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Abstract: This paper considers a downlink resource-allocation problem in distributed interference
orthogonal frequency-division multiple access (OFDMA) systems under maximal power constraints.
As the upcoming fifth-generation (5G) wireless networks are increasingly complex and heterogeneous,
it is challenging for resource allocation tasks to optimize the system performance metrics and
guarantee user service requests simultaneously. Because of the non-convex optimization problems,
using existing approaches to find the optimal resource allocation is computationally expensive.
Recently, model-free reinforcement learning (RL) techniques have become alternative approaches in
wireless networks to solve non-convex and NP-hard optimization problems. In this paper, we study
a deep Q-learning (DQL)-based approach to address the optimization of transmit power control
for users in multi-cell interference networks. In particular, we have applied a DQL algorithm for
resource allocation to maximize the overall system throughput subject to the maximum power and
SINR constraints in a flat frequency channel. We first formulate the optimization problem as a
non-cooperative game model, where the multiple BSs compete for spectral efficiencies by improving
their achievable utility functions while ensuring the quality of service (QoS) requirements to the
corresponding receivers. Then, we develop a DRL-based resource allocation model to maximize
the system throughput while satisfying the power and spectral efficiency requirements. In this
setting, we define the state-action spaces and the reward function to explore the possible actions and
learning outcomes. The numerical simulations demonstrate that the proposed DQL-based scheme
outperforms the traditional model-based solution.

Keywords: deep reinforcement learning; distributed optimization; game theory; power control;
throughput maximization; wireless interference channel

1. Introduction

Interference management for multi-cell networks has recently attracted increasing
concerns from physical layer design and resource allocation. The large deployment of
base stations (BSs) overlaying the coverage area of point-to-point wireless connections
results in a multi-cell interference system [1]. OFDMA, by its nature, is immune to intra-cell
interference due to the allocation of orthogonal sub-carriers to the corresponding users.
However, inter-cell interference becomes a severe threat to users due to the joint transmis-
sion strategies across multiple cells. It becomes more compounded for edge users where
multiple BSs are deployed in conjunction with neighboring transmitter-receiver pairs.
For effective inner-cell interference (ICI) mitigation, cooperative transmission strategies
have been investigated extensively in [2]. The source transmitter may increase the power
transmission to maximize its spectral efficiency, but it may degrade the channel quality of
neighboring transmitter-receiver pairs [3]. With such a technique, the cross-coupling trans-
mission of BSs occupying the same time slot and resource allocation can simultaneously
send their respective information. Consequently, the adverse impact of ICI on its neighbors’
transmissions will reduce gradually.
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In multi-cell networks, network densification and optimal resource allocation will
result in new challenges for the design and optimization of the entire system. Traditionally,
numerical optimization is the dominant approach to resource allocation problems [4]. The
commonly used optimization algorithms include weighted-minimum mean squared error
(WMMSE) [5], fractional programming [6], and interference pricing [7]. These algorithms
typically adopt iterative approaches that take crucial performance indicators such as chan-
nel realization as input and output the results as an optimal power allocation strategy.
Despite the remarkable success of these algorithms, most of the optimization problems
are hard to solve due to their non-convex nature and high-dimensional optimization pa-
rameters [8]. Moreover, the increasing heterogeneity of the upcoming 5G networks, which
combine a variety of new features with more complex communication requirements, will in-
tensify the resource allocation problems, making the conventional model-based approaches
hard to solve mathematically [9]. Despite the computational complexity and lack of precise
models, these algorithms must be reformulated again since the CSI is time-varying, and
resource management may only be feasible for a short practical success. The future com-
munication system will require dynamic, robust algorithms to adapt network architectures
and resource management for different services in diverse scenarios. Therefore, motivated
by the departure from traditional design concepts, a more flexible method for wireless
resource allocation is required to react to new situations. This underlying process can be
achieved based on learning new features and their consequences on system performance
metrics [10].

