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Abstract: The purpose of this paper is to introduce new methods to measure the indirect control
power of firms in complex corporate shareholding structures using the concept of power indices from
cooperative game theory. The proposed measures vary in desirable properties satisfied, as well as in
the bargaining models of power indices used to construct them. Hence, they can be used to produce
different pictures of the coalitional strength of firms in control of other firms in mutual shareholding
networks with the presence of cycles. Precisely, in the framework of Karos and Peters from 2015, ten
power indices substitute the original Shapley and Shubik power index in a modular fashion. In this
way, we obtain a set of new measures called aggregated indices. The float shareholders typically hold
less than 5 percent of the outstanding shares, which is an uncertain element of indirect control in
complex shareholding structures. The fuzzy number seems appropriate to model these shareholders’
behavior. The novelty is that we model the behavior of float using Z-fuzzy numbers. The new
methods are tested in an example.

Keywords: cooperative game theory; corporate shareholding networks; direct and indirect control;
power indices; Z-fuzzy number

1. Introduction

The measurement of indirect control in complex shareholding structures is an impor-
tant element of the financial analysis of such structures. Such analysis can be used for
various purposes by management boards of companies that are elements of corporate net-
works, for takeovers, or to have sufficient control to influence decisions of a particular firm,
for example. The novel proposal of this paper is to offer a differentiated set of measures of
indirect control. We obtain these measures by modifying the approach of Karos and Peters
(2015) [1]. In particular, our method applies ten power indices substituting the original
Shapley and Shubik (1954) [2] power index in a modular fashion. The ten considered power
indices differ significantly with regard to, for example, the known and desirable properties
in simple games. They highlight different aspects of the voting situation. We called our
indirect control measures the aggregated power indices due to the formula used in the
Karos and Peters approach.

One of the interesting issues regarding modeling the complex shareholding networks
relate to the presence of float—the set of unidentified shareholders, frequently with less
than 3% or 5% of shares of a company—in the network. Some authors disregard the float
altogether, and others try to model it; see Crama Leruth (2013) [3] for a review of the
literature on this question. In this paper, we also try to touch on this issue and calculate
some aggregated indices considering the float in a corporate network in an example. Note
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that Karos and Peters, when introducing their model in [1], used the example of the Porsche
and Volkswagen shareholding network and disregarded the float. Their example was based
on the annual reports 2012 of Volkswagen AG and Porsche Automobil Holding SE GmbH.
For the Volkswagen AG company, they omitted the float of small shareholders (2.2%) and
combined slightly larger shareholders into one monolith—others (9.9%).

When preparing an analysis of a company being a part of a shareholding structure,
one has to pay attention to two (among other) important factors:

1. The size of shareholding does not reflect the degree of shareholder control power
over corporate matters. In other words, a shareholder can have substantially more
or less corporate control than the shareholding percentage may suggest. Consider
the example of a company with three shareholders: the first shareholder owns 70%
of the shares, the second shareholder owns 20%, and the third shareholder owns the
remaining 10% of the shares. If only shareholding size is examined, it would appear
that the degree of control for each of the three investors is not in proportion to the
percentage of their shareholdings, as the shareholder with 70% of shares controls this
company fully. The situation may be even more complicated when the so-called right
to block a majority coalition exists (the right of veto, which is established for other
than economic reasons mostly). For example, in Poland, there is the concept of the
so-called “golden share”, the possession of which allows you to block some decisions
of the majority coalition. In the Volkswagen AG company, which is the basis of the
example analyzed in [1], this role is played by a “4/5 rule”, which gives the State of
Lower Saxony a blocking majority, as it controls more than 20% of the shares.

2. There exists indirect control over companies when, for example, one fully controlled
company is a majority shareholder of another company.

These two aspects justify why we use the power indices—concepts of solution from the
cooperative game theory—in our work and how important it is to measure indirect control
in complex shareholding structures. The game theory approach to measuring the indirect
control power of firms as elements of a whole corporate network is known in the literature
on the subject. Many scholars proposed methods based on power indices for measuring
the indirect control power of a firm in an ownership network; see Gambarelli and Owen
(1994) [4], Turnovec (1999) [5], Hu and Shapley (2003) [6,7], Leech (2002) [8], Crama and
Leruth (2007, 2013) [3,9], Karos and Peters (2015) [1], Mercik and Lobos (2016) [10], Levy
and Szafarz (2017) [11], Mercik and Stach (2018) [12], Stach, Mercik, and Bertini (2020) [13],
Staudacher, Olsson, and Stach (2021) [14], Stach and Mercik (2021) [15], Staudacher, Olsson,
and Stach (2022) [16], and Stach, Mercik, and Bertini (2023) [17], for examples. The reader
can find the comparisons of some of these approaches in [18–20] and [12]. Let us also not
forget that Penrose (1946) [21] and Shapley and Shubik (1954) [2] were the first to point to
this area of application of power indices.

A complex corporate shareholding network is a network separated from a given
market of companies, investors, and float with cross-holdings and cycle ownership. An
example can be presented by a directed graph, as illustrated in Figure 1. The Karos and
Peters approach takes all firms in measuring the indirect control and has no problem with
cycle-ownerships. It should be highlighted that only a few of the methods mentioned above
in the literature have this characteristic [1,10–15]. It is also a justification for our choice of
method to focus.

In practice, it is often very hard to obtain all the data on all firms in an ownership
structure, especially if they are not quoted on the stock market. As the float can impact
the control structure and control power of companies, it is also a good idea to include it in
the model. In this paper, we present two methods to incorporate the float. One relatively
simple approach is motivated by a result by Dubey and Shapley (1979) [22]; see Section 3.5.
The second one uses fuzzy numbers; see Section 4.
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Figure 1. The shareholding network of the Speiser–Baker case. H-Med = HealthMed, H-Chem = 
HealthChem. Source: [10,18]. 
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In the literature, authors consider Shapley and Shubik’s [2] index in cases when the
weights of players are uncertain, and that uncertainty is modeled by fuzzy weights. Elena
Mielcová (2016) [23] proposes the concept of the Shapley and Shubik index voting power
under intuitionistic fuzzy sets. In the work [24], the Shapley and Shubik index is considered
for the description of a voting game in parliamentary voting. A fuzzy coalition is a vector
with coordinates called the membership degrees of a player in a coalition. The membership
of such a player in a coalition is the probability of the political party’s occurrence in the
coalition. Przybyła-Kasperek (2021) [25] considers the Shapley–Shubik index in cases in
which global decisions are taken based on local decisions. The rough set theory proposed
by Pawlak (1985) [26] is used to construct the membership function of the player/agent. In
this article, we propose using the Z-fuzzy number to model uncertainty in players’ weights.

The remainder of the paper is structured as follows. Section 2 gives the formal
notations and definitions of simple and weighted games, power indices, and the desirable
properties of power indices in simple games. In particular, in Section 2.2.2, the reader can
find the formulas of power indices used to build the aggregated power indices. Section 2.3
presents the Karos and Peters approach. In Section 3, we define the set of aggregated
indices and illustrate them in an example of a corporate shareholding network. Still, in
this section, we extend the Karos and Peters approach considering the binary float of
small shareholdings (Section 3.5). The fuzzy float in the Karos and Peters approach is
regarded in Section 4. Section 5 contains some discussions, concluding remarks, and
further developments.

2. Notation and Definitions

Any complex corporate shareholding network, with cross-holdings and cycle own-
ership, is presented by a directed graph where nodes represent shareholders (companies,
investors, and float) and arcs represent relationships between them.

2.1. Simple and Weighted Games

Let N = {1, . . . , n} be a finite set of n players and 2N be the set of all subsets of N. Any
element of 2N is called a coalition. In particular, N is called a grand coalition and ∅ is an
empty coalition. A simple n-person game is a pair (N, v), where v : 2N −→ {0, 1} , is a
real-mumber characteristic function satisfying the following conditions:

• value of an empty coalition is equal to zero: v(∅) = 0;
• value of a grand coalition is equal to 1: v(N) = 1;
• (monotonicity) v(S) ≤ v(T) for all coalitions S and T, such that S ⊆ T ⊆ N.

A coalition S ∈ 2N is a winning one if v(S) = 1; otherwise, (v(S) = 0) it is said to be a
losing coalition. Let W denote the set of all winning coalitions in a simple game (N, v). A
simple game is said to be proper if ∀S ⊆ N if v(S) = 1; then, v(N\S) = 0. In this paper, we
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analyze only proper simple games (for more of a proper simple game, see (Stach 2011) [27]).
A player i is said to be critical in coalition S if v(S) = 1 and v(S\{i}) = 0. The set of all
winning coalitions in a simple game (N, v), in which I is critical, is denoted by ηi(v). For
each coalition, S ∈ 2N Cr(S) denotes the number of critical players in S, which means the
number of players whose deletion from S is critical. A winning coalition S is said to be a
minimal winning coalition if Cr(S) = |S|, where |S| stands for the size/cardinality of S,
i.e., the number of members of S. Wm stands for the set of all minimal winning coalitions in
a simple game (N, v). Wls stands for the set of all winning coalitions of the least size in the
game (N, v). A winning coalition of the least size is obviously a minimal winning coalition,
so W ls ⊆Wm ⊆W. A winning coalition is called vulnerable if at least one of its members
is critical (we also say that this player is in a swing position, i.e., a change in that member’s
vote to “no” would cause the coalition to lose). If only one player is critical, then this player
is uniquely powerful in the coalition. The Inverse of the number of critical players is called
the fractional swing for coalition S, FS(S) = 1/Cr(S). For example, if there are two critical
players in coalition S, then FS(S) = 1/2. Let VC denote the set of all vulnerable coalitions.

A player i ∈ N is said to be a null player if the following equation holds for each
coalition S ∈ 2N containing player i: v(S) = v(S\{i}). A winning coalition S is said to be a
null player-free winning coalition if all of its members are non-null players. Following the
notation used in [28], Wn− stands for the set of all null player free-winning coalitions.

For the sets W, Wm, Wls, and Wn− in a simple game (N, v), Wi, Wm
i ,W ls

i , and Wn−
i de-

note the corresponding subsets of W, formed by coalitions that contain player i. Any simple
game may be unequivocally determined by W, Wm, and Wn−, (see Álvarez-Mozos et al.
(2015) [29], Stach (2022) [30], and Stach and Bertini (2021) [28]. Thus, in any simple game
(N, v), the set of winning coalitions W can always be described by the set of null player-free
winning coalitions Wn− as follows: W =

{
S ∈ 2N : ∃T ∈Wn−∣∣T ⊆ S

}
.

