonableness and effectiveness of our HARS selection
strategy focusing on the eyebrows and mouth regions.

Table 4. Ablation studies for the different combinations of face areas on the MEGC2019-CD dataset.
Here, E., F., M., N. are the abbreviations for Eyebrows, Cheeks, Mouth and Nose, respectively. E.&N.
is an abbreviation for the combination of Eyebrows and Nose. The best results are highlighted in
bold.

Combinations MEGC2019-CD CASME II SMIC SAMM
UAR UF1 UAR UF1 UAR UF1 UAR UF1

E.&N. 0.630 0.631 0.774 0.781 0.557 0.549 0.487 0.503
E.&M. 0.680 0.679 0.751 0.765 0.658 0.646 0.538 0.562
F.&N. 0.624 0.631 0.767 0.772 0.527 0.530 0.557 0.566
F.&M. 0.622 0.629 0.760 0.766 0.542 0.545 0.526 0.541

Full-face 0.663 0.670 0.810 0.828 0.591 0.591 0.543 0.553
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4.4.3. Different Values of Weight Coefficient λ

To evaluate the recognition performance of the proposed method, we varied the value
of λ in Equation (11), as listed in Table 5. A larger value of λ meant that the contrastive loss
(Lcon) played a more significant proportion of the overall loss and vice versa. Since ME
classification is the main task of our model, the classification loss should have the highest
weight factor. At the same time, the contrastive loss has an auxiliary role, serving to close
the distance between two features in the same group, so we chose a smaller value of λ.
In this way, we could balance the effects of both losses and obtain the optimal contrastive
performance without sacrificing the classification performance. Specifically, we fixed the
weight coefficient of the classification loss to 1 and ranged λ from 0 to 0.1.

The results in Table 5 show that the highest performance was achieved when λ was
set to 0.01. It performed the best in all datasets, except for CASME II and SAMM, which
still achieved suboptimal competitive performance. This was because if the value of
λ is too large, the contrastive loss affects the joint loss function too much, degrading
the classification performance. Conversely, a miserly value of λ causes the effect of the
contrastive loss to be insignificant, resulting in ineffectiveness in closing the distance
between two features.

Table 5. Ablation studies for the different values of λ (represent the balance factor for contrastive loss
Lcon) on the MEGC2019-CD dataset. The best results are highlighted in bold.

λ
MEGC2019-CD CASME II SMIC SAMM
UAR UF1 UAR UF1 UAR UF1 UAR UF1

0 0.647 0.646 0.749 0.758 0.602 0.601 0.522 0.518
0.0001 0.668 0.666 0.741 0.755 0.637 0.628 0.546 0.559
0.001 0.668 0.668 0.745 0.762 0.635 0.623 0.531 0.547
0.01 0.680 0.679 0.751 0.765 0.658 0.646 0.538 0.562
0.1 0.649 0.651 0.788 0.794 0.596 0.594 0.498 0.503

4.4.4. Different Loss Functions and Optimizers

We also evaluated the performance of different classification loss functions and opti-
mizers. Concretely, we compared the performance of standard CE loss, weighted CE loss
and Focal loss, respectively. When deciding the weights of weighted CE loss, we calcu-
lated the weights of Negative, Positive and Surprise emotions as 0.2857, 0.1329 and 0.1695,
respectively, based on the sample sizes of the three types of MEs in the MEGC2019-CD
dataset. We also investigated the improvement of model accuracy by different optimizers,
i.e., SGD and Adam.

Table 6 shows the results for Acc, UAR and UF1 using various classification loss
functions and optimizers. Focal loss achieved the best performance in MEGC2019-CD,
SMIC and SAMM datasets and the competitive sub-optimal performance in the CASME
II dataset. It automatically focuses on the categories with the fewest samples and gives
these features a higher weight. Meantime, the standard cross-entropy loss achieved the
best performance on the CASME II dataset. In our experiments, the Adam optimizer was
used by default because it performs better than SDG.

Table 6. Ablation studies for the different loss functions and optimizers on the MEGC2019-CD dataset.
Note that w-CE denotes the weighted Cross-Entropy loss. The best results are highlighted in bold.

Loss Optimizer MEGC2019-CD CASME II SMIC SAMM
UAR UF1 UAR UF1 UAR UF1 UAR UF1

CE SGD 0.644 0.642 0.765 0.783 0.591 0.581 0.504 0.516
CE Adam 0.673 0.671 0.748 0.768 0.643 0.634 0.514 0.527

w-CE Adam 0.668 0.666 0.751 0.769 0.643 0.634 0.520 0.533
Focal Adam 0.680 0.679 0.751 0.765 0.658 0.646 0.538 0.562
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5. Conclusions and Perspective

In this paper, we proposed a Dual-branch Attention Network (Dual-ATME) for MER,
which consists of three stages: Data preprocessing, Dual-ATME module and Feature
fusion for ME classification. In particular, in our Dual-ATME framework, HARS and
AARS were combined to extract identity features. Priori experience-based HARS captures
noteworthy information about human-understandable concepts. Meantime, Attention
mechanism-based AARS automatically captures the complex abstract hidden information
within the data. Finally, the above two components were combined to achieve collaborative
enhancement and extract discriminative features for MER effectively. The recognition
performance of the model was further improved by adding contrast loss in our joint loss to
close the two types of features of the same ME sample. Experimental results showed the
superiority of our proposed method for performing MER.

In the future, we will further explore automated ROI selection based on large-scale
datasets that may help improve MER performance. Specifically, the selection of ROIs is
optimized by drawing on the hotspot regions of the attention mechanism. Moreover, we
will focus more on spatio-temporal dynamic information to further learn the dynamic
representational features of MEs by using the temporal attention mechanism.
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