The development of machine learning (ML) techniques, especially the deep learning
(DL) method, improve the quality of resource allocation by learning efficient representations
of data from unstructured sources rather than pre-established massive data sets [11]. It
provides a powerful data-driven method to improve resource allocation problems by giving
a more efficient allocation and scheduling system. Reinforcement learning (RL) concerns
how intelligent agents must perform specific actions to maximize the expected rewards
to achieve their ultimate goal. In particular, RL shows a promising approach, where the
agents interact with the wireless environment, and aggregated learning happens over the
environment. The objective of RL is to find an optimal strategy that maximizes the specific
outputs (training) from any given state in the observed environment. The work in [12]
studies the critical motivations of using RL for allocating and managing wireless resources
with application to vehicular networks. More specifically, it has been shown that the deep
reinforcement learning (DRL) method can provide a viable solution that is hard to model
and solve precisely in the traditional framework. Furthermore, many studies have been
directed related to the application of DRL in 5G network optimizations [13–15]. With
all these discussions above, DRL for resource management in wireless networks remains
immature, owing to the difficulty in traditional design concepts uniquely modeling the
behavior of underlying processes subject to input and producing the optimum resource
allocation strategy. Hence, there is a need for further enhancing the DRL techniques
to ensure efficient resource allocation and user service requirements in a distributive
optimization manner.

In this paper, we consider distributed interference management for the downlink
OFDMA system. Each BS collects CSI and QoS information from neighboring transmitter-
receiver pairs and uses its own transmit power accordingly. In particular, we first formulate
the corresponding power allocation as a non-cooperative game model, where BSs compete
for resource allocations by maximizing their utility data rates. Then, we develop a DQL
model to be employed by all BSs to learn their optimal power allocation strategy in multiple
interference channels. The ultimate goal is to maximize the system’s overall sum rate while
ensuring each user’s QoS constraints. The main challenges in this paper are listed as
follows: (1) since the considered OFDMA system has multiple cells and mobile terminals,
there are inter-cell and intra-cell co-channel interferences, making the RB allocation more
complicated and challenging than a single-cell system. (2) the optimization problem is
NP-hard combinatorial problem with nonlinear constraints. How to efficiently solve this
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non-convex and NP-hard combinatorial optimization problem is a nontrivial task. (3) since
we also consider the throughput evaluation of each user with the target of maximizing the
overall sum rate of the network, it may be challenging to achieve optimal power allocation
when the required throughput of the user is too large. In this case, it is challenging to
solve whether an optimal solution satisfies the throughput requirements as the size of the
systems increases. To address these challenges mentioned above, we utilize DQN with
a QoS requirement threshold for each user in a multi-cell network. The DQN estimates
the relationship between available CSI and the solution of the optimization problem. A
DQN agent is then used to compute the joint power control policy and user scheduling
across the multi-cells to adapt the channel condition of the entire network. The important
contributions of this paper are outlined as follows:

� We first formulate the optimization problems as a non-cooperative game model, where
each BSs is considered a game player. In particular, the resource allocation problem
of a distributed interference network under non-linear constraints has been solved
using the Nash equilibrium solution concepts.

� Then, a downlink power allocation scheme based on DRL has been presented to
reduce computational complexity and make the solution feasible. We define the
state-action spaces and reward signal design for the DRL agent for evaluating the
possible actions and learning outcomes.

� Since the DRL-based solution is model-free, it does not depend on the network size
and a large amount of training data. Unlike the supervised learning technique, there
is no need to execute an optimal strategy to design a massive training dataset. This
makes the proposed DRL-based optimization scheme less complex and scalable for
large-scale systems.

� We provide numerical simulations to assess the performance of the proposed scheme.
Simulation results indicate that the proposed DQL approach significantly improves
the optimization of transmit strategies.

The remainder of this paper is structured as follows. A review of related works is
presented in Section 2. Section 3 introduces the system model and problem formulation
using a non-cooperative game model. In Section 4, we present our proposed DQL-based
resource allocation approach in detail. Section 5 provides the numerical simulations and
discussions, followed by a conclusion in Section 6.

2. Related Work

Resource allocation problems have been extensively studied in the literature for multi-
cell wireless systems [2,16–18]. For this setting, optimally allocating the power control
and user scheduling is essential to improve the achievable sum-rate performance [19,20].
While most of these studies use iterative approaches to maximize the overall system
throughput, the optimization problems are non-convex due to the nonlinear probabilistic
constraints [21]. One of the alternative approaches to deal with non-convex optimiza-
tion problems is through the use of a game theoretical model. These techniques allow
each cell to independently optimize its transmission power in a non-cooperative game
model [22–24]. Despite the remarkable success of this optimization model, it is also known
that a non-cooperative game solution is often practically inefficient in the case that either
the user’s QoS requirements are not satisfied, or the performance of the channel condition
is poor [25]. In such situations, multiple-cell cooperation can improve system performance
by allowing user data to be jointly processed by several interfering transmitters (BSs).
Along with many advantages, such as higher spatial degrees of freedom, expanded cell
coverage, improved signal quality at destination receivers, etc., comes with cross-cell inter-
ference and computational complexity, which inevitably results in the reduction of entire
network performance.