Isbell (1958) [31] introduced the so-called (strict) desirability relation. In a simple game
(N, v), player i is said to be (strictly) more desirable than j, denoted by i � j if the following
two conditions are satisfied:

• ∀S ⊂ N, such that i /∈ S and j /∈ S, S ∪ {j} ∈W ⇒ S ∪ {i} ∈W .
• ∃T ⊂ N, such that i /∈ T and j /∈ T, T ∪ {i} ∈W and T ∪ {j} /∈W.

If for a pair of players i, j ∈ N and each coalition S ⊆ N\{i, j}, the following bicondi-
tional statement is true: S ∪ {i} ∈W ↔ S ∪ {j} ∈W . Then, players i and j are said to be
equally desirable, denoted by i v j. Next, player i is at least desirable as j if i � j or i v j,
denoted by i % j.

The desirability relation (%) suggests that the more desirable a player is, the more
powerful s/he should be. A minimal winning coalition S is shift minimal if for each member
i ∈ S and j /∈ S, such that i � j, it holds (S\{i}) ∪ {j} /∈ W. This implies that in a shift
minimal coalition, there are no surplus players, and a weaker player can replace no player
according to the strict desirability relationship without altering the winning status of the
coalition. Using Wsm, we denote the set of all shift minimal coalitions in a simple game.
Then, using Wsm

i we denote the corresponding subsets of W, formed by coalitions that
contain player i.

A simple game (N, v) is said to be complete (or linear or swap robust) if the desirability
relation is a complete preordering. Generally, it means that for each pair of players, we can
express who is more desirable: ∀i, j ∈ N i � j, or j � i (or both).

A proper simple game (N, v) is said to be a weighted game—denoted by [q; w1, . . . , wn]—
if there exist non-negative real numbers, w1, w2, . . . , wn, such that for every coalition,
S ⊆ N, S ∈ W if and only if the sum of wi’s, i ∈ S, is at least equal to q. The number
wi ≥ 0 stands for the weight of player i and a non-negative quota q is called the deci-
sion rule, i.e., the minimum amount of weights necessary to pass a decision. Usually,
1
2 ∑n

i=1 wi < q ≤ ∑n
i=1 wi.

Since in each weighted game, the players can be arranged in the order determined
by non-decreasing weights, each weighted game is complete as well. So, weighted games
have this property that players are ordered by the desirability relationship.
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2.2. Power Indices

A power index f is a function mapping a unique vector f (v) = ( f1(v), . . . , fn(v)) to
every simple game (N, v). Many power indices have been proposed after the most known
and widely applied Shapley and Shubik (1954) [2] power index. In general, power indices
are used to measure the power of a player i in group decision-making bodies. However,
the interpretation of this value— fi(v)—assigned to player i changes and depends also
on the measure (power index) itself and the context in which it is applied, see Felsenthal
and Machover (2005) [32], Laruelle et al. (2006) [33], Gambarelli and Stach (2009) [34],
Bertini and Stach (2011) [35], Bertini et al. (2013) [36], Bertini et al. (2015) [37], Bertini
and Stach (2015) [38], Stach (2016) [39], Bertini et al. (2016) [40], Bertini et al. (2017) [41],
Bertini et al. (2018) [42], Bertini et al. (2020) [43], Staudacher et al. (2021) [44], Stach and
Bertini (2021) [28], Stach (2022) [30], Stach and Bertini (2022) [45], and Stach, Mercik, and
Bertini (2023) [17].

2.2.1. Some Desirable Properties of Power Indices

In the literature on the topic, we can find some desirable properties (also called
postulates) of power indices in simple games. We list here only those that we regard
suitable for measuring the indirect control of firms in corporate shareholding structures
and for the considered framework. Nevertheless, in general, the following postulates are
widely accepted.

Postulate 1 (Anonymity): fi(v) = fπ(i)(π(v)) for every simple game (N, v), every
player i ∈ N, and each permutation π : N 7→ N , where the simple game (N, π(v)) is
defined as follows: πv(S) = v(π(S)) for every coalition S ⊆ N. The game (N, πv) is the
same as (N, v), except that players are relabeled according to π. Less formally, this property
states that the value assigned by a power index f does not depend on the player’s name.

Postulate 2 (Efficiency): ∑i∈N fi(v) = 1 for every simple game (N, v). This postulate
states that the sum of powers assigned by a power index f to all players must equal 1
(100%), i.e., the total power in the game.

The three postulates that follow are the original transfer axioms proposed by Dubey [46]
to characterize the Shapley [47] value and its two equivalent variants. The idea behind
presenting the two variants is to better understand what the transfer postulate requires
from a power index based on winning or minimal winning coalitions.

To state the next postulate, let us introduce the following notation. For all pairs of
simple games, (N, v) and (N, w), let us define (v ∧ w) and (v ∨ w) by the following sets
of winning coalitions: W(v1 ∧ v2) =

{
S ∈ 2N : S ∈W(v1) and S ∈W(v2)

}
, W(v1 ∨ v2) ={

S ∈ 2N : S ∈W(v1), or S ∈W(v2)
}

. Note that the set of all simple games is closed under
operations ∧, ∨. Thus, a coalition is winning in (N, v ∨ w) if, and only if, it is winning in at
least one of v or w, and it is winning in (N, v ∧ w) if, and only if, it is winning in both (N, v)
and (N, w).

Postulate 3 (Transfer—Dubey (1975) [46]): fi(v ∧ w) + fi(v ∨ w) = fi(v) + fi(w) for
all pairs of simple games (N, v), (N, w) and each player i ∈ N.

Postuale 3′. (Transfer—Dubey and Shapley (1979) [22]): consider two pairs of simple
games, (N, v) and (N, v′) and (N, w) and (N, w′), and suppose that the transitions from
(N, v′) to (N, v) and (N, w) to (N, w′) entail adding the same set of winning coalitions, i.e.,
W(v) ⊂ W(v′), W(w) ⊂ W(w′), and W(v)\W(v′) = W(w)\W(w′). Then, the equivalent
transfer axiom stats fi(v)− fi(v′) = fi(w)− fi(w′) for each player i ∈ N. This means that
the change in power depends only on the change in the voting game (i.e., on the set of the
new winning coalitions).

Postulate 3′′. (Transfer—Laruelle and Valenciano (2001) [48]). For all pairs of simple
games, (N, v) and (N, w) and all S ∈Wm(v) ∩Wm(w), such that S 6= N the following holds:
fi(v)− fi

(
v∗S
)
= fi(w)− fi

(
w∗S
)

for all i ∈ N.(
N, v∗S

)
and

(
N, w∗S

)
are modified games, such that W

(
v∗S
)

= W(v)\S and
W
(
w∗S
)
= W(w)\S. This axiom is equivalent to the transfer axiom. In other words—citing

Laruelle and Valenciano—this reformulated transfer axiom states that the effect (gain or
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loss) on any player’s power of eliminating a single minimal winning coalition from the set
of winning ones is the same in any game in which this coalition is minimal winning.

Postulate 4. (Null player). If i ∈ N and i is a null player in (N, v), i.e., v(S∪{i}) = v(S)
for every S ⊂ N\{i}, then fi(v) = 0. This postulate requires that a player who does not
contribute to a coalition should obtain null power.

Postulate 5. (The null player’s removable property). fi

(
v
′
)
= fi(v) for each simple

game (N′, v′) arising from (N, v) by eliminating the null players and each non-null player
i ∈ N

′
, i.e., i /∈ N\N

′
.

Postulate 6. (Local monotonicity, LM). LM requires that a voter i who controls a
larger share of the vote cannot have a smaller share of power than a voter j with a smaller
voting weight.

2.2.2. Power Indices Considered in This Paper

Considering a specific property of power indices in simple games, we can divide the
indices into certain groups, which are not necessarily disjointed. Let us consider three
groups of power indices.

• A group of power indices that satisfy the transfer property—also called the additivity
property. To this group belong indices which follow Shapley and Shubik [2], absolute
Banzhaf [21,49], Rae [50], Nevison [51], and Solidarity [45,52] indices. From this group
of indices, we have chosen only one—the Solidarity index—for developing a group of
power indices meant to represent the real power of the firms in a mutually complex
shareholding network.

• A group of power indices that are based on minimal winning coalitions. These
kinds of power indices were introduced by Deegan and Packel [53], Holler [54,55],
Alonso-Meijide and Freixas [56], Alonso-Meijide, Freixas, and Molinero [57], and
Felsenthal [58]. We take all indices from this group for further consideration, al-
though this group is the most sensitive considering the postulate of local monotonicity.
Namely, in this group of indices, only the PI index satisfies this property; see Felsenthal
(2016) [58].

• A group of power indices that satisfy the null player removable property. In this group,
we have all power indices from the previous group that relate to the minimal winning
coalitions. The indices that are based on null player-free winning coalitions proposed
by Álvarez-Mozos et al. [29], and the indices proposed by Banzhaf [49], Johnston [59],
and Shapley and Shubik [2]. We take all these indices into consideration as well. Note
that all indices in this group satisfy the null player property as well.

In the literature, we can find more interesting properties that can be regarded in the
context of measuring indirect control. None of the power indices considered by us would
satisfy all possible properties. For example, Felsenthal in [58] regarded six properties of the
so-called P-power indices, and even the Shapley and Shubik power index failed to fulfill
one of them. However, not only the number of compelling properties fulfilled by a power
index is important, but also the normative bargaining model underlying this index needs
to be convincing.

In the following, we define the power indices considered in this paper. All these
indices satisfy the anonymity and efficiency postulates often present in the axiomatic char-
acterization of the following indices if an index has such characterization. The definitions
of the power indices below are given for each simple game (N, v) and each player i ∈ N.

• The Shapley and Shubik [2] power index is defined as follows:

σi(v) = ∑
S∈ηi(v)

(n−|S|)!(|S|−1)!
n!

• The normalized Banzhaf [21,49] power index is defined as follows:
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βi(v) =
|ηi(v)|

∑j∈N
∣∣ηj(v)

∣∣
• The Solidarity index as a restriction of the Nowak and Radzik (1994) [52] Solidarity

value in a simple game (N, v), see Stach and Bertini [45]. This index is expressed
as follows:

ψi(v) = ∑
T⊆N,i∈T

1(
n
|T|

) Cr(T)
|T|2

• The Deegan and Packel [53] power index is given as follows:

∆ i(v) =
1
|Wm| ∑

S∈Wm
i

1
|S|

• The Holler index h (called also the Public Good Index) [54,55] is given by:

hi(v) =

∣∣Wm
i

∣∣
∑j∈N

∣∣∣Wm
j

∣∣∣
• The Shift index [56] is defined as follows:

si(v) =

∣∣Wsm
i

∣∣
∑j∈N

∣∣∣Wsm
j

∣∣∣
The s index can be seen as a modification of the Holler index. The only difference is

that it considers the subset of minimal winning coalitions called the shift minimal winning
coalitions instead of minimal winning coalitions.

