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Abstract: Entanglement swapping is gaining widespread attention due to its application in entangle-
ment distribution among different parts of quantum appliances. We investigate the entanglement
swapping for pure and noisy systems, and argue different entanglement quantifiers for quantum
states. We explore the relationship between the entanglement of initial states and the average entan-
glement of final states in terms of concurrence and negativity. We find that if initial quantum states
are maximally entangled and we make measurements in the Bell basis, then average concurrence and
average negativity of final states give similar results. In this case, we simply obtain the average con-
currence (average negativity) of the final states by taking the product of concurrences (negativities) of
the initial states. However, the measurement in non-maximally entangled basis during entanglement
swapping degrades the average swapped entanglement. Further, the product of the entanglement of
the initial mixed states provides an upper bound to the average swapped entanglement of final states
obtained after entanglement swapping. The negativity work well for weak entangled noisy states
but concurrence gives better results for relatively strong entanglement regimes. We also discuss how
successfully the output state can be used as a channel for the teleportation of an unknown qubit.

Keywords: entanglement; swapping; negativity; concurrence

1. Introduction

Schrödinger observed the existence of a unique correlation, called entanglement, in
some quantum states of two or more systems at the dawn of quantum mechanics [1].
Now, it is well understood that entanglement is a purely quantum phenomena [2,3]. The
creation, modification, control, and practical application of this quantum correlation have
become significant research fields [4,5]. Specially, the ability to distribute entanglement
between distant systems has the potential to be used in the development of novel quantum
information protocols [6,7].

The entanglement swapping is a mechanism for distributing the entanglement correla-
tion between distant systems. There has been a great deal of theoretical and experimental
research completed on entanglement swapping [8–13]. It also helps us to connect many sep-
arable nodes for long-distance communication in a quantum network [14,15]. Specifically,
entanglement swapping is a protocol by which quantum systems that have never inter-
acted in the past can become entangled [6,16]. The nomenclature “entanglement swapping”
describes the transfer of entanglement from a priori entangled systems to a priori separable
systems [17]. It is a very useful tool for entanglement purification [18], teleportation [19],
and plays an important role in quantum computing and quantum cryptography [4,20]. We
can also use entanglement swapping for the creation of multipartite entangled states from
bipartite entanglement [21].
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Let us describe the phenomenon of entanglement swapping. Suppose two entangled
particles (A, B) are shared between Alice and Bob. Similarly Cara and Danny also share
another entangled pair of particles (C, D). Initially there is no entanglement between Alice’s
and Danny’s particles (A, D), shown in Figure 1a. If Bob and Cara who are situated in the
same laboratory make measurement in a suitable basis on the pair (B, C) and classically
communicate the outcome with distant partners then Alice’s and Danny’s particles who
are at very large distance become entangled as shone in Figure 1b. This entanglement
swapping protocol can be generalized in different ways: by modifying the initial states, or
by modifying the measurement performed by Bob and Cara, or by extending the number
of parties [21,22].

Alice Danny

Bob Cara

Alice-Bob
entanglement

Cara-Danny
entanglement

(a)

Alice Danny

Bob Cara

Alice-Danny
entanglement

(b)
Figure 1. Entanglement swapping. Initially in (a) entangled pairs are shared between Alice and Bob,
and between Cara and Danny. There is no entanglement between Alice and Danny. However, in (b),
the measurement on Bob and Cara’s qubits project the entanglement between Alice and Danny.

