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Abstract: The SIR model of epidemic spreading can be reduced to a nonlinear differential equation
with an exponential nonlinearity. This differential equation can be approximated by a sequence of
nonlinear differential equations with polynomial nonlinearities. The equations from the obtained
sequence are treated by the Simple Equations Method (SEsM). This allows us to obtain exact solutions
to some of these equations. We discuss several of these solutions. Some (but not all) of the obtained
exact solutions can be used for the description of the evolution of epidemic waves. We discuss this
connection. In addition, we use two of the obtained solutions to study the evolution of two of the
COVID-19 epidemic waves in Bulgaria by a comparison of the solutions with the available data for
the infected individuals.

Keywords: SIR model of epidemics; nonlinear differential equations; exact solutions; Simple
Equations Method (SEsM); epidemic waves; COVID-19; real data for epidemic spreading of COVID-19

1. Introduction

There are many complex systems of various scales around us. Examples range from
atomic chains and lattices to systems of animals, humans and groups of humans, for
example, research groups and social networks, economic systems, etc. [1–7]. These complex
systems are usually nonlinear [8–10], and this complicates the study. One has to use the
methodology of nonlinear time series analysis, and many of the corresponding models
are based on differential or difference equations [11–14]. Then, one has to obtain solutions
to these nonlinear equations. Usually, numerical methods are used to obtain the needed
solutions. However, it is very useful if one can obtain exact analytical solutions to the model
equations. In this case, one can easily study the relationships among the parameters of the
complex system of interest. In addition, the exact solutions can be used as test solutions
for checking the correctness of the work of the computer programs that have to supply
numerical solutions to the corresponding systems of equations. In this article, we consider
a nonlinear model of the evolution of epidemic waves (the SIR model of epidemics) and
discuss a methodology for obtaining analytical solutions connected to this model. The
methodology is based on the reduction of the model to a sequence of nonlinear differential
equations. Several exact solutions to these nonlinear differential equations are obtained.
Some of the solutions can be used for descriptions of epidemic waves.

Because of its importance, there is a large amount of research on the methodology
for obtaining exact solutions to nonlinear differential equations. In the beginning, one
tried to remove the nonlinearity of the studied equation by an appropriate transformation,
such as the Hopf–Cole transformation [15,16]. Another transformation connected the
nonlinear Korteweg–de Vries equation to the linear Schrödinger equation, and this led to
the method of inverse scattering transform [17]. Other suitable transformations can be
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supplied by the truncated Painleve expansions [18–22]. Such a study led Kudryashov [23]
to the formulation of the Method of Simplest Equation (MSE). The method is based on the
determination of singularity order n of the solved NPDE. Then, a particular solution to this
equation is searched as power series of solutions to a simpler equation called the simplest
equation. For further results on this methodology and its applications, see [24–28].

Below we will use a methodology called SEsM (Simple Equations Method) [29–33].
Some specific cases of this methodology can be seen in our articles written approximately
30 years ago [34,35]. More than a decade ago [36], we used the ODE of Bernoulli as the
simplest equation in the first version of the method: Modified Method of Simplest Equation
(MMSE). We applied the methodology to population dynamics and ecology [37]. The
MMSE [38] uses the concept of balanced equations for the fixation of the simplest equation.
After this, the searched solution was constructed as a truncated power series of the solution
to the simplest equation. This methodology leads to equivalent results with respect to the
Method of Simplest Equation of Kudryashov.

We used MMSE actively till 2018 [39,40]. Our efforts have been constantly directed to
extend the capacity of the methodology. The current version of the methodology (SEsM)
can use more than one simple equation. SEsM based on two simple equations was used
in [41]. The first discussion of SEsM was in [29]. Further discussion on SEsM can be seen
in [33]. Applications of specific cases of SEsM can be seen in [42,43].

Below we apply SEsM to a system of nonlinear differential equations connected to an
epidemic model: the SIR model of the spreading of epidemics in a population. There exist
many models for the spread of epidemics. One of the most basic of these models is the
SIR model for describing the temporal dynamics of an infectious disease in a population.
The model compartmentalizes people into one of three categories: (i) susceptible to the
disease; (ii) those who are currently infectious, and (iii) those who have recovered (with
immunity). The SIR model is a set of equations that describes the number of people in each
compartment at every point in time. A large amount of literature is devoted to this topic
(for several examples, see [44–62]). Epidemic models can also be applied for the description
of other processes, such as the spread of ideas (for overviews, see [3,63]). We also note
the use of epidemic models for the study of COVID-19 spreading [64–78], as well as the
numerical methods for obtaining solutions to such models [79,80].

We note the implicit solutions to the SIR model obtained by means of the Lambert
function [81] and in [82]. Note also that the SIR model does not pass the Painleve test [81].
The solutions obtained below are explicit ones, and they are constructed by the use of
elementary functions.

The text is organized as follows. In Section 2, we describe the methodology of SEsM. In
Section 3, we obtain several exact solutions to the chain of nonlinear differential equations
connected to the SIR model of epidemic spreading. Some of these solutions are appropriate
to model epidemic waves. We discuss them in Section 4. In Section 5, we study the influence
of the parameters of the SIR model on the shape of the epidemic waves described by the
obtained solutions. In the same section, we use the obtained solutions to study two of the
COVID-19 epidemic waves in Bulgaria. Several concluding remarks are summarized in
Section 6.

2. Simple Equations Method (SEsM)

In general, the SEsM is constructed for obtaining exact and approximate solutions to
systems of nonlinear differential equations. We will introduce a notation for the classifi-
cation of the different cases of SEsM. In general, we have to solve n nonlinear differential
equations. The main idea of SEsM is to obtain a solution on the basis of known solutions to
m simpler differential equations. We denote this version of SEsM by SEsM(n,m). The most
used version of SEsM up to now is this one for n = 1. In this case, one has to solve one
complicated nonlinear differential equation by means of the known solutions to m simpler
differential equations. This will be denoted as SEsM(1,m). The most used specific version
of SEsM(1,m) is the version SEsM(1,1). In this case, we solve one complicated nonlinear
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differential equation by means of the known solutions to one simpler differential equation.
SEsM(1,1) is called also the Modified Method of Simplest Equation, and there are many
applications of this specific case of SEsM [83–85].

The main idea of SEsM is as follows. We have to solve a system of nonlinear differen-
tial equations:

Di[ui1(x, . . . , t), . . . , uin(x, . . . , t)] = 0, i = 1, 2, . . . , n. (1)

Di[ui1(x, . . . , t), . . . , uin(x, . . . , t), . . . ] depends on the functions ui1(x, . . . , t), . . . , uin(x, . . . , t)
and some of their derivatives. The functions uik can depend on several spatial coordinates.
We have to transform (1) to

n

∑
i=1

aij(. . . )Eij = 0, j = 1, 2, . . . , pi. (2)

This happens by the representation of uik as composite functions of known analytical
solutions to simpler equations. Above, Eij are functions of the independent spatial variables
and of time. The quantities aij are very important for SEsM. aij are relationships among
the parameters of the Equation (1), parameters of the solutions and the parameters of the
solutions to the simpler equations. pi is a parameter that is characteristic of the i-th equation
from (1). It is important that the relationships aij contain only parameters, whereas the
spatial coordinates and the time are concentrated on the functions Eij. If we manage to
reduce the Equation (1) to the form (2), then we can set

aij(. . . ) = 0. (3)

Thus, we obtain a system of nonlinear algebraic equations. This system contains rela-
tionships among the parameters of (1), parameters of the used simpler equations and the
parameters of the solution constructed by the simpler equations. Each nontrivial solution
to (3) leads to a solution to the system (1).