• The Shift Deegan–Packel index [57] is defined as follows:

µi(v) =
1
|Wsm| ∑

S∈Wsm
i

1
|S|

The µ index combines the ideas of the Shift [56] and the Deegan and Packel [53] indices.

• The Felsenthal [58] power index PI of the winning coalitions of least size—proposed by
Felsenthal (2016)—can be seen as a slight modification of the Deegan and Packel [53]
index by replacing in its underlying assumptions of the minimal winning coalitions
by the winning coalitions of least size (WCLS). The Felsenthal power index of WCLS
for any player i, originally denoted by PI, is obtained as follows:

PIi(v) =
1∣∣W ls
∣∣ ∑

S∈W ls
i

1
|S|

• The fn− power index [29] is defined as follows:

f n−
i (v) =

1
|Wn−| ∑

S∈Wn−
i

1
|S|

The fn− index can be seen as a modification of the Deegan and Packel [53] index. The
only difference is that fn considers all null player-free winning coalitions.

• The Álvarez-Mozos et al. [29] gn− power index is defined as follows:

gn−
i (v) =

∣∣Wn−
i

∣∣
∑j∈N

∣∣∣Wn−
j

∣∣∣
The gn− index can be seen as a modification of the Holler [54,55] index—with the only

difference being that gn considers all winning coalitions that do not contain null players, or
as a restriction of the Public Help Index θ [30,60], which is based on all winning coalitions.
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• The Johnston [59] index is defined as follows:

γi(v) =
∑S∈VC,i∈S FSi(S)

∑j∈N ∑S∈VC,j∈S FSj(S)

where for each vulnerable coalition, S ∈ VC and critical player i ∈ S FSi(S) = FS(S),
and for non-critical players, FSi(S) = 0.

2.3. The Karos and Peters Approach

Karos and Peters [1] model the indirect control power of agents in a mutual control
structure with N firms—such as a corporate shareholding network, for example—in two
equivalent ways. The first way is by so-called invariant mutual control structure (C)—a
map that assigns to each coalition the set of controlled firms in a network. In simple words,
an invariant control structure must consider all indirect control relations. The second way
is by a simple game structure vC =

(
vC

1 , vC
2 , . . . , vC

n
)
, in which for each firm-player i ∈ N,

a simple game vC
i describes who controls that firm. This approach is similar to command

games proposed by Hu and Shapley (2003) [6,7].
The Karos and Peters [1] method of measuring indirect control in complex sharehold-

ing structures is axiomatic. Karos and Peters based their approach on the five axioms
obtaining a unique index Φ. They regarded the following axioms.

Axiom 1. (Also known as the null player axiom.) The power of each null firm is equal to zero. A
firm i is null if is not controlled by any firm and i does not exert any control over other firms in
the network.

Axiom 2. (Also known as the constant sum property.) The sum of all assigned powers is the same
over all invariant mutual control structures based on N. From axioms 1 and 2, it follows that this
sum is equal to zero.

Axiom 3. (Also known as the anonymity axiom.) The names of the firms should not matter.

Axiom 4. (Also known as the transfer axiom.) For any firm, the change in power when enlarging a
mutual control structure P to P′ should be equal to the change in power when enlarging a mutual
control structure Q to Q′, under the assumption that the same control relations are added going from
P to P′ as when going from Q to Q′. This axiom relates to the transfer axiom used to characterize
the Shapley value and the Shapley and Shubik index [2,46,47].

Axiom 5. (Also known as the controlled player axiom.) If company i is controlled by at least one
coalition and, as a consequence, by a grand coalition N, but does not control any company, then the
power of company i is set at −1. Next, if a firm j is controlled by no coalition at all, but firms i and
j exert the same marginal control with respect to any coalition, then firm j obtains one more than
firm i.

Let
−
C be the set of all invariant mutual control structures on N. For every i ∈ N and

C ∈
−
C, the Karos and Peters Φ index is defined as follows:

Φi(C) = ∑k∈N σi

(
vC

k

)
− vC

k (N) (1)

where vC
k (S) = 1 if k is controlled by S; otherwise, vC

k (S) = 0.
Note that the simple games vC

k (S) are determined by the sets of minimal winning
coalitions in direct and indirect control. We recall that a simple game is uniquely determined
by the set of its minimal winning coalitions; see Section 2.1. Here, we give the abbreviate
definition of the Karos and Peters approach. For details and how to incorporate the indirect
control relationships to obtain the invariant mutual control structure—and the so-called
minimal winning coalitions that consider direct and indirect control—we cross-refer the
reader to [1,61].
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3. A General Framework of Aggregated Power Indices for Indirect Control
3.1. Modelling of Corporate Shareholding Networks

In this work, we consider the approach by Karos and Peters [1] and modify it by
substituting the original Shapley and Shubik index with ten others to obtain so-called
aggregated power indices. This idea has been just used by Stach, Bertini, and Mercik
(2023) [17] and the Holler [54,55] index—also called the Public Good Index—substituted
the Shapley and Shubik index in the Karos and Peters framework. The new index obtained
was called the iPGI index. Nonetheless, to have a total set of aggregated indices in one
paper, we dedicate it to iPGI in Section 3.4.4.

The choice of the power indices to apply in Karos and Peters’ approach is based on
some properties fulfilled by these indices; see Section 2.2.2. Let us try below to justify
our choices.

The first group refers to the transfer property, as this property constitutes the fourth
axiom of the Karos and Peters index Φ; see Section 3.3. Scarcely few efficient power indices
satisfy this property. One of them, and different from the Shapley and Shubik index, is
the Solidarity index [45,52]. One can be surprised by the use of this index in the context of
measuring the indirect control power of firms in mutual corporate shareholding networks.
However, in certain situations, the a priori estimation of power given by the Solidarity
index can produce useful information. For example, firms can try to be solidary with other
shareholders of the same company to maintain control against a potential hostile takeover.
In this context, it could be interesting to find a better and safer redistribution of shares
based on the distribution of the solidarity power index or its aggregated version. However,
this reverse problem and index could be a subject for future studies.

The second group contains the power indices based on minimal winning coalitions.
Stach, Bertini, and Mercik (2023) [17] argued widely the validity and incisiveness of the
choice of the minimal-winning power indices to assess the real power of players in the
context of indirect control. We refer the reader to this work, and here we just mention that
in the context of a hostile takeover attack, it seems that a potential rider will look for a
minimal winning coalition; not one that is expensive, but one that is stable and winning.

The third group refers to the null player removable property. The importance of this
postulate in the context of measuring indirect control was highlighted first in [12] and then
in [14]. Moreover, Staudacher et al. (2021) [14] present a bit more particular version of
this postulate—the null investor removable property—for mutual corporate shareholding
structures. In other words, this property says that after removing the investors whose
voting rights cannot transform any losing coalition into a winning one, null investors from
a network and the non-null firms’ power measures should remain unchanged. Equiv-
alently, the value of any firm in a corporate shareholding network is unchanged if the
network is extended by adding a new null investor. Staudacher et al. [14] noted that
the Φ index satisfies the null investor removable property. Moreover, the minimal win-
ning coalitions and Johnston indices satisfy the null player removable property in simple
games. So, as a consequence, their aggregated versions must also fulfill the null investor
removable property.

As we mentioned in the Section 1, some researchers disregard the presence of float
in corporate shareholding networks, and some try to model it, as the power of float can
influence the power of big shareholders. Only a few researchers dealing with modeling
indirect control in corporate networks and using power indices in their methods also
included floats of small, undefined shareholders in their considerations; see [3,9]. As this
paper aims to study a general abstract model of mutual shareholding networks, we try to
incorporate this argument into our approach to aggregated power indices. We propose
two ways to consider the float: an approach that treats the float as an ocean of an infinite
number of unknown shareholders, with each of them holding a small fraction of the shares
(Section 3.5), and a fuzzy approach (Section 4).
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3.2. Motivation and Illustration

We regard an example of a corporate shareholding network that deals with the Speiser
and Baker case and which was considered in [10]. In this case, the corporate structure is
displayed as a directed graph; see Figure 1. In this network, there are six players, three
of which are companies. Namely, three companies are Medallion (1), HealthMed (3), and
HealthChem (4). Speiser (2), Baker (5), and others (6) are investors, i.e., firms that are not
controlled by any coalitions of firms. For this case, we consider a simple majority, i.e., the
majority quota is 50% plus one share.

Our example of a network comprises a number of important features. Namely, we
observe a cycle ownership structure (loop) for companies 1, 3, and 4. This network structure
is complete in the sense that 100% of each company is controlled by other firms in the
network. There is no null player. Player 6 (others) can also be regarded as a float of small
investors, i.e., firms that hold a small stock of shares, typically less than 5 percent of the
outstanding shares; see Sections 3.5 and 4.

If we take into consideration only direct ownership in our example, then we can find
the minimal winning coalitions for each company. Thus, in company 1, there is only one
minimal winning coalition {4}, as company 4 has 100% of the voting rights in company 1.
Then, in company 3, there are three minimal winning coalitions of firms that guarantee a
simple majority: {1, 2}, {1, 5}, and {2, 5}. In company 4, we have three minimal winning
coalitions as well: {2, 3}, {3, 6}, and {2, 5, 6}. Recall that the knowledge of the set of minimally
winning coalitions is sufficient to determine a simple game unequivocally and construct
the sets of winning coalitions and null player-free winning coalitions (W, Wn−) as well (see
Section 2.1).

