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Abstract: Predicting how an individual will perceive the visual complexity of a piece of information is
still a relatively unexplored domain, although it can be useful in many contexts such as for the design
of human–computer interfaces. We propose here a new method, called Information Complexity
Ranking (ICR) to rank objects from the simplest to the most complex. It takes into account both their
intrinsic complexity (in the algorithmic sense) with the Kolmogorov complexity and their similarity
to other objects using the work of Cilibrasi and Vitanyi on the normalized compression distance
(NCD). We first validated the properties of our ranking method on a reference experiment composed
of 7200 randomly generated images divided into 3 types of pictorial elements (text, digits, and colored
dots). In the second step, we tested our complexity calculation on a reference dataset composed
of 1400 images divided into 7 categories. We compared our results to the ground-truth values of
five state-of-the-art complexity algorithms. The results show that our method achieved the best
performance for some categories and outperformed the majority of the state-of-the-art algorithms for
other categories. For images with many semantic elements, our method was not as efficient as some
of the state-of-the-art algorithms.

Keywords: algorithmic information theory; information complexity; similarity complexity;
Kolmogorov complexity

1. Introduction

Information complexity estimation is used in many contexts to classify texts [1],
reconstruct phylogenetic trees [2], or analyze the behavior of financial markets [3]. Infor-
mation complexity is also used in the field of image analysis for image classification or
comparison [4]. Information complexity estimation can also be applied to gain a better
understanding of how individuals perceive complexity and how they respond to different
levels of complexity [5,6].

To evaluate this impact, it is first important to quantify and qualify the content of
the information produced. However, the prerequisite for solving this problem is in the
definition of the term “information”.

To quantify the information content, two methods are generally used, the Shannon
entropy (1948) and Kolmogorov complexity (1965). C.E. Shannon was the first to define
information based on the notion of entropy. However, this method’s main limitation is
its ability to evaluate the complexity of an image. Shannon’s observational point of view
does not allow a comparison of multiple images because the entropy is derived from
a summation of the components of the histogram, which represent the frequencies of
appearance of the symbols composing the message and thus does not take into account the
order of these symbols (i.e., the content of the message).

A.N. Kolmogorov, inspired by Shannon’s theory, tried to provide another definition of
the complexity of an object. The notion of complexity according to Kolmogorov is based
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on the algorithmic notions of the program and universal language. This approach can be
summarized as follows: what is simple, can be briefly described. This new point of view
characterizes the randomness of information, but in image analysis, the notion of structure
is important and is not fully taken into account. To overcome these limitations, the notion
of similarity between images can help to highlight a possible structure.

To calculate the similarity between images, the normalized compression distance
(NCD) [1] is appropriate in the algorithmic context. However, NCD alone considers the
distance between images but does not allow for the ranking of these images from the least
to the most complex. To overcome this limitation, we propose a new method for ranking
images according to their complexity that integrates the notion of similarity with NCD and
the Kolmogorov complexity. The aim of our proposed method is to measure the complexity
of each image and compare them to establish a ranking.

Contributions:

• We propose a new method for classifying images according to their complexity known
as ICR.

• We define a protocol for generating synthetic images in order to evaluate the perfor-
mance of the compression algorithms that can be used with our new method.

• We perform experiments on a dataset of 1400 diverse images to prove the robustness
of our approach.

The theoretical aspects of this method and their extension to the concept of information
distance will be developed in Section 2. We present the new ranking method and formally
prove that it is a partially ordered set in Section 3. Two experiments are proposed to prove
the robustness of our proposal in Section 4. The conclusions of our work are summarized
in Section 5.