An ever-increasing body of literature shows that the entanglement swapping and
purification of quantum systems need specific protocols. Smaller changes may bring huge
changes to the output state because of the relative sensitivity of the operation and quantum
systems. For this reason, several previous studies suggest entanglement swapping of initial
states into maximally entangled states. For example, in Ref. [23], the authors provided a
scheme of entanglement swapping of initial states into biqubit maximally entangled states
when influenced by an amplitude damping channel. The concurrence of the measuring
basis for entanglement swapping caused a two-fold entanglement matching effect has been
witnessed in Ref. [24]. The authors of Ref. [25] showed relationship between the ranks of
the initial states and the rank of the final state after swapping, as well as that concurrence of
partially mixed states remains conserved when is swapped with the Bell state. Our research
discusses the complement to the earlier findings in the cited reference. Concurrence-based
weak entanglement regimes are not detected in the mixed state. It is interesting to note
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that negativity is still more robust than concurrence at the weak entanglement regimes
of the mixed state when we revisit this using negativity in our work. Recently, Ref. [26]
investigated that hyper-entangled states produce deterministic entanglement swapping
while considering projections of biqubit systems on symmetric, and iso-entangled states.
It is found that biqubit entanglement generated through entanglement swapping, will
depart from a Bell-type inequality even for visibilities smaller than 50% [9]. From the above
literature, we found that entanglement swapping has been previously considered using
different procedures, and various important results have been achieved. This research
work constitutes a relatively more generalized entanglement swapping protocol that covers
the maximum possible cases of swapping. We consider pure, mixed, and noisy systems
for entanglement swapping. Ordering the quantum systems with respect to different
entanglement quantifiers is also one of the hot issues of quantum information [27–30]. Here,
we also investigate the ordering of final states via concurrence [31] and negativity [32,33].
We compare the results of concurrence and negativity and find their association under
different circumstances. We specifically wish to investigate the relationship between the
average concurrence and average negativity of the output states and the concurrences and
negativities of the input states. In case of pure states, it is discovered that the average
concurrence (average negativity) of the final state is simply the sum of the concurrences
(negativities) of the states used to perform the entanglement swap. Then, for noisy qubits,
concurrence (negativity) and entanglement swapping are discussed. We observe that week
entangled final noisy states are only detected by negativity but in the relatively higher
entangled noisy state domains, concurrence remains more favorable. Moreover, we explore
the application of the final state as a channel for the teleportation of an unknown qubit.
We also investigate the fidelity of teleported qubit with the initial unknown qubit. One
of the intentions of our work is to provide a theoretical scheme that can easily be used
in experiments containing swapping protocol. In this case, we demonstrated an easily
applicable entanglement swapping design compared to the previous studies [9,23–26].

The article is organized as follows. Section 2 describes the details of the entanglement
swapping scenario for non-noisy systems and the application of swapped entanglement.
Next, in Section 3, we demonstrate the entanglement swapping among noisy qubits and
teleportation using a noisy quantum channel. Finally, we conclude with a short discussion
in Section 4.

2. Entanglement Swapping among Qubit Systems

We consider two pairs of qubits for entanglement swapping. The entangled qubits
A and B make the first pair and the second pair consist of entangled qubits C and D (the
qubits’ names are chosen such that they make the initial of Alice, Bob, Cara, and Danny,
shown in Figure 1). In terms of Schmidt decomposition, these subsystems can be written as

|φ〉AB =
√

p0 |00〉AB +
√

p1 |11〉AB ,

|φ〉CD =
√

p′0 |00〉CD +
√

p′1 |11〉CD .
(1)

The concurrence and negativity of these systems are C(|φ〉AB) = 2
√

p0 p1, C(|φ〉CD) =

2
√

p′0 p′1 and N (|φ〉AB) = 2
√

p0
√

p1, N (|φ〉CD) = 2
√

p′0
√

p′1. It means for these bi-
dimensional systems concurrence and negativity produce similar results. The initial state
of our four-qubit system is |Φ〉 = |φ〉AB ⊗ |φ〉CD and after rearrangement of the qubits A
and D together and qubits B and C together we can write

|Φ〉 =
√

p0 p′0 |00〉AD |00〉BC +
√

p0 p′1 |01〉AD |01〉BC +√
p1 p′0 |10〉AD |10〉BC +

√
p1 p′1 |11〉AD |11〉BC . (2)
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In order to do measurements over BC qubits, we also need to define a set of four orthonor-
mal basis [24]

|Φ̃+〉BC = α0 |00〉BC + β0 |11〉BC ,

|Φ̃−〉BC = β∗0 |00〉BC − α∗0 |11〉BC ,

|Ψ̃+〉BC = α1 |01〉BC + β1 |10〉BC ,

|Ψ̃−〉BC = β∗1 |01〉BC − α∗1 |10〉BC ,

(3)

where αi and βi are unknown coefficients and for normalization |αi|2 + |βi|2 = 1 for
i ∈ {0, 1}. Conversely, we have |00〉BC = α∗0 |Φ̃+〉BC + β0 |Φ̃−〉BC and, likewise, we can
find expressions for |01〉BC , |10〉BC , |11〉BC. Now by using these expressions we can write
Equation (2) as

|Φ〉 = √pΦ̃+
|Φ̈+〉AD |Φ̃+〉BC +

√
pΦ̃− |Φ̈−〉AD |Φ̃−〉BC

+
√

pΨ̃+
|Ψ̈+〉AD |Ψ̃+〉BC +

√
pΨ̃− |Ψ̈−〉AD |Ψ̃−〉BC , (4)

where |Φ̈+〉AD =
(√

p0 p′0α∗0 |0〉A |0〉D +
√

p1 p′1β∗0 |1〉A |1〉D
)