Deep reinforcement learning (DRL) techniques have recently been applied to solve
various resource management problems, including spectrum access, throughput maximiza-
tion, power, and channel allocation, which all enhance the 5G wireless networks [26–28].
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In [29], the classical Q-learning technique was employed for downlink resource allocation
in non-orthogonal multiple access (NOMA) networks. The classical Q-learning algorithm
uses a lookup table to store all the action-value functions. Though classical Q-learning can
help to handle the complexity of traditional model-based solutions, it will need to be able
to model the design criteria exactly, especially for high dimensional state spaces [30]. More
specifically, it is hard to store all the values of state-action pairs in a tabular form when the
state space of the problem is too large.

To deal with the aforementioned challenges, the DRL technique has been considered.
On the other hand, purely based on the training over DQN with experience replay, DQL can
help handle the problems that could not be solved in the traditional learning system. In [31],
a DQL was used for power allocation in a cloud-RAN to reduce power consumption while
ensuring the reliability constraint of each user. A distributed DQL-based spectrum-sharing
scheme was proposed in [32] for multiple users in a non-cooperative manner. In [33],
a DRL-based method was proposed to address the heterogeneous network’s joint user
association and resource allocation (UARA). The goal in [33] is to maximize the future
utility functions of the overall system while ensuring the QoS constraints in a heterogeneous
downlink system. The DRL-based resource allocation approach to maximize the overall
sum throughput in multi-user cellular networks has also been considered [34]. Ref. [35]
uses a multi-agent DQL model to determine the dynamic and optimal power allocation in
wireless networks. A DQN function was used to solve the instability problem of the classical
Q-learning technique. The ultimate goal is to increase the weighted sum throughput of the
system in a distributed fashion. In [36], a deep Q-learning learning (DQL) approach was
proposed for centralized power allocation to improve the total throughput of the network
in multiple cell systems. Furthermore, a DRL with the link outage constraint was developed
in [37] to minimize the complexity of the resource allocation issue in a wireless interference
system. Specifically, the authors utilized a DQL approach to remove the inherent instability
in the traditional learning process.

DRL can also be applied to different function blocks in communication networks, such
as end-to-end design, slice management [38], mobile edge computing [39], etc. In [40],
the authors construct a DNN-based end-to-end system optimization model to reduce
the data at the transmitter end while improving the decoding accuracy. For the joint
optimization of different blocks, the DL approach can utilize a data-driven model based on
expert knowledge and a big data system [41,42]. Furthermore, the authors [43,44] provide
model-based optimization approaches in the physical layer. DL can also be integrated
with different iterative estimation approaches to train the required DRL parameters and
full automation of the system [45]. However, optimizing DRL parameters is a key issue
in evaluating the agent’s final performance metrics [46]. Bayesian optimization [47] has
recently achieved significant success in solving a hyperparameter optimization problem.
Furthermore, the neural architecture assistant search framework was proposed in [48,49]
for optimizing hyperparameters and predicting the accuracy of the final learning outcome.

The work in [25] uses the generalized Nash equilibrium problem (GNEP) algorithm
to optimize transmitted power control while assigning the same RB in multiple cells. The
formulated GNEP analyzes the optimization problem of small cell networks via variational
inequality theory. Lagrange multipliers are proposed to evaluate the actions of the Q func-
tion while ensuring global QoS requirements. The proposed approach in this paper uses
both the game theoretical formulation and the DQL algorithm to address the optimization of
downlink power allocation in multi-cell networks. In particular, the DQL-based distributive
algorithm is used to evaluate the actions of the Q function while avoiding the same RB allo-
cation to users in neighboring cells that are located close to the cell edge. Because, in such
situations, the users involved in the neighboring transmitter-receiver pairs cannot obtain
essential SIR to work correctly regardless of the transmitting power of interfering BSs.
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3. Problem Statement and Formulation
3.1. System Model

We consider a downlink OFDMA system, as depicted in Figure 1, where multiple
transmitters (BSs) communicate with multiple users within each cell and share one fre-
quency band per cell. The multiple BSs share the downlink resource with each user and
spread a resource block (RB) in OFDMA. We assume that the transmit and receive terminals
are equipped with a single antenna. Note that the OFDMA RBs allocated to different users
within the same cell are orthogonal to each other since the intra-cell interference does not
exist. Hence, the inter-cell interference across different cells is the leading performance
limiting factor for throughput evaluation.