2. Materials and Methods
2.1. State-of-the-Art Algorithms
2.1.1. Statistical View of Complexity

One of the first efforts at qualifying the information was Shannon’s information theory.
In his paper “A mathematical theory of communication” (1948), Shannon tackles the issue
of message communication between a sender and a recipient [7], taking inspiration from
probability theory, statistics, and thermodynamics. He introduces the concept of entropy in
the field of information theory, where the idea is to measure the uncertainty of a transmitted
message. The less frequent a message, the greater the amount of storage required to transmit
it. Entropy is then interpreted as a measure of the number of bits required to encode the
information to be sent and is defined as:

H(m) = n(−∑ pi log2 pi) (1)

where m is the message to transmit, n is the number of symbols in the message, and pi
(pi = ki/k) is the relative frequency of symbol i in m (k is the number of symbols in the
alphabet, i.e., (a-z) and ki is the number of occurrences of symbol i in m).

This formulation only takes into account the relative frequencies of the different sym-
bols and the entropy is therefore not interested in the meaning of the transmitted message
or, to cite Shannon himself, “These semantic aspects of communication are irrelevant to the
engineering problem.” [7]. The frequencies also do not determine the order of symbols in a
text or their 2D position in an image (the symbols of an image are the values of each pixel),
whereas the complexity of a text or an image depends on this order or these positions [8].

In practice, the information used in our case (image classification) is not diverse
enough for the statistical method to be interesting. It is then useful to focus on the notion
of description with the following postulation: the more complex an object (i.e., rich in
information), the longer its description. The unambiguous description of an object thus
makes it possible to quantify its information content and, consequently, its complexity.
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2.1.2. Algorithmic View of Complexity

The evolution of this conceptual idea toward formal mathematical definitions has
allowed the development of the concept of “Algorithmic Information Theory” (AIT) [9].
This concept was initiated by several works of Chaitin or Solomonoff, but mainly by
A.N. Kolmogorov in the seminal paper “Three Approaches to Information” (1965) [10].
AIT is concerned with measuring string complexity but can also measure any other data
structures. This algorithmic theory is inspired by probability theory, information theory,
and randomness notions [11]. To implement this approach to information, Kolmogorov was
concerned with the way the information is generated. As a result of his contribution, this
new form of evaluating the information is generally named the “Kolmogorov complexity”.

To generate information, an algorithm can be used and executed in any program-
ming language. Kolmogorov’s complexity calculation involves considering the size of
the program and the algorithm that generates the information. The length of a program
(description) allows us to measure the object’s complexity and, therefore, the content of the
information.

The Kolmogorov complexity [10] of an object x, namely Kϕ(x), is thus defined as the
length of the shortest program that can compute x. This program can be written in any
universal description language (Turing-complete programming languages such as C, C++,
Python, JAVA) .

Kϕ(x) = min{|p| : ϕ(p) = x} (2)

where p is a computer program (with no input), ϕ executes programs (i.e., ϕ is a pro-
gramming language plus a compiler plus the machinery to run programs), and ϕ(p) is the
output of the execution of program p. Thus, for x ∈ O, Kϕ(x) is the length of the shortest
program p with which ϕ computes x [12].

According to Turing’s work on the undecidability of program termination [13] or Sol-
monoff’s later paper “A formal theory of inductive inference” [14], Kϕ(x) is not effectively
computable in the sense of Turing, because it is not recursive [15]. Nevertheless, Kϕ(x)
is approachable. In particular, in his invariance theorem [10], Kolmogorov showed that
given any couple of programs (U,V) implementing the same algorithm in two different
languages, they are equal to each other up to an additive constant.

|KU(x)− KV(x)| < CUV (3)

where KU(x) (respectively, KV(x)) is the Kolmogorov complexity with a universal machine
U (respectively, V) and CUV is a constant.

This theorem allows us to state (with respect to a constant) that the change in the
universal Turing machine (i.e., programming language) does not affect the Kolmogorov
complexity of the sequence x. In this context, the shortest program can be considered the
minimal description of the object and a satisfying approximation of the Kolmogorov com-
plexity.

This algorithmic method enables the description to be seen as a compressed version
of the object. The program computes the object with a fewer number of symbols than
the number of symbols used to compose the object (Kϕ(x) 6 |x| —incompressibility
notion [10]).

