
Citation: Fan, B.; Tang, B.; Qu, Z.; Ye,

B. Network Coding Approaches for

Distributed Computation over Lossy

Wireless Networks. Entropy 2023, 25,

428. https://doi.org/10.3390/

e25030428

Academic Editor: Syed A. Jafar

Received: 10 January 2023

Revised: 20 February 2023

Accepted: 23 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Network Coding Approaches for Distributed Computation
over Lossy Wireless Networks
Bin Fan 1,2, Bin Tang 1,2,* , Zhihao Qu 1,2 and Baoliu Ye 1,2

1 Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University,
Nanjing 211100, China

2 School of Computer and Information, Hohai University, Nanjing 211100, China
* Correspondence: cstb@hhu.edu.cn

Abstract: In wireless distributed computing systems, worker nodes connect to a master node wire-
lessly and perform large-scale computational tasks that are parallelized across them. However, the
common phenomenon of straggling (i.e., worker nodes often experience unpredictable slowdown
during computation and communication) and packet losses due to severe channel fading can sig-
nificantly increase the latency of computational tasks. In this paper, we consider a heterogeneous,
wireless, distributed computing system performing large-scale matrix multiplications which form
the core of many machine learning applications. To address the aforementioned challenges, we first
propose a random linear network coding (RLNC) approach that leverages the linearity of matrix
multiplication, which has many salient properties, including ratelessness, maximum straggler tol-
erance and near-ideal load balancing. We then theoretically demonstrate that its latency converges
to the optimum in probability when the matrix size grows to infinity. To combat the high encoding
and decoding overheads of the RLNC approach, we further propose a practical variation based
on batched sparse (BATS) code. The effectiveness of our proposed approaches is demonstrated by
numerical simulations.

Keywords: distributed computing; coded computation; network coding; lossy wireless network;
BATS codes

1. Introduction

In recent years, due to the proliferation of computationally intensive applications
at the wireless edge, such as federated learning [1] and image recognition [2], wireless
distributed computing has drawn great interest [3,4], where large-scale computational
tasks are carried out by a cluster of wireless devices collaboratively. Meanwhile, due to the
inherent randomness of wireless environment, wireless distributed computing systems
are facing multiple challenges. One main challenge is called the straggler issue, where
computing devices often experience unpredictable slowdown or even dropout during
computation and communication, which can lead the computational task to much larger
latency or even failure [5]. Another challenge is the packet-loss issue, where the packets
can be lost during transmission due to severe channel fading of wireless networks.

In this paper, we consider a typical wireless distributed computing system consisting
of multiple worker nodes and a master node. We focus on distributed matrix multipli-
cation y = Ax, which forms the core of many computation-intensive machine learning
applications, such as linear regression, and aims at tackling the two above challenges. One
common approach to mitigate the effect of stragglers is providing redundancy through
replication [6–8], which has been widely used in large distributed systems such as MapRe-
duce [9] and Spark [10]. However, this kind of r-replication strategy can only tolerate r
stragglers, and using a larger r increases the computation redundancy, which can lead to
poor performance.

Entropy 2023, 25, 428. https://doi.org/10.3390/e25030428 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25030428
https://doi.org/10.3390/e25030428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4577-8882
https://doi.org/10.3390/e25030428
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25030428?type=check_update&version=1


Entropy 2023, 25, 428 2 of 16

Recently, Lee et al. [11] firstly introduced coding-based computation framework, and
then proposed an (n, k) maximum-distance-separable (MDS) code approach, such that the
master node can recover the desired result from the local computation results of any k out of
n worker nodes. Based on this, Das et al. further proposed a fine-grained model such that
the partial results of stragglers can be leveraged. However, MDS codes fail to make full use
of the partial work done by stragglers. Ferdinand et al. [12] and Kiani et al. [13] proposed
approaches to make use of stragglers by allocating more fine-grained computing tasks to
each worker. Very recently, Mallick et al. [14] proposed the use of rateless codes such as
LT codes [15] and Raptor codes [16] and demonstrated that a rateless coding approach can
achieve an asymptotically optimal latency. However, all these approaches assumed that the
communication between each worker node and the master node is reliable and can only
lead to inferior performance in wireless distributed computing.

In fact, the packet-loss issue has been widely investigated in communication networks,
and the existing approaches roughly belong to two categories. The first is automatic repeat-
request (ARQ) based, which employs feedback-based retransmissions to combat packet loss.
It has been adopted by Han et al. [17] in a MDS-code-based wireless distributed computing
system. However, the feedbacks from the master node can increase the computation latency
significantly due to the inherent delays of feedback, especially when the communication
traffic between worker nodes and the master node is large. The other is forward error cor-
rection (FEC)-based, employing error-correcting code to combat packet losses. Traditional
FEC approaches mainly focus on achieving reliable transmission over each communication
link, but in the context of distributed matrix multiplication, the objective is to recover the
desired computation result. How to tackle both the straggler issue and the packet-loss issue
for distributed matrix multiplication in wireless distributed computing system remains an
open problem.

In this paper, by leveraging the linearity of matrix multiplication, we show how
network coding [18] can be applied to solve the two issues efficiently in a joint manner. The
main contributions of this paper are summarized as follows:

• We first propose a random linear network coding (RLNC) [19] based approach. In
this approach, the matrix A to be multiplied is first split into multiple submatrices
A1, . . . , Ak, and each worker node is assigned multiple submatrices, each of which
is a random linear combination of the A1, . . . , Ak. Each worker node multiplies each
assigned submatrix with the input x, and it generates random linear combinations of
submatrix-vector products that have been created for transmission. Once receiving
enough packets with independent global encoding vectors, the master node can
recover the desired result Ax by Gaussian elimination. We model the computation and
communication process as a continuous-time trellis, and by conducting a probabilistic
analysis of the connectivity of the trellis, we theoretically show that the latency of
RLNC approach converges to the optimum in probability when the matrix size grows
to infinity.

• Since RLNC approach has high encoding and decoding costs, we further propose a
practical variation of RLNC approach based on batched sparse (BATS) code [20] and
show how to optimize the performance of the BATS approach.

• We conducted numerical simulations to evaluate the proposed RLNC and BATS
approaches. The simulation results show that both approaches can overcome the strag-
gler issue and the packet-loss issue effectively and achieve near-optimal performance.