/√pΦ̃+
with probability pΦ̃+

=

p0 p′0|α0|2 + p1 p′1|β0|2, similarly |Φ̈−〉AD , |Ψ̈+〉AD , and |Ψ̈−〉AD can be obtained.
We observe in Equation (4) that the state of qubits A and D is similar to the state of the

basis BC. After measurements in the basis BC, Alice and Danny’s qubits A, D which are
initially separable, become entangled in one of the four possible forms. We can compute
the average concurrence for the final state as

Cav = pΦ̃+
CΦ̈+

+ pΦ̃−CΦ̈− + pΨ̃+
CΨ̈+

+ pΨ̃−CΨ̈− ,

= 4
√

p0 p′0 p1 p′1(|α0β0|+ |α1β1|) .
(5)

The Bell states are maximally entangled biqubit states. The states in Equation (3)
transform into maximally entangled Bell states if we take αi = βi =

1√
2

for i ∈ {0, 1}. The
measurement in maximally entangled Bell basis return maximally entangled A, D qubits
states with the average concurrence

Cav = 4
√

p0 p′0 p1 p′1
= CABCCD .

(6)

Similarly, the average negativity of the qubits A and D states when the measurement is
completed in Bell basis takes the form

Nav = 4
√

p0 p′0 p1 p′1
= NABNCD .

(7)

We obtain from Equations (6) and (7) that if initial quantum states are maximally entan-
gled and we make measurements in the Bell basis, then average concurrence and average
negativity are equivalent. We simply obtain the average concurrence (average negativ-
ity) by taking the product of concurrences (negativities) of the initial states. In addition,
Equation (5) shows that measurement in non-maximally entangled basis during entangle-
ment swapping degrades the average swapped entanglement.

Now we extend entanglement swapping between two pairs of qubits to three pairs of
qubits. We take three pairs of entangled qubits and make a measurement in the GHZ basis
and analyze the outcome state. If the three pairs of qubits in Schmidt form are |φ〉AB =
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√
λ0 |00〉AB +

√
λ1 |11〉AB), |φ〉CD =

√
µ0 |00〉CD +

√
µ1 |11〉CD and |φ〉EF =

√
ν0 |00〉EF +√

ν1 |11〉EF then the six-qubit system can be written as

|Φ′〉 = |φ〉AB ⊗ |φ〉CD ⊗ |φ〉EF . (8)

Let us make measurements on the B, D, and F qubits. For this purpose, we can define the
triqubit GHZ basis as [34]

|G0,1〉 =
1√
2
(|000〉 ± |111〉) ,

|G2,3〉 =
1√
2
(|001〉 ± |110〉) ,

|G4,5〉 =
1√
2
(|010〉 ± |101〉) ,

|G6,7〉 =
1√
2
(|011〉 ± |100〉) .

(9)

Here, the − sign applies to states with odd indices. Now we can write Equation (8) in terms
of GHZ basis as

|Φ′〉 = 1√
2

(√
λ0µ0ν0|000〉ACE ±

√
λ1µ1ν1|111〉ACE

)
|G0,1〉

+
1√
2

(√
λ0µ0ν1|001〉ACE ±

√
λ1µ1ν0|110〉ACE

)
|G2,3〉

+
1√
2

(√
λ0µ1ν0|010〉ACE ±

√
λ1µ0ν1|101〉ACE

)
|G4,5〉

+
1√
2

(√
λ0µ1ν1|011〉ACE ±

√
λ1µ0ν0|100〉ACE

)
|G6,7〉 .

(10)

This equation shows that after measurements on BDF qubits, we gain ACE qubits in any
one of the eight possible forms of entangled state. For example, if measurement gives us
|G0〉 then ACE qubits have state

1√
2p0

(√
λ0µ0ν0|000〉ACE +

√
λ1µ1ν1|111〉ACE

)
. (11)

Here, probability of obtaining |G0〉 state is p0 = (λ0µ0ν0 + λ1µ1ν1)/2.
Yu and Song [35] showed that any good bipartite entanglement measure MA−B can

be extended to multipartite systems by taking bipartite partitions of them. So a tripartite
entanglement quantifier can be defined as

M+
ABC =

1
3
(MA−BC + MB−AC + MC−AB). (12)

However, M+
ABC could be non-zero for pure biseparable states. It can be avoided by using

the geometric mean:

M×ABC = (MA−BC MB−AC MC−AB)
1
3 . (13)