SEsM has four steps. The first step of SEsM is connected to the possibility of trans-
formations of the nonlinearities of the Equation (1). The solved complicated differential
equations contain nonlinear combinations of the unknown functions and their derivatives.
The experience shows that polynomial nonlinearity is the most treatable kind of nonlin-
earity in a nonlinear differential equation. Thus, if the nonlinearities in (1) are polynomial
ones, then one does not need a transformation to convert these nonlinearities. However,
if the nonlinearities are not polynomial ones, then one can use the transformation order
to convert the nonlinearities to more treatable kinds of nonlinearities (and eventually to
polynomial nonlinearities). Thus, one applies the transformations

uik(x, ..., t) = Tik[Fikl(x, . . . , t), Gikl(x, . . . , t), . . . ]. (4)

In (4), Tik(Fikl , Gikl , . . . ) is a composite function of other functions Fikl , Gikl , . . . . These other
functions can be functions of several spatial variables and time. The transformations have
two goals. First of all, and if it is possible, the transformations may remove the nonlinearity
of the solved Equation (1). One example of this is the Hopf–Cole transformation. This
transformation reduces the nonlinear Burgers equation to the linear heat equation [15,16].
However, removing the nonlinearity of an equation by means of a transformation is rarely
achieved. Usually, the transformations Tik intend to transform the nonlinearity of the solved
equations to a more treatable kind of nonlinearity, such as polynomial nonlinearity. For the
specific case of SEsM(1,1), examples of the transformation T are: u(x, t) = 4 tanh−1[F(x, t)]
for the Poisson–Boltzmann equation, and u(x, t) = 4 tan−1[F(x, t)] for the Sine–Gordon
equation [34,35]. The Painleve expansion is another appropriate transformation. Finally,
u(x, ..., t) = F(x, ..., t) (no transformation) is a possibility for certain classes of nonlinear dif-
ferential equations. The application of (4) to (1) may lead to treatable nonlinear differential
equations for Fikl , Gi,kl , . . . . The transformations Tik may remain unfixed at the first step of
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SEsM. Then, the functions Tik remain unknown, and we have to determine them at some of
the following three steps of the methodology.

Step 2 of SEsM is connected to the construction of the solutions to the transformed
Equation (1). The transformed equations contain the unknown functions and their deriva-
tives. The basic idea of SEsM is to search for solutions to these equations in the form of
composite functions containing solutions to simpler differential equations. The implemen-
tation of this idea leads to the necessity of working with derivatives of composite functions.
These derivatives have to be expressed by the solutions to simpler equations and deriva-
tives of these solutions. Because of this, one has to use the Faa di Bruno formula for the
derivatives of the composite functions. In such a way, the solved equations are converted
to relationships that contain functions that are solutions to more simple equations. At this
point of the application of SEsM, the composite functions and the solutions to the more
simple equation are still not fixed. We can fix the forms of the composite function in Step 2
of SEsM. However, in general, it is not necessary to do this at this step. One example of a
fixation of the composite function for the case of SEsM(1,1) is

F = α +
N

∑
i1=1

βi1 fi1 +
N

∑
i1=1

N

∑
i2=1

γi1,i2 fi1 fi2 +
N

∑
i1=1
· · ·

N

∑
iN=1

σi1,...,iN fi1 . . . fiN . (5)

where α, βi1 , γi1,i2 , σi1,...,iN . . . are parameters, and fik are functions that are solutions to more
simple equations. The relationship used by Hirota [86] is a specific case of (5).

Step 3 of SEsM is usually the most important step in the application of the methodology.
Here, we determine the form of the more simple equations of which the solutions will be
used for solutions to the system of solved nonlinear differential equations. The simple
equations, as well as the composite functions constructed by their solutions, are chosen
in such a way that the solved differential equations are transformed into a system of
relationships (1). One has to ensure that the relationships for aij contain more than one
term. Because of this, additional relationships among the parameters participating in the
relationships for aij may occur. These additional relationships are called balance equations.

At step 4 of SEsM, we use (3). This leads to a system of nonlinear algebraic relationships
among the parameters of the Equation (1), the parameters of the composite functions, and
the parameters of the solutions to the simpler equations. Any nontrivial solution to (3)
leads to a solution to the system of the solved nonlinear equations.

For a specific case of applications of SEsM, see [29–33,36–41].

3. SEsM and Exact Analytical Solutions for a Chain of Equations Connected to the SIR
Model of Epidemics

Below we use SEsM to obtain exact solutions to a chain of nonlinear differential
equations connected to a specific nonlinear differential equation. This equation will be
obtained on the basis of the SIR model from the epidemiology. Some of the obtained
solutions can be used to the description of epidemic waves caused by different diseases
(COVID-19 inclusive). Other obtained solutions will not be appropriate for this purpose.

The basic nonlinear differential equation is obtained by the use of the classic idea
of Kermack and McKendrick [87] for the transformation of the SIR model with constant
coefficients to a single nonlinear differential equation. We consider an epidemic in a
population. The population is divided into three groups: susceptible individuals—S;
infected individuals—I; recovered individuals—R. The model equations for the time
change in the numbers of individuals from the above three groups are:

dS
dt = − τ

N SI
dI
dt = τ

N SI − ρI
dR
dt = ρI.

(6)
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In (6), τ is the transmission rate, and ρ is the recovery rate. These rates are assumed to be
constants. From (6), we have the relationship

N = S + I + R. (7)

N is the total population, which is assumed to be constant. The model (6) can be reduced
to a single equation for R, as follows. From the last equation of (6), we have

I =
1
ρ

dR
dt

. (8)

The substitution of (8) in the first equation of (6) leads to the relationship

S = S(0) exp
{
− τ

ρN
[R− R(0)]

}
. (9)

Here, S(0) and R(0) are the numbers of susceptible individuals and those recovered at
time t = 0. The substitution of (7) and (9) in the last equation of (6) leads to the differential
equation for R

dR
dt

= ρ

{
N − R− S(0) exp

[
− τ

ρN
(R− R(0))

]}
(10)

Below, we assume R(0) = 0 (no recovered individuals at t = 0). Let us consider the ratio
τR
ρN . We assume that τR

ρN << 1. This can be realized, for example, when τ > ρ and R << N.
This means that we have an epidemic wave that affects a small amount of the population,
and the number of recovered people remains small with respect to the number of the entire
population. In this case, exp

[
− τ

ρN R
]

can be represented as a Taylor series

exp
[
− τ

ρN
R
]
=

M

∑
j=0

(
− τ

ρN
R
)j

. (11)

M has infinite value in the full Taylor series, but we can truncate it at M = 2, M = 3,..., if
− τ

ρN R is small enough. From (10), we obtain

dR
dt

= ρ

{
N − R− S(0)

M

∑
j=0

(
− τ

ρN
R
)j
}

, M = 2, 3, . . . (12)

We set

α0 = ρ[N − S(0)]; α1 =
τS(0)

N
− ρ; αj = −(−1)j τ jS(0)

ρj−1N j , j = 2, 3, . . . (13)

Then (12) becomes
dR
dt

=
M

∑
j=0

αjRj (14)

The chains of Equation (12) and (14) are connected to the orders of approximation of (10),
which is the equation for the time evolution of the recovering individuals for an epidemic
wave within the scope of the SIR model.