The reminder of the paper is organized as follows. Section 2 introduces the system
model. Sections 3 and 4 introduce the RLNC approach and the BATS approach, respectively.
Section 5 presents the numerical evaluation results. Finally, Section 6 concludes.

2. System Model
2.1. Coding-Based Wireless Distributed Computation

As shown in Figure 1, we consider a heterogeneous, wireless distributed computing
system consisting of a master node and n heterogeneous worker nodes. These worker



Entropy 2023, 25, 428 3 of 16

nodes, denoted by w1, w2, . . . , wn, are connected wirelessly to the master node. We focus
on the matrix-vector multiplication problem, whose goal is to compute the result y = Ax
for a given matrix A ∈ Rm×d and an arbitrary vector x ∈ Rd×1, where R is a set of real
numbers. Our results can be directly extended to matrix-matrix multiplication, where x is a
small matrix.

master

worker𝑤1 worker𝑤2 workerw𝑛

…

packet loss
…

෩𝐀1,1𝒙
෩𝐀1,2𝒙

෩𝐀1,𝑘1𝒙

෩𝐀𝑛,1𝒙
෩𝐀𝑛,2𝒙

෩𝐀𝑛,𝑘𝑛𝒙

Figure 1. Illustration of the wireless distributed computing system for matrix multiplication.

In order to mitigate the effect of unpredictable node slowdown during computation
and communication, we consider an error-correcting code based computing framework
which consists of four components:

• Encoding before computation: The matrix A is first split along its rows equally into
k submatrices A1, . . . , Ak, i.e., AT = [AT

1 AT
2 · · · AT

k ]. Without loss of generality,
here we assume that m/k is an integer. These submatrices are encoded into more
submatrices using an error-correcting code, which are further placed on worker
nodes. The submatrices assigned to worker node wi are denoted as Ãi,1, Ãi,2, . . . , Ãi,ki

,
where ki is the number of submatrices assigned to wi. Here, we emphasize that, in
many applications, such as linear regression, this encoding will be used for multiple
computations with different inputs x [11], so that the encoding is often required to be
executed before the arrival of any x.

• Computation at each worker node: When an input x is arrived at the master node,
the master node will broadcast x to all these worker nodes. Once worker node wi
receives x, it will compute Ãi,1x, Ãi,2x, . . . , Ãi,ki

x in a sequential manner.
• Communication from each worker node: During the computation, each worker

node also keeps on sending its local computation results to the master node in some
manner. For this, each submatrix-vector product which is a vector of length m/k is
encapsulated into a packet. We assume that the communication link between worker i
and the master node can be modeled as a packet erasure channel, where each packet is
erased independently with probability εi. In order to combat these packet losses, each
worker node can transmit its local computation results using a coding based approach.

• Decoding at the master node: Once the master node receives enough information,
it will recover the desired result y = Ax and notify all the worker nodes to stop
the computation.



Entropy 2023, 25, 428 4 of 16

2.2. Delay Model

In this paper, we mainly focus on minimizing the latency, which is the time required by
the wireless computing system so that the result y = Ax can be successfully decoded at the
master node by aggregating the results sent from the worker nodes. For the characterization
of the latency, we consider the following two models, one for computation delay and the
other for communication delay.

As in [14], we consider a computation delay model as follows. The computation delay
at each worker node wi consists of two parts. The first is an initial setup time before wi
starts to perform any submatrix-vector multiplication, denoted by Xi, which is assumed to
follow an exponential distribution with rate λi. The second is a constant time for calculating
each submatrix-vector product, which is denoted by τi. Hence, the delay for computing r
submatrix-vector products by wi is Xi + τir.

In order to characterize the straggling effect during the communication, we model
the communication time of a packet from worker node i to the master node as a shifted-
exponential distribution with rate µi and shift parameter θi. Additionally, the communi-
cation times of all packets are mutually independent. The model has also been adopted
by [17,21].

3. A Network Coding Approach

In order to combat the straggling effects during both computation and communication
and the packet losses during communication, in this section, we propose a random linear
network coding (RLNC)-based approach and show that it can achieve optimal latency
performance in the asymptotic sense, i.e., when the number of rows of A goes to infinity,
when the overheads incurred are ignored. A practical version of this approach is given in
the next section.

3.1. Description

We describe the RLNC based approach based on the computing framework given in
Section 2.1:

Encoding before computation: In the RLNC-based approach, each submatrix Ãi,j
assigned to worker node wi is a random linear combination of A1, . . . , Ak; i.e.,

Ãi,j =
k

∑
e=1

ci,j,eAe, j = 1, 2, . . . , ki (1)

where ci,j,e is chosen randomly and independently according to a standard normal distribu-
tion. Since this encoding approach is rateless, ki can be arbitrarily large.

Computation at each worker node: When the worker node wi receives an input x, it
starts to compute the local results ỹi,1 = Ãi,1x, ỹi,2 = Ãi,2x, . . . , ỹi,ki

= Ãi,ki
x, in a sequential

manner.
Communication from each worker node: For each packet transmission starting at

time t, the worker node wi will generate a linear combination of all the local computation
results in hand as

ŷi,t =
di(t)

∑
j=1

c′jỹi,j, (2)

where di(t) is the number of local results that have been computed before time t by wi.
Here, (c′1, . . . , c′di(t)

) is referred to as the local encoding vector of ŷi,t.
Decoding at the master node: Due to the linearity of matrix-vector multiplication, we

can see that



Entropy 2023, 25, 428 5 of 16

ŷi,t =
di(t)

∑
j=1

c′jỹi,j =
di(t)

∑
j=1

c′jÃi,jx

=
di(t)

∑
j=1

c′j
k

∑
e=1

ci,j,eAex

=
k

∑
e=1

(
di(t)

∑
j=1

c′jci,j,e

)
Aex

(3)

i.e., each packet received by the master node is a linear combination of A1x, A2x, . . . , Akx.
Here, (

di(t)

∑
j=1

c′jci,j,1,
di(t)

∑
j=1

c′jci,j,2, . . . ,
di(t)

∑
j=1

c′jci,j,k

)
(4)

is referred to as the global encoding vector of ŷi,t. Hence, when the master node receives
enough packets that have k linearly independent global encoding vectors, it can recover
the desired results A1x, A2x, . . . , Akx by Gaussian elimination.

