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Abstract: Accurate acquisition of vehicle dynamics state information is essential for vehicle active
safety control systems. However, these states cannot be easily measured, and the measurement
is expensive. Conventional Kalman filters perform well for vehicle state estimation in Gaussian
environments but exhibit low accuracy and robustness under practical non-Gaussian noise. Vehicle
model parameter ingestion, inaccurate tire force calculation, and non-Gaussian noise from on-board
sensors cause great challenges to the estimation of vehicle driving states. Therefore, this paper
presents a robust hierarchical estimation scheme for vehicle driving state based on the maximum
correntropy square-root cubature Kalman filter (MCSCKF) using easily measurable on-board sensor
information. First, the vehicle mass is dynamically updated based on the recursive least squares
(FRLS) method with a forgetting factor. Then, an adaptive sliding mode observer (ASMO) is designed
to estimate the longitudinal and lateral tire forces. Ultimately, the vehicle states are estimated based
on the MCSCKF under non-Gaussian noise. Two typical operating situations are carried out to verify
the validity of the proposed estimation scheme. The results prove that the proposed estimation
scheme can estimate the vehicle’s driving state accurately compared to other common methods. And
the MCSCKF algorithm has better accuracy and robustness than the traditional Kalman filters for
vehicle state estimation in non-Gaussian situations.

Keywords: vehicle state estimation; tire force estimation; maximum correntropy square-root cubature
Kalman filter; non-Gaussian noise

1. Introduction

Recently, the rapid development of the automotive industry has been of increasing
interest. Vehicle active safety control systems such as the anti-lock braking system (ABS),
electronic stability program (ESP), and electronic stability control (ESC) are widely used
in commercial vehicles [1,2], which are essential for vehicle handling stability. The nor-
mal operation of the active safety system is based on the accurate acquisition of vehicle
dynamics, such as vehicle speed and sideslip angle. For vehicle stability control systems,
vehicle speed and sideslip angle are the key control targets that determine the vehicle
trajectory [3]. In addition, tires are the only component contacting the vehicle and the
ground, and the tire forces generated by them can dominate the vehicle’s motion. Therefore,
prior knowledge of vehicle speed, sideslip angle, and tire forces is critical for vehicle active
safety systems. However, the aforementioned vehicle dynamics states cannot be directly
measured in commercial vehicles, or the measurement equipment is costly [4]. Thus, the
use of easily available on-board sensor signals such as steering wheel angle, acceleration,
and yaw rate to estimate difficult-to-obtain vehicle driving states and tire forces has been
widely investigated by researchers [5].
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Different methods for obtaining tire forces have been extensively studied by schol-
ars [6]. Direct measurement of tire force requires special and expensive sensors, and its
application in commercial vehicles is limited due to cost factors [7]. Some physical or
empirical tire models are used to calculate tire forces in vehicle dynamics, e.g., the Dugoff
tire model, the magic formula tire model, the brush tire model, etc. [8–10]. However, the
calculation of tire forces requires knowledge of parameters related to tire characteristics,
such as tire longitudinal and lateral stiffness, and the acquisition of these parameters often
requires extensive prior testing and calibration. Utilizing available on-board sensors for
tire force estimation becomes a practical and effective method. Wilkin et al. proposed an ex-
tended Kalman filter (EKF) to estimate the lateral tire force based on a 3-degree-of-freedom
vehicle model, and the effectiveness of the proposed method was demonstrated experimen-
tally, but the estimation error is difficult to guarantee because the EKF has only first-order
accuracy [11]. Doumiati et al. estimated sideslip angle and tire lateral force based on a
four-wheeled vehicle model and compared two estimation methods, EKF and unscented
Kalman filter (UKF), and simulation tests proved that UKF has higher estimation accuracy
than EKF [12]. Jin et al. proposed an interactive multi-model UKF for the estimation of
lateral tire forces and sideslip angle. Simulation tests showed that this method can provide
more accurate vehicle state estimation than the single-model approach, but the algorithm is
more complex and difficult to apply to real vehicles [8]. Rezaeian et al. proposed a unified
estimation scheme to simultaneously obtain the vertical, longitudinal, and lateral tire forces
for each vehicle wheel [13]. A high-order sliding mode observer was designed by Rath et al.
to estimate tire friction for ground vehicles [14]. Moreover, a neural network approach has
also been applied to the estimation of tire forces [15]. Although various tire force estimation
methods have been discussed, the improvement of estimation accuracy and robustness
needs to be further investigated.

Vehicle driving state estimation techniques have also been widely studied, and dif-
ferent state estimators have been designed in the past few years. Common vehicle state
estimation methods include fuzzy observers, sliding mode observers (SMO), nonlinear
observers, and the Kalman filter [16]. Among them, the Kalman filter and its improved ver-
sion have a wide range of applications in vehicle state estimation. A variable-structure EKF
algorithm was proposed by Li et al. This method uses the change rate of the sideslip angle
to design a feedback compensation mechanism, which effectively reduces the cumulative
error and improves the estimation accuracy of the sideslip angle [17]. Chen et al. combined
the Adaptive Neural Fuzzy Interference System (ANFIS) with the UKF to estimate the
vehicle’s lateral speed in real time considering the body state and tire constraints and
used the estimation results in the model control of the vehicle [18]. Vargas-Meléndez et al.
first estimated the vehicle roll angle based on easily measurable sensor information using
a neural network (NN) and then introduced the estimated results into a Kalman filter
to filter the noise. Also, the vehicle’s nonlinear characteristics were considered, and the
estimation results proved the high accuracy of the proposed method [19]. Compared to
EKF and UKF, the square-root cubature Kalman filter (SCKF) is widely adopted due to
its higher estimation accuracy and better numerical stability. Wan et al. combined the
interactive multi-model theory with the SCKF to design a vehicle state observer containing
multiple sub-models, which reduces the complexity of the algorithm while ensuring ac-
curacy and real-time performance [10]. Although the above study is reliable, the negative
effect of the noise distribution for nonlinear systems on the experimental results is often
ignored. The conventional Kalman filter presupposes that the noise satisfies a Gaussian
distribution. Actually, for most nonlinear physical systems, the noise is more likely to
satisfy a non-Gaussian distribution than a Gaussian distribution [20,21]. Therefore, for
nonlinear vehicle state observation systems, it is more practical to consider the process and
measurement noise as non-Gaussian distributions (especially heavy-tailed distributions),
since large outliers often exist in the measurement data of the sensors. Particle filtering
(PF) was applied in vehicle state estimation due to its ability to suppress non-Gaussian
noise [22]. However, the PF algorithm has high complexity, and the particle resampling
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stage causes a loss of sample validity and diversity, leading to sample degradation, which
increases the difficulty for practical applications. The Huber-based Kalman filter has also
become an option for dealing with non-Gaussian noise. In the literature, vehicle states and
parameters were estimated simultaneously using Huber-based robust UKF [23], but when
Huber’s weight function error is large, the filtering accuracy of this method will be reduced
due to inaccurate measurement information. Traditional Kalman filtering is based on the
minimum mean square error (MMSE) criterion, which has poor filtering performance in
non-Gaussian environments [24]. Recently, the maximum correntropy criterion (MCC) in
information theory has been introduced into the Kalman filter to deal with problems caused
by non-Gaussian noise. The robust Kalman filter based on MCC has been successfully
applied in other non-Gaussian scenarios and has shown excellent performance [25,26]. In
particular, the maximum correntropy square-root cubature Kalman filter (MCSCKF) not
only guarantees high accuracy and numerical stability but also suppresses the interference
of non-Gaussian noise [27].