However, we use global entanglement Q for a multiplicative definition if our entanglement
quantifier M is tangle (the square of the concurrence) [36]. In a more general setting,
this entanglement quantifier geometric mean concept was put forth in [37]. Now by
considering this bi-partition for the final triqubit entangled state, we can compute the
swapped entanglement in the form of concurrence as

CACE = (CA−CECC−AECE−AC)
1
3 , (14)
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where CA−CE =
√

2
(
1− Tr

(
ρ2

A
))

and similarly we can compute CC−AE, CE−AC. Here,
ρA is the one-qubit reduced density matrix of the qubit A, obtained after tracing out the
other qubits. The average concurrence for the final three qubits state now can be written as

Cav
ACE = CABCCDCEF . (15)

It is again equal to the product of the concurrences of the initial three states.
We can compute the the negativity of triqubit state ρACE as

N (ρACE) = (NA−CENC−AENE−AC)
1
3 , (16)

where NA−CE = −2 ∑i λi

(
ρ

TA
ACE

)
, λi

(
ρ

TA
ACE

)
are the negative eigenvalues of ρ

TA
ACE, partial

transpose of ρACE with respect to subsystem A is defined as
〈

iA, jCE

∣∣∣ρTA
ACE

∣∣∣kA, lCE

〉
=

〈kA, jCE|ρ|iA, lCe〉 and, similarly, we can define NC−AE, NE−AC. The average negativity of
the final triqubit state can be written as

N av
ACE = NABNCDNEF , (17)

where NAB,NCD and NEF are the negativities of the initial three biqubit states.

Application of Swapped Entanglement

The final swapped entanglement between Alice and Danny’s qubit has wide range
of application, however, we are interested in imposing it for teleportation of an unknown
qubit state. Let, after the entanglement swapping, Alice and Danny attain the state |Φ̈+〉AD
that can also be written as

|Φ̈+〉AD = (a |0〉A |0〉D + b |1〉A |1〉D) , (18)

where a = α∗0

√
p0 p′0/pΦ̃+

, b = β∗0

√
p1 p′1/pΦ̃+

and |a|2 + |b|2 = 1. If a = b = 1√
2

then
Equation (18) is maximally entangled otherwise non-maximally entangled. Let Alice and
Danny win a maximally entangled state after entanglement swapping and Alice wants
to teleport an unknown quantum state to Danny. We denote the state that Alice wants to
send as

|χ〉 = α|0〉+ β|1〉 , (19)

where |α|2 + |β|2 = 1. Now the state |χ〉 can be teleported easily as described in Ref. [38].
However, if |a| 6= 1√

2
then Alice and Danny are not sharing a maximally entangled state

and in this case, we use probabilistic teleportation to transmit |χ〉. In such a situation, the
receiver (Danny) cannot apply single-qubit unitary operations I, X, iY, Z on his collapsed
state αa|0〉+βb|1〉√

|αa|2+|βb|2
to obtain |χ〉. Therefore, Danny has to prepare an ancilla qubit |0〉Auxi

and applies U0 unitary operation on the combined system as

U0

 αa|0〉+ βb|1〉√
|αa|2 + |βb|2

|0〉Auxi

 , (20)

where

U0 =


b
a

√
1− b2

a2 0 0
0 0 0 −1
0 0 1 0√

1− b2

a2 − b
a 0 0

 .
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After implementation of unitary U0, the expression (20) attains the form

1√
|αa|2 + |βb|2

(
b(α |0〉+ β |1〉) |0〉+ α

√
a2 − b2 |1〉 |1〉

)
. (21)

Now Danny makes a measurement on his ancilla (right most) qubit in the compu-
tational basis {|0〉 , |1〉}. If he obtains |0〉 then his state collapses to α |0〉+ β |1〉, Danny
further applies I2×2 operation on the state obtained to reconstruct the desired state |χ〉. If
the measurement of ancilla gives |1〉 then protocol fails to teleport the required state due
to its probabilistic nature. Similarly, we can also explain the teleportation of an unknown
qubit for other states of qubits A and D that appeared in Equation (4).

The measurement on Equation (10) gives us a three-qubit entangled state that can be
any one of the eight three-qubit GHZ states. The teleportation for the three-qubit GHZ
state has already been considered in Ref. [39,40].