In fact, the description of the object (the program) and the compressed version of an
object are based on the same principle, i.e., the search for regularities. In an effort to find
the shortest program or reduce the size of a file as much as possible, the common goal is to
exploit the repeated information contained in the object.

The compression ratio (C(o)) is then an approximation of the Kolmogorov complexity
since it supplies an indication of the size of an object’s description and thus its complexity.

C(o) =
s(o)

s(K(o))
(4)
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where s(o) is the file size of the original object and s(K(o)) is the compressed file size of the
original object.

In order to better understand this concept, let us come back to the two strings, S1=“cqzabrdiok”
and S2=“aaabcddddd”, we used previously. These two objects have intuitively different
complexities, which are, respectively, high and low (in the sense of Kolmogorov).

To determine the string complexity, the Run-Length Encoding (RLE) [16] simple
lossless (lossless compression is a method in which the original data can be recovered
exactly from the compressed data) data compression algorithm can be used (this compressor
is, of course, far from being optimal in terms of compression but is used for illustration
purposes). After RLE compression, the output of the first string is “1c1q1z1a1b1r1d1i1o1k”
with a total of twenty characters and the output of the second string is “3a1b1c5d” with
a total of eight characters. The outputs produced reflect the higher complexity of the
first input string due to the absence of repetitions, whereas the second benefits from the
repetitions. The Kolmogorov complexity is a measure of the complexity of a single object;
it is not possible to know the complexity of several images simultaneously.

If we consider complexity as a measure of information, we can make the assump-
tion that comparing the complexities of the objects can allow for the classification of the
information represented by them.

2.1.3. The Similarity between Two Objects

In the sense of Kolmogorov, two objects are similar in complexity if one can be de-
scribed by the description of the other [1].

The normalized information distance (NID) [17] is thus a theoretical universal distance
based on the Kolmogorov complexity and is defined as:

max{K(x|y), K(y|x)}
max{K(x), K(y)}

where K(x|y) (respectively, K(y|x)) is the conditional Kolmogorov (i.e., the length of the
shortest program to compute x if y is furnished as an auxiliary input to the computation [17])
of x (respectively, y) with respect to y (respectively, x).

Unfortunately, it has been proven to be uncomputable since K is uncomputable [18],
but hopefully, it is approximable ([1,19]).

Cilibrasi and Vitanyi proposed a computable approximation of the NID referred to
as the normalized compression distance (NCD) [1] using the idea presented above that
considers compressors as an approximation of the Kolmogorov complexity:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)} (5)

where C(x) and C(y) denote, respectively, the compressed ratio of the object x and the
object y. C(xy) represents the complexity of the concatenation (i.e., the operation joining
two objects together) of object x and object y. The maximal similarity between objects is
then represented by 0 and the maximal dissimilarity by 1 + ε (ε is due to imperfections in
the compression techniques) [1].

The compressor must be normal to compute this distance so it must satisfy the prop-
erties of idempotence, symmetry, monotonicity, and distributivity [1]. Indeed, a normal
compressor detects repetitions in the data to be compressed, which enables the removal of
redundant data in the description of the object. This notion allows NCD to approximate
optimality and thus be a quasi-universal metric of similarity.

Idempotency Property

C(xx) = C(x) (6)
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Symmetry Property

C(xy) = C(yx) (7)

Monotonicity Property

C(xy) > C(x) (8)

Distributivity Property

C(xy) + C(z) 6 C(xz) + C(yz) (9)

Then, NCD has been proven to be a distance and thus respects the following properties:

Separation Property

NCD(x, y) = 0⇔ x = y (10)

Symmetry Property

NCD(x, y) = NCD(y, x) (11)

Triangle Inequality Property

NCD(x, y) 6 NCD(x, z) + NCD(z, y) (12)

The objective of Cilibrasi and Vitanyi was not to order objects but to group similar
objects. The degree of similarity between two objects is important but insufficient for
ranking information according to its complexity. Therefore, we decided to propose an
alternative measure of information complexity. This measure will allow us to better isolate
and analyze the impact of information complexity.