3.3. The Karos and Peters Index in the Example

In order to calculate the Φ index in our example (Section 3.2), we first need to incorpo-
rate the indirect control in the model of the mutual control structure of the Speiser-Baker
network, i.e., to make the mutual structure invariant—C. To represent such relations, we
define a simple game structure

(
vC

1 , vC
2 , vC

3 , vC
4 , vC

5 , vC
6
)
. As firms 2, 5, and 6 are pure

investors without shareholders, the games related to them are null, i.e., assign zero to all
coalitions. The other simple games vC

1 , vC
3 , vC

4 are defined by the sets of minimal winning
coalitions. In order to find these sets, we start with direct ownerships and adequate sets
of minimal winning coalitions, which are given at the end of Section 3.2. Then, we use
the procedure of constructing an invariant mutual control structure—discussed in detail
in [61]—which consists of a finite number of steps of elementary substitutions of controlled
players by coalitions that control them. For example, company 1 is controlled by company 4,
which in turn is controlled by a minimal winning coalition of firms 2 and 3. Thus, we
need to add to Wm(v C

1

)
{2, 3}. Repeating such elementary substitutions, at some point,

we obtain some sets of minimal winning coalitions that are invariant under such further
substitutions. In our example, we obtain the following set of minimal winning coalitions:
Wm(vC

1
)

= {{4}, {1, 2}, {2, 3}, {2, 5}, {3, 6}, and {1, 5, 6}}, Wm(vC
3
)

= {{1, 2}, {1, 5}, {2, 3}, {2, 4},
{2, 5}, {4, 5}, and {3, 5, 6}}, and Wm(vC

4
)

= {{1, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 6}, {1, 5, 6}, and
{4, 5, 6}}. Note that we also use these sets of minimal winning coalitions to calculate the
aggregated indices in Section 3.4.

Now, let us calculate the Φ index in our example. Table 1 gives the Shapley and Shubik
power indices for all firms in the Baker and Spacer case calculated in companies 1, 3, and 4.
The indirect control power of all firms in companies 2, 5, and 6 is null, as these companies
are not controlled by any firm. They are regarded as pure investors.
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Table 1. The σ index is calculated for each player and a simple game is defined for our example.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 4/60 12/60 7/60 27/60 4/60 6/60
i = 3 7/60 22/60 4/60 7/60 19/60 1/60
i = 4 4/60 24/60 9/60 4/60 6/60 13/60

i = 2, 5, 6 0 0 0 0 0 0

Total 15/60 58/60 20/60 38/60 29/60 20/60

Considering the results in Table 1 and Formula (1), we obtain Φ =(−45/60, 58/60,
−40/60, −22/60, 29/60, 20/60) = (−0.75, 0.9667, −0.6667, −0.3667, 0.4833, 0.3333). Firms
2 and 5 both have 45% of the stocks of firm 3. However, firm 5 has a 1.5% lower share of
stocks in company 4 than firm 2. This results that in the whole shareholder network, the
difference in power, calculated according to the Φ index, is greater and Φ2(C) = 2 Φ5(C).

3.4. Aggregated Power Indices a Generalization of the Karos and Peters Approach

In this section, we introduce the aggregated indices and calculate them in the example.
Then, the results are discussed in Section 5.

We provide a table with partial calculations for each aggregated index so that a reader
can see how it works. Precisely, each table shows values of respective power indices in
simple games corresponding to companies 1, 3, and 4 (vC

i , i = 1, 3, 4). As was mentioned
in Section 3.3, values of the indirect control power of all firms in simple games 2, 5, and 6
are null. Therefore, to avoid repetition, in each table with partial calculation, we omit this
information. Such information appears only in Table 1 when calculating the Φ index.

3.4.1. The Aggregated Banzhaf Index

For every firm i in the network and mutual structure C, the aggregated Banzhaf Aβ
index is defined as follows:

Aβi(C) = ∑k∈N βi

(
vC

k

)
− vC

k (N) (2)

Table 2 shows the results of calculation β [49] in companies i = 1, 3, and 4. Note that
for calculating this index, we need the criticality of each player j—expressed by ηj(vi)—in
each simple game i. However, knowing the set of minimal winning coalitions for each
company is not difficult to obtain.

Table 2. The β index is calculated for each player and a simple game is defined for our example.

Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 3/38 9/38 5/38 13/38 3/38 5/38
i = 3 5/46 17/46 3/46 5/46 15/46 1/46
i = 4 3/48 19/48 7/48 3/48 5/48 11/48

Total 5247/20976 21023/20976 7187/20976 10767/20976 10681/20976 8023/20976

Considering the results in Table 2 and Formula (2), we obtain Aβ = (−15729/20976,
21023/20976, −13789/20976, −10209/20976, 10681/20976, 8023/20976) = (−0.7499, 1.0022,
−0.6574, −0.4867, 0.5092, 0.3825). So, according to the aggregated Banzhaf index, the
control power of firm 2 (Speiser) is almost twice that of firm 5 (Baker).

3.4.2. The Aggregated Solidarity Index

For every firm i in the network and mutual structure C, the aggregated solidarity Aψ
index is defined as follows:

Aψi(C) = ∑k∈N ψi

(
vC

k

)
− vC

k (N) (3)
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Table 3 shows the results of the calculation of the solidarity index in companies i = 1,
3, and 4. Note that for calculating this index, we need to know Cr(S) for each winning
coalition containing player j, i.e., the number of critical players in S, in the game vC

i . So,
first, it is necessary to find Wj

(
vC

i
)
, starting from the sets of minimal winning coalitions

given in Section 3.3.

Table 3. The ψ index is calculated for each player and a simple game is defined for our example.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 465/3600 615/3600 525/3600 1035/3600 465/3600 495/3600
i = 3 558/3600 804/3600 498/3600 558/3600 744/3600 438/3600
i = 4 503/3600 839/3600 593/3600 503/3600 533/3600 629/3600

Total 1526/3600 2258/3600 1616/3600 2096/3600 1742/3600 1562/3600

Considering the results in Table 3 and Formula (3), we obtain Aψ = (−1037/1800,
1129/1800,−92/1800,−52/1800, 871/1800, 781/1800) = (−0.5761, 0.6272,−0.5511,−0.4178,
0.4839, 0.4339).

3.4.3. The Aggregated Deegan and Packel Index

For every firm i in the network and mutual structure C, the aggregated Deegan and
Packel A∆ index is defined as follows:

A∆ i(C) = ∑k∈N ∆ i

(
vC

k

)
− vC

k (N) (4)

Table 4 shows the results of the calculation of the ∆ index in simple games vC
1 , vC

3 , vC
4 .

∆ bases on minimal winning coalitions, so knowing the sets Wm(vC
i
)
, i = 1, 3, 4—given in

Section 3.3—the calculations for this index are rather simple.

Table 4. The ∆ index is calculated for each player and a simple game is defined for our example.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 5/36 9/36 6/36 6/36 5/36 5/36
i = 3 6/42 12/42 5/42 6/42 11/42 2/42
i = 4 5/42 12/42 6/42 5/42 7/42 7/42

Total 101/252 207/252 108/252 108/252 143/252 89/252

Considering the results in Table 4 and Formula (4), we obtain A∆ = (−151/252, 207/252,
−144/252, −144/252, 143/252, 89/252) = (−0.599206349, 0.821428571, −0.571428571,
−0.571428571, 0.567460317, 0.353174603).

3.4.4. The Aggregated Holler Index

For every firm i in the network and mutual structure C, the aggregated Holler index
Ah is defined as follows:

Ahi(C) = ∑k∈N hi

(
vC

k

)
− vC

k (N) (5)

Note that Bertini, Mercik, and Stach (2023) [17] introduced this index recently and
called it the iPGI index, where “i” refers to indirect control. To be in line with the other nine
aggregated newly introduced indices in this paper, we denote the aggregated Holler index
by Ah.

Let us calculate the Ah index in our Example. First, we need to calculate the h index
in the games corresponding to companies 1, 3, and 4 having Wm(vC

i
)
, i = 1, 3, and 4,

respectively. The adequate result of the calculation is shown in Table 5. Note that h, like ∆,
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is based on minimal winning coalitions, and we only need to calculate the membership of
each player in all minimal winning coalitions for a particular simple game.

Table 5. The h index is calculated for each player and a simple game is defined for our example.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 2/12 3/12 2/12 1/12 2/12 2/12
i = 3 2/15 4/15 2/15 2/15 4/15 1/15
i = 4 2/16 4/16 2/16 2/16 3/16 3/16

Total 102/240 184/240 102/240 82/240 149/240 101/240

Considering the results in Table 5 and Formula (5), we obtain Ah = (−138/240,
184/240, −138/240, −158/240, 149/240, 101/240) = (−0.5750, 0.7667, −0.5750, −0.6583,
0.6208, 0.4208).

3.4.5. The Aggregated Shift Index

For every firm i in the network and mutual structure C, the aggregated Shift As index
is defined as follows:

Asi(C) = ∑k∈N si

(
vC

k

)
− vC

k (N) (6)

Let us calculate the As index in our example. First, we need to calculate the Shift index
in the games corresponding to companies 1, 3, and 4. The calculation of the s index is
simple when you have the set of shift minimal winning coalitions. Finding the shift minimal
winning coalitions requires using the desirable relationship, which is not so simple anymore.
For this reason, we show detailed consideration of how to perform it in the example.

Let us regard only direct ownership. In company 1, there is only one minimal winning
coalition {4}, so it is a shift minimal winning coalition as well.

In company 3, there are three minimal winning coalitions: of firms that guarantee
a simple majority: {1, 2}, {1, 5}, and {2, 5}. Although firm 2 has more voting rights in
company 3 than company 1 (45% versus 10%), both firms are equally desirable in the
simple game that refers to company 1 with a simple majority. Indeed, there is no coalition
T such that i, j /∈ T, T ∪ {i} ∈W and T ∪ {j} /∈W. In this game, there is only one coalition
without firms 1 and 2: coalition {5}. If we add firm 1 or 2 to {5}, we obtain, in both cases,
winning coalitions. Next, there is only one non-empty coalition that does not contain firms
2 and 5: coalition {1}. If we add firm 2 to {1}, we obtain a winning coalition. If we add
{5} to {1}, we obtain a winning coalition as well. Of course, the empty coalition does not
contain any firm. However, no singular coalition is winning. For this reason, we do not
consider a single empty coalition here. So, firms 2 and 5 are equally desirable. From another
point of view, both firms have the same number of voting rights in company 3—45%. So,
consequently, the set of shift minimal winning coalitions is equal to the set of the minimal
winning coalitions, which is given as follows: {{1, 2}, {1, 5}, and {2, 5}}.