Overhead: Our RLNC approach suffers from its high encoding and decoding com-
plexities, just like RLNC for communication. More specifically, in our approach, the
encoding cost per submatrix is O(k · m/k · d) = O(md), and the total decoding cost is
O(k3 + k2 · m/k) = O(k3 + mk). We can see that the encoding cost is high, but the
encoding can been done before any computation and just once, which can be used for
computing Ax as many times as possible with different x. Meanwhile, the decoding cost is
also high when k is large, but it is independent of d, the number of columns of A. Thus,
when d is very large, the decoding cost at the master node can be much lower than the
computation cost at each worker node. In addition, the decoding at the master node can be
done in an incremental fashion using Gauss–Jordan elimination, which can further reduce
the decoding latency.

Note that the global encoding vector is required by the master node for decoding. To
achieve this efficiently, we use a pseudo-random number generator to generate the local
encoding vector for each transmitted packet and append the random seed. The number
of local results are computed for the packet. Then, the master node can get the global
encoding vectors according to (3). In this way, the coefficient overhead is negligible, which
is opposite to the traditional RLNC for communication networks.

Remark 1. Lin et al. [22] have also applied RLNC in distributed training on mobile devices. They
used RLNC to create coded data partitions among mobile devices so as to tolerate computational
uncertainties, and their main purpose is to reduce the need to exchange data partitions across
mobile devices. Differently from [22], the use of RLNC in this paper is for straggler mitigation
and packet-loss tolerance in a joint manner, while leveraging the computation and communication
capabilities of all worker nodes.

Remark 2. Since random linear network coding is performed over the field of real numbers as
opposed to a finite field, the entries of generated matrices could be very large numbers, leading
the whole computation to be numerically unstable. In fact, this issue is present in any coded
distributed computation over the field of real numbers and is not just limited to our approaches.
There are two basic approaches to dealing with this issue. One is to use very small coefficients
to avoid the emergence of large numbers, which is possible, as the encoding operations are also
linear with these coefficients in our proposed approach. This is significantly different from the
Reed–Solomon-code/polynomial-code-based approaches which have been widely adopted in coded
distributed computation (see, e.g., [11,23]), as the coefficients are powers of evaluation points. In
particular, the numerical instability issue for the RLNC approach is much less severe than that for
Reed–Solomon-code/polynomial-code-based approaches, since Vandermonde matrices have exponen-
tially large condition numbers. The other is to employ the finite field embedding technique [24,25],



Entropy 2023, 25, 428 6 of 16

where the entries are quantized into number of finite digits and then embedded into a finite field.
Nevertheless, both approaches incur numerical errors. How to guarantee numerical stability in
coded distributed computation is still an open problem and requires further study.

3.2. Latency Analysis

Let ri =
1

θi + 1/µi
, and r′i = min{1/τi, ri(1− εi)}. Define

T0 =
k

∑n
i=1 r′i

+
∑n

i=1 r′iXi

∑n
i=1 r′i

. (5)

The following result characterizes a upper bound of the latency of the proposed
RLNC-based approach.

Theorem 1. For any constant δ > 0, the latency of the proposed RLNC-based approach, denoted
by TRLNC, satisfies

lim
k→∞

Pr(TRLNC ≤ (1 + δ)T0) = 1. (6)

The following result establishes a lower bound on the latency of any scheme under
the coding framework.

Theorem 2. For any scheme under the coding framework, the probability that its latency Tany is
less than T0 decays exponentially with k; i.e., for any constant δ > 0, there exists some constant
η > 1 that does not depend on k, such that

Pr(Tany ≥ (1− δ)T0) = 1−O(η−k). (7)

From Theorems 1 and 2, it is straightforward to see that the proposed RLNC-based ap-
proach is asymptotically optimal. In the following, we will formally prove Theorems 1 and 2
by a connectivity analysis of a continuous-time trellis, which models the computation and
communication processes.

For any scheme under the coding framework, as illustrated in Figure 2, we model
the computation and communication processes of each worker node wi up to time t
using a continuous-time trellis (G(t)

i ) [26], where edges are classified into three types:
computation edges, transmission edges and memory edges. Each computation edge
models the computation of a submatrix-vector product. Suppose wi computes a submatrix-
vector product from time t0 to t0 + τi ≤ t. Then, two nodes, wi(t0) and w′i(t0 + τi), will be
introduced, and there is a computation edge from wi(t0) to w′i(t0 + τi). Similarly, suppose
a packet is transmitted from wi at time t0 and received successfully by the master node at
time t1 ≤ t. Then, two nodes w′i(t0) and m(t1), if they do not exist, will be introduced, and
there is a transmission edge from w′i(t0) to mi(t1). We also introduce nodes wi(0) and a
node mi(t). Nodes {wi(·)} are connected through the timeline, so are nodes {w′i(·)} and
nodes {mi(·)}. The edges for such connections are called memory edges. Each computation
edge and each transmission edge is associated with unit capacity, and each memory edge
is associated with an infinity capacity. Finally, we construct a global continuous-time
trellis G(t), which includes the union of all G(t)

i and two auxiliary nodes w(0) and m(t). In
addition, there is an edge from w(0) to each wi(0) with an infinity capacity, and there is an
edge from each mi(t) to m(t) with an infinity capacity.

The usefulness of the continuous-time trellis model is summarized in the following result.

Proposition 1. For any scheme that achieves latency of T, then the maximum flow from w(0) to
m(T) in its continuous-time trellis G(T) must be least k. Moreover, for our RLNC approach, if the
maximum flow from w(0) to m(T) in its continuous-time trellis G(T) is at least k, then the master
node can recover the desired computation result at time T with probability one.



Entropy 2023, 25, 428 7 of 16

time

master

communication

computation

worker 𝑤𝑖

𝑋𝑖 𝜏𝑖

0 t

× × ×

Figure 2. Illustration of a continuous-time trellis, G(t)
i .

Proof. It is straightforward to see that the first part holds. The second part is inherited
from the optimality of RLNC in communication networks [19] and the fact that all the
operations are over the real field R.

Now, we proceed to prove Theorems 1 and 2. We start by presenting some con-
centration results regarding the communication between worker nodes and the master
node.