3. Information Complexity Ranking (ICR)

The main contribution of this article is the proposal of a new measure that allows for
the ordering of several objects from the least to the most complex and thus facilitates their
comparison. The fundamental idea of the ICR method is to provide a finer measure of
complexity. From a purely algorithmic point of view, two images can be very similar, which
NCD faithfully retranscribes, but cannot be compared in terms of complexity by NCD. It is
this gap that we are attempting to fill by using the intrinsic complexity of each image.

Our purpose is to propose a partial order, i.e., a binary relation that respects the
following properties: reflexivity, antisymmetry, and transitivity. Having a partial order
allows us to coherently compare the elements to establish a ranking. This is not the case
with NCD, which aims at grouping similar elements.

To provide these properties, we first introduce the concept of Information Complexity
Ranking (ICR), which is based on measuring the similarity between two objects (i.e., NCD)
and weighting it by the intrinsic complexity of each object (compression ratio) (C(x)). To
ensure that we have a partial order, we incorporate the complexities of both pieces of
information by multiplying NCD by the product of the two compression ratios.

ICR(x, y) =
NCD(x, y)× C(y)

C(x)
(13)

We then claim that the binary relation R(x,y), which is defined by

R(x, y) = xRy⇔ ICR(x, y) > ICR(y, x) (14)
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is a partial order.

3.1. Proof

The objects treated here are generic and can be any sequence of binary symbols that
form a bitset. As mentioned above, a partial order is a binary relation satisfying the
following properties:

R(x, x) Re f lexivity
R(x, y) AND R(y, z)⇒ R(x, z) Transitivity
R(x, y) AND R(y, x)⇒ x = y Anti− symmetry

(15)

3.1.1. Reflexivity Property

Due to the separation property (Equation (10)) of NCD, NCD(x,x)= 0 and, therefore,
ICR(x, x) > ICR(x, x) and R(x, y) is reflexive.

3.1.2. Transitivity Property

Let us suppose that ICR(x, y) > ICR(y, x) and ICR(y, z) > ICR(z, y).
We can rewrite it as 

NCD(x,y)×C(y)
C(x) > NCD(y,x)×C(x)

C(y)
NCD(y,z)×C(z)

C(y) > NCD(z,y)×C(y)
C(z)

(16)

By multiplying both sides, respectively, by C(x)C(y) and C(y)C(z), (C(u) (being a
positive function by definition), we obtain{

NCD(x, y)× C2(y) > NCD(y, x)× C2(x)
NCD(y, z)× C2(z) > NCD(z, y)× C2(y)

(17)

Due to the symmetry property of NCD (Equation (11)) and as NCD is positive, we can
divide both sides, respectively, by NCD(x, y) and NCD(z, y). We then obtain{

C2(y) > C2(x)
C2(z) > C2(y)

(18)

From these equations, we can deduce that C2(z) > C2(x).
By multiplying both sides by NCD(x,z) and due to the symmetry of NCD, we have

NCD(x, z)× C2(z) > NCD(z, x)× C2(x). Dividing both sides by C(z)× C(x) allows us
to conclude if C(x) > 0 and C(z) > 0 so that

NCD(x, z)× C(z)
C(x)

>
NCD(z, x)× C(x)

C(z)

can be rewritten as

ICR(x, z) > ICR(z, x)

which proves the transitivity of the relation.

3.1.3. Anti-Symmetry Property

Let us suppose that ICR(x, y) > ICR(y, x) and ICR(y, x) > ICR(x, y).
We thus have 

NCD(x,y)×C(y)
C(x) > NCD(y,x)×C(x)

C(y)
NCD(y,x)×C(x)

C(y) > NCD(x,y)×C(y)
C(x)

(19)
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As NCD is symmetric, we can divide both sides by NCD(x,y), which gives
C(y)
C(x) >

C(x)
C(y)

C(x)
C(y) >

C(y)
C(x)

(20)

Multiplying both sides by C(x)× C(y) gives{
C2(y) > C2(x)
C2(x) > C2(y)

(21)

which can only be true if C(x) = C(y), allowing us to conclude that the relation is anti-
symmetric.