Entropy 2023, 25, x FOR PEER REVIEW 5 of 19 
 

 

pairs cannot obtain essential SIR to work correctly regardless of the transmitting power of 

interfering BSs. 

3. Problem Statement and Formulation 

3.1. System Model  

We consider a downlink OFDMA system, as depicted in Figure 1, where multiple 

transmitters (BSs) communicate with multiple users within each cell and share one fre-

quency band per cell. The multiple BSs share the downlink resource with each user and 

spread a resource block (RB) in OFDMA. We assume that the transmit and receive termi-

nals are equipped with a single antenna. Note that the OFDMA RBs allocated to different 

users within the same cell are orthogonal to each other since the intra-cell interference 

does not exist. Hence, the inter-cell interference across different cells is the leading perfor-

mance limiting factor for throughput evaluation. 

For convenience, we denote the transmitters as BS and the set of active users as 𝒰𝑖 , 

𝑖 = 1,2, . . , 𝐾 that employed with sub-carriers in multi-cell networks. The direct channel 

gain between the 𝑖𝑡ℎ BS-user pair over channel 𝑛 is denoted by ℎ𝑖,𝑖
𝑛  and the interference 

channel between the 𝑗𝑡ℎ BS and the 𝑖𝑡ℎ user over channel 𝑛 is denoted by ℎ𝑖,𝑗
𝑛 . There-

fore, the received signal at 𝑖𝑡ℎ user over channel 𝑛 is given by  

𝒴𝑖(n) = ℎ𝑖𝑖
𝑛𝑥𝑖 + ∑ ℎ𝑖𝑗

𝑛 𝑥𝑗
𝐾
𝑙≠𝑘 + 𝑛𝑖  (1) 

Here, 𝑛𝑖  is the AWGN power spectral density (PSD) at destination user 𝑖 with dis-

tribution 𝑛𝑖~𝒩(0, 𝜎𝑖
2) such that 𝜎𝑖 > 0. Note that the confidential messages transmitted 

by different sources are independent of each other. In such cases, each source message can 

be kept confidential from all other unintended users. The transmitting power of a BS 𝑖 in 

channel 𝑛 is represented as 𝑃𝑖
𝑛. We also represent the downlink power allocation vector 

of the system as 𝗽 ≜ 𝑣𝑒𝑐{𝐩(1), … , 𝐩(𝑁)}, where 𝐩(𝑛) ≜ (𝑃1
𝑛, … , 𝑃𝑖

𝑛)𝑇. Therefore, the SINR for 

the 𝑖𝑡ℎ user over channel 𝑛 can be written as  

𝑆𝐼𝑁𝑅𝑖 =
𝑃𝑖

𝑛|ℎ𝑖𝑖
𝑛|2

∑ 𝑃𝑗
𝑛|ℎ𝑖𝑗

𝑛 |
2𝐾

𝑗≠𝑘 + 𝜎𝑖
2
 (2) 

Accordingly, the corresponding achievable rate at the 𝑖𝑡ℎ user served by BS 𝑖 under 

channel 𝑛 can be expressed as 

𝑅𝑖 = log2(1 + 𝑆𝐼𝑁𝑅𝑖) (3) 

The achievable data rate 𝑅𝑖 can be maximized using the optimization of transmit 

power constraints. It is to be noted that the power of AWGN at each destination user has 

been normalized, while the effects of multipath fading and path loss have been modeled 

as a location-dependent channel variance. 

 

Figure 1. An illustration of downlink resource allocation for multi-cell and multiple user systems. Figure 1. An illustration of downlink resource allocation for multi-cell and multiple user systems.

For convenience, we denote the transmitters as BS and the set of active users as Ui,
i = 1, 2, . . . , K that employed with sub-carriers in multi-cell networks. The direct channel
gain between the ith BS-user pair over channel n is denoted by hn

i,i and the interference
channel between the jth BS and the ith user over channel n is denoted by hn

i,j. Therefore, the

received signal at ith user over channel n is given by

Yi(n) = hn
iixi + ∑K

l 6=k hn
ijxj + ni (1)

Here, ni is the AWGN power spectral density (PSD) at destination user i with distri-
bution ni ∼ N