Lemma 1. Suppose Y1, Y2, . . . follow a shifted exponential distribution with rate µ and shift
parameter θ independently. Then, for any constant δ > 0, there exists some constant η1 > 1,
such that

Pr

(∣∣∣∣∣ s

∑
i=1

Yi − (θ + µ−1)s

∣∣∣∣∣ > δ(θ + µ−1)s

)
= O(η−s

1 ). (8)

Proof. The result can be proved by a Chernoff-like argument based on moment generating
function [27].

The moment generating function of Yi is

E[e−hYi ] =
µ

µ + h
e−hθ (9)

Hence,

Pr

(
s

∑
i=1

Yi < (1− δ)(θ + µ−1)s

)
= Pr

(
e−h ∑s

i=1 Yi > e−h(1−δ)(θ + µ−1)s
)

≤
E
[
e−h ∑s

i=1 Yi
]

e−h(1−δ)(θ + µ−1)s

=
∏s

i=1 E
[
e−hYi

]
e−h(1−δ)(θ + µ−1)s

=

(
µ

µ + h e−hθ
)s

e−h(1−δ)(θ + µ−1)s

(10)

where the inequality holds by applying the Markov’s inequality. Let h = 1
(1−δ)(θ + µ−1)−θ

−
µ. We then have



Entropy 2023, 25, 428 8 of 16

Pr

(
s

∑
i=1

Yi < (1− δ)(θ + µ−1)s

)

≤
(

eµ(1−δ)(θ + µ−1)−θ − 1
µ(1− δ)(θ + µ−1)− θ

)−s

≤
(

e1−δ(1 + θµ) − 1
1− δ(1 + θµ)

)−s

(11)

By setting η1 = e1−δ(1 + θµ)−1
1−δ(1 + θµ)

, we get the desired result.

For a scheme, let Ni(t) (N′i (t), resp.) be the number of packet transmissions (successful
packet transmissions, resp.) from worker node wi to the master node during the time
interval (Xi, Xi + t).

Lemma 2. For any scheme and any constant δ > 0, there exists some constant η2 > 1, such that

Pr(Ni(t) ≥ (1 + δ)rit) = O(η−t
2 ). (12)

Proof. Let Y1, Y2, . . . , YNi(t) be i.i.d. shifted exponential random variables with rate µi and
shift parameter θi, and s = d(1 + δ)rite. According to Lemma 1, there exist some constant
s = d(1 + δ)riteη1 > 1 and η2 = η

(1 + δ)ri
1 such that

Pr(Ni(t) ≥ (1 + δ)rit)

≤ Pr

(
s

∑
j=1

Yj ≤ t

)

≤ Pr

(
s

∑
j=1

Yj ≤
(

1− δ

1 + δ

)(
θi + µ−1

i

)
s

)
≤ η−s

1 = O
(
η−t

2
)

(13)

Lemma 3. For any scheme and any constant δ > 0, there exists some constant η3 > 1 such that

Pr(N′i (t) ≥ (1 + δ)ri(1− εi)t) = O(η−t
3 ). (14)

Proof. Let A denote the event that Ni(t) ≥ (1 + δ/2)rit. By the total law of probability,

Pr
(

N′i (t) ≥ (1 + δ)ri(1− εi)t
)

= Pr
(

N′i (t) ≥ (1 + δ)ri(1− εi)t | A
)

Pr(A)

+ Pr
(

N′i (t) ≥ (1 + δ)ri(1− εi)t | Ā
)

Pr(Ā)

≤ Pr(A) + Pr
(

N′i (t) ≥ (1 + δ)ri(1− εi)t | Ā
) (15)

According to Lemma 2, there exists some constant η′2 > 1 such that Pr(A) = O
(
η−t

2
)
. Let

N be a binomial random variable with parameters (1 + δ/2)rit and 1− εi. Then, there
exists some constant η′3 > 1 such that

Pr
(

N′i (t) ≥ (1 + δ)ri(1− εi)t | Ā
)

≤ Pr(N ≥ (1 + δ)ri(1− εi)t)

= O
(
η′−t

3
) (16)



Entropy 2023, 25, 428 9 of 16

where the second step follows by applying the Chernoff bound for a binomial random
variable [27]. Finally, by letting min

{
η′3 = η′2, η′3

}
, we have

Pr
(

N′i (t) ≥ (1 + δ)ri(1− εi)t
)
= O

(
η−t

3
)

(17)

Lemma 4. For any scheme, let Fi(t) be the maximum flow from wi(0) to m(t) in its continuous-
time trellis G(t). Then, for any constant δ > 0, there exists some constant η4 > 1 such that

Pr

(
Fi((1− δ)T0) ≥

r′ik
∑n

j=1 r′j

)
≤ O(η−k

4 ). (18)

Proof. Let B be the event that (1− δ)T0 − Xi > (1− δ/2) k
∑n

j=1 r′j
. Then

Pr(B) ≤ Pr
(
(1− δ)T0 > (1− δ/2)

k
∑n

i=1 r′i

)
= Pr

(
n

∑
i=1

r′iXi >
δ

2(1− δ)
k

)

≤ Pr
(
∃i s. t. r′iXi >

δ

2n(1− δ)
k
)

≤
n

∑
i=1

Pr
(

r′iXi >
δ

2n(1− δ)
k
)

=
n

∑
i=1

e
− λiδ

2n(1−δ)r′i
k
= O

(
η′−k

4

)

(19)

for some constant η′4 > 1. By the total law of probability,

Pr

(
Fi((1− δ)T0) ≥

r′ik
∑n

j=1 r′j

)

= Pr

(
Fi((1− δ)T0) ≥

r′ik
∑n

j=1 r′j
| A

)
Pr(A)

+ Pr

(
Fi((1− δ)T0) ≥

r′ik
∑n

j=1 r′j
| Ā

)
Pr(Ā)

≤ Pr(A) + Pr

(
Fi((1− δ)T0) ≥

r′ik
∑n

j=1 r′j
| Ā

)
(20)

We consider two cases. In the first case, 1
τi
≤ ri(1− εi). Thus, r′i =

1
τi

. Since Fi(t) cannot

exceed the number of computation edges t−Xi
τi

, it is straightforward to check that

Pr

(
Fi((1− δ)T0) ≥

r′ik
∑n

j=1 r′j
| A

)
= 0. (21)