To conclude, as R(x, y) is reflexive, transitive, and anti-symmetric, it is a partial order.
Our method is an abstract measure that relies on strong hypotheses concerning the

properties of both the compressor and the concatenation operator and must be validated
in concrete applications. First, we validate our hypotheses on a benchmark experiment
and then, we apply our method to a reference database in the domain of complexity
measurement.

4. Experiments
4.1. Synthetic Dataset
4.1.1. Purpose of the Experiment

The Kolmogorov complexity, the central theoretical notion of our ICR proposal, is not
computable but is approximable. This approximation, which is also useful for NCD, is
performed with the help of compression algorithms. These compression algorithms must
be normal. With this aim in mind, we wanted to test a panel of eight algorithms from the
literature to determine whether they respect the properties of a normal compressor and
thus use them for our image classification method.

4.1.2. Protocol

To compute the complexity of an image, the original image format must use a lossless
format (no compression). The bitmap (BMP) format respects this prerequisite and can be
edited, manipulated, and translated without losing image quality.

The images used for testing were generated randomly by assembling three kinds of
pictorial elements that can be easily synthesized: text, digits, and colored dots. The resulting
image consisted of a string of 20 characters concatenated with a number containing 1 to
4 digits and colored dots whose colors were randomly selected. This template was not
entirely random for two reasons: first, we wanted to compare similar structures with slight
differences to test the sensitivity of our method, and second, this format was consistent
with the visual labels we intend to use in a future experiment to examine the impact of
information complexity on the decision process (such as nutrition labels [20]).

One of the hypotheses for our method to be consistent is that the concatenation
operation should respect certain properties. As Kolmogorov takes the order of information
into account, it was important to check the influence of the direction of concatenation for
each image pair. To this end, the images were concatenated in pairs, either vertically or
horizontally.

Another important hypothesis concerning the applicability of our method concerned
the quality of the compressor. To determine whether the compression algorithms could
influence the results, we tested several algorithms for computing the Kolmogorov com-
plexity. In practice, eight commonly used lossless compression algorithms were tested
(Figures 1 and 2).

The parameters of these compressors were also studied and the parameter maximizing
the compression ratio was chosen.
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Figure 1. Example of vertical concatenation of a generated image.

Figure 2. Example of horizontal concatenation of a generated image.

For the concatenation of the images, we resized the largest image by taking the vertical
dimension of the smallest image to avoid introducing artifacts by stretching the smallest
image. Overall, 7200 images were created (3600 images were horizontally concatenated
and 3600 images were vertically concatenated).

For the compression algorithms, we tested how much they respected the properties
required for NCD in an effort to ensure our method was generalizable (Table 1), as well as
the resulting compression ratios.

Table 1. Performance of compression algorithms by calculating the compression ratio for each
property required to satisfy the concept of a normal compressor.