The vehicle mass variation has an important effect on the accuracy of the vehicle dy-
namics model [3,23]. Inaccurate vehicle mass will increase the estimation error for vehicular
tire forces and states, so the vehicle mass variation factor should be considered. Although
the above-mentioned issues have been studied by researchers, simultaneous consideration
of vehicle model parameter ingestion (mass variation), tire force estimation accuracy, and
non-Gaussian noise effects have not been adequately studied. Therefore, motivated by the
issues mentioned above, this paper presents a robust hierarchical estimation scheme for
vehicle states based on MCSCKF under non-Gaussian noise. Firstly, recursive least squares
with forgetting factor (FRLS) is used to dynamically update the vehicle mass parameters.
Secondly, the adaptive sliding mode observer (ASMO) is utilized to estimate the longitudi-
nal and lateral tire forces. Finally, the vehicle driving state in a non-Gaussian environment
is accurately estimated. The main contributions of the paper are as follows.

(1) The vehicle mass is first updated in real-time, and then the longitudinal and lateral
tire forces for each wheel are estimated separately based on the ASMO methodol-
ogy. Based on common on-board sensors, a robust hierarchical estimation scheme is
designed for vehicle states based on MCSCKF under non-Gaussian noise using the
obtained mass and tire force information.

(2) To verify the effectiveness of the proposed method, two typical test scenarios are
performed. The results demonstrate that the proposed robust hierarchical estimation
scheme can accurately estimate the vehicle mass, tire force, and vehicle driving state.
Moreover, the MCSCKF has better accuracy and robustness for vehicle state estimation
in non-Gaussian situations compared to the conventional Kalman filter.

The remainder of the paper is presented below. Section 2 describes the adopted vehicle
model. The robust hierarchical estimation scheme is presented in Section 3. The validity of
the proposed method is verified in Section 4. Section 5 summarizes this work.

2. Vehicle Model

To accurately identify the vehicle mass, a lateral dynamics model is initially used
to estimate the vehicle mass. Then, a single-track model and a three-degree-of-freedom
nonlinear dynamics model are used to estimate the vehicle’s tire force and driving state,
respectively. In addition, the calculation of the vertical tire force is also necessary.

For vehicle state estimation systems, some assumptions are necessary:

1. The vertical motion of the vehicle along the Z-axis is constant, and the effect of the
suspension is ignored.

2. The vehicle dynamics model ignores the influence of the steering system, and the
front-wheel angle is directly used as the model input.

3. During the operation of the vehicle, the roll motion of the X-axis and the pitch motion
of the Y-axis are ignored.

4. Ignoring air and wind resistance, the vehicle is mainly subjected to tire-road forces.
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2.1. Vehicle Mass Estimation Model

The estimation model of the vehicle mass [3] is shown in Equation (1). Generally, the
identification of the mass is performed at the start of the vehicle, when the tire is in the
linear region and the cornering stiffnesses C f and Cr are considered to be a constant value.

may =
(l f C f − lrCr)r

vx
+ β(C f + Cr)− C f δ (1)

where m is the vehicle mass, ay denotes the lateral acceleration, vx is the longitudinal
vehicle speed, r represents the yaw rate, β is the sideslip angle, δ is the front wheel angle, l f
and lr denote the distance from the front and rear axles to the center of gravity (CG), and
C f and Cr are the cornering stiffnesses of the front and rear wheels, respectively.

2.2. Tire Force Estimation Model

For the estimation of longitudinal tire forces, the vehicle single-wheel rolling dynamics
model [28] is employed herein, as shown in Figure 1.
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Figure 1. Single-wheel rolling dynamics model.

From Figure 1, the rotational dynamics equation for each wheel is

J
.

ωij = −ReFxij + Tdij, i = 1, 2, 3, 4 j = 1, 2, 3, 4 (2)

where J is the moment of inertia of the wheel, Re is the effective radius of the tire, ωij is
the rotational angular velocity of the wheel, Fxij is the longitudinal force, and Tdij is the
driving torque of the tire. In the whole article, ij = 11, 12, 21, and 22, representing the left
front, right front, left rear, and right rear wheels, respectively. ωij can be obtained from the
on-board sensors, but the direct calculation for the longitudinal tire force using Equation
(2) introduces noise differential error, which has a large impact on the calculation results.
Therefore, the estimation of the longitudinal tire force becomes an optional solution.

The single-track model, also known as the bicycle model, is widely used in vehicle
dynamics and stability control [29]. This model is utilized to design the vehicle lateral tire
force observer, and Figure 2 illustrates the single-track plane model with the mathematical
equation as in Equation (3).

.
vy =

(
Fy f cos δ + Fx f sin δ + Fyr

)
/m

.
r =

(
l f Fy f cos δ + l f Fx f sin δ− lrFyr

)
/Iz

(3)

where vy denotes the lateral vehicle speed along the Y-axis and Iz is the vehicle moment of
inertia in the X-Y plane. Fx f and Fy f denote the total longitudinal and lateral tire forces at
the front wheels, and Fyr is the total lateral tire force at the rear wheels.
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2.3. Nonlinear Three-Degree-of-Freedom Dynamics Model

A simplified three-degree-of-freedom, four-wheeled vehicle model [9] is shown in
Figure 3. The nonlinear dynamics equations containing longitudinal, lateral, and yaw
motions are as follows

m(
.
vx − vyr) = (Fx11 + Fx12) cos δ− (Fy11 + Fy12) sin δ + Fx21 + Fx22 (4)

m(
.
vy + vxr) = (Fx11 + Fx12) sin δ + (Fy11 + Fy12) cos δ + Fy21 + Fy22 (5)

Iz
.
r = [(Fx11 + Fx12) sin δ + (Fy11 + Fy12) cos δ]l f + [(Fx11 + Fx12) cos δ + (Fy11 − Fy12) sin δ] tw1

2
+(Fx21 + Fx22)

tw2
2 − (Fy21 + Fy22)lr]

(6)

where Fxij and Fyij (ij = 11, 12, 21, 22) represent the longitudinal and lateral tire forces,
respectively. tw1 and tw2 are the front and rear track widths, and the meanings of the
remaining symbols are the same as those mentioned earlier. From Figure 3, the sideslip
angle β = tan−1

(
vy
vx

)
.
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2.4. Tire Vertical Force Calculation

When the vehicle has significant acceleration, deceleration, and turning, the tire
vertical force will be redistributed due to load transfer [23]. Considering the effects of
vehicle acceleration, deceleration, and lateral motion, the tire vertical force is calculated as

Fz11 = mwg + msg lr
2(l f +lr)

−msax
hg

2(l f +lr)
−msay

hg
2tw1

Fz12 = mwg + msg lr
2(l f +lr)

−msax
hg

2(l f +lr)
+ msay

hg
2tw1

Fz21 = mwg + msg
l f

2(l f +lr)
+ msax

hg
2(l f +lr)

−msay
hg

2tw2

Fz22 = mwg + msg
l f

2(l f +lr)
+ msax

hg
2(l f +lr)

+ msay
hg

2tw2

(7)
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where Fzij denotes the vertical tire force, mw is the unsprung mass, ms is the sprung mass,
ax is the longitudinal acceleration, hg is the height of the CG, and g is the gravitational
acceleration.