In (14), the independent variable is the time t. In principle, the independent variable
can also be a spatial coordinate or a combination of spatial variables and time. In order to
discuss this (more general) case below, we use an independent variable denoted as x. This
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variable can be a spatial variable, time, or some combination of spatial variables and time.
Thus, we apply SEsM to the equation below

dR
dx

=
M

∑
j=0

αjRj, (15)

and we use the differential equations of Bernoulli and Riccati as simple equations. Our plan
is as follows. First, we describe exact analytical solutions to the equations of the chain (14).
Then, we adapt these solutions for the specific case of epidemics described by the chain of
Equation (12).

First of all, we use the equation of Bernoulli

dy
dx

= py + qym, m = 2, 3, . . . , (16)

as a simple equation within the scope of the SEsM methodology. By means of the trans-
formation, y = u1/(1−m) (16) is reduced to a linear differential equation. This leads to the
solution to the equation of Bernoulli as follows

y(x) =
{

p
−q + Cp exp[−(m− 1)px]

} 1
m−1

. (17)

In (17), C is a constant of integration.
We skip Step 1 of SEsM. No transformation is needed because the kind of nonlinearity

of (15) is a polynomial one. In Step 2 of SEsM, we prescribe the composite function R(y) to
be of the kind

R(y) =
L

∑
l=0

βlyl , (18)

where y(x) is the solution to the equation of Bernoulli and R(y) is the solution to (15). At
Step 3 of SEsM, we have to obtain the balance equation. The presence of (16) and (18) fixes
the balance equation of (15) to

m = 1 + L(M− 1). (19)

Thus, a specific solution to (15) has the form

R(x) =
L

∑
l=0

βl

{
p

−q + Cp exp{−[L(M− 1)]px}

} l
L(M−1)

. (20)

The parameters βl , p, q and C are fixed by the solution to the system of nonlinear algebraic
equations at Step 4 of SEsM.

There is a specific case where we can obtain the general solution of (15). This case is
M = 2. Here, (15) becomes

dR
dx

= α2R2 + α1R + α0. (21)

(21) is an equation of the Riccati kind. For this equation, we know the specific solution

R(x) = − α1

2α2
− θ

2α2
tanh

[
θ(x + C)

2

]
, (22)

where θ2 = α2
1 − 4α0α2 > 0, and C is a constant of integration. On the basis of the

specific solution (22) of (21), we can write the general solution to (21) as R = − α1
2α2
−

θ
2α2

tanh
[

θ(x+C)
2

]
+ D

v where D is a constant, and v(t) is the solution to the linear differen-
tial equation

dv
dx
− θ tanh

[
θ(x + C)

2

]
v = −α2D (23)
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The solution to (23) is

v = cosh2
[

θ(x + C
2

]{
E− 2α2D

θ
tanh

[
θ(x + C

2

]}
, (24)

where E is a constant of integration. Then, the general solution to Equation (21) is

R(x) = − α1

2α2
− θ

2α2
tanh

[
θ(x + C)

2

]
+

D

cosh2
[

θ(x+C)
2

]{
E− 2α2D

θ tanh
[

θ(x+C)
2

]} . (25)

Let us now obtain the form of several solutions to the kind (20). For M = 2, we have
the general solution (25) to the corresponding Equation (21). Thus, we start from M = 3.
The equation we have to solve is

dR
dx

= α3R3 + α2R2 + α1R + α0. (26)

The solution is of the kind (18), and from (19), we have the balanced equation m = 1 + 2L.
This fixes the form of the simple equation of Bernoulli for this case: dy

dx = py + qy1+2L.

We start from the simplest case L = 2. The equation of Bernoulli becomes dy
dx = py + qy5,

and the solution to (26) has the form R = β2y2 + β1y + β0. The substitution of the last
relationships in (26) leads to the following system of nonlinear algebraic relationships

2q− α3β2
2 = 0

β1(q− 3α3β2
2) = 0

−α3[β0β2
2 + 2β2

1β2 + β2(2β0β2 + β2
1)]− α2β2

2 = 0
β1[−2α2β2 − α3(6β0β2 + β2

1)] = 0
−α3[β0(2β0β2 + β2

1) + 2β0β2
1 + β2

0β2]− α2(2β0β2 + β2
1)− α1β2 = 0

β1(p− 3α3β2
0 − 2α2β0 − α1) = 0

α3β3
0 + α0 + α1β0 + α2β2

0 = 0

(27)

The solution to (27) is

q =
α3β2

2
2

; β1 = 0; β0 = − α2

3α3
; α1 =

α2
2

3α3
; α0 =

α3
2

27α2
3

. (28)

Thus, the equation
dR
dx

= α3R3 + α2R2 +
α2

2
3α3

R +
α3

2
27α2

3
, (29)

has the specific exact analytical solution

R(x) =
2

∑
l=0

βl

{
p

−q + Cp exp{−4px}

} l
4
= − α2

3α3
+ β2

 p

− α3β2
2

2 + Cp exp{−4px}


1
2

(30)

Next, we consider the case M = 3, L = 3. The equation of Bernoulli becomes dy
dx = py+ qy7,

and the solution to (26) has the form R = β3y3 + β2y2 + β1y + β0. The substitution of the
last relationships in (26) leads to the following system of nonlinear algebraic relationships
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3q− α3β2
3 = 0

β2(2q− 3α3β2
3) = 0

β1q− α3β3(β1β3 + 2β2
2 + 2β1β3 + β2

2) = 0
−α2β2

3 − α3β3(2β1β2 + 3β0β3 + 2β1β2)− α3β2(2β1β3 + β2
2) = 0

−α3[2β0β2β3 + β1(2β1β3 + β2
2) + β2(2β0β3 + 2β1β2) + β3(2β0β2 + β2

1)]− 2α2β2β3 = 0
−α3[β0(2β1β3 + β2

2) + β1(2β0β3 + 2β1β2) + β2(2β0β2 + β2
1) + 2β0β1β2]−
α2(2β1β3 + β2

2) = 0
3β3 p− α3[β1(2β0β2 + β2

1) + β0(2β0β3 + 2β1β2) + β3β2
0 + 2β0β1β2]−

α2(2β0β3 + 2β1β2)− α1β3 = 0
−α3[β0(2β0β2 + β2

1) + 2β0β2
1 + β2β2

0]− α2(2β0β2 + β2
1)− α1β2 = 0

β1(p− 3α3β2
0 − 2α2β0 − α1) = 0

−α0 − α3β3
0 − α2β2

0 − α1β0 = 0

(31)

The solution to (31) is

q = − α2

3α3
; p =

−α2
2 + 3α1α3

9α3
; β0 = − α2

3α3
; β1 = β2 = 0; α0 =

α2(−2α2
2 + 9α1α3)

27α3
3

(32)

Thus, the equation

dR
dx

= α3R3 + α2R2 + α1R +
α2(−2α2

2 + 9α1α3)

27α3
3

, (33)

has the specific exact analytical solution

R(x) =
3

∑
l=0

βl

{
p

−q + Cp exp{−6px}

} l
6
= − α2

3α3
+ β3

 −α2
2 + 3α1α3

3α2 + C(−α2
2 + 3α1α3) exp

{
− 6−α2

2+3α1α3
9α3

x
}


1
2

(34)

Next, we consider the case M = 4. We have to solve the equation

dR
dx

= α4R4 + α3R3 + α2R2 + α1R + α0. (35)

The solution is of the kind (18), and from (19), we have the balanced equation m = 1 + 3L.
This fixes the form of the simple equation of Bernoulli for this case: dy

dx = py + qy1+3L.