Algorithm PNG PPM LZ77 ALZ LZP LZW AC Huffman
Idempotency

horizontal 0.088 0.091 0.098 0.196 0.209 0.555 0.533 0.216

Idempotency
vertical 0.043 0.047 0.058 0.130 0.133 0.631 0.591 0.237

Symmetry
horizontal 0.004 0.014 0.004 0.007 0.007 0.004 0.001 0.000

Symmetry
vertical 0.006 0.027 0.009 0.031 0.005 0.007 0.009 0.000

Monotonicity
horizontal 0.318 0.202 0.285 0.197 0.334 0.323 0.731 1.423

Monotonicity
vertical 0.344 0.204 0.298 0.199 0.329 0.343 0.909 1.588

Distributivity
horizontal 0.313 0.197 0.273 0.203 0.327 0.314 0.736 1.414

Distributivity
vertical 0.329 0.202 0.287 0.203 0.313 0.333 0.894 1.549

Compression
ratio 3.174 3.676 3.509 3.745 3.300 3.875 2.028 0.760

4.1.3. Results

The objective of our comparison was to study how the different compressors behaved
regarding the expected properties of a normal compressor, i.e., idempotency, symmetry,
monotonicity, and distributivity. Rather than using a boolean value for each of the four
properties, we wanted to determine the loss generated by compressing two identical images
(detection of repetition) or whether a compressor can detect the concatenation order of
two different images. For instance, if a compressor was idempotent (C(xx) = C(x)), then
it should compress similarly an image x and a duplication of this image xx. However, as
we can see in the first line of Table 1, no compressor achieved a value of 0, even though
PNG was less affected than the other compressors. We can also see that Huffman was not
sensitive to symmetries (Table 1, lines 3 and 4, last column) since it only used the frequency
of each symbol and not the relative positions. Therefore, using these values rather than a
boolean value allowed us to compare compressors more accurately.

The PNG, PPM, and LZ77 algorithms achieved the best results regarding the idem-
potency property (C(xx) = C(x)), which allowed the compressor to detect exact rep-
etitions and thus achieve reasonable accuracy. With regard to the symmetry property
(C(xy) = C(yx)), which is important for the optimal use of NCD, the PNG and LZ77



Entropy 2023, 25, 439 9 of 14

algorithms presented the best results in horizontal and vertical concatenation. The PPM
algorithm, as part of the family of predictive compressors, showed small deviations, which
will disappear asymptotically with the length of x and y [1]. Concerning the monotonicity
property (C(xy) > C(x)), which allows for the preservation of the concatenation order of
the information, an important notion for NCD, the three selected algorithms presented
similar results to the other tested algorithms, except for Huffman. Similar results were
found for the notion of distributivity (C(xy) + C(z) 6 C(xz) + C(yz)). Regarding the
compression ratio performance, the PNG, LZ77, and PPM algorithms achieved similar
results to the best-performing compressor, the LZW.

Note that the results were obtained using the maximum compression parameters of
each algorithm.

In conclusion, in order to maximize the accuracy of NCD and, consequently, our ICR
proposal, based on the results presented in Table 1, three compressors, PNG, PPM, and
LZ77, were chosen for further experimentation on the SAVOIAS dataset.

4.2. SAVOIAS Dataset
4.2.1. Dataset Description

To further test the performance of our approach in a more realistic context, we tested
its robustness on the SAVOIAS dataset [21]. The Boston University team that provided this
dataset intended to create a visual complexity dataset of more than 1400 images. One of its
advantages is the relevance of the choice of images to address the problem of visual com-
plexity. The diversity of the images is also interesting with various low-level and high-level
features. The images are clustered into seven categories, namely Scenes, Advertisements,
Visualization and infographics, Objects, Interior design, Art, and Suprematism. They com-
pared their ground truths to five state-of-the-art complexity algorithms to measure their
performance. We used these five algorithms for comparison with our method. The ground
truths of the dataset were obtained by asking 1600 contributors to compare a subset of
pairs of images in a set of more than 37,000 pairs of images. Participants were asked to
estimate the visual complexity of each pair by giving a score on a scale from 0 to 100, with
0 being very simple and 100 very complex [21].

To illustrate, let us use as an example two images found in the dataset (Figure 3).
The output of ICR for these two images is then ICR(A, B) = 4032 and ICR(B, A)= 0.229.
Thus, we rank image A as more complex than image B, which seems intuitively consistent.

(A) (B)

Figure 3. Example of two images (left, IMAGE (A), and right, IMAGE (B)) used to test our method of
Information Complexity Ranking (ICR).