3. Noisy Qubits and Entanglement Swapping

We have used so far pure quantum systems. These quantum systems are isolated
from external environments which comprise a variety of disorders and noises. In reality,
quantum systems interact with the environment. One of the important types of noise is
called depolarizing noise or white noise. This type of noise takes a quantum state and
replaces it with a completely mixed state 1

N I, where N is the dimension of the quantum
system and I is identity matrix. Let us consider a biqubit noisy state that is prepared by
mixing a pure state with white noise:

ρα = αρAB + (1− α)I2 ⊗ I2/4

=


1−α

4 + αp0 0 0 α
√

p0
√

p1
0 1−α

4 0 0
0 0 1−α

4 0
α
√

p0
√

p1 0 0 1−α
4 + αp1

 ,
(22)

where ρAB = |φ〉AB 〈φ| is the density operator of biqubit system AB described in Equation (1),
I2 identity matrix and parameter α called visibility of system AB. If we take p0 = p1 = 1/2,
the Equation (22) becomes an isotropic state [41] with maximally entangled ρAB. The
isotropic states are invariant under all transformations of the form U ⊗ U∗, where the
asterisk denotes complex conjugation in a certain basis.

We can also represent a biqubit noisy system in the Bloch form as [42]

ρ =
1
4
I2 ⊗ I2 +

3

∑
µ=1

rµ
σµ√

2
⊗ I2

2
+

3

∑
ν=1

sν
I2

2
⊗ σν√

2
+

3

∑
µ=1

3

∑
ν=1

tµν
σµ√

2
⊗ σν√

2
, (23)

where σ represents Pauli matrices, I is identity matrix, rµ = Tr
(

ρ
σµ√

2
⊗ I2

2

)
and sν =

Tr
(

ρ I2
2 ⊗

σν√
2

)
are Bloch vectors of given two qubits and tµν = Tr

(
ρ

σµ√
2
⊗ σν√

2

)
called a

correlation tensor. We can construct Bloch matrix from~r,~s and 3× 3 dimensional correlation
matrix T as

T̃ =

(
c ~s
~r T

)
, (24)

where c is a scalar number. The Bloch matrix form of Equation (22) contains c = α
√

p0
√

p1,
~r =~s = 0 and correlation matrix

T =

( −α
√

p0
√

p1 0 0
0 α−1

4 + 1
2

( 1−α
4 + αp0

)
+ 1

2

( 1−α
4 + αp1

) 1−α
8 + α−1

8 + 1
2

( 1−α
4 + αp0

)
+ 1

2

(
α−1

4 − αp1
)

0 1−α
8 + α−1

8 + 1
2

( 1−α
4 + αp0

)
+ 1

2

(
α−1

4 − αp1
) 1−α

4 + 1
2

( 1−α
4 + αp0

)
+ 1

2

( 1−α
4 + αp1

)
)

. (25)
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As the coherence vectors~r,~s of the subsystems A and B have zero magnitudes that means
the state is maximally mixed. According to combo separability criteria [42] if f (α, p0) =
‖T̃α‖KF − 1 > 0 then state ρα is an entangled state. We plotted f (α, p0) in Figure 2 which
represents entanglement of the mixed state ρα.

Figure 2. The biqubit noisy state ρα remains entangled for f (α, p0) = ‖T̃α‖KF − 1 > 0.

It is clear from the figure that ρα remains entangled when 0 < p0 < 1 and the
minimum value of α is 1/3. This state becomes maximally entangled when p0 = 0.5 and α
approaches 1.

As ρα is a X-form mixed-state with non-zero entries only along the diagonal and
anti-diagonal so its concurrence is given by [43]

C(ρα) = max
[

0, 2
(∣∣∣ρ(14)

α

∣∣∣−√ρ
(22)
α ρ

(33)
α

)
, 2
(∣∣∣ρ(23)

α

∣∣∣−√ρ
(11)
α ρ

(44)
α

)]
= max

[
0, 2
(

α
√

p0 p1 −
1− α

4

)]
.

(26)

This relation also gives a lower bound for the probability that keeps the ρα entangled as

α >
1(

1 + 4
√

p0 p1
) . (27)

If ρAB is a maximally entangled state then p0 = p1 = 1
2 , in this case the state remains

entangled for α > 1
3 that we can also observe from Figure 3a.

The negativity of X-form state ρα can be computed as

N (ρX) = −2 min
{

0, r+ −
√

r2
− +

(
ρ(14)

)2, u+ −
√

u2
− +

(
ρ(23)

)2
}

, (28)

where u± =
(

ρ(11) ± ρ(44)
)

/2, r± =
(

ρ(22) ± ρ(33)
)

/2. The Equation (28) can be reduced to

N (ρα) = −2 min
{

0,
1
4
(1− α− 4α

√
p0 p1)

}
, (29)

because ρ(23) = 0 and u+ − u− = ρ(44) is a positive number. For a maximally entangled state,
the Equation (29) also gives α > 1

3 for entanglement retain and can be observed from Figure 3b.
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p0, p1 = 0.5, 0.5

p0, p1 = 0.7, 0.3
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(a)
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(b)
Figure 3. Concurrence and negativity comparison of biqubit noisy states. (a) represents the concur-
rence of biqubit state against state visibility parameter α and similar (b) represents the negativity of
biqubit state.