(
0, σi

2) such that σi > 0. Note that the confidential messages transmitted by
different sources are independent of each other. In such cases, each source message can
be kept confidential from all other unintended users. The transmitting power of a BS i in
channel n is represented as Pn

i . We also represent the downlink power allocation vector

of the system as p , vec
{

p(1), . . . , p(N)
}

, where p(n) ,
(

Pn
1 , . . . , Pn

i
)T . Therefore, the SINR

for the ith user over channel n can be written as

SINRi =
Pn

i

∣∣hn
ii

∣∣2
∑K

j 6=k Pn
j

∣∣∣hn
ij

∣∣∣2 + σi
2

(2)

Accordingly, the corresponding achievable rate at the ith user served by BS i under
channel n can be expressed as

Ri = log2(1 + SINRi) (3)

The achievable data rate Ri can be maximized using the optimization of transmit
power constraints. It is to be noted that the power of AWGN at each destination user has
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been normalized, while the effects of multipath fading and path loss have been modeled as
a location-dependent channel variance.

3.2. Problem Formulation

In this paper, our target of optimizing the power allocation is to maximize the overall
sum rate of all wireless channels under the important constraints, such as power and
spectral capacity requirements. We first formulate the objective function as a Gaussian
interference game (GIG) under transmit power constraint by considering the discrete
frequencies [50]. For simplicity, we assume an increasing sequence of frequencies such that
fo < · · · < fk. In particular, we adopt a discrete approximation game to model the GIG
from jth BS to ith receiver over K frequency channel as GI{I1, ...,Ik

}, where Ik is the closed
interval given by Ik = { fk−1, fk}. Specifically, each BS is considered as a game player, i.e.,
there are K parallel frequency channels to operate as 1, . . . , N over K. The player can send a
power vector Pi = (Pi(1), . . . , Pi(k)) ∈ [0, Pi]

k, such that Pi(k) is the transmit power in the

closed interval Ik. Hence, we will have
K
∑

k=1
Pi(k) = Pi. This indicates that the set of power

allocations for all receivers is a closed convex subset of the cube ∏N
i=1[0, Pi]

k, denoted by

B =
N

∏
i=1

Bi (4)

where Bi denotes the set of power allocations for player i. Mathematically, Bi can be
expressed as

Bi = [0, Pi]
k{(Pi(1), . . . , Pi(k)) : ∑K

k=1 Pi(k) = Pi} (5)

Here, each player selects a PSD Pi = Pi(k) : 1 ≤ k ≤ N ∈ Bi. The spectral capacity
of each player i is its sum rate Ri, and each player has to satisfy the power and QoS
requirements. Note that the QoS constraint depends on the BS’s transmitting power,
indicating that it shall be optimized to achieve the target of service request. Accordingly,
the optimization game is formulated as:

max
p>0

K

∑
i=1

wiRi(k)s.t. 0 ≤ Pi(k) ≤ Pmax
i SINRi(k) > γo(k), k = 1, . . . , K (6)

where wi is the given non-negative weight of the sub-channel assignment at the ith BS to
maximize the total sum throughput. Here, we assume wi = 1 for each player i while Pmax

i
is the maximum power the BS can use it. The objective of Problem (6) is to maximize the
achievable rate at the destination user so that they can obtain useful information with the
desired service request, which is always defined by the constraint of the SINR higher than
or equal to the given threshold value of the ith user, i.e., SINRi(k) > γo(k), k = 1, 2, . . . , K.

In the literature, the formulation problem in (6) has been shown to be an NP-hard
combinatorial problem due to the nonlinear probabilistic constraints [8]. No convex refor-
mulation of the above problem is known, even without the QoS constraints. Therefore, the
directly optimal solution is non-trivial and may not be feasible. In the following, we will
show that the above problem in (6) can be unified under the Gaussian interference game
(GIG) framework to simplify the formulation. Specifically, we will first analyze the payoff
for each user i and provide a payoff vector R for finding the GIG of Problem (6). Then, we
will describe the Nash equilibrium solution to achieve a stationary solution of the given
power allocation p.