In company 4, we have three minimal winning coalitions: {2, 3}, {3, 6}, and {2, 5, 6},
which are also shift minimal winning coalitions. Let us check this. In this company, firm
6 has more voting rights than firm 2. However, both firms are equally desirable. There
is no coalition T such that {2} /∈ T and {6} /∈ T, (T ∪ {2} ∈ W and T ∪ {6} /∈ W), or
(T ∪ {2} /∈W and T ∪ {6} ∈W). In this game, there are only three coalitions without firms
2 and 6: {3}, {5}, and {3, 5}. If we add {2} to {3}, we obtain a winning coalition {2, 3}. If we
add {6} to {3}, we obtain a winning coalition {3, 6} as well. If we add {2} to {5}, we obtain a
losing coalition {2, 5}. If we add {6} to {5}, we obtain a losing coalition as well. Then, if we
add {2} to {3, 5}, we obtain a winning coalition {2, 3, 5}. If we add {6} to {3, 5}, we obtain a
winning coalition as well ({3, 5, 6}). So, firms 2 and 6 are equally desirable. Let us consider
firms 2 and 3. We have three not empty coalitions without these firms: {5}, {6}, and {5, 6}.
Adding {2} to {5} we have a losing coalition; adding {3} to {5} we have a losing coalition as
well. Adding {2} to {6} we have losing coalition; adding {3} to {6} we have winning coalition.
Adding {2} to {5, 6} we have a winning coalition and adding {3} to {5, 6} we have a winning
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coalition as well. So, firm 3 is more desirable than firm 2, which is equally desirable as
firm 6. Regarding firms 2 and 5, what can we say? We have three coalitions without these
firms: {3}, {6}, and {3, 6}. If we add firm 2 to {3}, we obtain a winning coalition. If we add
firm 5 to {3}, we obtain a losing coalition. If we add firm 2 or firms 5 or {6}, in both cases,
we obtain a losing coalition. Coalition {3, 6} is winning, so adding other players does not
change the winning status of the coalition. So, firm 2 is more desirable than firm 5. Thus,
3 � 2 ∼ 6 � 5. In coalition {2, 5, 6} we cannot exchange any player, as firm {3} is more
desirable for all members of {2, 5, 6}. As a consequence, we proved that in company 4, the
set of shift minimal winning coalitions consists of {2, 3}, {3, 6}, and {2, 5, 6}.

Considering direct and indirect control, we have the following sets of minimal winning
coalitions in companies 1, 3, 4: Wm(vC

1
)

= {{4}, {1, 2}, {2, 3}, {2, 5}, {3, 6}, and {1, 5, 6}},
Wm(vC

3
)

= {{1, 2}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {4, 5}, and {3, 5, 6}}, and Wm(vC
4
)

= {{1, 2}, {2, 3},
{2, 4}, {2, 5}, {3, 6}, {1, 5, 6}, and {4, 5, 6}}; see Section 3.3. Similarly, as in the case of direct
control, we apply the desirable relationship to find the shift in minimal winning coalitions
for “indirect control” games.

Company 1 and firm 4 are more desirable than all the others. Adding firm 4 to an
empty coalition, we obtain a winning coalition. Adding a player other than 4 to an empty
coalition does not result in a winning coalition. Let us regard firms 1 and 2. We have 24

different coalitions without firms 1 and 2. However, we are interested only in coalitions
without firm 4. Having firm 4 as a member makes the coalition win. So, we are not
interested in these kinds of coalitions, as they do not change the winning status by adding
firms 1 or 2. So, in practice, we have 23 coalitions to consider: {3}, {5}, {6}, {3, 5}, {3, 6},
{5, 6}, and {3, 5, 6}. Among these coalitions, we have two minimal winning coalitions,
which also are not interesting to us ({3, 6} and {3, 5, 6}). So, the remaining coalitions are
{3}, {5}, {6}, {3, 5}, and {5, 6}. Only adding firm 1 to {5, 6} results in a winning coalition. A
union of {1} and each S ∈{{3}, {5}, {6}, and {3, 5}} results in a losing coalition, whereas the
union of firm 2 with only {6} results in a losing coalition. In the rest of the cases, a union
with {2} results in a winning coalition. Thus, firm 2 is more desirable than firm 1 (2 � 1).
Repeating this reasoning for the remaining pairs of firms, we obtain the following picture
of the preordering in company 1 by the desirability relation:

4 � i, i ∈ {1, 2, 3, 5, 6}, 2, 3 � 1 ∼ 5, 2, 3 � 6

From the above, we have that firm 4 dominates all other firms; firms 2 and 3 are
incomparable, but they dominate 1, 5, and 6. Firms 1 and 5 are equivalent. Firms 5 and 6
and firms 1 and 6 are incomparable. These are all the relations according to the desirability
and strict desirability. Now, {2, 3} can be replaced by {2, 5}, for example, since the last
is winning and 5 is weaker than 3. The only minimal winning coalition which is not
shift-minimal is {2, 3}. This game is not complete, as some of the firms are not comparable.
Thus, Wsm(vC

1
)

= {{4}, {1, 2}, {2, 5}, {3, 6}, and {1, 5, 6}}.
Similarly, considering indirect ownership and desirability relationship, we can find

pre-orderings and the sets of shift minimal winning coalitions in companies 3 and 4. For
company 3, we have the following preordering of the firms: 2 � 5 � 1 ∼ 4 � 3 � 6 and
Wsm(vC

3
)
= {{1, 5}, {2, 3}, {4, 5}, and {3, 5, 6}}. For company 4, we have 2, 3 � 5 ≺ 4 ∼ 1,

2 � 6 and Wsm(vC
4
)
= {{1, 2}, {2, 4}, {3, 6}, {1, 5, 6}, and {4, 5, 6}}.

The results of calculations of the s index in companies 1, 3, and 4 are shown in Table 6.

Table 6. The s index is calculated for each player and a simple game is defined for our example.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 2/10 2/10 1/10 1/10 2/10 2/10
i = 3 1/9 1/9 2/9 1/9 3/9 1/9
i = 4 2/12 2/12 1/12 2/12 2/12 3/12

Total 86/180 86/180 73/180 68/180 126/180 101/180
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Considering the results in Table 6 and Formula (6), we obtain As = (−94/180, 86/180,
−107/180, −112/180, 126/180, 101/180) = (−0.52222, 0.47778, −0.59444, −0.62222,
0.70000, 0.56111).

3.4.6. The Aggregated Shift Deegan–Packel Index

For every firm i in the network and mutual structure C, the aggregated Shift Deegan–
Packel Aµ index is defined as follows:

Aµi(C) = ∑k∈N µi

(
vC

k

)
− vC

k (N) (7)

Calculation of this index, like the As index (Section 3.4.5), requires finding sets of
shift minimal winning coalitions in simple games relating to companies 1, 3, and 4. Since
such sets have already been found for the As index (see Section 3.4.5), we limit ourselves
to presenting the results of calculations of the µ indices in games vC

k , k = 1, 3, 4, in our
example; see Table 7.

Table 7. The µ index is calculated for each player and a simple game is defined for our example.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 5/30 6/30 3/30 6/30 5/30 5/30
i = 3 3/24 3/24 5/24 3/24 8/24 2/24
i = 4 5/30 6/30 3/30 5/30 4/30 7/30

Total 55/120 63/120 49/120 59/120 76/120 58/120

In Table 7 and Formula (7), we have Aµ = (−65/120, 63/120, −71/120, −61/120,
76/120, 58/120) = (−0.5417, 0.5250, −0.5917, −0.5083, 0.6333, 0.4833).

3.4.7. The Aggregated PI Index

For every firm i in the network and mutual structure C, the aggregated Felsenthal
winning coalitions least size API index is defined as follows:

APIi(C) = ∑k∈N PIi

(
vC

k

)
− vC

k (N) (8)

In our example, in the game corresponding to company 1, we have only one winning
coalition of the least size: {4}. So, the PI index assigns a total power of 1 to company 4;
see Table 8.

Table 8. The PI index is calculated for each player and a simple game is defined for our example.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 0 0 0 1 0 0
i = 3 2/12 4/12 1/12 2/12 3/12 0
i = 4 1/10 4/10 2/10 1/10 1/10 1/10

Total 16/60 44/60 17/60 76/60 21/60 6/60

In company 3, the set of winning coalitions of the least size consists of six coalitions:
{1, 2}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, and {4, 5}. Among these coalitions, none contain firm 6. So
consequently, firm 6 becomes a null player according to the PI index; see Table 8.

In company 4, we have five winning coalitions of the least size: {1, 2}, {2, 3}, {2, 4},
{2, 5}, and {3, 6}. The power assigned to firms 1, 4, 5, and 6, by the PI index is the
same because each of these firms belongs to only one winning coalition of the least size;
see Table 8.

Considering the results in Table 8 and Formula (8), we obtain API = (−44/60, 44/60,
−43/60, 16/60, 21/60, 6/60) = (−0.7333, 0.7333, −0.7167, 0.2667, 0.35, 0.10). As for the
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aggregated Banzhaf index, this aggregated index, which is based on the winning coalitions
of the least size, also gives much more power to firm 2 than firm 5—more than double that
of firm 2.

3.4.8. The Aggregated fn− Power Index

For every firm i in the network and mutual structure C, the aggregated null player
free winning coalition Afn− index is defined as follows:

A f n−
i (C) = ∑k∈N f n−

i

(
vC

k

)
− vC

k (N) (9)

Table 9 shows the results of calculation fn− in the example. Note that in the example,
the none firm is a null firm. So, in all simple games relative to companies 1, 3, and 4, the
sets of null player-free winning coalitions are equal to the sets of all winning coalitions.
In the game vC

1 , there are six minimal winning coalitions—see Section 3.2—and fifty-one
winning coalitions. Then,

∣∣Wm(vC
3
)∣∣ = ∣∣Wm(vC

4
)∣∣ = 7,

∣∣W(vC
3
)∣∣ = 43, and

∣∣W(vC
4
)∣∣ = 41.

Table 9. The fn− index is calculated for each player and a simple game is defined for our example.

Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 46/306 54/306 49/306 63/306 46/306 48/306
i = 3 27/172 36/172 25/172 27/172 34/172 23/172
i = 4 71/492 108/492 81/492 71/492 75/492 86/492

Total 487270/D * 653076/D * 507232/D * 547212/D * 539953/D * 502125/D *
* D = denominator = 1,078,956

Considering the results in Table 9 and Formula (9), we obtain Afn− = (−591686/1078956,
653076/1078956, −571724/1078956, −531744/1078956, 539953/1078956, 502125/1078956)
= (−0.5484, 0.6053, −0.5299, −0.4928, 0.5004, 0.4654).

3.4.9. The Aggregated gn− Power Index

For every firm i in the network and mutual structure C, the aggregated null player
free winning coalition Agn− index is defined as follows:

Agn−
i (C) = ∑k∈N gn−

i

(
vC

k

)
− vC

k (N) (10)

Table 10 shows the results of the calculation gn− in the example. Like for the previous
index—fn−; see Section 3.4.8, we first need to find all winning coalitions in each game
vC

i , i = 1, 3, 4, and then Wn−
j
(
vC

i
)

for all players j. As already mentioned in Section 3.4.8,

Wn−
j
(
vC

i
)
= W

(
vC

i
)
.