It is clear from Figure 3 that the concurrence and negativity produce similar results in
the case of biqubit noisy state.

Now we want to explore entanglement swapping between two states of the form
given in Equation (22). For simplicity, we assume that the states are similar and we make
standard Bell measurements in order to accomplish the entanglement swapping. Therefore
our four-qubit noisy state in terms of Bell basis is

ρABCD =
α2

2
(p0|00〉AD ± p1|11〉AD)(p0〈00| ± p1〈11|)|Φ±〉BC〈Φ±|

+
α2 p0 p1

2
(|01〉AD ± |10〉AD)(〈01| ± 〈10|)|Ψ±〉BC〈Ψ±|

+ dAD(|Φ±〉BC〈Φ±|+ |Ψ±〉BC〈Ψ±|) ,

(30)

where

dAD =
α(1− α)

8
((p0 |0〉A 〈0|+ p1 |1〉A 〈1|)⊗ ID + IA ⊗ (p0 |0〉D 〈0|+ p1 |1〉D 〈1|))

+
(1− α)2

16
IADs , (31)

and I is an identity matrix. The measurement of the qubits B and C will give us one of the
following four Bell states

|Φ±〉BC =
1√
2
(|00〉BC ± |11〉BC) ,

|Ψ±〉BC =
1√
2
(|01〉BC ± |10〉BC) .

(32)
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If we obtain |Φ±〉BC then the qubits A and D become entangled in the state

ρ
Φ±
AD =

1
PΦ

(
α2

2
(p0|00〉AD ± p1|11〉AD)(p0〈00| ± p1〈11|) + dAD

)
, (33)

where PΦ = α2

2
(

p2
0 + p2

1
)
+ 1−α2

4 is the probability of |Φ+〉 and |Φ−〉. If measurement gives
us |Ψ±〉BC then the qubits A and D make entangled state

ρ
Ψ±
AD =

1
PΨ

(
α2 p0 p1

2
(|01〉AD ± |10〉AD)(〈01| ± 〈10|) + dAD

)
. (34)

Here, PΨ = α2 p0 p1 +
1−α2

4 is the probability of |Ψ+〉 and |Ψ−〉.
In order to evaluate the transferred entanglement between qubits A and D, we first

compute the concurrence of all four types of density matrix ρAD. As all density matrices of
qubits A and D in Equations (33) and (34) have X-form state form so, their concurrence can
easily be computed by using Equation (26). The state ρ

Φ+
AD and ρ

Φ−
AD have the same amount

of concurrence and is given by

C
(

ρ
Φ±
AD

)
=

1
Pφ

max
(

0, α2 p0 p1 −
1
8

(
1− α2

))
. (35)

and similarly, the concurrence of ρ
Ψ±
AD is

C
(

ρ
Ψ±
AD

)
=

1
Pψ

max
(

0, α2 p0 p1 −
1
8
(1− α)

√
1 + 2α− 3α2 + 16α2 p0 p1

)
. (36)

Now the average of teleported entanglement in terms of concurrence can be computed as

Cav = 2PΦC
(

ρ
Φ+
AD

)
+ 2PΨC

(
ρ

Ψ+
AD

)
. (37)

This average concurrence of the final states has been plotted in Figure 4 with solid lines. In
addition, Figure 4 put forward that for mixed states, the product of the concurrences of the
initial states (dashed line plots) is an upper bound to the average concurrence of the finally
swapped entanglement (solid line plots).

p0, p1 = 0.5, 0.5

p0, p1 = 0.5, 0.5

p0, p1 = 0.8, 0.2

p0, p1 = 0.8, 0.2

p0, p1 = 0.9, 0.1

p0, p1 = 0.9, 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

α

C

Figure 4. It is the comparison of the average concurrence Cav of final states (solid lines) with the
product of concurrences of input states (dashed lines) for different values of p0 and p1 against α.
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We can also evaluate the transferred entanglement between qubits A and D in terms
of negativity. As all density matrices of qubits A and D in Equations (33) and (34) have
X-form state, hence, their negativity can easily be computed by Equation (28). The state
ρ