We start from the simplest case L = 2. The equation of Bernoulli becomes dy
dx = py + qy7,

and the solution to (35) has the form R = β2y2 + β1y + β0. The substitution of the last
relationships in (35) leads to the following system of nonlinear algebraic relationships

β2(2q− α4β3
2) = 0

β1(q− 4α4β3
2) = 0

−β2
2[α3β2 − α4(2β0β2 + β2

1) + 4β2
1] = 0

β1[−3α3β2
2 − α4(4β0β2

2 + 4β2(2β0β2 + β2
1)))] = 0

−α4[2β2
0β2

2 + 8β0β2
1β2 + (2β0β2 + β2

1)
2]− α3[β0β2

2 + 2β2
1β2 + β2(2β0β2 + β2

1)]− α2β2
2 = 0

β1{−α4[4β2
0β2 + 4β0(2β0β2 + β2

1)]− α3[4β0β2 + 2β0β2 + β2
1]− 2α2β2} = 0

−α4β2
0(4β0β2 + 6β2

1)− α3β0(2β0β2 + 3β2
1 + β2)− α2(2β0β2 + β2

1)− α1β2 = 0
β1(p− 4α4β3

0 − 3α3β2
0 − 2α2β0 − α1) = 0

−α3β3
0 − α0 − α2β2

0 − α4β4
0 − α1β0 = 0

(36)

The solution to (36) is

q =
α4β3

2
4

; β0 = − α3

4α4
; β1 = 0; α0 =

α4
3

256α3
4

; α1 =
α2

3
16α2

4
; α2 =

α2
3

8α4
(37)
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Thus, the equation

dR
dx

= α4R4 + α3R3 +
α2

3
8α4

R2 +
α2

3
16α2

4
R +

α4
3

256α3
4

, (38)

has the solution

R = β2y2 + β1y + β0 = − α3

4α4
+ β2

 p

− α4β3
2

4 + Cp exp{−6px}


1
3

(39)

Next, we consider the case M = 5. We have to solve the equation

dR
dx

= α5R5 + α4R4 + α3R3 + α2R2 + α1R + α0. (40)

The solution is of the kind (18), and from (19), we have the balanced equation m = 1 + 4L.
This fixes the form of the simple equation of Bernoulli for this case: dy

dx = py + qy1+4L.

We start from the simplest case L = 2. The equation of Bernoulli becomes dy
dx = py + qy9,

and the solution of (35) has the form R = β2y2 + β1y + β0. The substitution of the last
relationships in (39) leads to the following system of nonlinear algebraic relationships

β2(2q− α5β4
2) = 0

β1(q− 5α5β4
2) = 0

−α5β2[5β0β3
2 + 10β2

1β2
2 + 4β0β1β2

2 + 4β1(2β0β2 + β2
1)] = 0

β1[−4α4β3
2 − α5(8β0β3

2 + 4β2
1β2

2 + 4β1β2
2) + β2(12β0β2

2 + 4β2
1β2)] = 0

−α5[2β0β2
2(2β0β2 + β2

1 + 2β2
1) + β2

1β2(12β0β2 + 4β2
1)+

β2(2β2
0β2

2 + 16β0β2
1β2 + 2(2β0β2 + β2

1)
2]− α4β2

2(4β0β2 + 6β2
1)− α3β3

2 = 0
−α5[4β0β1β2(β0β2 + (2β0β2 + β2

1)
2) + β1(2β2

0β2
2 + 8β0β2

1β2 + (2β0β2 + β2
1)

2)+
4β0β1β2(β0β2 + (2β0β2 + β2

1))]− 4α4β1β2(3β0β2 + β2
1)− 3α3β1β2

2 = 0
−α5[β0(2β2

0β2
2 + 8β0β2

1β2 + (2β0β2 + β2
1)

2) + 4β0β2
1(3β0β2 + β2

1)+
2β2

0β2(2β0β2 + 3β2
1)]− 3α4β2(β0β2 + β2

1)− 3α3β2(β0β2 + β2
1)− α2β2

2 = 0
−α5[4β2

0β1(3β0β2 + β2
1) + β1β2

0(4β0β2 + 6β2
1) + 4β2β3

0β1]−
4α4β0β1(2β0β2 + β2

1)− α3β1(6β0β2 + β2
1)− 2α2β1β2 = 0

−α5β3
0(5β0β2 + 10β2

1)− α4β2
0(4β0β2 + 6β2

1)− 2α3β0(β0β2 + β2
1)−

α2(β0β2 + β2
1)− α1β2 = 0

β1 p− 5α5β4
0β1 − 4α4β3

0β1 − 3α3β2
0β1 − 2α2β0β1 − α1β1 = 0

−α0 − α2β2
0 − α4β4

0 − α3β3
0 − α5β5

0 − α1β0 = 0

(41)

The solution to (41) is

q =
α5β4

2
2

; β0 = − α4

5α5
; β1 = 0; α0 =

α5
4

3125α4
5

; α1 =
α4

4
125α3

5
; α2 =

2α3
4

25α2
5

; α3 =
2α2

4
5α5

(42)

Thus, the equation

dR
dx

= α5R5 + α4R4 +
2α2

4
5α5

R3 +
2α3

4
25α2

5
R2 +

α4
4

125α3
5

R +
α5

4
3125α4

5
, (43)

has the specific solution

R = β2

 p

− α5β4
2

2 + Cp exp{−8px}


1
4

− α4

5α5
(44)
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Obtaining the exact solutions to the chain of equations can be continued. Below we
focus on the epidemic waves connected to the SIR model. The additional exact solutions to
the chain of equations will be discussed elsewhere.

4. Discussion of the Obtained Exact Analytical Solutions to the Studied Chain of
Equations from the Point of View of Modeling of Epidemic Waves

Above, we have obtained several exact solutions to equations that can be connected to
the SIR model of epidemic waves. The solutions are of two classes: (i) solutions that can be
used for the purposes of the SIR model and (ii) solutions that are not appropriate for the
use of the purposes of the SIR model. We begin the discussion by considering the solutions
that can be used for the purposes of the SIR model. There are two groups of these solutions.
The first group contains solutions without relationships among parameters αi in the form
of equalities. The second group contains solutions with relationships among parameters αi,
which are in the form of equalities.

Above, we have obtained relationships for the quantity R(x), where x was some
coordinate, which, in particular, can be some spatial coordinate, time, or a combination of
time and spatial coordinates. Below, we consider the specific case when the coordinate x is
time t. Thus, we obtain solutions to the number of recovered people R(t) for the case of the
SIR model. This allows us to calculate the time evolution of infected people I on the basis
of (8): I = 1

ρ
dR
dt . Then, we can calculate the relative growth rate

σ(t) =
1
I

dI
dt

. (45)

It can be written as
σ(t) = ρ(Rn − 1). (46)

In (46)

Rn(t) = 1 +
σ(t)

ρ
, (47)

is the time-varying effective reproduction number. We use Rn for the effective reproduction
number in order to distinguish it from R by which we denote the recovered people. (46)
shows that there is a specific value Rn = 1. If Rn < 1, then σ(t) < 0, and the relative growth
rate is negative. This means that dI/dt is negative; in other words, the number of infected
individuals decreases, and the epidemic shrinks. If Rn > 1, then σ(t) > 0, and the relative
growth rate is positive. This means that dI/dt is positive; in other words, the number of
infected individuals increases, and the epidemic extends. Note that we use (47) instead of
the exact relationship Rn = τS

ρN , as we work with an approximate solution of (10).
We stress here the following. Our basic assumption for reducing the SIR model to a

chain of equations was
(

τR
ρN

)2
<< 1. In order to keep the assumption in order, we have to

consider epidemic waves for which R << N. This means that the epidemic wave has to
affect a small amount of the entire population. If this is not the case, we have to solve the
SIR model numerically. For the rest of this section, we assume that we are within the scope

of the assumption
(

τR
ρN

)2
<< 1, which allows us to obtain analytical results.