Table 10. The gn− index is calculated for each player and a simple game is defined for our example.

Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 27/172 30/172 28/172 32/172 27/172 28/172
i = 3 24/152 30/152 23/152 24/152 29/152 22/152
i = 4 22/147 30/147 24/147 22/147 23/147 26/147

Total 446318/D * 553290/D * 458655/D * 474248/D * 484459/D * 465406/D *
* D = denominator = 960,792

Considering the results in Table 10 and Formula (10), we obtain Ag = (−514474/960792,
553290/960792, −502137/960792, −486544/960792, 484459/960792, 465406/960792) =
(−0.5355, 0.5759, −0.5226, −0.5064, 0.5042, 0.4844).
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3.4.10. The Aggregated Johnston Power Index

For every firm i in the network and mutual structure C, the aggregated null player
free winning coalition Agn− index is defined as follows:

Aγi(C) = ∑k∈N γi

(
vC

k

)
− vC

k (N) (11)

In order to calculate this index, it is necessary to find all vulnerable coalitions in the
simple games, which refer to companies 1, 3, and 4, and consider the direct and indirect
control. Having the sets of minimal winning coalitions, we can find 28 vulnerable coalitions
in the game vC

1 , 30 in vC
3 , and 31 in vC

4 . Then, we can calculate the Johnston [59] index in
each company; see Table 11.

Table 11. The γ index is calculated for each player and a simple game is defined for our example.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

i = 1 8/168 39/168 18/168 78/168 8/168 17/168
i = 3 15/180 78/180 8/180 15/180 62/180 2/180
i = 4 8/186 93/186 24/186 8/186 13/186 40/186

Total 13590/D * 91047/D * 21922/D * 46140/D * 36088/D * 25573/D *
* D = denominator = 78,120

Considering the results in Table 11 and Formula (11), we obtain Aγ = (−64530/78120,
91047/78120,−56198/78120,−31980/78120, 36088/78120, 25573/78120) = (−0.8260, 1.1654,
−0.7195, −0.4094, 0.4619, 0.3274).

3.5. The Float in Aggregated Power Indices

In this section, we present a simple approach for incorporating the float, i.e., the set of
unidentified small shareholders, into the framework of aggregated power indices.

It is common to model the float as a random variable that takes values between 0 and
1, i.e., the random variable represents the fraction of the float voting “yes” or 1. Hence, the
distribution of this random variable reflects the voting behavior of the float and it allows
for different possibilities to model the float. Various models have been introduced in the
literature, many of them involving Monte Carlo simulations; see Levy (2011) [62] for a
detailed discussion.

Our float model is based on the following result for the Banzhaf index for weighted
voting games by Dubey and Shapley (1979) [22]. We assume an oceanic float, i.e., an infinite
number of unknown shareholders with each of them holding a vanishingly small fraction
of the shares of a company k and each of them voting either 0 or 1 with probability p = 0.5.
In that case, the Banzhaf indices of the m known shareholders of company k in the weighted
voting game for direct control of that company can be approximated by the Banzhaf indices
of the modified weighted voting game:[

q− 0.5 f lk; w(1,k), . . . , w(m,k)

]
i.e., for a weighted game specified by the quota

∼
q = q− 0.5 f lk and the weights of the

m are known shareholders, where f lk denotes the total weight of the float. This model was
affirmed in empirical studies by Leech (2013) [63].

We propose to use the modified game as a heuristic for aggregated power indices,
i.e., we determine the minimal winning coalitions in direct control first from the modified
game and then proceed with the minimal winning coalitions in indirect control in order to
determine the simple game vC

k . We note that our heuristic is accurate under the assumption
that the float does not vote or that its votes are split equally between “yes” (1) and “no”
(0). For our example, our model implies that we no longer interpret player 6 (others) as a
monolithic block. According to our model, player 3 now exerts complete direct control over
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player 4. Considering direct and indirect control, the sets of minimal winning coalitions
change as follows. For company 1 we have {{3}, {4}, {1, 2}, {1, 5}, and {2, 5}}. For company 3
we have {{1, 2}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, and {4, 5}}. Finally, for Company 4 we obtain
{{3}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, and {4, 5}}.

We obtain the following results for our aggregated Banzhaf index with a float; see Table 12.

Table 12. The β index for each player and a simple game is defined for our example with a float.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5

i = 1 1/7 1/7 2/7 2/7 1/7
i = 3 1/11 4/11 1/11 1/11 4/11
i = 4 1/9 2/9 3/9 1/9 2/9

Total 239/693 505/693 492/693 338/693 505/693

The corresponding aggregated power indices are (−454/693, 505/693, −201/693,
−355/693, 505/693) = (−0.6551, 0.7287, −0.2900, −0.5123, 0.7287).

For our aggregated Shapley and Shubik index (Φ) with a float, the picture looks as
follows; see Table 13.

Table 13. The Φ index for each player and a simple game is defined for our example with a float.

Simple Game vi Player 1 Player 2 Player 3 Player 4 Player 5

i = 1 2/20 2/20 7/20 7/20 2/20
i = 3 2/20 7/20 2/20 2/20 7/20
i = 4 6/60 11/60 26/60 6/60 11/60

Total 18/60 38/60 53/60 33/60 38/60

The corresponding aggregated power indices Φ are (−42/60, 38/60, −7/60, −27/60,
38/60) = (−0.7000, 0.6333, −0.1167, −0.4500, 0.6333).

4. The Karos and Peters Approach with a Fuzzy Float
4.1. Basic Notions on Fuzzy Set Theory

In 1965, Zadeh proposed his concept of possibility theory [64]. We will present the

basic notions of this theory. First, we will present the concept of a fuzzy number. Let
∼
X be

a single-valued number whose value is not precisely known. The membership function
for X is a normal, quasi concave, and upper semi-continuous function µX : R → [0, 1] ;
see [65,66]. The value µX(x) for x ∈ R denotes the possibility of the event that the fuzzy

number
∼
X takes the value of x. We denote this as follows:

µ(x) = Pos
(∼

X = x
)

(12)

For a given fuzzy number X and a given λ, the λ-level is defined to be the closed

interval [
∼
X]λ = {x : µ(x) ≥ λ} =

[
x(λ),

−
x(λ)

]
.

Dubois and Prade (1978) [67] introduced the following useful definition of the L-R

class of fuzzy variables. The fuzzy number
∼
X is called an L-R type fuzzy number when its

membership function takes the following form:

µX(x) =



L
(

m−x
α

)
for m− α < x < m

1 for m ≤ x ≤ −m

R
(

x−−m
β

)
for

−
m < x <

−
m + β

0 otherwise

(13)
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where L(x) and R(x) are continuous non-increasing functions, x, α, β > 0,
[
m,
−
m
]

are the

most possible values, α = m− x(0) is the left spread, and β =
−
x(0)− −m is the right spread

of the fuzzy number.
The functions L(x) and R(x) are called the left and the right spread functions, re-

spectively. The most commonly used spread functions are max{0, 1− xp} and exp(−xp),
x ∈ [0,+∞) , p ≥ 1. An interval fuzzy number for which L(x)=R(x) = max{0, 1− x} and

m =
−
m = m is called a triangular fuzzy number

∼
X and will be denoted by (mX , αX , βX).

Let
∼
X,
∼
Y be two fuzzy numbers with membership functions, respectively, µX(x) and

µY(y), and let z = f (x, y). Then, according to the extension principle of Zadeh [64,68], the

function of belonging to the fuzzy set
∼
Z = f

(∼
X,
∼
Y
)

takes the following form:

µZ(z) = supz= f (x,y)(min(µX(x), µY(y))) (14)

According to the fuzzy logic proposed by Zadeh (1965) [64], the membership function

of the logic operator
∼
X and

∼
Y takes the following form:

µ∼
Xand

∼
Y
(x) = min(µX(x), µY(x)) (15)

If we want to compare two fuzzy sets, that is, to determine the possibility that realiza-

tion
∼
X is not less (or greater respectively) than the realization

∼
Y, then we can use the index

proposed by Dubois and Prade (1988) [65]:

Pos
(∼

X ≥
∼
Y
)
= sup

x
min(min(µX(x), µY(y)))

Pos
(∼

X >
∼
Y
)
= sup

x
inf
y≥x

(min(µX(x), 1− µY(y)))
(16)

If
∼
X is a triangular fuzzy variable

∼
X = (x, lX , rX), then its expected value is equal to

(Carlsson and Füllér (2001) [69] and Chanas and Nowakowski (1988) [70]):

E(
∼
X) = x +

rX − lX
4

(17)

In 2011, Zadeh introduced the concept of a Z-fuzzy number [71]. A Z-fuzzy number
is an ordered pair of fuzzy numbers Z = (A, B). A Z-fuzzy number is associated with a
real-valued uncertain variable, X, with the first component, A, playing the role of a fuzzy
restriction, R(X ), on the values which X can take, written as X is A, where A is a fuzzy set
and B is a measure of reliability (certainty) of the A. In the literature, one can find a list of
fuzzy triangular numbers, each corresponding to a linguistic (reliability-related) expression,
such as sure, usually, likely, etc. An example of the “dictionary” for the values of B can be
found in Table 14.

Table 14. An example of the dictionary for the values of the second component B of a Z-fuzzy number.

B Fuzzy Reliability

Sure (1, 0, 0.2)
Usually (0.75, 0.1, 0.1)
Likely (0.6, 0.1, 0.1)

Source: Azadeh and Kokabi (2016) [72].

In the literature, there have been several proposals of arithmetic operations on Z-fuzzy
numbers, e.g., [73–76], which differed in the procedure to encapsulate the information
given by the ordered pair (A, B) in a simplified form (as a classical fuzzy number or in
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a defuzzified form, as a crisp number), in order to make comparisons among Z-fuzzy
numbers. Defuzzification is a method often used in practice in order to summarize the
information conveyed by a fuzzy number of any type. Of course, defuzzification always
entails a loss of information.