3. Robust Hierarchical Estimation Scheme

Considering that the vehicle mass may change when the vehicle starts or stops, such
as when a car turns from empty to full, the vehicle’s mass is identified first. The accuracy of
tire force calculations is crucial for vehicle dynamics control. However, common empirical
(semi-empirical) and theoretical tire models require several tire characteristic parameters
that are not easily obtained accurately and have time-varying characteristics, resulting in
the inaccurate output of formula-based tire models. Meanwhile, the on-board sensor signals
are susceptible to non-Gaussian noise (e.g., heavy-tailed noise with large outliers) when
the vehicle is in actual operation, which will affect the accuracy and robustness of vehicle
state estimation. To address the above issues, a robust hierarchical estimation scheme
is proposed, as shown in Figure 4. The sensor measurement module can provide easily
measured on-board sensor signals, including steering wheel angle, wheel angular velocity,
inertial sensor signals, wheel speed signals, etc. Using the FRLS method, the vehicle mass is
first accurately estimated by the vehicle mass identification module. Secondly, longitudinal
and lateral tire forces are further estimated using ASMO. Finally, the vehicle driving state
is estimated based on MCSCKF using the estimated mass and tire forces. It is worth noting
that the information in the whole estimation scheme is interchangeable.
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3.1. Vehicle Mass Identification

Recursive least squares (RLS) is computationally small and converges quickly, and to
make full use of real-time measurement information, FRLS is used to estimate the mass of
a vehicle [15]. The general recursive form of RLS is

y(k) = ϕT(k)θ+ e(k) (8)

where y(k) is the system output, θ and ϕT(k) are the estimated parameter and recursive
vector, and e(k) is the error term. Combining with Equation (1), the regression model for
vehicle mass estimation is{

ϕT(k) = ay θ = m

y(k) =
(l f C f−lrCr)r

vx
+ β(C f + Cr)− C f δ

(9)

The main recursive steps of the FRLS algorithm are as follows.
The gain KF is calculated

KF(k) =
PF(k− 1)ϕ(k)

λ +ϕT(k)PF(k− 1)ϕ(k)
(10)
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The estimated parameter is updated

θ(k) = θ(k− 1) + KF(k)[y(k)−ϕT(k)θ(k− 1)] (11)

The covariance matrix is updated

PF(k) =
1
λ
[I−KF(k)ϕT(k)]PF(k− 1) (12)

where I is the unit matrix and λ is the forgetting factor, which usually takes the value in the
interval [0.9, 1], in this paper, λ is set to 0.99.

3.2. Tire Force Estimation
3.2.1. Sliding Mode Observer Design

Sliding mode control is a design method for automatic control systems with strong
robustness to system parameter uncertainties and external disturbances [30]. The designed
state observer based on sliding mode control theory is also robust and has excellent per-
formance. In this paper, an adaptive sliding mode observer is designed to estimate the
longitudinal and lateral tire forces using easily measurable on-board sensor information.

Consider a first-order system{ .
xs = Bsus + Psd + ψs
ys = xs

(13)

where xs is the system state, us is the system input, d is the unknown and bounded input,
ys is the measured output, ψs is the disturbance term, Bs and Ps are the real constants,
respectively. When the system’s state changes, the unknown input d varies as well, where
d is the state to be estimated.

Define the error of the system as x̃s = xs− x̂s. In this paper, the sliding mode surface is
chosen as the system error, that is, S = x̃s. Then the Lyapunov function is designed as [31]

V = S2/2 (14)

Then, the derivative of Equation (14) is
.

V = S
.
S = S

.
x̃s = S(

.
xs −

.
x̂s) (15)

According to the state observer theory, based on Equation (13), an observer can
be constructed .

x̂s = Bsus + Psd̂ + ψs + L(xs − x̂s) (16)

where L is the observer gain.
Taking Equations (13) and (16) into Equation (15), we have

.
V = S[(Bsus + Psd + ψs)− (Bsus + Psd̂ + ψs + L(xs − x̂s))] = −SPsd̂ + S[Psd− L(xs − x̂s)] (17)

Since d is an unknown and bounded input, there always exists a positive real number ρ,
and when ρ is large enough, the following inequality holds.

|Psd− L(xs − x̂s)| 6 ρ (18)

Substituting Equation (18) into Equation (17), the following equation can be obtained

.
V = −SPsd̂ + S[Psd− L(xs − x̂s)]

6 −SPsd̂ + Sρ

6 −SPsd̂ + |S|ρ
(19)
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The following definition is made

d̂ = Ps
−1ρsgn(S) (20)

sgn(S) =


1, S > 0
0, S = 0
−1, S < 0

(21)

where sgn(S) denotes the signum function.
Thus, Equation (19) can be further written as

.
V 6 −SPsd̂ + |S|ρ = −Sρsgn(S) + |S|ρ = 0 (22)

When the derivative of the Lyapunov function satisfies
.

V ≤ 0, the system is stable,
and the state variables can converge to the sliding mode surface [5]. Thus, we can obtain
the state observer depicted as follows{ .

x̂s = Bsus + Psd̂ + ψs + L(xs − x̂s)

d̂ = Ps
−1ρsgn(ys − x̂s)

(23)

Combining Equations (13) and (23), the error derivative of the system is further
expressed as

.
x̃s= (

.
xs −

.
x̂s)

= Bsus + Psd + ψs − [Bsus + ρsgn(ys − x̂s) + ψs + L(xs − x̂s)]

= Psd− ρsgn(ys − x̂s)− L(xs − x̂s)

(24)

When the system reaches stability, the state variables converge to the sliding surface,
.
x̃s = 0, and based on Equation (24), the observer for the unknown input d, i.e., Fy f and Fyr
can be expressed as

d̂_z = Ps
−1ρsgn(ys − x̂s) + Ps

−1L(xs − x̂s) (25)

where d̂_z denotes the final estimate of the unknown input d. L is the feedback gain, and
ρ is the sliding mode gain.

Due to the effects of time and space delays and system inertia, the sliding mode system
is prone to trembling, which will increase the estimation error and affect the estimation
results. To eliminate the effect of trembling, the saturation function sat(S) is used to replace
the signum function sgn(S) [5].

sat(S) =
{ S

κ , |S| ≤ κ
sgn(S), |S| > κ

(26)

where κ > 0 and can adjust the slope of the function curve; in this paper, κ = 0.01.

3.2.2. Longitudinal Tire Force Estimation

According to Equation (13), Equation (2) can be transformed into{ .
ωij =

1
J Tdij − Re

J Fxij

y = ωi
(27)

where ωij is both the state variable and the measured output of the system, Tdij is the
system input, and Fxij is the variable to be estimated.
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From Equations (25) and (26), the longitudinal tire force can be estimated as

F̂xij =
J

Re
ρxijsat(ωij − ω̂ij) +

J
Re

Lxij(ωij − ω̂ij) (28)

where ω̂ij is the estimate of ωij and ω̂ij can be obtained from
.

ωij =
1
J Tdij− Re

J Fxij by the first-

order Eulerian discretization method, i.e., that is ωij_k+1 = ωij_k(
1
J Tdij − Re

J Fxij)T, where the
subscript k denotes the sampling moment and T is the sampling time. Lxij(ij = 11, 12, 21, 22)
is the longitudinal tire force sliding mode observer feedback gain, and Lx11 = Lx12 = Lx21 =
Lx22 = 200. ρxij is the sliding mode gain, and ρx11 = ρx12 = ρx21 = ρx22 = 10.

3.2.3. Lateral Tire Force Estimation

Decoupling Fy f and Fyr in Equation (3), we have{
Fy f = [Iz

.
r + lrmay − Fx f sin δ(l f + lr)]/[(l f + lr) cos δ]

Fyr = (l f may − Iz
.
r)/(l f + lr)

(29)

Similar to the principle of longitudinal tire force estimation from Equations (13), (25), and (26),
the lateral tire force estimation is given by

F̂y f =
Iz

cos δ(l f +lr)
ρy f sat(r− r̂) + Iz

cos δ(l f +lr)
Ly f (r− r̂)

F̂yr =
−Iz

(l f +lr)
ρyrsat(r− r̂)− Iz

(l f +lr)
Lyr(r− r̂)

(30)

where r̂ is the estimate of r and r̂ can be obtained from
.
r = − lrm

Iz
ay +

(l f +lr) cos δ

Iz
Fyf +

(l f +lr) sin δ

Iz
Fx f by the first-order Eulerian discretization method, i.e., that is r_k+1 = r_k +

(− lrm
Iz

ay +
(l f +lr) cos δ

Iz
Fyf +

(l f +lr) sin δ

Iz
Fx f )T. Ly f and Lyr are the feedback gains of the front

and rear wheel lateral force sliding mode observers, respectively, and Ly f = Lyr = 20. ρy f
and ρyr are the sliding mode gains, and ρy f = ρyr = 0.1, respectively.