Φ+
AD and ρ

Φ−
AD have the same amount of negativity and take the form

N
(

ρ
Φ±
AD

)
= − 2

Pφ
min

(
0,

1
16

(
1− α2

)
− 1

2
α2 p0 p1

)
. (38)

and

N
(

ρ
Ψ±
AD

)
= − 2

Pψ
min

(
0,

1− α2

16
−
√

1
4

α4 p2
0 p2

1 +
1

64
(1− α)2α2(p0 − p1)2

)
. (39)

The average of swapped entanglement computed by negativity can be given as

Nav = 2PΦN
(

ρ
Φ±
AD

)
+ 2PΨN

(
ρ

Ψ±
AD

)
. (40)

The average of swapped entanglement in terms of negativity has been plotted in Figure 5
with solid lines. The product of the negativities of the initial states (dashed line plots in
Figure 5) provides an upper bound to the average negativity of the final states (solid line
plots). Moreover, Figure 6 represents the comparison of average concurrence and average
negativity of final states. This plot shows that when p0 = p1 = 0.5 which correspond to
maximally entangled input states then concurrence and negativity overlap but for other
cases, dotted and solid lines do not overlap. The rectangular block in this plot shows the
zoomed view of non-overlapping parts of solid and dotted blue as well as green lines.
We can see that the dotted green line deviate from zero line before the solid green line.
In this particular case, we find that in the weak entanglement regimes, negativity gives
better results compared to the concurrence. However, the opposite occurs when the state
enters into relatively higher entanglement regime. Specifically, the weak entangled state
with non-zero negativity has zero concurrence. As negativity detects all types of entangled
states successfully that means negativity outperforms the concurrence.

p0, p1 = 0.5, 0.5

p0, p1 = 0.5, 0.5

p0, p1 = 0.8, 0.2

p0, p1 = 0.8, 0.2

p0, p1 = 0.9, 0.1

p0, p1 = 0.9, 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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N

Figure 5. It is the comparison of the average negativity Nav of final states (solid lines) with the
product of negativities of initial states (dashed lines).
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Figure 6. Comparison of entanglement quantifiers for swapped entanglement. Solid lines represent
the average concurrence Cav and the dashed lines represent the average negativity Nav of the
final states.

Teleportation Using a Noisy Quantum Channel

The four Bell states for qubits B and C are given in Equation (32). By using the
similar Bell states for qubits A and D, we can define the projectors PΦ± = |Φ±〉AD 〈Φ±|
and PΨ± = |Ψ±〉AD 〈Ψ±| associated with the measurements that Alice performs in the
execution of the teleportation protocol. Equations (33) and (34) represent the density
matrices of four possible outcomes after entanglement swapping of noisy entangled states.
We can use these density matrices as a channel for the teleportation of an unknown qubit
given in Equation (19) from Alice to Danny. Let the teleportation channel is ρ

Φ+
AD and the

density matrix of the qubit to be teleported is given by ρtq = |χ〉 〈χ|, where the subscripts
tq means “teleportation qubit”. The initial three qubits state is given by

$1 = ρtq ⊗ ρ
Φ+
AD. (41)

The first two qubits (i.e., ρtq and first qubit of ρ
Φ+
AD) of $1 are possessed by Alice and the

third qubit is occupied by Danny. Alice makes a projective measurement on her two qubits.
After this measurement, we attain the post-measurement state

$̃1 =
PΦ+$1PΦ+

P̃1
, (42)

where P̃1 = Tr
[
PΦ+$1

]
is the probability of occurrence of state $̃1 and Tr represents trace

operation. Alice then communicates her outcomes with Danny via the classical channel.
The qubit possessed by Danny has the form $̃D1 = Tr12[$̃1], where Tr12 means the partial
trace of qubits 1 and 2. Due to the noisy teleportation channel, Danny has to follow a
probabilistic teleportation technique to find teleported qubit ρtq. He prepares an auxiliary
qubit ρAuxi = |0〉 〈0| and applies a suitable unitary operator Ui on two qubits system as

Ui($̃D1 ⊗ ρAuxi)U†
i . (43)

Then a measurement on Danny’s auxiliary qubit in the basis {|0〉 〈0| , |0〉 〈1| , |1〉 〈0| , |1〉 〈1|}
is completed. If |0〉 〈0| occurs, we obtain qubit $̃′D1 with some probability P′1 otherwise the
teleportation fails.
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The protocol ends with Danny apply a unitary operation u on his qubit final state as

ρ′tq = u
$̃′D1
P′1

u† . (44)

The unitary operator u is one of the Pauli operators
{
I, σx, σy, σz

}
, and its choice depends

not only on the measurement result of Alice but also on the quantum channel shared
between Alice and Danny in the teleportation protocol.