Thus, Pr
(

Fi((1− δ)T0) ≥
r′ik

∑n
j=1 r′j

)
= O(η′−k

4 ). In the second case, 1
τi

> ri(1− εi). Thus,

r′i = ri(1− εi). Since Fi((1− δ)T0) ≤ N′i ((1− δ)T0 − Xi),



Entropy 2023, 25, 428 10 of 16

Pr

(
Fi((1− δ)T0) ≥

r′ik
∑n

j=1 r′j
| A

)

≤ Pr

(
N′i ((1− δ)T0 − Xi) ≥

r′ik
∑n

j=1 r′j
| A

)

≤ Pr

(
N′i

(
(1− δ/2)

k
∑n

j=1 r′j

)
≥

r′ik
∑n

j=1 r′j

)
= O(η−k

5 )

(22)

for some constant η5 > 1, where the last step follows from Lemma 3. Thus, we can show

that Pr
(

Fi((1− δ)T0) ≥
r′ik

∑n
j=1 r′j

)
= O(η−k

4 ) for constant η4 = min{η′4, η5}.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. For any scheme, since the maximum flow from w(0) to m((1 −
δ)T0) in its continuous-time trellis G((1−δ)T0) is equal to ∑n

i=1 Fi((1− δ)T0), according to
Proposition 1, its latency Tany satisfies

Pr(Tany ≤ (1− δ)T0)

≤ Pr

(
n

∑
i=1

Fi((1− δ)T0) ≥ k

)

≤ Pr

(
∃i s.t. Fi((1− δ)T0) ≥

r′ik
∑n

j=1 r′j

)

≤
n

∑
i=1

Pr

(
Fi((1− δ)T0) ≥

r′ik
∑n

j=1 r′j

)
= O(η−k

4 )

(23)

where the last step follows from Lemma 4.

Next, we turn to prove Theorem 1. For the RLNC approach and t ≥ Xi, let Ni(t, t + ∆t)
be the number of successful packet transmissions from worker node wi to the master node
during the time interval (t, t + ∆t). We have the following result.

Lemma 5. For any t ≥ Xi,

Ni(t, t + ∆t)
∆t

P→ ri(1− εi), as ∆t→ ∞; (24)

i.e., Ni(t, t + ∆t)/∆t converges to ri(1− εi) in probability when ∆t goes to infinity, or equivalently,
for any constant ε > 0.

Proof. The result can be shown similarly to that of Lemma 3.

Lemma 6. Let Fi(t) be the maximum flow from wi(0) to m(t) in the continuous-time trellis G(t)

of the RLNC approach. Then,

Fi(t)
t− Xi

P→ min
{

1
τi

, ri(1− εi)

}
= r′i , as t→ ∞, (25)

Proof. According to Theorem 1 of [26], Lemma 5 implies this result immediately.

Now we can prove Theorem 1.



Entropy 2023, 25, 428 11 of 16

Proof of Theorem 1. According to Lemma 6, Fi(T0)
P→ (T0 − Xi)r′i , as k → ∞. Hence,

∑n
i=1 Fi(T0)

P→ k as k→ ∞. Since,

Fi((1 + δ)T0)

Fi(T0)

≥ Fi((1 + δ)T0)

(1 + δ)T0 − Xi
· (1 + δ)(T0 − Xi)

Fi(T0)
P→ 1 + δ,

(26)

it is straightforward to check that

lim
k→∞

Pr

(
n

∑
i=1

Fi((1 + δ)T0) < k

)
= 0. (27)

According to Proposition 1, this implies that

lim
k→∞

Pr{TRLNC ≥ (1 + δ)T0} = 0. (28)

The proof is accomplished.

4. BATS-Code-Based Approach

As mentioned earlier, despite its optimality, RLNC based approach suffers from its
high encoding and decoding overheads. In this section, we propose a new approach based
on batched sparse (BATS) code [20], which is a variation of RLNC having low encoding
and decoding overheads.

4.1. Description

In the BATS-code-based approach, the k submatrices A1, . . . , Ak are first encoded into
A1, . . . , Ak, Ak + 1, . . . , Ak′ using a fixed-rate systematic erasure code (called a precode),
where k′ = (1 + ε)k and ε is a small positive constant (e.g., 0.02). BATS codes are rateless,
as an infinite number of batches can be generated. The generation of each batch is as follows:

• Sample a degree deg according to a given degree distribution Ψ = (Ψ1, . . . , ΨD), where
D is the maximum degree;

• Select deg distinct submatrices uniformly at random from A1, . . . , Ak, Ak + 1, . . . , Ak′ ;
• Generate M random linear combinations of the deg submatrices, which are referred to

as a batch.

Based on BATS code, batches of submatrices are assigned to worker nodes, and each
worker node performs the local computation on the basis of a batch, which consists of M
submatrix-vector multiplications. In order to forward the computational result of a batch
to the master node, each worker node will generate a number of packets, each of which
is a random linear combination of the M submatrix-vector products corresponding to the
batch. For decoding, the master node first recovers A1x, . . . , Akx, Ak + 1x, . . . , Ak′x using
Gaussian-elimination-based belief propagation (BP) decoding, and once any k or slightly
more than k of A1x, . . . , Akx, Ak + 1x, . . . , Ak′x are recovered, the master node can recover
all these A1x, . . . , Akx by decoding the precode. See [20] for more details.

Overhead: In the BATS-code-based approach, the encoding cost per submatrix is
O(deg · m

k · d) = O(
md
k ), and the total decoding cost is O((M3 + M2 m

k ) ·
k
M ) = O(M2k +

Mm). Clearly, both the encoding cost and decoding cost are much lower than for the RLNC
approach, especially when M is a small constant (e.g., 8 or 16). As for the RLNC approach,
the decoding cost is independent of d, and the coefficient overhead is negligible when
leveraging the pseudo-random-number-generator-based approach.

Remark 3. There have been many other sparse variants of random linear network coding, including
chunked codes (e.g., [28,29]), tunable sparse network coding (e.g., [30,31], and sliding-window
coding (e.g., [32–36]). While many of these codes can also be applied, BATS codes are more suitable



Entropy 2023, 25, 428 12 of 16

for this distributed computing scenario. On the one hand, BATS codes are rateless. Thus, all the
worker nodes can keep on computing and forwarding local results to the master node before the
whole computation is completed, as long as enough batches are placed on each worker node. In
contrast, chunked codes (e.g., [28,29]) usually have fixed coding rates or require a lot of feedback
from the master node. On the other hand, as mentioned in Section 2, in many applications, the step
of encoding before computation is required to be performed before the arrival of any input x. In other
words, this encoding step should be irrelevant to the uncertain computation and communication
processes of worker nodes. However, differently from BATS codes, sliding-window codes are often
generated on-the-fly and are not as suitable as BATS codes.