An adaptive feedback law is designed to improve the estimation accuracy of Fy f and
Fyr. The adaptive sliding mode observer is

F̂y f ,ada =
Iz

cos δ(l f +lr)
ρy f sat(r− r̂) + Iz

cos δ(l f +lr)
Ly f (r− r̂) + ηy f (may − F̂y f − F̂yr)

F̂yr,ada =
−Iz

(l f +lr)
ρyrsat(r− r̂)− Iz

(l f +lr)
Lyr(r− r̂) + ηyr(may − F̂y f − F̂yr)

(31)

where F̂y f ,ada and F̂yr,ada indicate the final estimated longitudinal and lateral tire forces. ηy f
and ηyr are the adaptive observer feedback gains, and ηy f = ηyr = 1, respectively.

Finally, the lateral tire force for each tire is estimated as
F̂y11 = Fz11

Fz11+Fz12
F̂y f

F̂y12 = Fz12
Fz11+Fz12

F̂y f

F̂y21 = Fz21
F221+Fz22

F̂yr

F̂y22 = Fz22
Fz21+Fz22

F̂yr

(32)

3.3. Vehicle State Estimation Based on MCSCKF

The EKF is used for nonlinear systems by linearization, but it has only first-order accu-
racy and large estimation errors for high-dimensional nonlinear systems. UKF has higher
accuracy than EKF, but UKF often faces the problem of covariance matrix non-positive
definite, which leads to estimation divergence. Later, the cubature Kalman filter (CKF) was
proposed by scholars. According to the spherical-radial cubature rule, the CKF can calculate
multivariate moment integrals in the nonlinear Bayesian filtering scheme, which enables
the CKF to have better filtering performance in high-dimensional nonlinear systems. The
SCKF is a square-root version of the CKF, and to prevent the asymmetry and negative
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definiteness of the covariance matrix, the SCKF uses least squares and triangulation to
update the Kalman gain and covariance matrices. This not only enhances the robustness
of the numerical computation but also ensures the positive definiteness of the covariance
matrix, which can effectively improve the accuracy of the estimation [9]. The conventional
Kalman filter is based on the MMSE criterion and assumes that the noise is Gaussian
distributed, which has good performance in a Gaussian environment. However, in actual
vehicle operation, the sensor signals are vulnerable to large outliers, and the noises are
often heavy-tailed with non-Gaussian characteristics, etc., which degrades the performance
of the conventional Kalman filter [32]. MCC can capture the second- and higher-order
moments of the errors and has a strong suppression effect on non-Gaussian noises [24]. In
this paper, the MCSCKF algorithm is derived by combining the MCC and SCKF, and it
is applied to the vehicle driving state estimation in real-world operating conditions. The
design of the state estimator and the MCSCKF algorithm will be presented in the following.

3.3.1. Design of the State Estimator

Generally, the discrete state and measurement equations of a nonlinear system can be
described as

x(k) = f(x(k− 1), u(k− 1)) + v(k− 1) (33)

z(k) = h(x(k), u(k)) + w(k) (34)

where x(k) ∈ Rn and z(k) ∈ Rm denote the n-dimensional state vector and the m-
dimensional measurement vector, respectively. f(·) and h(·) are the nonlinear state and
measurement functions of the system, and u(k) is the system input. v(k − 1) and w(k)
represent the uncorrelated process and measurement noises with zero means and the
covariance matrix Q(k− 1)= E[v(k− 1)vT(k− 1)], R(k)= E[w(k)wT(k)].

Based on Equations (4)–(6), employing the first-order Euler discrete method, the state
and measurement equations of the vehicle system can be expressed as

 vx(k)
vy(k)
r (k)

 =

 vx(k− 1)
vy(k− 1)
r (k− 1)



=



(
[(Fx11(k− 1) + Fx12(k− 1)) cos δ(k− 1)− (Fy11(k− 1) + Fy12(k− 1)) sin δ(k− 1)
+Fx21(k− 1) + Fx22(k− 1) + m(k− 1)vy(k− 1)r(k− 1)]/m(k− 1)

)
(

[(Fx11(k− 1) + Fx12(k− 1)) sin δ(k− 1) + (Fy11(k− 1) + Fy12(k− 1)) cos δ(k− 1)
+Fy21(k− 1) + Fy22(k− 1)−m(k− 1)vx(k− 1)r(k− 1)]/m(k− 1)

)
 [(Fx11(k− 1) + Fx12(k− 1)) sin δ(k− 1) + (Fy11(k− 1) + Fy12(k− 1)) cos δ(k− 1)]l f

+[(Fx11(k− 1) + Fx12(k− 1)) cos δ(k− 1) + (Fy11(k− 1)− Fy12(k− 1)) sin δ(k− 1)] tw1
2

+(Fx21(k− 1) + Fx22(k− 1)) tw2
2 − (Fy21(k− 1) + Fy22(k− 1))lr]/Iz




T + vk−1

(35)

where T is the sampling time of the system.
Modern production cars are equipped with a large number of on-board sensors re-

quired for the ESC. For example, steering wheel angle sensors (front wheel angle δ can be ob-
tained by a ratio coefficient), wheel speed sensors (four wheels speed vcij, ij = 11, 12, 21, 22),
accelerometers (longitudinal and lateral acceleration ax and ay) and gyroscopes (yaw
rate r) [4]. Also, these sensors can share data with the vehicle controller area network
(CAN) bus. Utilizing the above easily available on-board sensor information, the measure-
ment equations of the system are designed as
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

ax,m(k)
ay,m(k)
r,m(k)
vc11,m(k)
vc12,m(k)
vc21,m(k)
vc22,m(k)


=



(
[(Fx11(k) + Fx12(k)) cos δ(k)− (Fy11(k) + Fy12(k)) sin δ(k)
+Fx21(k) + Fx22(k) + m(k)vy(k)r(k)]/m(k)

)
(

[(Fx11(k) + Fx12(k)) sin δ(k) + (Fy11(k) + Fy12(k)) cos δ(k)
+Fy21(k) + Fy22(k)−m(k)vx(k)r(k)]/m(k)

)
r(k)

(vx(k)− tw1
2 r(k)) cos δ(k) + (vy(k) + l f r(k)) sin δ(k)

(vx(k) +
tw1
2 r(k)) cos δ(k) + (vy(k) + l f r(k)) sin δ(k)

vx(k)− tw2
2 r(k)

vx(k) + tw2
2 r(k)


+ wk (36)

where the subscript m indicates the sensor measurement.
From Equations (35) and (36), the state and measurement vectors of the vehicle state

estimator are
x(k) = [vx, vy, r]T (37)

z(k) = [ax,m, ay,m, rm, vc11,m, vc12,m, vc21,m, vc22,m]
T (38)

3.3.2. Maximum Correntropy Square-Root Cubature Kalman Filter

(1) Maximum correntropy criterion

The correntropy is a nonlinear measure for two random variables X, Y ∈ R, and
assuming that their joint distribution function is FXY(x, y), the correntropy can be expressed
as [24]

V(X, Y) = E[κ(X, Y)] =
∫

κ(x, y)dFXY(x, y) (39)

where E[·] denotes the expectation function and κ(· , ·) is the kernel function. Usually, the
Gaussian kernel is chosen as the kernel function.