To go beyond the first “intuitive” impression, we proposed a rigorous experimental
protocol.
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4.2.2. Protocol

We used the ground truths of the SAVOIAS experiment to compare the state-of-the-
art visual complexity algorithms and the information complexity ranking (ICR). Table 2
presents the details of the number of images by category and the number of resulting
comparisons.

Table 2. Number of images generated to test ICR. Factor 2 applied to the Number of comparison
columns represents the horizontal and vertical concatenation of each image.

Category Number of Number of Total number of
Images Comparisons Processed Images

Scenes 200 (200× 200)× 2 80,000
Advertisement 200 (200× 200)× 2 80,000
Visualization 200 (200× 200)× 2 80,000

Objects 200 (200× 200)× 2 80,000
Interior Design 100 (100× 100)× 2 20,000

Art 420 (420× 420)× 2 352,800
Suprematism 100 (100× 100)× 2 20,000

At the end of the process, we obtained four values for the ICR computation. The first
two values corresponded to the calculation of ICR(A, B) for which image A was concate-
nated with image B in the horizontal (respectively, vertical) direction, whereas the last two
values corresponded to ICR(B, A), the concatenation of the swapped images. To compare
the values obtained and the ground truths, we ranked the images by complexity. For this
purpose, we use Condorcet’s method [22]. This voting system, which was established in
1785 by Nicolas de Condorcet, allows for the designation of the winner of an election by
contrasting the number of votes in a head-to-head comparison. In the application of this
method, the maximum value of each comparison by pair was considered a “vote”. All the
“votes” were then summed for each image to obtain a ranking of all the images. Finally, in
order to compare the rank of complexity given by the ground truths and the rank given by
our method, we computed the Spearman correlation.

To demonstrate the robustness of our proposal, we also compared it to five other
state-of-the-art visual complexity measures, namely the edge density, feature crowding,
subband entropy [23], number of regions [24], and compression ratio [25] measures. The
edge density measure is the percentage of pixels that are edge pixels in an image. Feature
clutter represents visual clutter and the difficulty of adding a new element that can reliably
draw attention to a display or scene. Subband entropy is based on the idea that clutter
is related to the number of bits required to encode the image into subbands (wavelets).
Measuring the number of regions is equivalent to counting the densest regions in the
feature space of an image. The compression ratio corresponds to the bppR (bit-per-pixel
ratio), which is the ratio of the bpp of a distorted image to the bpp of a lossless compressed
version of the original image (in JPEG). For generalization purposes, it is important to
remember that ICR can be applied to all types of data, unlike these methods that are only
applicable to images.

4.2.3. Results

Our proposal is based on a combination of NCD and the compression ratio (ICR(x, y) =
NCD(x, y)× C(y)/C(x)) so it is important to demonstrate its performance with respect to
the individual elements that comprise it. As shown in Table 3, our ICR method had better
correlations with human perception in all dataset categories compared to using NCD alone.
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Table 3. Comparison of ICR and NCD. The NCD and ICR values are the averages of the PNG, PPM,
and LZ77 algorithms. The best result for each category is highlighted in bold.

Category NCD ICR

Scenes 0.23 0.40
Advertisement 0.16 0.58
Visualizations 0.13 0.31

Objects 0.05 0.16
Interior Design 0.52 0.67

Art 0.28 0.58
Suprematism 0.47 0.73

By comparing the results in Table 3 and the results of the compression ratio in Table 4,
we can see the contribution of NCD in the categories Scenes, Advertisement, Art, and Supre-
matism. In the categories Objects and Interior decoration, the results of our method were
similar to those of the compression ratio alone and superior to those of the NCD alone.
The coefficient of the Visualizations category was less efficient because the images in this
category were very heterogeneous so the contribution of NCD was almost non-existent.

Table 4. Comparison of ICR and visual complexity measurements in the literature. The values of the
first five columns have been carried over from the corresponding columns of Table 3 in [21] (Adapted
from [21]). The best result for each category is highlighted in bold.