4.2. Performance Optimization

The performance of BATS code heavily depends on how the M computation results of
each batch are transmitted to the master node, and which degree distribution is used.

Suppose that worker node wi sends Zi coded packets to the master nodes for the com-
putation results of each batch Bj. Let Hj be a Zi ×M matrix, where each row corresponds
to a transmitted packet. If the packet is successfully received by the master node, then the
row is the local encoding vector. Otherwise, the row is zero-vector. Let hi = (hi,0, . . . , hi,M)
denote the rank distribution of Hj, where hi,r is the probability that Hj has rank r. We can
show that

hi,r =

{
∑ub
`=r Pr(Zi = `)(`r)(1− εi)

rε`−r
i , r ≤ M− 1

∑ub
`=M Pr(Zi = `)∑`

s=M (`s)(1− εi)
sε`−s

i , r = M.
(29)

where ub is an upper bound of Zi. In order to maximize the transmission efficiency for
BATS code, we apply the linear programming method [37] to optimize the distribution
of Zi:

max
M

∑
r=1

rhi,r

s.t.
ub

∑
`=0

Pr(Zi = `)`
(

θi + µ−1
i

)
≤ Mτi

ub

∑
`=0

Pr(Zi = `) = 1

0 ≤ Pr(Zi = `) ≤ 1, ` = 0, . . . , ub

(30)

Here, the objective is to maximize the expected rank. The first constraint stands for the
expected time for transmitting Zj packets to the master node being no larger than the time
for computing M submatrix-vector multiplications, and the last two constraints stand for
Pr(Zi = `), ` = 0, . . . , ub being a probability distribution.

When the time goes to infinity, we can see that the proportion of batches whose
computation results have been sent to the master node by worker node wi is 1/τi

∑n
j=1 1/τj

.

Hence, we can derive the empirical rank distribution h over all the batches done by worker
nodes as

h =
n

∑
i=1

1/τi

∑n
j=1 1/τj

hi. (31)

Based on the empirical rank distribution, we can find a good degree distribution Ψ such
that the BATS code can achieve a coding rate close to h̄/M, where h̄ is the expected value
corresponding to the empirical rank distribution (c.f. [20]).



Entropy 2023, 25, 428 13 of 16

5. Performance Evaluation

In this section, we first evaluate the decoding cost incurred by our proposed ap-
proaches, and then we present simulations conducted to evaluate the overall computational
performances of these approaches in comparison to some state-of-the-art approaches.

We first ran some experiments on a computer with an Intel(R) Core(TM) i7-10700 CPU
2.90 GHz and Python 3.7. In these experiments, the matrix A was 50,000 × d, where d
ranged from 1000 to 16,000. Matrix A was split into 1000 sub-matrices of the same size, and
each submatrix consisted of 50 rows so that each transmitted packet consisted of 50 real
numbers. In the BATS-code-based approach, the batch size was set to eight. We simulated
the decoding process and evaluated the decoding delays (in terms of second) of both the
RLNC based approach and the BATS-code-based approach. The delay for the original
matrix multiplication was also evaluated. The results are presented in Table 1.

Table 1. The decoding delays (in terms of second) of our proposed approaches in comparison with
the delay of original matrix multiplication.

d = 1000 2000 4000 8000 16,000 32,000

matrix multiplication delay 34.16 69.59 138.69 280.86 550.43 1116.84
decoding delay (RLNC) 34.51 34.51 34.51 34.51 34.51 34.51
decoding delay (BATS) 0.54 0.54 0.54 0.54 0.54 0.54

Note that the decoding latencies of both the RLNC based approach and the BATS-code-
based approach are irrelevant to d, and the latency for the original matrix multiplication
grows linearly with d. From this table, we can see that even when d = 1000, the decoding
latency of the BATS-code-based approach is only about 1.58% of the latency of original
computation, and when d grows larger, this latency becomes negligible. In contrast, when
d = 1000 or d = 2000, the decoding cost of the RLNC based approach is prohibitive.

We also conducted simulations to evaluate the performances of our proposed ap-
proaches. In our simulations, the number of worker nodes was 10, and the settings of
matrix A remained the same as above, except that the number of columns d was irrelevant
in our simulations. We simulated four scenarios. In the first three scenarios, worker nodes
were homogeneous, and the size relationship between computation time per submatrix-
vector product and average communication time of a packet varied among these scenarios.
In the last scenario, worker nodes were heterogeneous. The involved parameters of these
scenarios are given as follows.

• Scenario I, where (λi, τi) = (0.1, 0.2), (µi, θi) = (20, 0.05) and εi = 0.2;
• Scenario II, where (λi, τi) = (0.1, 0.15), (µi, θi) = (10, 0.05) and εi = 0.2;
• Scenario III, where (λi, τi) = (0.1, 0.1), (µi, θi) = (10, 0.1) and εi = 0.2;
• Scenario IV, where for each worker i, parameters λi, τi, µi, θi and εi were uniformly

distributed at random over intervals [0.07, 0.2], [0.1, 0.3], [10, 20], [0.05, 0.2] and
[0.1, 0.4], respectively.

For these scenarios, we evaluated the following five methods.

• Uniform uncoded, where the divided sub-matrices were equally assigned to 10 worker
nodes—i.e., each worker node computed 100 sub-matrices.

• Two-Replication, where the divided sub-matrices were equally assigned to five
worker nodes, and the computing tasks of these worker nodes were replicated at
another five worker nodes.

• (10, 8) MDS code, where the divided 1000 sub-matrices were encoded into 1250 sub-
matrices and then equally assigned to 10 worker nodes.

• LT code [14], where the 1000 original sub-matrices were encoded using LT codes, and
an infinite number of coded sub-matrices was assigned to each worker node.

• RLNC: The details are introduced in Section 3. The time cost of recoding and decoding
operations was ignored.



Entropy 2023, 25, 428 14 of 16

• BATS code: The details are introduced in Section 4, and a batch size of eight was used.