κ(x, y) = Gσ(e) = exp(− e2

2σ2 ) (40)

where e = x− y, σ > 0 denotes the kernel width of the correntropy.
In practical situations, the joint distribution function of the variables FXY(x, y) is often

unknown, and limited sample data {x(i), y(i)}N
i=1 is available, so the correntropy is often

estimated as

V̂(X, Y) =
1
N

N

∑
i=1

Gσ(e(i)) (41)

where e(i) = x(i)− y(i).
Allowing the correntropy as an objective function has a strong suppression effect

on non-Gaussian heavy-tailed noise [25]. If the error data {e(i)}N
i=1 can be obtained, the

MCC-based objective function is expressed as

JMCC =
1
N

N

∑
i=1

Gσ(e(i)) (42)

(2) Square-root cubature Kalman filter

For the state estimation of high-dimensional systems, SCKF is a powerful tool. Taking
the nonlinear system in Equations (33) and (34) as an example, the SCKF has two main
steps, prediction and update.

1. Predict

Assume that at some time k, S(k− 1|k− 1) is the square-root of the state error
covariance matrix P(k− 1|k− 1) , that is, P(k− 1

∣∣∣k− 1) = S(k− 1
∣∣∣k− 1)ST(k− 1

∣∣∣k− 1) .
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Similarly, SQ(k − 1) and SR(k) are the square-root factors of Q(k − 1) and R(k), that is,
Q(k− 1) = SQ(k− 1)SQ

T(k− 1), R(k) = SR(k)SR
T(k).

Calculation of cubature points

χi(k− 1
∣∣∣∣k− 1) = S(k− 1

∣∣∣∣k− 1)·I(i) + ^
x(k− 1

∣∣∣∣k− 1), i = 1, . . . , 2n (43)

with I(i) =

{√
n[1]i i = 1, . . . , n
−
√

n[1]i−n i = n + 1, . . . , 2n
where I is the unit matrix of n× n and [1]i is

the i-th column vector.
Propagation of cubature points

χi∗(k
∣∣∣k− 1) = f(k− 1, χi(k− 1

∣∣∣k− 1)
)

, i = 1, . . . , 2n (44)

The prior state and the square root of the covariance matrix are estimated by

^
x(k|k− 1) =

1
2n

2n

∑
i=1

χi∗(k|k− 1) (45)

S(k
∣∣k− 1) = Tria([X∗(k

∣∣k− 1), SQ(k− 1)]) (46)

with X∗(k|k − 1) = 1√
2n
[χ1∗(k|k − 1) − ^

x(k|k − 1), . . . , χ2n∗(k|k − 1) − ^
x(k|k − 1)],

i = 1, . . . , 2n. Tria(·) represents the triangular decomposition of the matrix.

2. Update

Calculation of cubature points

χi(k
∣∣∣∣k− 1) = S(k

∣∣∣∣k− 1)·I(i) + ^
x(k
∣∣∣∣k− 1), i = 1, . . . , 2n (47)

Propagation of cubature points

χi∗∗(k
∣∣∣k− 1) = h(k, χi(k

∣∣∣k− 1)
)

, i = 1, . . . , 2n (48)

The prior measurement and the square root of the covariance matrix are estimated by

^
z(k|k− 1) =

1
2n

2n

∑
i=1

χi∗∗(k|k− 1) (49)

Szz(k|k− 1) = Tria([Z(k|k− 1), SR(k)]) (50)

with Z(k|k − 1) = 1√
2n
[χ1∗∗(k|k − 1) − ^

z(k|k − 1), · · · , χ2n∗∗(k|k − 1) − ^
z(k|k − 1)],

i = 1, . . . , 2n.
Calculate the cross-covariance matrix

Pxz(k
∣∣∣k− 1) = X(k

∣∣∣k− 1)ZT(k
∣∣∣k− 1) (51)

with X(k|k− 1) = 1√
2n
[χ1(k|k− 1)− ^

x(k|k− 1), . . . , χ2n(k|k− 1)− ^
x(k|k− 1)], i = 1, . . . , 2n.

Calculate the Kalman gain

K(k) = Pxz(k
∣∣∣k− 1)/ST

zz(k
∣∣∣k− 1)/Szz(k

∣∣∣k− 1) (52)
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The posterior state and the square root of the covariance matrix are estimated by

^
x(k
∣∣∣∣k) = ^

x(k
∣∣∣∣k− 1) + K(k)(z(k)− ^

z(k
∣∣∣∣k− 1)) (53)

S(k|k) = Tria([X(k|k− 1)−K(k)Z(k|k− 1), K(k)SR(k)]) (54)

3. Derivation of the MCSCKF

Since the correntropy has excellent performance in the non-Gaussian environment, we
combine MCC and SCKF to derive the MCSCKF algorithm, and the detailed derivation
process is as follows.

For the nonlinear model described in Equations (33) and (34), combined with
Equations (45) and (46), a nonlinear recursive model is constructed as ^

x(k
∣∣∣∣k− 1)

z(k)

 =

[
x(k)

h(k, x(k))

]
+ φ(k) (55)

where φ(k) =

 ^
x(k
∣∣∣∣k− 1)− x(k)

w(k)

, the covariance of the matrix φ(k) can be written

E(φkφT
k ) =

[
P(k|k− 1) 0

0 R(k)

]
=

[
Mp(k

∣∣∣k− 1)MT
p (k
∣∣∣k− 1) 0

0 Mr(k)MT
r (k)

]
= M(k)MT(k)

. M(k) is

obtained from the Cholesky decomposition of E(φkφT
k
)
.

Multiplying M−1(k) left on both sides of Equation (55) yields

D(k) = g(k, x(k)) + e(k) (56)

where D(k) = M−1(k)

 ^
x(k
∣∣∣∣k− 1)

z(k)

, g(k, x(k)) = M−1(k)
[

x(k)
h(k, x(k))

]
and e(k) = M−1(k)φ(k).

Then, based on MCC, we define the following objective function

JMCC(x(k)) =
n+m

∑
i=1

Gσ(ei(k)) =
n+m

∑
i=1

Gσ(di(k)− gi(k, x(k))) (57)

where di(k) is the i-th element of D(k) and gi(k, x(k)) is the i-th row of g(k, x(k)).
Then, the optimal estimate of x(k) based on MCC can be obtained from the follow-

ing equation
^
x(k) = argmax

x(k)

n+m

∑
i=1

Gσ(ei(k)) (58)

Let the first-order derivative of Equation (58) be zero, and the optimal solution of (58)
can be obtained.

∂JMCC(x(k))
∂x(k)

=
n+m

∑
i=1

Gσ(ei(k))·ei(k)·
∂ei(k)
∂x(k)

= 0 (59)

Then, defining Ci(k) = Gσ(ei(k)), we have

C(k) = diag(C1(k), . . . , Cn+m(k)) =

[
C(x)(k) 0

0 C(y)(k)

]
(60)

with C(x)(k) = diag(G σ(e1(k)), . . . , Gσ(en(k))
)

and C(y)(k) = diag(G σ(en+1(k)), . . . , Gσ(en+m(k))
)

.
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Based on Equation (60), Equation (59) can be further expressed as(
∂g(k, x(k))

∂x(k)

)T
C(k)(D(k)− g(k, x(k))) = 0 (61)

Actually, the key to using MCC to improve the performance of SCKF in a non-Gaussian
environment is using C(k) to update the state covariance and the variance of measurement

noise [26]. We define the updated covariance matrix of φ(k) as
~
L(k)

~
L(k) =

 ~
P(k
∣∣∣k− 1) 0

0
~
R(k)

 = M(k)·C(k)−1·MT(k) (62)

In practice, the true state x(k) is often unknown, let
^
x(k
∣∣∣∣k− 1)− x(k) = 0 . Therefore,

the prior measurement noise variance are written as

~
R(k) = Mr(k)C−1

(y)(k)M
T
r (k) (63)

Then, the square root S~
R
(k) of the updated measurement covariance matrix can be

obtained from
S~

R
(k) = (Mr(k)C(y)(k))

−1/2 (64)

Finally, combining the above derivation with the prior estimation process of SCKF
(Equations (43)–(46)), the derivation of MCSCKF is completed, and the main steps are
summarized in the Algorithm 1.