We have analytical relationships for several epidemic waves. Thus, we can calcu-
late their characteristics by means of the relationships mentioned above. We denote
Rn(0) =

τS(0)
ρN . For the calculation of S, we will use the approximate relationship that

occurs from (9)

S(t) = S(0)
[

1− τR
ρN

]
(48)

We start from the specific solution (22). Taking into account (13) and (46), we obtain
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R(t) = S(0)[Rn(0)−1]
2Rn(0)2 +

δS(0)
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2

2Rn(0)2 tanh

{
1
2 δρ×

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t +

2artanh

[
− Rn(0)−1

δ

[
(Rn(0)−1)2+4Rn(0)2

N−S(0)
S(0)

]1/2

]
δρ
[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2

}}
,

(49)

where δ = ±1. Equation (47) allows us to calculate the time evolution of infected individu-
als for this specific solution. From (8), we obtain

I(t) = 1
ρ

dR
dt = S(0)

4Rn(0)2

{
[Rn(0)− 1]2 + 4R2

n(0)
N−S(0)

S(0)

}
sech2

{
1
2 δρ×

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t +

2artanh

[
− Rn(0)−1

δ

[
(Rn(0)−1)2+4Rn(0)2

N−S(0)
S(0)

]1/2

]
δρ
[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2

}} (50)

From (49) and (48), we obtain

S(t) = S(0)

{
1− τ

ρN
S(0)[Rn(0)−1]

2Rn(0)2 +
δS(0)

{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2

2Rn(0)2 tanh

{
1
2 δρ×

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t +

2artanh

[
− Rn(0)−1

δ

[
(Rn(0)−1)2+4Rn(0)2

N−S(0)
S(0)

]1/2

]
δρ
[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2

}}}
.

(51)

This allows us to calculate σ(t) from (46)

σ(t) = 1
I

dI
dt = −δρ tanh

{
1
2 δρ×

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t +

2artanh

[
− Rn(0)−1

δ

[
(Rn(0)−1)2+4Rn(0)2

N−S(0)
S(0)

]1/2

]
δρ
[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2

}}}
.

(52)

Then, from (47)

Rn(t) = 1− δ tanh

{
1
2 δρ×

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t +

2artanh

[
− Rn(0)−1

δ

[
(Rn(0)−1)2+4Rn(0)2

N−S(0)
S(0)

]1/2

]
δρ
[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2

}}}
.

(53)

We remember that the above results are valid if
(

τR
ρN

)2
<< 1. In other words, we have satisfy

{
τ

ρN

{
S(0)[Rn(0)−1]

2Rn(0)2 +
δS(0)

{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2

2Rn(0)2 tanh

{
1
2 δρ×

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t +

2artanh

[
− Rn(0)−1

δ

[
(Rn(0)−1)2+4Rn(0)2

N−S(0)
S(0)

]1/2

]
δρ
[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2

}}}}2

<< 1

(54)
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We can obtain the following estimation for this condition. The maximum value of the tanh
function is 1. This, from (14), we obtain

τ2

ρ2N2

{
S(0)[Rn(0)− 1]

2Rn(0)2 +
δS(0)

{
[Rn(0)− 1]2 + 4Rn(0)2 N−S(0)

S(0)

}1/2

2Rn(0)2

}2

<< 1. (55)

Next we calculate the quantities for the solution (25). The requirement R(0) = 0 leads
to the determination of the constant C as follows:

C = 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]

 (56)

The solution (25) becomes

R(t) = S(0)[Rn(0)−1]
2Rn(0)2 +

δS(0)
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2

2Rn(0)2 tanh

{
1
2 δρ×[

(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)
S(0)

]1/2{
t + 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}

+

D

/{
cosh2

{
1
2 δρ×[

(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)
S(0)

]1/2{
t + 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}{

E+

2DRn(0)2

δS(0)

[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2 tanh

{
1
2 δρ×

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t + 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}}}

.

(57)

In (57) δ = ±1. Equation (57) allows us to calculate the other quantities connected to this
solution as follows
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I = 1
ρ

dR
dt = S(0)

4Rn(0)2

{
[Rn(0)− 1]2 + 4Rn(0)2 N−S(0)

S(0)

}
×

sech2

{
1
2 δρ

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t+

2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}}

−

δD

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2/{
cosh3

{
1
2 δρ

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t+

2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}{

E+

2DRn(0)2

δS(0)

[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2 tanh

{
1
2 δρ

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t+

2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}}}

−

D2Rn(0)2

S(0) sech2

{
1
2 δρ

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t+

2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}}/

{
cosh2

{
1
2 δρ

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t+

2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}{

E+

2DRn(0)2

δS(0)

[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2 tanh2

{
1
2 δρ

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t+

2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}}}

.

(58)

Thus,
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S(t) = S(0)

{
1− τ

ρN

{
S(0)[Rn(0)−1]

2Rn(0)2 +
δS(0)

{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2

2Rn(0)2 tanh

{
1
2 δρ×[

(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)
S(0)

]1/2{
t + 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}

+

D

/{
cosh2

{
1
2 δρ×[

(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)
S(0)

]1/2{
t + 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}{

E+

2DRn(0)2

δS(0)

[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2 tanh

{
1
2 δρ×

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t + 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}}}}}

(59)

Moreover,

σ(t) =

{
ρS(0)T3/2

1 tanh(T2)[1−tanh2(T2)]

4Rn(0)2 + 3DρT1 sinh2(T2)

2T3 cosh4(T2)
+

2δD2ρRn(0)2T1/2
1 sinh(T2)[1−tanh2(T2)]

S(0)T2
3 cosh2(T2)

− ρDT1

2T3 cosh2(T2)
+ 2ρD3Rn(0)4[1−tanh2(T2)]

S(0)2T3
3 cosh2(T2)

+

δρD2Rn(0)2T1/2
1 tanh(T2)[1−tanh2(T2)]

S(0)T2
3 cosh2(T2)

}/{
S(0)T1[1−tanh2(T2)]

4Rn(0)2 − δDT1/2
1 sinh(T2)

T3 cosh3(T2)
−

D2Rn(0)2[1−tanh2(T2)]

S(0)T2
3 cosh2(T2)

}
(60)

where

T1 = [Rn(0)− 1]2 + 4 Rn(0)2[N−S(0)]
S(0) ,

T2 = 1
2 δρ
{
[Rn(0)− 1]2 + 4 Rn(0)2[N−S(0)]

S(0)

}1/2
{

t + 2

δρ

{
[Rn(0)−1]2+4 Rn(0)2 [N−S(0)]

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}

,

T3 = E + 2 Rn(0)2D tanh(T2)

δS(0)T1/2
1

.