The crisp equivalent of the second part B (reliability) of Z-number is obtained as a
center of gravity method:

θ =

∫
R xµB(x)dx∫
R µB(x)dx

(18)

If B is a triangular fuzzy number B = (mB, αB, βB), then its center of gravity is equal to:

θ = mB +
βB − αB

3
(19)

A Z-fuzzy number can be converted into the following classical fuzzy number [74,75]:

Z′ =
√

θZθ =
(√

θmA,
√

θαA,
√

θβA

)
(20)

Hence, it follows that the expected value of the converted Z-fuzzy number is equal to:

E
(
Z′
)
=
√

θE(A) (21)

4.2. The Karos and Peters Approach to a Fuzzy Float

Let us now assume that in complex corporate shareholding structures, the behavior of
“float shareholders,” i.e., (float shareholders’ weights), is expressed by the Z-fuzzy number
Z = (A, B). Thus, we assume that our knowledge about the behavior of those anonymous by
definition and known only as an aggregate summing up the number of shares held is purely
expert. Depending on our knowledge (e.g., resulting from historical behavior), we can
assess in a fuzzy way what part of this aggregate we should consider when assessing the
possibility of a given coalition. For example, it occasionally happens that a representative
of small shareholders is registered in a meeting in the decision-making body of a given
company (for example, the general meeting of shareholders) who, based on granted powers
of attorney, behave like a single shareholder with a designated number of shares. Then, the
subject of the analysis is to determine (in our case, in a fuzzy way) both how often this can
happen and what package of such authorizations we can deal with.

To find the Karos and Peters index [1] for complex corporate shareholding structures
in the case when the behavior of “float shareholders” is defined by Z-fuzzy numbers, we
propose Algorithm 1 for defuzzification fuzzy weights.

Algorithm 1 Defuzzification fuzzy weights

Step 1. Transform float shareholders’ weights expressed by the Z-fuzzy number Z = (A, B) into
classical fuzzy numbers Z′ using the dictionary for the values of the second component B and
Formulas (18)–(20).
Step 2. Find a crisp equivalent of float shareholders’ weights, i.e., expected value E(Z′), using
Formula (21).

4.3. Karos and Peters Index for the Fuzzy Float for the Corporate Shareholding Network Which
Deals with the Speiser and Baker Case

Let us consider the corporate shareholding network which deals with the Speiser and
Baker case presented in Figure 1. Let us further assume that the weight (possible votes)
of player 6 (others) is given as a triangular Z-fuzzy number in the form (A, B) = ((0, 0, 40),
likely), where (0, 0, 40) is a classical triangular fuzzy number and B is a measure of reliability
(certainty) of the A. On the basis of Algorithm 1, we can transform the Z-fuzzy number
((0, 0, 40), likely) = ((0, 0, 40), (0,6, 0.1, 0.1)) into a classical triangular fuzzy number
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(0, 0, 30.98). The expected value of possible votes (crisp weight after defuzzification) of firm
6 (others) is equal to 7.74597.

When we take into consideration only direct ownership in the corporate shareholding
(Figure 1) in the fuzzy case, then we can find the minimal winning coalitions for each
company. Thus, in company 1, there is only one expected minimal winning coalition {4}, as
company 4 has 100% voting rights in company 1. Then, in company 3, there are expected to
be three minimal winning coalitions of firms that guarantee a simple majority: {1, 2}, {1, 5},
and {2, 5}. In company 4, we can expect two minimal winning coalitions: {2, 3} and {3, 5, 6}.

Let us now calculate the Φ index. Considering direct and indirect control, we have
the following set of minimal winning coalitions in company 1: {4}, {1, 2}, {2, 3}, {2, 5}, and
{3, 5, 6}. Similarly, for company 3, we have the following set of minimal winning coalitions:
{1, 2}, {1, 5}, {2, 5}, {2, 4}, {4, 5}, {2, 3}, and {3, 5, 6}. Finally, for company 4, the set of minimal
winning coalitions is as follows: {2, 3}, {1, 2}, {2, 5}, {2, 4}, {3, 5, 6}, {1, 5, 6}, and {4, 5, 6}.
Table 15 gives the Shapley and Shubik power index for all firms in the Baker and Spacer
case calculated in companies 1, 3, and 4. The indirect control power of all firms in firms 2,
5, and 6 is null, as these companies are not controlled by any firm. They are regarded as
pure investors.

Table 15. The expected values of the Shapley and Shubik index are calculated for each player and a
simple game is defined for our example in the fuzzy case.

Simple Fuzzy Game vi 1 2 3 4 5 6

Company 1 4/60 14/60 4/60 29/60 6/60 3/60
Company 3 7/60 22/60 4/60 7/60 19/60 1/60
Company 4 4/60 29/60 4/60 4/60 11/60 8/60

Total 15/60 65/60 12/60 40/60 36/60 12/60

Based on the results in Table 15 and Formula (1), we obtain Φ =(−45/60, 65/60,
−48/60, −20/60, 36/60, 12/60). Φ for firm 2 and firm 5 is greater by 7/60, and for firm 6 is
smaller by 8/60 than in the case of the classical game (Section 3.3).

As mentioned earlier, defuzzification is a method often used in practice in order
to summarize the information conveyed by a fuzzy number of any type. Of course,
defuzzification always entails a loss of information.

Table 16 presents fuzzy weights for coalitions that include firm 6. Let us calculate
the possibility that a given coalition is the minimal winning coalition using Formula (17).
After defuzzification in Step 1 of Algorithm 1, the total classical fuzzy weight of coali-
tion {3, 6} and coalition {3, 5, and 6} are equal to 41.5 + (0, 0, 30.98) = (41.5, 0, 30.98)
and 41.4 +8.5 + (0, 0, 30.98) = (50, 0, 30.98), respectively. According to (16) possibility
that coalition {3, 6} is minimal winning one is equal to Pos(41.5, 0, 30.98 > 50) = 0.73.
Further possibility that coalition {3, 5, and 6} is a minimal winning coalition is equal to
Pos(50 < (50, 0, 30.98) ≤ 58.5) = 0.27; see Formula (16). For the other coalitions that include
company 6, the possibility that they are minimal winning coalitions equals 0. Furthermore,
according to Formulas (15) and (16), the possibility that company 6 is a null player is equal

to Pos
(

50 >=
∼
W{6} and 50 >=

∼
W{2, 6} and 50 >=

∼
W{3, 6} and 50 >=

∼
W{5, 6} and

50 >=
∼
W{2, 5, 6} and 50 >=

∼
W{3, 5, 6}

)
= 1.
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Table 16. Total fuzzy weights for coalitions that include firm 6 and the possibility that a given
coalition is a minimal winning one in a simple game is defined for our example in the fuzzy case.

Coalition Total Fuzzy Weight
∼
W Possibility That Coalition is Minimal Winning

{6} (0, 0, 30.98) 0

{2, 6} (10, 0, 30.98) 0

{3, 6} (41.5, 0, 30.98) 0.73

{5, 6} (8.5, 0, 30.98) 0

{2, 5, 6} (18.5, 0, 30.98) 0

{3, 5, 6} (50, 0, 30.98) 0.27

Note that in the deterministic case (Section 3.3), when we assume that weight
(firm 6) = 40%, coalition {2, 5, and 6} is a minimal winning coalition. In the fuzzy case, when
we are unsure about small investors’ behavior, the possibility that coalition {2, 5, and 6} is a
minimal winning coalition is equal to 0. Furthermore, the possibility that company 6 (float)
is a null player is equal to 1.

5. Discussion, Comparison, and Conclusions

This paper proposes some new measures of indirect control power in complex share-
holding structures. These new game theory approaches to measuring indirect control are
based on the Karos and Peters [1] method, and they follow the proposal of Stach, Mercik,
and Bertini (2023) [17]. Namely, in [17], the authors, instead of using the Shapley and
Shubik [2] index in the Karos and Peters framework, proposed the Holler [54,55] index
(also called the public good index). We follow this idea, and we apply in the framework of
Karos and Peters some power indices substituting the original Shapley and Shubik power
index in a modular fashion.

An interesting and new idea is the fuzzy approach to the float and applying it to
calculate the control power of all firms in a network by the Karos and Peters method. A
measure that considers the float of small shareholders (usually those with lower or equal
5% ownership) seems closer to the real world.

Table 17 compares the newly proposed aggregated indices in the example.

Table 17. A comparison of power indices in the example.

Index Player 1 Player 2 Player 3 Player 4 Player 5 Player 6

Φ −0.7500 0.9667 −0.6667 −0.3667 0.4833 0.3333
Aβ −0.7499 1.0022 −0.6574 −0.4867 0.5092 0.3825
Aψ −0.5761 0.6272 −0.5511 −0.4178 0.4839 0.4339
A∆ −0.5992 0.8214 −0.5714 −0.5714 0.5675 0.3532
Ah −0.5750 0.7667 −0.5750 −0.6583 0.6208 0.4208
As −0.5222 0.4778 −0.5944 −0.6222 0.7000 0.5611
Aµ −0.5417 0.5250 −0.5917 −0.5083 0.6333 0.4833
API −0.7333 0.7333 −0.7167 0.2667 0.3500 0.1000
Afn− −0.5484 0.6053 −0.5299 −0.4928 0.5004 0.4654
Agn− −0.5355 0.5759 −0.5226 −0.5064 0.5042 0.4844

Aγ −0.8260 1.1654 −0.7195 −0.4094 0.4619 0.3274

Φ with binary float −0.7000 0.6333 −0.1167 −0.4500 0.6333 –

Aβ with binary float −0.6551 0.7287 −0.2900 −0.5123 0.7287 –

Φ with fuzzy float −0.7500 1.0833 −0.8000 −0.3333 0.6000 0.2000

In particular, the ranking of investors is the same for all power indices except the shift
indices, As and Aµ. The As and Aµ indices rank investors from most to least powerful,
as follows: 5, 6, 2, and 5, 2, 6, respectively. The rest of the indices rank firm 2 as the
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most powerful, then, followed by Firm 5, and the least powerful is firm 6. This is largely
because firm 2 is the most desirable in companies 3 and 4, and consequently belongs to
fewer numbers of the shift minimal winning coalitions. Firm 2 has more control power
than firm 6 according to Aµ, in contrast to the order given by As. This is because firm 2
belongs to a greater number of less numerous shift minimal winning coalitions than
firm 6, and the Aµ index also considers the size of the shift minimal winning coalitions
(see Sections 3.4.5 and 3.4.6).

The aggregated power indices vary a lot in the ranking of companies. Φ, Aβ, Aψ,
API, A∆, Afn−, Agn−, and γ give the same ranking. According to these indices, the least
powerful is company 1, followed by company 3, and the most powerful is company 4.
Let us add that A∆ gives the same control power to company 3 and 4. Aµ also classifies
company 4 in the first place, but it attributes more power to company 1 than to company 3.
This is because, as mentioned above, the size of the shift minimal winning coalition is
important for Aµ. Participation in less numerous coalitions results in greater control power
for Aµ. Ah and As rank the companies differently. The least powerful is company 4 and the
most powerful company 1. Ah gives the same importance (power) to companies 1 and 3.
According to As, company 3 has less power than company 1, which is in accordance with
Aµ. All indices, except As and Aµ, give company 3 at least as much power as company 1.