Algorithm 1: MCSCKF

1 Input

σ, a positive number ε ,
^
x(0
∣∣∣∣0) , S(0|0)

2 Initialization
k = 1
3 Time Update

for i = 1, . . . , 2n

χi(k− 1
∣∣∣∣k− 1) = S(k− 1

∣∣∣∣k− 1)·I(i) + ^
x(k− 1

∣∣∣∣k− 1), i = 1, . . . , 2n

χi∗(k
∣∣∣k− 1) = f(k− 1, χi(k− 1

∣∣∣k− 1)
)

, i = 1, . . . , 2n
end
^
x(k|k− 1) = 1

2n

2n
∑

i=1
χi∗(k|k− 1)

S(k
∣∣k− 1) = Tria([X∗(k

∣∣k− 1), SQ(k− 1)])
4 Measurement Update

for i = 1, . . . , 2n

χi(k
∣∣∣∣k− 1) = S(k

∣∣∣∣k− 1)·I(i) + ^
x(k
∣∣∣∣k− 1), i = 1, . . . , 2n

χi∗∗(k
∣∣∣k− 1) = h(k, χi(k

∣∣∣k− 1)
)

, i = 1, . . . , 2n
end
^
z(k|k− 1) = 1

2n

2n
∑

i=1
χi∗∗(k|k− 1)

4.1 Initialization:
t = 1,

^
x(k|k)(0) = ^

x(k|k− 1)Mr(k) = chol(R(k))
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Algorithm 1: MCSCKF

4.2 Iteration:
e(t−1)

j (k) = dj(k)− gj(k,
^
x(k|k)(t−1)), j = 1, . . . , n + m

C(t−1)
(y) (k) = diag(G σ(en+1(k)), . . . , Gσ(en+m(k)))

~
R
(t−1)

(k) = Mr(k)C−1
(y)(k)M

T
r (k)

Using Equation (64) to calculate S(t−1)
~
R

(k)

S(t−1)
zz (k|k− 1) = Tria([Z(k|k− 1), S(t−1)

~
R

(k)])

P(t−1)
xz (k|k− 1) = X(k|k− 1)ZT(k|k− 1)

~
K
(t−1)

(k) = P(t−1)
xz (k|k− 1)/S(t−1)

zz
T(k|k− 1)/S(t−1)

zz (k|k− 1)
^
x(k|k)t =

^
x(k|k− 1) +

~
K
(t−1)

(k)(z(k)− ^
z(k|k− 1))

if ‖
^
x (k|k) t−^

x(k|k)t−1‖
‖^

x(k|k)t−1‖
≤ ε

then
^
x(k|k) = ^

x(k|k)t, S(k|k) = Tria([X(k|k− 1)−
~
K(k)Z(k|k− 1),

~
K(k)S ~

R
(k)])

go to step 5.
else

t = t + 1, go to step 4.2
end

5 k = k + 1, go to step 3.

In the algorithm, superscript t is the fixed-point iteration index and
^
x (k|k) t denotes

the solution at the fixed-point iteration t. A small positive threshold ε is set as the stopping
condition, and the fixed-point iterative approach is used to obtain the optimal solution
^
x(k
∣∣∣∣k) . Notably, the prior estimate

^
x(k
∣∣∣∣k− 1) is set as the initial value for the iterative

process, so the algorithm will converge quickly and the computation time will be low [26].
The kernel width σ is a critical parameter, and a large or small kernel width cannot optimize
the performance of the algorithm [27]. Considering the accuracy and convergence of the
algorithm in this paper, the kernel width was set to σ = 5 by manual tuning, and the
stopping condition of the fixed-point iterative process was set to ε = 10−6.

4. Simulation Verification
4.1. Simulation Experimental Platform

A co-simulation experimental platform using CarSim and Simulink is designed to
verify the validity of the proposed estimation scheme. Figure 5 presents the joint simulation
platform used, which consists of four main parts: (a) The vehicle joint simulation system is
composed of the CarSim and Simulink modules. CarSim has an internal vehicle dynamics
model with 27 degrees of freedom, which can provide inputs and measurements for the state
estimator. (b) The vehicle parameter identification system can estimate the vehicle mass
and tire forces. (c) The data acquisition system can capture on-board sensor information.
(d) The vehicle driving state is finally obtained by the vehicle state estimation system. It
is worth mentioning that, because of the high accuracy and high fidelity of the CarSim
software, it can provide a sufficiently accurate reference for the estimated vehicle tire force
and state [5]. The basic parameters of the vehicle used are shown in Table 1.
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Figure 5. Simulation experimental platform of a robust hierarchical estimation scheme for vehi-
cle state.

In the actual operation of the vehicle, the sensor noise is not always Gaussian noise be-
cause the measurement signal is often disturbed by large outliers. In this paper, we assume
that both the process and measurement noises of the system are heavy-tailed non-Gaussian
noises satisfying a mixed Gaussian distribution with the following covariance matrix.

Qvx = 0.208, vk−1,vx ∼ 0.8N(0, 0.12) + 0.2N(0, 12)
Qvy = 0.208, vk−1,vy ∼ 0.8N(0, 0.12) + 0.2N(0, 12)

Qr = 0.208, vk−1,r ∼ 0.8N(0, 0.12) + 0.2N(0, 12)
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

Rax = 0.208, wk,ax ∼ 0.8N(0, 0.12) + 0.2N(0, 12)
Ray = 0.208, wk,ay ∼ 0.8N(0, 0.12) + 0.2N(0, 12)

Rr = 0.208, wk,r ∼ 0.8N(0, 0.12) + 0.2N(0, 12)
Rvc11 = 0.832, wk,vc11 ∼ 0.8N(0, 0.22) + 0.2N(0, 22)
Rvc12 = 0.832, wk,vc12 ∼ 0.8N(0, 0.22) + 0.2N(0, 22)
Rvc21 = 0.832, wk,vc21 ∼ 0.8N(0, 0.22) + 0.2N(0, 22)
Rvc22 = 0.832, wk,vc22 ∼ 0.8N(0, 0.22) + 0.2N(0, 22)

that is
Q = diag([0.208, 0.208, 0.208]) (65)

R = diag([0.208, 0.208, 0.208, 0.832, 0.832, 0.832, 0.832]) (66)

Table 1. Basic parameters of the vehicle.

Vehicle Parameter Value Unit

Sprung mass (ms) 1270 kg
Unsprung mass (mus) 142 kg
Vehicle mass (m) 1412 kg
Yaw moment of inertia (Izz) 1536.7 kg·m2

Distance from the front and rear axles to the CG (l f /lr) 1.015/1.895 m
The wheelbase of the front and rear wheels (tw1/tw2) 1.675/1.675 m
The effective rolling radius of the tire (Re) 0.325 m
Height of CG (hg) 0.54 m

Sensor Parameter

Type of Sensor
Standard Deviation (σ)

Value Unit

INS (Inertial Navigation System) sensor (100 Hz)
Yaw rate gyroscope 1× 10−1 deg/s
Longitudinal accelerometer 1× 10−1 m/s2

Lateral accelerometer 1× 10−1 m/s2

CAN bus (50 Hz)
Steering wheel sensor 1× 10−1 deg
Wheel speed sensor 2× 10−1 m/s

4.2. Results and Discussion

In this section, two typical scenarios are used to verify the effectiveness of the proposed
hierarchical estimation method: 1. double lane change condition; 2. sinusoidal steering
condition. Since the vehicle driving state has undergone dramatic changes in these two
cases, the above conditions can fully verify the validity of the proposed method. The
Dugoff model [8] is a common semi-empirical tire model in vehicle dynamics, and its
longitudinal and lateral tire forces are also shown in this paper and compared with the tire
forces estimated by ASMO. In addition, conventional Kalman filters, including EKF [11],
UKF [18], and CKF [19], are also used to estimate the vehicle driving state for comparison
with MCSCKF. It is worth noting that the EKF, UKF, and CKF use the Dugoff tire model,
while the MCSCKF uses the ASMO-estimated tire forces. The estimation performance of
the different methods is indicated by the root mean square error (RMSE) index.