While our proposed schemes tackle the packet-loss issue, the first four of the above
schemes do not consider this issue at all. For these schemes, we used an ideal retransmission
(IR) scheme for the first four schemes, where the worker nodes know whether a transmitted
packet is lost or not immediately. This leads these schemes to perform better. In the
following, we refer to the first four schemes as Uncoded + IR, Rep + IR, (10,8)MDS + IR
and LT + IR, respectively.

The latency performance levels of these approaches under the four scenarios are
plotted in Figure 3, where the decoding latency at the master node is ignored. From this
figure, we observe the following.

Uncoded+IR Rep+IR (10,8)MDS+IR LT+IR RLNC BATS
Scenario I

0

10

20

30

40

50

60

Av
er

ag
e 

La
te

nc
y(

m
s)

Uncoded+IR Rep+IR (10,8)MDS+IR LT+IR RLNC BATS
Scenario II

0

10

20

30

40

50

Av
er

ag
e 

La
te

nc
y(

m
s)

Uncoded+IR Rep+IR (10,8)MDS+IR LT+IR RLNC BATS
Scenario III

0

10

20

30

40

50

60

Av
er

ag
e 

La
te

nc
y(

m
s)

Uncoded+IR Rep+IR (10,8)MDS+IR LT+IR RLNC BATS
Scenario IV

0

10

20

30

40

50

60

70

Av
er

ag
e 

La
te

nc
y(

m
s)

Figure 3. The latency performances of different approaches under four scenarios, where the error bar
indicates the standard deviation.

• Among the first four schemes, LT + IR achieved the best performance for all four
scenarios. Note that IR eliminates the packet-loss issue, and this result has also been
demonstrated in [14], where only the straggler issue was considered. This is because LT
codes can achieve near-perfect load balance among the worker nodes in the presence
of stragglers.

• For all these scenarios, the proposed RLNC approach achieved the best latency perfor-
mance among all these schemes. In particular, the performance of the RLNC approach
was slightly better than that of LT + IR. Just like LT + IR, our RLNC approach also
achieved near-perfect load balance among the worker nodes. Meanwhile, LT + IR
incurred a small precode overhead, whereas the RLNC approach did not. This result
also demonstrates the near-optimality of the RLNC approach.

• Our BATS approach performed much better than Uncoded + IR, Rep + IR, and (10,8)
MDS + IR in all these scenarios, but slightly worse than LT + IR and RLNC. Since LT + IR
assumes an ideal retransmission scheme, which is impractical, and the RLNC approach
incurs high encoding and decoding costs, the BATS approach is much more practical.



Entropy 2023, 25, 428 15 of 16

In summary, both our RLNC approach and our BATS approach can overcome both
the straggler issue and the packet-loss issue effectively and can achieve near-optimal
performance in different scenarios when the number of columns d is large enough.

6. Conclusions

In this paper, we focused on addressing the straggler issue and the packet-loss issue
jointly for distributed matrix multiplication in wireless distributed computing systems. We
proposed an RLNC approach and proved its asymptotical optimality using a continuous-
time-trellis-based argument. We further proposed a more practical variation of the RLNC
approach based on BATS code. The effectiveness of both approaches was demonstrated
through numerical simulations.

Author Contributions: Methodology, B.F., B.T. and Z.Q.; Validation, B.F.; Formal analysis, B.T.;
Writing—original draft, B.F. and B.T.; Writing—review & editing, Z.Q. and B.Y.; Supervision, B.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This paper is supported by the Water Conservancy Project of Jiangsu Province under Grant
No. 2021053, the National Natural Science Foundation of China under Grant No. 61872171, the
Fundamental Research Funds for the Central Universities under Grant No. B210201053, the Natural
Science Foundation of Jiangsu Province under Grant No. BK20190058, and the Future Network
Scientific Research Fund Project under Grant No. FNSRFP-2021-ZD-07.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Zhao, S. Advances and open problems in federated

learning. Found. Trends Mach. Learn. 2021, 14, 2179–2217. [CrossRef]
2. Drolia, U.; Guo, K.; Narasimhan, P. Precog: Prefetching for image recognition applications at the edge. In Proceedings of the

Second ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA, 12–14 October 2017; pp. 1–13.
3. Datla, D.; Chen, X.; Tsou, T.; Raghunandan, S.; Hasan, S.S.; Reed, J.H.; Kim, J.H. Wireless distributed computing: A survey of

research challenges. IEEE Commun. Mag. 2012, 50, 144–152. [CrossRef]
4. Li, S.; Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. A scalable framework for wireless distributed computing. IEEE-ACM Trans.

Netw. 2017, 25, 2643–2654. [CrossRef]
5. Dean, J.; Barroso, L.A. The tail at scale. Commun. ACM 2013, 56, 74–80. [CrossRef]
6. Zaharia, M.; Konwinski, A.; Joseph, A.D.; Katz, R.H.; Stoica, I. Improving MapReduce performance in heterogeneous environ-

ments. In Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation, San Diego, CA, USA,
8–10 December 2008; pp. 7–21.

7. Wang, D.; Joshi, G.; Wornell, G. Efficient task replication for fast response times in parallel computation. In Proceedings of the
2014 ACM International Conference on Measurement and Modeling of Computer Systems, Austin, TX, USA, 16–20 June 2014;
pp. 599–600.

8. Wang, D.; Joshi, G.; Wornell, G. Using straggler replication to reduce latency in large-scale parallel computing. ACM Sigmetrics
Perform. Eval. Rev. 2015, 43, 7–11. [CrossRef]

9. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Comm. ACM 2008, 51, 107–113. [CrossRef]
10. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. HotCloud 2010,

10, 10.
11. Lee, K.; Lam, M.; Pedarsani, R.; Papailiopoulos, D.; Ramchandran, K. Speeding up distributed machine learning using codes.