Now we can check the efficiency of the protocol by using fidelity [44]. Since the input
state ρtq = |χ〉 〈χ| is pure, the fidelity can be written as

F = Tr
[
ρtqρ′tq

]
= 〈χ| ρ′tq |χ〉 . (45)

The fidelity ranges from 0 to 1 and its maximal value occurs whenever the Danny’s qubit
final state ρ′tq is equal to input qubit ρtq and it is 0 when the two states are orthogonal.

4. Concluding Discussion

We have studied an entanglement swapping protocol, where Alice and Bob share a
generalized Bell pair (A, B) whereas, Cara and Danny share another generalized Bell pair
(C, D). When Bob and Cara, who are situated in the same laboratory perform some mea-
surements on the pair (B, C) then initially unentangled qubits (A, D) obtain entanglement.

In the case of two couples of pure qubits, the finally entangled couple can have one of
the four possible entangled states. However, if we considered three couples of entangled
qubits then entanglement swapping gives us a three-qubit entangled state that can be any
one of the eight possible forms of GHZ quantum states.

The important results of this study can be summarized as, if initial quantum states
are maximally entangled and we make measurements in the Bell basis then average con-
currence and average negativity of final states give similar results. We simply obtain the
average swapped entanglement among final quantum states by taking the product of en-
tanglement of the initially maximally entangled states. The measurement in non-maximally
entangled basis during entanglement swapping degrades the swapped entanglement. The
product of the entanglement of the mixed states provides an upper bound to the average
swapped entanglement of final states. The entanglement quantifier concurrence fails to
detect some weak entangled noisy states but negativity work well in a weak entanglement
regime. On the contrary, at the higher entanglement regimes, concurrence remained more
robust than the negativity for the mixed state case. Overall negativity detects all type
of entangled states so negativity is more appropriate than concurrence. We also use the
final output state as a channel for the teleportation of an unknown qubit from Alice to
Danny. The teleportation with a pure biquibit Bell state is obvious, but we explored the
probabilistic teleportation of an unknown qubit not only with non-maximally entangled
channel but also with the noisy channel that we obtain after entanglement swapping.
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6. Żukowski, M.; Zeilinger, A.; Horne, M.A.; Ekert, A.K. “Event-ready-detectors” Bell experiment via entanglement swapping.

Phys. Rev. Lett. 1993, 71, 4287–4290. [CrossRef]
7. Shor, P.W.; Smolin, J.A.; Terhal, B.M. Nonadditivity of Bipartite Distillable Entanglement Follows from a Conjecture on Bound

Entangled Werner States. Phys. Rev. Lett. 2001, 86, 2681–2684. [CrossRef]
8. Kok, P.; Braunstein, S.L. Entanglement Swapping as Event-Ready Entanglement Preparation. Fortschritte Phys. Prog. Phys. 2000,

48, 553–557. [CrossRef]
9. Branciard, C.; Gisin, N.; Pironio, S. Characterizing the Nonlocal Correlations Created via Entanglement Swapping. Phys. Rev.

Lett. 2010, 104, 170401. [CrossRef] [PubMed]
10. Adhikari, S.; Majumdar, A.; Home, D.; Pan, A. Swapping path-spin intraparticle entanglement onto spin-spin interparticle

entanglement. EPL (Europhys. Lett.) 2010, 89, 10005. [CrossRef]
11. Yurke, B.; Stoler, D. Bell’s-inequality experiments using independent-particle sources. Phys. Rev. A 1992, 46, 2229–2234. [CrossRef]

[PubMed]
12. Khalique, A.; Sanders, B.C. Long-distance quantum communication through any number of entanglement-swapping operations.

Phys. Rev. A 2014, 90, 032304. [CrossRef]
13. Roa, L.; Muñoz, A.; Grüning, G. Entanglement swapping for X states demands threshold values. Phys. Rev. A 2014, 89, 064301.

[CrossRef]
14. Qiu, J. Quantum communications leap out of the lab. Nat. News 2014, 508, 441. [CrossRef]
15. McCutcheon, W.; Pappa, A.; Bell, B.; Mcmillan, A.; Chailloux, A.; Lawson, T.; Mafu, M.; Markham, D.; Diamanti, E.; Kerenidis, I.;

et al. Experimental verification of multipartite entanglement in quantum networks. Nat. Commun. 2016, 7, 13251. [CrossRef]
[PubMed]
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