RMSE =

√√√√ 1
M

M

∑
k=1

(x(k)− ^
x(k))

2
(67)

where M is the number of sampling points and k represents the current moment.
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4.2.1. Double Lane Change Situation

For this condition, we assume that both process and measurement noise satisfy
non-Gaussian distributions, and the corresponding covariance matrices Q and R are
given in Equations (65) and (66). The tire-road friction coefficient is known to be 0.85.
The initial state and the corresponding covariance matrix are x(0|0) = [40/3.6, 0, 0] and
P(0|0) = 0.01× diag([1, 1, 1]) . Figure 6 illustrates the input and measurement signals of
the estimator.

Entropy 2023, 25, 453 19 of 27 
 

=

= − 2

1

1 ˆ( ( ) ( ))
M

k
RMSE k k

M
x x  (67)

where M  is the number of sampling points and k  represents the current moment. 

4.2.1. Double Lane Change Situation 
For this condition, we assume that both process and measurement noise satisfy non-

Gaussian distributions, and the corresponding covariance matrices Q and R are given in 
Equations (65) and (66). The tire-road friction coefficient is known to be 0.85. The initial 
state and the corresponding covariance matrix are =(0|0) [40 / 3.6,0,0]x  and 

(0|0) 0.01 diag([1,1,1])= ×P . Figure 6 illustrates the input and measurement signals of the 
estimator. 

  
(a) (b) 

Figure 6. The input and measurement signals of the estimator. Input: (a) Front wheel angle δ , 

longitudinal acceleration ,x ma . Measurement: (b) yaw rate mr  and lateral acceleration ,y ma  un-
der double-lane change conditions. 

To simulate the case of increased vehicle mass, the initial vehicle mass is set to 1200 
kg, while the real mass is 1412 kg. Figure 7 shows the estimation results of the vehicle 
mass, from which it can be seen that the curve can eventually converge to the real value 
with small fluctuations, which proves that the proposed FRLS method can accurately 
identify the vehicle mass under double-lane change conditions. Figure 8 shows the results 
of the longitudinal and lateral tire forces from the ASMO and Dugoff tire models. As can 
be seen, the ASMO method can observe the longitudinal and lateral tire forces more accu-
rately than the Dugoff model, especially when the vehicle is turning. This is because when 
the vehicle is turning, the tire is more likely to be in the nonlinear region, the parameters 
of the Dugoff model tend to be time-varying, and the calculated tire force error becomes 
larger. Meanwhile, the Dugoff model has a larger peak error for the estimation of longi-
tudinal tire forces, while the ASMO method is able to follow the true values better. Table 
2 shows the RMSE and percentage error of the tire force estimation, from which it can be 
seen that the ASMO estimates have smaller RMSE and percentage error compared to the 
Dugoff method. This demonstrates that the proposed ASMO method has higher accuracy 
and robustness than the Dugoff tire model under double-lane change operation. 

0 5 10 15

-0.03

0.00

0.03

0.06

0.09  δ
 ax,m

Time (s)

δ 
(ra

d)

-1.2

-0.6

0.0

0.6

a x
,m

 (m
/s2 )

0 5 10 15
-0.2

0.0

0.2

0.4  rm
 ay,m

Time (s)

r m
 (r

ad
/s)

-4

-2

0

2

a y
,m

 (m
/s2 )

Figure 6. The input and measurement signals of the estimator. Input: (a) Front wheel angle δ,
longitudinal acceleration ax,m. Measurement: (b) yaw rate rm and lateral acceleration ay,m under
double-lane change conditions.

To simulate the case of increased vehicle mass, the initial vehicle mass is set to 1200 kg,
while the real mass is 1412 kg. Figure 7 shows the estimation results of the vehicle mass,
from which it can be seen that the curve can eventually converge to the real value with
small fluctuations, which proves that the proposed FRLS method can accurately identify
the vehicle mass under double-lane change conditions. Figure 8 shows the results of the
longitudinal and lateral tire forces from the ASMO and Dugoff tire models. As can be seen,
the ASMO method can observe the longitudinal and lateral tire forces more accurately
than the Dugoff model, especially when the vehicle is turning. This is because when the
vehicle is turning, the tire is more likely to be in the nonlinear region, the parameters of the
Dugoff model tend to be time-varying, and the calculated tire force error becomes larger.
Meanwhile, the Dugoff model has a larger peak error for the estimation of longitudinal tire
forces, while the ASMO method is able to follow the true values better. Table 2 shows the
RMSE and percentage error of the tire force estimation, from which it can be seen that the
ASMO estimates have smaller RMSE and percentage error compared to the Dugoff method.
This demonstrates that the proposed ASMO method has higher accuracy and robustness
than the Dugoff tire model under double-lane change operation.
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Figure 7. Vehicle mass estimation results under a double-lane change condition.
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Figure 8. Longitudinal and lateral tire force estimation results under a double-lane change condition.

Table 2. RMSE and percentage error of the longitudinal and lateral tire forces estimation under
double-lane change conditions.

Method Tire Force Fx11 Fx12 Fx21 Fx22 Fy11 Fy12 Fy21 Fy22

System Maximum
Values (N) 7.3 8.7 16.5 17.6 828.1 956.3 390.1 512.4

Dugoff RMSE (N) 3.34 3.10 1.57 1.77 17.30 19.17 11.35 14.61
Percentage
Errors (%) 45.8 35.6 9.5 10.1 2.1 2.0 2.9 2.9

ASMO
RMSE 0.98 0.92 0.86 0.81 10.75 11.42 8.90 9.23

Percentage
Errors (%) 13.4 10.6 5.2 4.6 1.3 1.2 2.3 1.8

It is worth noting that the percentage errors in Table 2 are obtained from the “RMSE/System
Maximum Value”. The percentage error indicators that appear below are calculated using
the same method.
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Figure 9 shows the final vehicle state estimation results for the double-lane change
condition. For the estimation of vx, the EKF has the largest fluctuation, and the curve has
a tendency to diverge, which is most affected by the non-Gaussian noise. The UKF and
CKF have similar estimation performances but have large errors from the reference value,
especially when the vehicle is turning. This is because when the vehicle turns, the tires tend
to show nonlinear characteristics, and the error of the tire force calculated by the Dugoff
tire model becomes larger. At the same time, the large outliers in the on-board sensor data
increase and the non-Gaussian characteristics of the noise become stronger, and all of the
above have a large impact on the estimation results. The proposed MCSCKF shows the
best estimation performance with minimum fluctuations and errors under non-Gaussian
noise. For the estimation of vy and β, the MCSCKF method still follows the reference value
accurately compared to the conventional Kalman filters (EKF, UKF, and CKF). Table 3 shows
the RMSE and percentage error of the different methods. For the estimation of the three
vehicle states, MCSCKF has the smallest RMSE (0.0015, 0.0092, and 0.0008) and percentage
error (0.01%, 4.6%, and 4.5%) compared to the other methods. Table 4 shows fixed-point
iterations of the proposed algorithm, and it is clear that MCSCKF has a very small iteration
number. The above results demonstrate that the MCC can suppress non-Gaussian noise
better than the conventional Kalman filter, and the MCSCKF has higher accuracy and
robustness for vehicle state estimation under double-lane change conditions.
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Figure 9. Vehicle state estimation results under a double-lane change condition. (a) Longitudinal
vehicle velocity estimation results; (b) Lateral vehicle velocity estimation results; (c) Sideslip angle
estimation results.
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Table 3. RMSE and percentage error of different methods under double-lane change conditions.