(61)

Finally,
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Rn(t) = 1 +

{
S(0)T3/2

1 tanh(T2)[1−tanh2(T2)]

4Rn(0)2 + 3DT1 sinh2(T2)

2T3 cosh4(T2)
+

2δD2Rn(0)2T1/2
1 sinh(T2)[1−tanh2(T2)]

S(0)T2
3 cosh2(T2)

− DT1
2T3 cosh2(T2)

+ 2D3Rn(0)4[1−tanh2(T2)]

S(0)2T3
3 cosh2(T2)

+

δD2Rn(0)2T1/2
1 tanh(T2)[1−tanh2(T2)]

S(0)T2
3 cosh2(T2)

}/{
S(0)T1[1−tanh2(T2)]

4Rn(0)2 − δDT1/2
1 sinh(T2)

T3 cosh3(T2)
−

D2Rn(0)2[1−tanh2(T2)]

S(0)T2
3 cosh2(T2)

}
(62)

The above results are valid if
(

τR
ρN

)2
<< 1. This means that

τ2

ρ2N2

{
S(0)[Rn(0)−1]

2Rn(0)2 +
δS(0)

{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2

2Rn(0)2 tanh

{
1
2 δρ×[

(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)
S(0)

]1/2{
t + 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}

+

D

/{
cosh2

{
1
2 δρ×[

(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)
S(0)

]1/2{
t + 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}{

E+

2DRn(0)2

δS(0)

[
(Rn(0)−1)2+4Rn(0)2 N−S(0)

S(0)

]1/2 tanh

{
1
2 δρ×

[
(Rn(0)− 1)2 + 4Rn(0)2 N−S(0)

S(0)

]1/2{
t + 2

δρ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2×

artanh

 δ
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}1/2
{
−2DRn(0)2

S(0) −E[Rn(0)−1]
}

E
{
[Rn(0)−1]2+4Rn(0)2 N−S(0)

S(0)

}
+ 2DRn(0)2

S(0) [Rn(0)−1]


}}}}

.

}2

<< 1

(63)

Next, we discuss the solution (34). For this solution, we have a relationship (28) for
α0. From the point of view of the SIR model, α0 > 0, α2 < 0 and α3 > 0. In order to ensure
that α0 > 0, we see from (28) that it is necessary that 9α1α3 − 2α2

2 < 0 This leads to the
requirement

Rn(0) < 9/7. (64)

We note that 9/7 is close to 1.3, which was a characteristic empirical value for the strong
spreading of the virus in the case of the COVID-19 pandemic in recent years. Taking into
account condition (64), we proceed with solution (34). The relationship (28) among the
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parameters αi fixes one of the parameters of the SIR model. Let us choose to fix S(0). Then,
we obtain

S(0) =

N

{
7ρ2N2 + 27τ3 + δ

[
49ρ4N4 + 378ρ2N2τ3 + 729τ6 − 972τ2ρ3N2

]1/2}
54τ3 , (65)

where δ = ±1. From (64), it follows that{
7ρ2N2 + 27τ3 + δ

[
49ρ4N4 + 378ρ2N2τ3 + 729τ6 − 972τ2ρ3N2

]1/2}
54ρτ2 < 9/7. (66)

Below, we will write the solutions to δ = −1 as an example.
Another condition is R(0) = 0, which fixes the value of the constant C to

C =

{
9τ

[
7τβ2

3ρ2N2 + 27τ4β2
3 − τβ2

3

(
49ρ4N4 + 378ρ2N2τ3 + 729τ6 − 972τ2ρ3N2

)1/2

−

81τ3ρβ2
3 + 9ρ3N3

]}/{
ρ2N2

[
7ρ2N2 + 27τ3 −

(
49ρ4N4 + 378ρ2N2τ3 + 729τ6 − 972τ2ρ3N2

)1/2

−

81ρτ2

]}
.

(67)

Let us define

T1 = 49ρ4N4 + 378ρ2N2τ3 + 729τ6 − 972τ2ρ3N2; T2 = 7ρ2N2 + 27τ3 − T1/2
1

T3 = −
T2

2
2916τ2ρ2N2 +

T2

[
T2

54τ2 − ρ
]

18ρ2N2

Then, the solution (34) becomes

R(t) = ρN
3τ + β3

{
T3

/[[
− T2

18τρN + 9τT3(7τβ2
3ρ2N2 + 27τ4β2

3 − τβ2
3T1/2

1 − 81τ3ρβ2
3+

9ρ3N3) exp

(
− 36 ρ2 N2T3

T2
t

)]/(
ρ2N2(7ρ2N2 + 27τ3 − T1/2

1 − 81ρτ2)

)]}1/2 (68)

Then,

I = 162β3T3
3 T5τ exp

(
−36 ρ2 N2T3

T2
t
)/{

ρT2T4

[
− T2

18τρN + 9
τT3T5 exp

(
−36 ρ2 N2T3

T2
t
)

ρ2 N2T4

]2

×[
T3

− T2
18τρN +9

τT3T5 exp

(
−36

ρ2 N2T3
T2

t

)
ρ2 N2T4

]1/2}
.

(69)

Here, T1,2,3 are as above and

T4 = T2 − 81ρτ2; T5 = 27τ4β2
3 + 7τβ2

3ρ2N2 − τβ2
3T1/2

1 − 81τ3ρβ2
3 + 9ρ3N3.

Furthermore,
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σ(t) = ρ(T3/T6)
1/2T2T4T2

6

[
− 26244 β3τ2T6

3 T2
5 T2

7
ρT2

2 T2
4 T4

6 (T3/T6)3/2 + 104976 β3τ2T5
3 T2

5 T2
7

ρT2
2 T2

4 T3
6 (T3/T6)1/2−

5832 β3ρτN2T4
3 T5T7

T2
2 T4T2

6 (T3/T6)1/2

]/(
162β3τT3

3 T5T7

)
.

(70)

Here T1, T2, T3, T4, T5 are as above and

T6 = − T2

18τρN
+ 9

τT3T5T7

ρ2N2T4
, T7 = exp

(
−36

ρ2N2T3

T2
t
)

.

Finally,

Rn(t) = 1 + (T3/T6)
1/2T2T4T2

6

[
− 26244 β3τ2T6

3 T2
5 T2

7
ρT2

2 T2
4 T4

6 (T3/T6)3/2 + 104976 β3τ2T5
3 T2

5 T2
7

ρT2
2 T2

4 T3
6 (T3/T6)1/2−

5832 β3ρτN2T4
3 T5T7

T2
2 T4T2

6 (T3/T6)1/2

]/(
162β3τT3

3 T5T7

)
.

(71)

The above results are valid if
(

τR
ρN

)3
<< 1. This means that

τ3

ρ3 N3

{
ρN
3τ + β3

{
T3

/[[
− T2

18τρN + 9τT3(7τβ2
3ρ2N2 + 27τ4β2

3 − τβ2
3T1/2

1 − 81τ3ρβ2
3+

9ρ3N3) exp

(
− 36 ρ2 N2T3

T2
t

)]/(
ρ2N2(7ρ2N2 + 27τ3 − T1/2

1 − 81ρτ2)

)]}1/2}3

<< 1

(72)

There are other solutions of this kind. They require specific values of one or several
parameters connected to the epidemic wave. These specific values required decrease the
probability of realization of the corresponding wave. Because of this, we will discuss this
kind of specific solution elsewhere.

Next, we briefly discuss the exact solutions obtained, which are not appropriate for
the use of the purposes of the SIR model. These solutions are (30), (39), and (44). The
problems are connected to the values of the parameters αi corresponding to the SIR model.

Let us consider the solution (30). From (28), we have the requirement α0 =
α3

2
27α2

3
. However,

from (13), it follows that α2 < 0 and α3 > 0. Thus, we have α0 = ρ[N − S(0)] < 0 and then
N < S(0). The last relationship is false from the point of view of the SIR model. Thus, (30)
is a valid solution, but it cannot be used for the purposes of the SIR model.

The next solution is (39). Here, we have the same problem with the parameter α0,
which has to be positive. However, α0 = α4

3/(256α3
4) and α3 > 0, α4 < 0 for the specific

case of the SIR model. Thus, we can not use (39) to model epidemic waves within the
SIR model.

Next, we consider solution (44). Here, we have the same problem with α0, α4 and α5 as
for the last two solutions for the specific case of the parameters of the SIR model. Therefore,
we cannot use (44) to model epidemic waves within the SIR model.