Category Edge
Density

Number
of

Regions

Feature
Congestion

Subband
Entropy

Compression
Ratio ICR

Scenes 0.16 0.57 0.42 0.16 0.30 0.40
Advertisement 0.54 0.41 0.56 0.54 0.56 0.58
Visualizations 0.57 0.38 0.52 0.61 0.55 0.31

Objects 0.28 0.29 0.30 0.10 0.16 0.16
Interior Design 0.61 0.67 0.58 0.31 0.68 0.67

Art 0.48 0.65 0.22 0.33 0.51 0.58
Suprematism 0.18 0.84 0.48 0.39 0.60 0.73

As seen in Table 4, our method achieved the best results for the category Advertisement
and Interior Design. The results of our method for the categories Art and Suprematism were
better than those of the edge density, feature congestion, subband entropy, and compression
ratio measures. In the Visualizations category, the results of our method were lower than
expected compared to those of the other methods. Concerning the images representing
objects, the performance of our method was below that of the other measures except for
the subband entropy measure.

The difference for the category Visualizations (Figure 4) can be explained by the large
diversity of the images, which involved a low similarity. As this notion is central to our
proposal, the results produced were worse than in the other categories. The Suprematism
painting style, for its part, is based on geometric forms such as circles, squares, or rectangles.
It is also characterized by a reduced color palette. It reinforces the capability of our
measurement to better rank the complexity by detecting the numerous repetitions contained
in these images. The possible improvements are developed in the next section. Note that
whatever the direction of concatenation (horizontal or vertical), the correlation coefficient
of our approach was identical, which demonstrates that the direction of concatenation did
not affect the complexity of the image.
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Figure 4. Examples of Suprematism and Visualizations categories.

5. Conclusions and Perspectives

Quantifying information complexity is an important area of research in adaptive
systems, decision support, and consumer behavior. To improve this understanding, we
propose a new method for prioritizing information according to its complexity. This ranking
is accompanied by a new proposal for comparing objects. It is based on the similarity
between two objects (normalized compression distance) and the intrinsic complexity in the
sense of Kolmogorov. The weighting of the similarity of several objects by their intrinsic
complexity allows us to mark up the most complex object, and thus rank the objects to
evaluate their potential involvement in decision-making processes.

To validate our approach, we tested it on the SAVOIAS dataset [21]. To stay within
the scope of complexity as a measure of information, we compared it to the compression
ratio measure used in the dataset. The results of our proposed method were comparable to
those of the compression ratio for most of the image categories. For images that contained
less context or fewer semantics such as works of art, our metric performed better than the
compression ratio measure. For images with text or graphics, our approach achieved lower
performance.

This can be explained by taking into account that the semantic aspect of the information
is rather weak in our approach. Our goal was to build a measure of information in order to
understand its influence and the semantic aspects of the information will be part of our
future research. The integration of a more user-centered perspective (emotional aspect) is
also planned to gain a deeper understanding of people’s behavior toward the information
that is transmitted to them.

In our future experimental works, we plan to conduct a new experiment using eye-
tracking methods to demonstrate a possible correlation between our ICR ranking method
and the perception of complexity in humans. In future studies, we will mobilize different
notions, such as the decision process or the role of visual attention on choice, in order to
quantify a level of informational complexity that induces a particular choice or response
from individuals.

Given the promising results on images, it would also be interesting to test ICR in
other use cases, such as Natural Language Processing (NLP), cybersecurity with malware
detection [26], or even in genetics and phylogeny, based on the initial experiments presented
using the NCD definition [1].

In our future theoretical works, we would also like to improve our approach centered
on the complexity of the object by using the logical depth of Bennett [27]. The Kolmogorov
complexity is considered a good estimator of an object’s complexity that is represented
by a binary sequence. It is a useful notion for defining the absolute notion of a random
sequence [28] but is not able to capture the notion of structured complexity [29]. Bennett
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tried to measure the real value of the information contained in the sequence, with the
contribution of computational content. This would improve the accuracy of our ICR
ranking method.
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