Filter vx (m/s) vy (m/s) β (rad)

System Maximum
Values 11.13 0.20 0.0179

EKF
RMSE 0.0353 0.0447 0.0040

Percentage Errors (%) 0.32 22.4 22.3

UKF
RMSE 0.0140 0.0345 0.0031

Percentage Errors (%) 0.13 17.2 17.3

CKF
RMSE 0.0142 0.0277 0.0025

Percentage Errors (%) 0.13 13.9 14.0

MCSCKF
RMSE 0.0015 0.0092 0.0008

Percentage Errors (%) 0.01 4.6 4.5

Table 4. Fixed-point iterations of the MCSCKF algorithm for double-lane change conditions.

Filter Average Iteration
Number

Maximum Iteration
Number

Minimum Iteration
Number

MCSCKF 2.0218 3 1

4.2.2. Sinusoidal Steering Condition

In this operating condition, the process and measurement noise are assumed to be heavy-
tailed non-Gaussian, satisfying a mixed Gaussian distribution. Equations (65) and (66) give
the corresponding covariance matrices Q and R. The tire-road friction coefficient is set to
0.85. To further verify the estimation performance of the proposed method when the vehicle
is driving vigorously, the longitudinal speed is increased from 40 km/h to 80 km/h. The
initial state vectors and the corresponding covariance matrices are x(0|0) = [80/3.6, 0, 0]
and P(0|0) = 0.01 ∗ diag([1, 1, 1]) . Figure 10 illustrates the input and measurement signals
of the estimator.

Figure 10. The input and measurement signals of the estimator. Input: (a) Front wheel angle δ,
longitudinal acceleration ax,m. Measurement: (b) yaw rate rm and lateral acceleration ay,m under
sinusoidal steering conditions.

To simulate the vehicle mass decrease, the initial vehicle mass is set to 1600 kg, while
the real vehicle mass is 1412 kg. The estimation results for the vehicle mass are given in
Figure 11. It can be seen that the curve can quickly converge to near the true value in the
first 2 s, and after that, it can follow the reference value with small fluctuations. This proves
that the FRLS method can quickly and accurately identify the vehicle’s mass at the start
of the vehicle’s operation. The results for the longitudinal and lateral tire forces from the
ASMO and Dugoff tire models are presented in Figure 12. As can be observed, the ASMO
has smaller errors than the Dugoff model, especially when the vehicle is turning. This is
because the Dugoff tire model does not fit the tire nonlinearity well when the vehicle is
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turning, resulting in larger errors for the calculated tire forces. Table 5 shows the RMSE and
percentage error of the tire force estimation, and it is clear that the RMSE and percentage
error of the AMSO estimation are smaller compared to the Dugoff method. This also shows
that the proposed ASMO method has higher accuracy and robustness than the Dugoff tire
model under sinusoidal steering conditions.
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Figure 11. Vehicle mass estimation results under a sinusoidal steering condition.

Table 5. RMSE and percentage error of the longitudinal and lateral tire forces estimation under
sinusoidal steering conditions.

Method Tire Force Fx11 Fx12 Fx21 Fx22 Fy11 Fy12 Fy21 Fy22

System Maximum
Values (N) 587.6 511.8 358.4 358.3 2303.0 5730.5 801.0 4162.6

Dugoff RMSE (N) 90.41 79.87 54.11 58.67 686.73 728.52 431.74 420.31
Percentage
Errors (%) 15.4 15.6 15.1 16.4 29.9 12.7 54.0 10.1

ASMO
RMSE 13.40 15.04 12.07 12.83 312.95 317.89 194.06 172.42

Percentage
Errors (%) 2.3 2.9 3.4 3.6 13.6 5.5 24.2 4.1

Figure 13 shows the vehicle state estimation results under the sinusoidal steering
condition. For the three vehicle states, the EKF has the largest estimation error with a
tendency to diverge and exhibits the worst accuracy and robustness, while the UKF and
CKF have similar performances and do not follow the true values well. The traditional
estimation scheme (UKF/CKF + Dugoff) has deteriorated in performance due to the error
of the tire model and the interference of non-Gaussian noise. In contrast, the hierarchical
estimation method can estimate the vehicle’s driving state more accurately, especially when
the lateral motion is significant (lateral acceleration and lateral vehicle speed peaks). The
RMSE and percentage error of the different methods are listed in Table 6. It can be seen
that the estimation results of MCSCKF have the smallest RMSE (0.0314, 0.1047, 0.0047) and
percentage error (0.13%, 12.0%, 11.9%) compared to the other methods under non-Gaussian
noise. Table 7 shows the fixed-point iterations of the proposed algorithm, and MCSCKF
can quickly obtain the optimal estimate after a few iterations. The above results show that
the MCC can better deal with non-Gaussian noise, and the MCSCKF has higher accuracy
and robustness for vehicle state estimation under sinusoidal steering conditions.
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Figure 12. Longitudinal and lateral tire force estimation results under a sinusoidal steering condition.

Table 6. RMSE and percentage error of different methods under a sinusoidal steering condition.

Filter vx (m/s) vy (m/s) β (rad)

System Maximum
Values 23.31 0.87 0.0394

EKF
RMSE 0.4931 0.4781 0.0216

Percentage Errors (%) 2.1 55.0 54.8

UKF
RMSE 0.1372 0.4428 0.0199

Percentage Errors (%) 0.59 51.0 50.5

CKF
RMSE 0.1202 0.3685 0.0166

Percentage Errors (%) 0.52 42.4 42.1

MCSCKF
RMSE 0.0314 0.1047 0.0047

Percentage Errors (%) 0.13 12.0 11.9
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Figure 13. Vehicle state estimation results under a sinusoidal steering condition. (a) Longitudinal
vehicle velocity estimation results; (b) Lateral vehicle velocity estimation results; (c) Sideslip angle
estimation results.

Table 7. Fixed-point iterations of the MCSCKF algorithm for sinusoidal steering conditions.

Filter Average Iteration
Number

Maximum Iteration
Number

Minimum Iteration
Number

MCSCKF 2.2115 4 1

In summary, the proposed FRLS can accurately identify the vehicle mass when it
increases or decreases. Also, the ASMO-based method can observe the longitudinal and
lateral tire forces with a small error when the tire is in the nonlinear region. In addi-
tion, the MCSCKF can accurately estimate the vehicle’s driving state in non-Gaussian
environments. The proposed robust hierarchical estimation scheme has better accuracy
and robustness than the conventional estimation methods for vehicle state estimation in
practical operating conditions.

5. Conclusions

A robust hierarchical estimation scheme for vehicle states was proposed in this paper.
First, the vehicle mass was identified by the FRLS and a lateral dynamics model. Secondly,
the longitudinal and lateral tire forces were accurately observed by ASMO based on the
wheel rotation dynamics models and the single-track model. Finally, using the estimated
information, the vehicle’s driving state containing the longitudinal vehicle speed, the lateral
vehicle speed, and the sideslip angle were estimated by MCSCKF in non-Gaussian scenarios.
To validate the effectiveness of the proposed hierarchical estimation scheme, two typical
operating conditions were tested based on a joint simulation platform. The results showed
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that the proposed FRLS and ASMO perform well in the estimation of mass and tire forces.
Also, the MCSCKF can accurately estimate the vehicle’s driving state under non-Gaussian
conditions. The proposed robust hierarchical estimation scheme can cope better with model
parameter ingestion and non-Gaussian noise than conventional estimation methods and
has great application potential in the field of autonomous driving perception. However,
the proposed method is not applied to the real vehicle test; the complexity and real-time
performance of the algorithm need to be focused on, and the dynamics model does not
consider the rolling motion of the vehicle. The problems mentioned above will be the main
direction of our future research.
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