According to our simple heuristic for the float based on the result by Dubey and
Shapley [22], company 3 exerts complete direct control over company 4 and indirectly on
company 1 as well. Thus, in this model, Φ and Aβ rank company 3 in first place, then
companies 4 and 1. As for the ranking of firms 2 and 5, they have equal control power. This
means that considering the float and its ability to strengthen company 3, firm 2 loses its
control power in favor of company 3’s control power.

When we assume nondeterministic (fuzzy) float’s behavior, then according to the
expected value of index Φ, the least powerful is company 3, followed by company 1, and
the most powerful is company 4. It means that index Φ gives company 3 smaller power
than company 1, which is opposite to the deterministic version. However, we should
underline that possibility of such companies’ power ranking is equal to 0.73. In the fuzzy
case, the possibility that company 6 (float) is a null player is equal to 1.

Considering the exact numbers of power assigned by power indices, we see that
indices vary substantially. Namely, sums of power assigned to companies are greater or
lower depending on the index. Let us remember that the total power assigned to companies
and investors always adds up to 0. Next, Aγ assigns the greatest power to firm 2 among
all aggregated indices. For only two indices, Aγ and Aβ, this value is even greater than 1.
Moreover, API gives the greatest power to company 4 of all power indices.

Turning back to the ranking of the players given by the aggregated indices, we have
some new observations. When we consider only direct ownership and weighted games
related to stock companies, then, of course, in each game, the rankings given by the Shapley
and Shubik, Banzhaf, and Johnston indices must be the same. This is due to two facts:
each weighted game is a complete game (see Section 2.1), and in complete games, the
mentioned three indices are ordinary equivalent, so their rank the players in an equal
way; see Freixas, Marciniak, and Pons (2012) [77]. If we consider indirect control, the
games can become non-complete (non-linear). This means that not all players can be
comparable by the desirability relationship as in the example presented in Section 3.4.5.
If a game is not complete, the rankings of players produced by the Shapley and Shubik,
Banzhaf, and Johnston indices are not necessarily the same, which does not happen in the
example. By the definitions of aggregated indices, what happens in “direct” games (games
based on direct ownership only) influences the “indirect” games (games that take into
account indirect ownership). Of course, the aggregated indices calculate the control power
of firms in the whole network by summing up the values of respective indices over all
companies. Thus, the ranking of players produced by an aggregated index is a consequence
of what happens in the whole network considering indirect control. However, knowing
that “indirect” games are not complete, it is difficult to expect that, in general, the rankings
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of the Φ, Aβ, and Aγ indices will always be the same. In [12,17], the reader can find an
example of a theoretical shareholding network for which calculated indices Φ, Aβ, and Aγ
produce different rankings of firms.

The Φ index satisfies five axioms; see Section 2.3. If we change the Shapley and
Shubik [2] index in the definition of Φ given by Formula (1), it is difficult to expect that all
five axioms will be satisfied by the resulting aggregated index.

Axiom 1—the null player axiom from the Karos and Peters approach—is only satisfied
by aggregated indices constructed on the power indices that fulfill adequate null player
postulate in simple games.

If we take into consideration an efficient power index in the framework of the Karos
and Peters approach, then the appropriate aggregated index preserves axiom 2—the con-
stant sum property—by construction; see Formula (1). All power indices considered by us
are efficient; so, all aggregated indices fulfill this axiom.

Karos and Peters treat axioms 1 and 2 as the scaling conditions. Let us cite them: “the
null player and constant sum postulates have a considerable impact on the resulting power
index, but they can be seen as scaling conditions, which are needed anyway in some form
or another” [1] (p. 160).

Obviously, a very natural condition called the anonymity axiom is also satisfied by all
aggregated indices, as all considered indices from our three groups (see Section 2.2.2) fulfill
this postulate in simple games.

Regarding the fulfillment of axiom 4, we have only one candidate, except of course,
the Φ index and the aggregated Solidarity index, as only these indices satisfy the transfer
postulate in simple games; see Section 2.2.2 and [52]. Additionally, let us note that this
property is one of the properties characterizing this index axiomatically; see Nowak and
Radzik (1994) [52]. However, no fulfillment of the transfer property by a particular power
index should be seen as an obstacle to using such an index. Let us quote the authors of
the Φ index themselves: “We regard the transfer property as a basic axiomatic choice, in
the sense that one should drop this condition in order to obtain essentially different power
indices” [1] (p. 160).

Axiom 5—the controlled player condition—is satisfied by the aggregated indices based
on power indices that fulfill null player property in simple games. This is given by the
construction of Formula (1).

Which of the presented indices is the best one? The answer is: it depends. The choice
of the method to assess the control power of firms in a mutual shareholding network comes
down to decision-maker preferences. The choice may be based on the set of desirable
properties satisfied by a particular index or on the convincing normative bargaining model
underlying this index. For example, if someone searches for the control power of firms in a
network that considers firms’ strength to form minimal winning coalitions, then the group
of aggregated minimal winning coalition indices is preferable (A∆, Ah, As, and API). If the
local monotonicity property is also important, then the APL index is the best choice. So,
the solution to the posted question could be a compromise. It means that in searching for
information about firms’ control power, we are willing to sacrifice one of the axioms and
find an acceptable choice method. The axioms the methods violate can be thought of as
cautions: if some axiom is important for a particular information, do not use that method
that violates that axiom. For example, power indices based on minimal winning coalitions
(the second group of indices in Section 2.2.2) violate axiom 4 (transfer). This implies that
aggregated power indices based on minimal winning coalitions should not be used in an
analysis for which the transfer property is considered to be important (see postulates 3, 3′,
and 3′′ in Section 2.2.1).

Considering the further developments of our framework, it is interesting to consider
other indices in the scheme proposed by Karos and Peters (2015) [1], such as the mini-
mum sum representation (MSR) index, proportional to the voting weight, introduced by
Freixas and Kaniovski (2014) [78]. Note that the MSR index is ordinally equivalent to the
Banzhaf [50], Shapley and Shubik [2], and Johnston [59] indices.
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One of the promising fields of future research appears to measure the indirect control
in complex corporate networks with fuzzy weights and follows the idea of Dubois and
Prade (1978) [67] to propose an adequate concept of the power index.
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Kowalczyk, R., Mercik, J., Motylska-Kuźma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12330, pp. 116–132.
[CrossRef]

14. Staudacher, J.; Olsson, L.; Stach, I. Implicit power indices and software for measuring indirect control in corporate structures.
In Transactions on Computational Collective Intelligence XXXVI, Lecture Notes in Computer Science; Nguyen, N.T., Kowalczyk, R.,
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Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 13010, pp. 108–115. [CrossRef]

29. Álvarez-Mozos, M.; Ferreira, F.; Alonso-Meijide, J.M.; Pinto, A.A. Characterizations of power indices based on null player free
winning coalitions. Optimization 2015, 64, 675–686. [CrossRef]

30. Stach, I. Reformulation of Public Help Index θ using null player free winning coalitions. Group Decis. Negot. 2022, 31, 317–334.
[CrossRef]

31. Isbell, J.R. A class of simple games. Duke Math. J. 1958, 25, 423–439. [CrossRef]
32. Felsenthal, D.; Machover, M. Voting power measurement: A story of misreinvention. Soc. Choice Welf. 2005, 25, 485–506.

[CrossRef]
33. Laruelle, A.; Martınez, R.; Valenciano, F. Success versus decisiveness conceptual discussion and case study. J. Theor. Politics 2006,

18, 185–205. [CrossRef]
34. Gambarelli, G.; Stach, I. Power indices in politics: Some results and open problems. In Essays in Honor of Hannu Nurmi, Homo

Oecon.; Holler, M.J., Widgrén, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 26, pp. 417–441.
35. Bertini, C.; Stach, I. Voting power. In Encyclopedia of Power; Dowding, K., Ed.; SAGE: Los Angeles, CA, USA, 2011; pp. 699–700.
36. Bertini, C.; Freixas, J.; Gambarelli, G.; Stach, I. Comparing power indices. Int. Game Theory Rev. 2013, 15, 1340004-1–1340004-19.

[CrossRef]
37. Bertini, C.; Gambarelli, G.; Stach, I. Some open problems in the application of power indices to politics and finance. In Future of

Power Indices, Special Issue of Homo Oecon; Holler, M., Nurmi, H., Eds.; Accedo Verlagsgesellschaft: München, Germany, 2015;
Volume 32, pp. 147–156.

38. Bertini, C.; Stach, I. On public values and power indices. Decis. Mak. Manuf. Serv. 2015, 9, 9–25. [CrossRef]
39. Stach, I. Power measures and public goods. In Transactions on Computational Collective Intelligence XXIII, Lecture Notes in Computer

Science 9760; Nguyen, N., Kowalczyk, R., Mercik, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 99–110. [CrossRef]
40. Bertini, C.; Gambarelli, G.; Stach, I. Indici di potere in politica e in finanza (Power indices in politics and finance). Boll. Docenti

Mat. 2016, 72, 9–34.
41. Bertini, C.; Gambarelli, G.; Stach, I.; Zola, M. Some results and open problems in applications of cooperative games. Int. J. Econ.

Manag. Syst. 2017, 2, 271–276.
42. Bertini, C.; Gambarelli, G.; Stach, I.; Zola, M. Power indices for finance. In Studies in Fuzziness and Soft-Computing; Soft Computing

Applications for Group Decision-Making and Consensus Modeling; Collan, M., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2018;
Volume 357, pp. 45–70. [CrossRef]

43. Bertini, C.; Gambarelli, G.; Stach, I.; Zola, M. The Shapley-Shubik index for finance and politics. In Handbook of the Shapley Value,
1st ed.; Algaba, E., Fragnelli, V., Sánchez-Soriano, J., Eds.; Taylor&Francis Group, Chapman and Hall/CRC: New York, NY, USA,
2020; pp. 393–417. [CrossRef]

44. Staudacher, J.; Kóczy, L.A.; Stach, I.; Filipp, J.; Kramer, M.; Noffke, T.; Olsson, L.; Pichler, J.; Singer, T. Computing power indices
for weighted voting games via dynamic programming. Oper. Res. Decis. 2021, 31, 123–145. [CrossRef]

45. Stach, I.; Bertini, C. Solidarity Measures. In Transactions on Computational Collective Intelligence XXXVII, Lecture Notes in Computer
Science; Nguyen, N.T., Kowalczyk, R., Mercik, J., Motylska-Kuźma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022;
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