5. Epidemic Waves Based on Some of the Obtained Solutions

Let us consider the influence of the parameters of the SIR model on the spread of
the epidemic wave. The study will be made on the basis of some of the solutions ob-
tained above.

Figure 1 shows the influence of the recovery rate ρ of the SIR model on the shape of
the epidemic wave for the case of the relationship (50) obtained on the basis of solution (49).
The decrease in the recovery rate leads to a larger peak of the wave (larger value of the
maximum number of infected individuals for the studied wave). In addition, the peak of
the wave occurs earlier. The increase in the value of the recovery rate ρ leads to a decrease in
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the maximum number of infected individuals. In addition, the peak of the epidemic wave
is postponed, as can be seen from curves 3 and 4 in Figure 1a. The same kind of dependence
on the maximum and the shape of the epidemic wave on the recovery rate ρ is observed
for the relationship (58) for the epidemic wave obtained on the basis of solution (57) to
the equation connected to the SIR model. Thus, the influence of the recovery rate on the
epidemic wave is that the increased recovery rate leads to a faster decrease in the number of
infected individuals, and this slows the rise of the epidemic wave and decreases its height.
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Figure 1. Influence of the recovery rate ρ on the number of infected people. Figure (a): the solu-
tion (50). Curve 1: basic solution with parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006.
For the other curves, there are changes only in the value of the parameter ρ. Curve 2: ρ = 0.0057,
Curve 3: ρ = 0.007, Curve 4: ρ = 0.008. Figure (b): the solution (58). Curve 1: basic solution with
parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006, D = 105, E = 1. For the other curves, there
are changes only in the value of the parameter ρ. Curve 2: ρ = 0.003 = Curve 3: ρ = 0.004. Curve 4:
ρ = 0.005. Curve 5: ρ = 0.0065.

Figure 2 shows the influence of the transmission rate τ on the shape of the epidemic
wave. The increase in the transmission rate for the case of relationship (50) obtained
by solution (49) leads to an increase in the value of the maximum number of infected
individuals for the wave. In addition, the wave rises faster, as can be seen from curves 1
and 2 of Figure 2a. The effect of the decrease in the transmission rate on the shape of the
wave described by the relationship (58) obtained by solution (57) is shown in Figure 2b.
The decrease in τ, in this case, leads to a smaller maximum of the epidemic wave, and the
wave occurs later. Thus, the increase in the transmission rate leads to a faster occurrence of
the epidemic wave and an increase in the maximum number of infected individuals for the
corresponding epidemic wave.
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Figure 2. Influence of the transmission rate τ on the number of infected people. Figure (a): the
solution (50). Curve 1: basic solution with parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006.
For the other curves, there are changes only in the value of the parameter τ. Curve 2: τ = 0.0095,
Curve 3: τ = 0.008, Curve 4: τ = 0.007. Figure (b): the solution (58). Curve 1: basic solution with
parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006, D = 105, E = 1. For the other curves, there
are changes only in the value of the parameter τ. Curve 2: τ = 0.0115. Curve 3: τ = 0.0105. Curve 4:
ρ = 0.0095. Curve 5: ρ = 0.0088.

Figure 3 shows the influence of the initial number S(0) of susceptible individuals on
the shape of the epidemic wave. We note that at t = 0, we assume R(0) = 0 and then
N = S(0) + I(0). Then, the decrease in S(0) means that we have a larger value of I(0). In
other words, the decrease in the initial number of susceptible individuals means that the
epidemic wave starts with a larger initial number of infected individuals. The influence of
S(0) on the shape of the wave described by (50) obtained on the basis of solution (49) is
shown in Figure 3a. The decrease in the initial number of susceptible people (the increase
in the initial number of infected individuals) leads to a faster rise of the epidemic wave
and a larger value of the maximum number of infected individuals. The result of the
influence of S(0) on the epidemic wave described by relationship (58) (obtained on the
basis of solution (57)) is the same, as can be seen in Figure 3b. Then, the larger value of
suspected individuals at t = 0 (the smaller cluster of infected individuals at t = 0) leads to
a later occurrence of the epidemic wave and a decrease in its height.
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Figure 3. Influence of the parameter S(0) on the number of infected people. Figure (a): the solu-
tion (50). Curve 1: basic solution with parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006.
For the other curves, there are only changes in the value of parameter S(0). Curve 2: S(0) = 999,999,
Curve 3: S(0) = 999,000, Curve 4: S(0) = 998,000. Figure (b): the solution (58). Curve 1: basic solution
with parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006, D = 105, E = 1. For the other
curves, there are changes only in the value of parameter S(0). Curve 2: S(0) = 999,500. Curve 3:
S(0) = 998,500. Curve 4: S(0) = 995,000. Curve 5: S(0) = 990,000.

The above results of the influence of the parameters ρ, τ and S(0) on the shape of
the epidemic wave hint at a strategy for fighting the epidemic. One needs to detect the
epidemic when the cluster of infected individuals is still small. Then one has to try to
decrease the transmission rate and increase the recovery rate. This can lead to a later
occurrence of the epidemic wave and a decrease in the height of this wave.

The following figures show the influence of the parameters of the SIR model on the
effective reproduction number Rn connected to the epidemic wave. In principle, at the
beginning of the wave, Rn is larger than 1, and at the end of the wave, Rn is smaller than 1.
Figure 4 shows the influence of the recovery rate ρ on the effective reproduction number
Rn. Figure 4a shows the situation for the case of relationship (53) obtained on the basis of
solution (49). We see that the decrease in the value of ρ leads to an increase in the initial
value of Rn, which is followed by a large decrease in the value of the effective reproduction
number in the course of the value (see curves 1 and 2 of Figure 4a). The increase in the
value of ρ results in a smaller initial value of Rn and a smaller decrease in its value in the
course of a wave. Large enough values of ρ lead to values of Rn, which are close to 1 and
correspond to a slowly rising epidemic wave.

Figure 4b shows the situation for the relationship (62) obtained on the basis of the
solution (58). Quantitatively, the situation is the same as above. The increase in the value
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of the recovery rate leads to a decrease in the initial value of the effective reproduction
number and to a smaller decrease in the value of this number in the course of the wave.

Figure 4. Influence of the recovery rate ρ on the effective reproduction number Rn from Equation (47).
Figure (a): the relationship (53) obtained on the basis of the solution (49). Curve 1: basic solution with
parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006. For the other curves, there are changes
only in the value of the parameter ρ. Curve 2: ρ = 0.0057, Curve 3: ρ = 0.007, Curve 4: ρ = 0.008.
Figure (b): the relationship (62) obtained on the basis of the solution (58). Curve 1: basic solution
with parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006, D = 105, E = 1. For the other curves,
there are only changes in the value of the parameter ρ. Curve 2: ρ = 0.0065. Curve 3: ρ = 0.005.

Figure 5 shows the influence of the transmission rate τ on the evolution of the effective
reproduction number Rn in the course of an epidemic wave. Figure 5a shows the situation
for the case of relationship (53) obtained on the basis of solution (49). In this case, the
decrease in the transmission rate leads to a decrease in the initial value of the effective
reproduction number Rn and to a smaller interval of decrease in the value of Rn in the
course of the epidemic wave. The same situation can be observed in Figure 5b for the case of
relationship (62) obtained on the basis of the solution (58). We note that an appropriate value
of the transmission rate combined with the corresponding values of the other parameters
can make the value of Rn closer to 2 and become even larger than this value.
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Figure 5. Influence of the transmission rate τ on the effective reproduction number Rn Equation (47).
Figure (a): the relationship (53). Curve 1: basic solution with parameters N = 106, S(0) = 999,990,
τ = 0.009, ρ = 0.006. For the other curves, there are changes only in the value of the parameter τ.
Curve 2: τ = 0.0095, Curve 3: τ = 0.008, Curve 4: τ = 0.007. Figure (b): the relationship (62). Curve
1: basic solution with parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006, D = 105, E = 1. For
the other cures, there are changes only in the value of the parameter τ. Curve 2: τ = 0.0105. Curve 3:
τ = 0.0115.