IEEE Trans. Inf. Theory 2017, 64, 1514–1529. [CrossRef]
12. Ferdinand, N.; Draper, S.C. Hierarchical coded computation. In Proceedings of the 2018 IEEE International Symposium on

Information Theory, Vail, CO, USA, 17–22 June 2018; pp. 1620–1624.
13. Kiani, S.; Ferdinand, N.; Draper, S.C. Exploitation of stragglers in coded computation. In Proceedings of the 2018 IEEE

International Symposium on Information Theory, Vail, CO, USA, 17–22 June 2018; pp. 1988–1992.
14. Mallick, A.; Chaudhari, M.; Sheth, U.; Palanikumar, G.; Joshi, G. Rateless codes for near-perfect load balancing in distributed

matrix-vector multiplication. Commun. ACM 2022, 65, 111–118. [CrossRef]
15. Luby, M. LT codes. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC,

Canada, 16–19 November 2002; pp. 271–282.
16. Shokrollahi, A. Raptor codes. IEEE Trans. Inf. Theory 2006, 52, 2551–2567. [CrossRef]
17. Han, D.J.; Sohn, J.Y.; Moon, J. Coded Wireless Distributed Computing With Packet Losses and Retransmissions. IEEE Trans. Wirel.

Commun 2021, 20, 8204–8217. [CrossRef]
18. Ahlswede, R.; Cai, N.; Li, S.Y.; Yeung, R.W. Network information flow. IEEE Trans. Inf. Theory 2000, 46, 1204–1216. [CrossRef]

http://doi.org/10.1561/2200000083
http://dx.doi.org/10.1109/MCOM.2012.6122545
http://dx.doi.org/10.1109/TNET.2017.2702605
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1145/2847220.2847223
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/TIT.2017.2736066
http://dx.doi.org/10.1145/3524298
http://dx.doi.org/10.1109/TIT.2006.874390
http://dx.doi.org/10.1109/TWC.2021.3091465
http://dx.doi.org/10.1109/18.850663


Entropy 2023, 25, 428 16 of 16

19. Ho, T.; Médard, M.; Koetter, R.; Karger, D.R.; Effros, M.; Shi, J.; Leong, B. A random linear network coding approach to multicast.
IEEE Trans. Inf. Theory 2006, 52, 4413–4430. [CrossRef]

20. Yang, S.; Yeung, R.W. Batched sparse codes. IEEE Trans. Inf. Theory 2014, 60, 5322–5346. [CrossRef]
21. Park, H.; Lee, K.; Sohn, J.Y.; Suh, C.; Moon, J. Hierarchical coding for distributed computing. In Proceedings of the 2018 IEEE

International Symposium on Information Theory, Vail, CO, USA, 17–22 June 2018; pp. 1630–1634.
22. Lin, Z.; Narra, K.G.; Yu, M.; Avestimehr, S.; Annavaram, M. Train where the data is: A case for bandwidth efficient coded training.

arXiv 2019, arXiv:1910.10283.
23. Yu, Q.; Maddah-Ali, M.; Avestimehr, S. Polynomial codes: An optimal design for high-dimensional coded matrix multiplica-

tion. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA,
4–9 December 2017.

24. Ramamoorthy, A.; Tang, L.; Vontobel, P.O. Universally decodable matrices for distributed matrix-vector multiplication. In
Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1777–1781.

25. Ramamoorthy, A.; Tang, L. Numerically stable coded matrix computations via circulant and rotation matrix embeddings.
IEEE Trans. Inf. Theory 2022, 68, 2684–2703. [CrossRef]

26. Wu, Y. A trellis connectivity analysis of random linear network coding with buffering. In Proceedings of the IEEE International
Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 768–772.

27. Motwani, R.; Raghavan, P. Randomized Algorithms; Cambridge University Press: Cambridge, UK, 1995.
28. Tang, B.; Yang, S.; Ye, B.; Yin, Y.; Lu, S. Expander chunked codes. EURASIP J. Adv. Signal Process. 2015, 1, 106. [CrossRef]
29. Tang, B.; Yang, S. An LDPC approach for chunked network codes. IEEE ACM Trans. Netw. 2018, 26, 605–617. [CrossRef]
30. Feizi, S.; Lucani, D.E.; Médard, M. Tunable sparse network coding. In Proceedings of the 22th International Zurich Seminar on

Communications (IZS), Zürich, Switzerland, 29 February–2 March 2012.
31. Garrido, P.; Sørensen, C.W.; Lucani, D.E.; Agüero, R. Performance and complexity of tunable sparse network coding with gradual

growing tuning functions over wireless networks. In Proceedings of the 2016 IEEE 27th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016.

32. Garrido, P.; Gómez, D.; Lanza, J.; Agüero, R. Exploiting sparse coding: A sliding window enhancement of a random linear
network coding scheme. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur,
Malaysia, 22–27 May 2016.

33. Wunderlich, S.; Gabriel, F.; Pandi, S.; Fitzek, F.H.; Reisslein, M. Caterpillar RLNC (CRLNC): A practical finite sliding window
RLNC approach. IEEE Access 2017, 5, 20183–20197. [CrossRef]

34. Yang, J.; Shi, Z.P.; Wang, C.X.; Ji, J.B. Design of optimized sliding-window BATS codes. IEEE Commun. Lett. 2019, 23, 410–413.
[CrossRef]

35. Karetsi, F.; Papapetrou, E. Lightweight network-coded ARQ: An approach for ultra-reliable low latency communication. Comput.
Commun. 2022, 185, 118–129. [CrossRef]

36. Tasdemir, E.; Nguyen, V.; Nguyen, G.T.; Fitzek, F.H.; Reisslein, M. FSW: Fulcrum sliding window coding for low-latency
communication. IEEE Access 2022, 10, 54276–54290. [CrossRef]

37. Tang, B.; Yang, S.; Ye, B.; Guo, S.; Lu, S. Near-optimal one-sided scheduling for coded segmented network coding. IEEE Trans.
Comput. 2015, 65, 929–939. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIT.2006.881746
http://dx.doi.org/10.1109/TIT.2014.2334315
http://dx.doi.org/10.1109/TIT.2021.3137266
http://dx.doi.org/10.1186/s13634-015-0297-8
http://dx.doi.org/10.1109/TNET.2017.2787726
http://dx.doi.org/10.1109/ACCESS.2017.2757241
http://dx.doi.org/10.1109/LCOMM.2019.2895867
http://dx.doi.org/10.1016/j.comcom.2022.01.004
http://dx.doi.org/10.1109/ACCESS.2022.3175815
http://dx.doi.org/10.1109/TC.2015.2435792

	Introduction
	System Model
	Coding-Based Wireless Distributed Computation
	Delay Model

	A Network Coding Approach
	Description
	Latency Analysis

	BATS-Code-Based Approach
	Description
	Performance Optimization

	Performance Evaluation
	Conclusions
	References