Figure 6 shows the influence of the initial number of susceptible individuals S(0)
on the value of the effective reproduction number Rn. Figure 6a shows the situation for
the case of relationship (53) obtained on the basis of solution (49). The decrease in the
initial number of susceptible individuals (which corresponds to a larger number of infected
individuals at t = 0) leads to a faster decrease in the value of the effective reproduction
number Rn. The same result can be seen in Figure 6b for relationship (62) obtained on the
basis of solution (58).

Finally, we will use solutions (50) and (58) to approximate real data from the COVID-19
pandemic in Bulgaria. The data for the infected individuals for the first approximately
1000 days of the pandemic are shown in Figure 7. There have been several large COVID-19
epidemic waves in Bulgaria (the population of which is approximately 6.8 million people).
In this article, we show how the above analytic results can be related to the second and
third COVID-19 waves.

Figure 7 shows that there are periodic drops in the number of cases on Saturdays
and Sundays and increases in the number of cases on Mondays. In order to remove this
effect, which exists because of the presence of holidays, below we will work with the 7-day

averages of the data I∗i = 1
7

i+3
∑

j=i−3
Ij and with the 14-day average of the data: I∗i = 1

14

i+7
∑

j=i−6
Ij.
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Figure 6. Influence of the parameter S(0) on the effective reproduction number Rn Equation (47).
Figure (a): the relationship (53). Curve 1: basic solution with parameters N = 106, S(0) = 999,990,
τ = 0.009, ρ = 0.006. For the other curves, there are changes only in the value of parameter S(0).
Curve 2: S(0) = 999,999, Curve 3: S(0) = 999,000, Curve 4: S(0) = 998,000. Figure (b): the relationship
(62). Curve 1: basic solution with parameters N = 106, S(0) = 999,990, τ = 0.009, ρ = 0.006, D = 105,
E = 1. For the other curves, there are changes only in the value of the parameter S(0). Curve 2:
S(0) = 999,500. Curve 3: S(0) = 998,500. Curve 4: S(0) = 995,000. Curve 5: S(0) = 990,000.

Figure 7. COVID-19 epidemic waves in Bulgaria. X-axis: days since the beginning of the pandemic
in Bulgaria (8-th of March 2020). Y-axis: registered number I of infected people per day. Wave 2 and
wave 3 will be compared to the analytical results in this article.
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Figure 8 shows the second COVID-19 wave in Bulgaria (dotted line shows the 7-day-
average data) and its best fit with solutions (50) (Figure 8a) and (58) (Figure 8b). We observe
that the fit with solution (58) is better, especially in the beginning and end regions of the
wave. This better fit is also observed in the other figures below.

Figure 8. The second large COVID-19 wave in Bulgaria and the best fit of the 7-day-averaged data
with the solutions (50) and (58). Dots: infected people (7-day average). Solid curves: Figure (a):
solution (50). ρ = 0.0000982, τ = 0.007878. Figure (b): solution (58). ρ = 0.0000893, τ = 0.007883.

Figure 9 shows the fit of the 14-day averages of the data from solutions (50) and (58).
Again, the fit by (58) is better. This can be expected as (58) is a more general solution in
comparison to (50). The 14-day data are smoother than the 7-day-average data, and because
of this, the fit of the 14-day-average data is better that the fit of the 7-day-average data.

Figure 9. The second large COVID-19 wave in Bulgaria and the best fit of the 14-day-average data
from the solutions (50) and (58). Dots: infected people (14-day average). Solid curves: Figure (a):
solution (50). ρ = 0.0000985, τ = 0.007875. Figure (b): solutions (58). ρ = 0.0000813, τ = 0.007863.
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Figures 10 and 11 show the third large COVID-19 wave in Bulgaria and the corre-
sponding fits of the 7-day-average data and 14-day-average data.

Figure 10. The third large COVID-19 wave in Bulgaria and the best fit of the 7-day-averaged data
by the solutions (50) and (58). Dots: infected people (7-day average). Solid curves: Figure (a):
solution (50). ρ = 0.0000598, τ = 0.005285. Figure (b): solutions (58). ρ = 0.0000599, τ = 0.005296

Figure 11. The third large COVID-19 wave in Bulgaria and the best fit of the 14-day-averaged
data from solutions (50) and (58). Dots: infected people 14-day average). Solid curves: Figure (a):
solution (50). ρ = 0.0000676, τ = 0.005326. Figure (b): solutions (58). ρ = 0.0000699, τ = 0.005299

On the basis of the COVID-19 data and their fits, we can obtain the parameters of the
models and compare these parameters for the two studied COVID-19 waves in Bulgaria.
The comparison of the values of ρ (the recovery rate) obtained by the fits of the data for
COVID-19 spreading in Bulgaria shows that ρ was larger for the second large wave in
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comparison to the third large wave. In addition, the transmission rate τ for the second large
wave was larger in comparison to the transmission rate for the third large wave. Thus, the
result is that the version of the COVID-19 virus that was responsible for the second large
COVID- wave in Bulgaria spread faster than the version of the virus that was responsible
for the third wave. In addition, the recovery time of the second large wave was faster in
comparison to the recovery time of the third large wave.

6. Concluding Remarks

In this article, we apply the Simple Equations method (SEsM) to a chain of nonlinear
differential equations connected to the SIR model of epidemic spreading. We obtain
three classes of solutions from the point of their applicability for the purpose of epidemic
modeling. The first class of solutions can be applied to model epidemics without imposing
additional restrictions containing equalities among the parameters of the SIR model. Such
solutions are (22) and (25). The second class of obtained solutions is solutions that require
additional relationships containing equalities among the parameters of the SIR model. Such
a solution is (34). The third class of the obtained solutions is solutions to the corresponding
equation of the chain of equations but solutions that can not be used for the purpose
of modeling epidemic spread. We note that the obtained solutions are appropriate for
the description of a single epidemic wave that affects some populations and leads to an
infection of a relatively small percentage of the individuals of this population. The obtained
analytical solution allows us to study the influence of the parameters of the model (such as
transmission rate, recovery rate and initial number of susceptible individuals) on the shape
and evolution of the epidemic wave. The results are that larger recovery rates, smaller
transmission rates and a larger number of potentially affected individuals (small number
of infected individuals at the beginning of the wave) lead to a slower advancement of the
wave and a decrease in its amplitude.

The obtained solution from the second class of solutions is also quite interesting. However,
for its practical realization, it is required that specific relationships among the parameters of
the epidemics are presented. There is more than one solution in this class of solutions to the
chain of the studied equations. We intend to study these solutions elsewhere.

Finally, the third class of solutions demonstrates the capacity of SEsM. The methodol-
ogy leads to numerous exact solutions to various equations, and this has been demonstrated
many times already. The obtained solutions of this class can not be used to model epidemic
waves as they lead to some relationships among the parameters of the SIR model that
correspond to unrealistic assumptions about these parameters. Nevertheless, the obtained
solutions are solutions to the corresponding equations from the studied chain of equa-
tions and can be used in other models where the corresponding relationships among the
parameters lead to acceptable assumptions about the model parameters.
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