For ease of exposition, let us consider the transmit power distributions for player i,
such that each player selects a power Pi = Pi(k) : 1 ≤ k ≤ N ∈ Bi. Thus, the utility rate for
user i is the downlink spectral efficiency of link i, which is given by:

Ri(p1, . . . , pN) = ∑K
k=1 log2(1 + SINRi(k))∆ fk (7)
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where

SINRi(k) =
Pi(k)|hii(k)|2

∑K
j 6=k Pj(k)

∣∣hij(k)
∣∣2 + σi

2(k)
(8)

Ri is the available utility function to player i with given power allocations p1, . . . , pN
while ∆ fk is the bandwidth of the kth interval. As defined above, hii(k) and hij(k) are the
direct channel gains and cross coupling functions, respectively. Here, we consider two
special cases for the noise term in (8). In the first case, when the noise term σi

2(k) > 0,
there is an external noise in the ith user at frequency k and optimization problem becomes
more complex. In the second case, when σi

2(k) = 0, the noise term can be ignored, and
the spectral efficiencies might become large using FDM strategies. Hence, the available
capacity Ri for each player i is continuous over multiple channels.

Our goal is to model the payoff vector R for frequency response, so we can simplify the
problems for N-player games. Let the GIG is given by GI{I1, ...,Ik

} = {R, B} for N-players,
the continuous payoff vector R be denoted as

R =
{

R1, . . . , RN
}

(9)

where B and Ri are the strategy set and the available capacity defined in (4) and (7),
respectively. Moreover, we also consider a Nash equilibrium (NUM) problem intending
to optimize the entire network performance under the constraints power budget and QoS
conditions. Note that the QoS requirements are applicable if and only if the game players
are satisfied without cross-coupling interference from the interfering transmitters. Given
all other players i and player n in a p strategy, the Nash equilibrium for QoS constraints is
formulated as [51]

Ri(p1, . . . , pn−1, p, pn+1, . . . , pN
)
≤ Rn(p1, . . . , pN) (10)

It can be seen that the problems mentioned above are homogeneous with respect
to power allocation and QoS requirements, thereby depending on the power and QoS
constraints. Specifically, the problem in (9) is a non-cooperative game with respect to the
payoff vector R. Therefore, it can be solved efficiently using interference game methods
for convex non-cooperative N-player games. We solve the problem using the Gaussian
Interference game model and consider it as a baseline to design the reward function of DRL
scheme proposed in the next section.

4. Deep RL-Assisted Resource Allocation

In this section, we first introduce the two fundamental RL algorithms, namely Q-
learning and DQL, as representatives of the policy-based and value-based design tech-
niques, respectively. Then, we define our proposed DQL-assisted resource allocation to
address the optimization problem in the traditional method. Finally, we present the problem
formulation and specific procedures of the proposed DQL-based power allocation model.

4.1. Basics of RL Algorithms

The RL method addresses sequential decision-making by maximizing a cumulative
reward function while interacting with the wireless environment, as shown in Figure 2.
Assuming time series t, the agent observes the environment and receives a state and
feedback regarding the observed states. For each time step t, the agent receives a state
s(t) ∈ S from a state space and then selects a specific action a(t) ∈ A, where S and A are a
set of states and possible actions, respectively. After several executions, the agent receives
a reward r(t) ∈ R and sends an action a(t) to the environment estimated by applying a
certain policy π to the state s(t), where R : S× A→ R denotes the reward function. The
policy π is essentially undertaken by the agent in a given state and best possible action. The
agent then follows a policy π(a, s) and maps the state s(t) to a probability distribution over
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a set of possible actions A. Once the agent executes action a(t), the environment changes its
given state s(t) to a next state s(t+1) ∈ S in response to the agent’s action. This scheme is
repeated until the agent reaches the ending state and restarts.
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Q-learning (QL) is a basic form of RL algorithm aiming to evaluate the actions of the
agent based on the current environment and maps the outputs in the form of rewards.
The goal of QL algorithm is to find an optimal strategy π∗ that maximizes the future
cumulative rewards starting from given state s, performing action a, while following policy
π. Therefore, the future cumulative reward at time t is given by

Rt = ∑∞
k=0 γkrt+k (11)

where γ denotes the discount factor for long returns. The agent uses this discount factor
to adjust the importance of securing rewards over time t. Multiple episodes are executed
to train the QL algorithm, and the agent uses the ε-greedy policy to estimate the optimal
strategy π∗(s, a). We describe the Q-function Qπ(s, a) for policy π, which is the expected
reward beginning from current state s, selecting best action a, and thereafter following
strategy π.

Qπ(s, a) = Eπ

[
R(t)

∣∣∣s(t) = s, a(t) = a
]

(12)

Similarly, the optimal strategy has an optimal Q-function, denoted as Q∗ and define as
Q∗(s, a) = max

π
Qπ(s, a) for s ∈ S and a ∈ A(s). On the other hand, Q∗ gives the maximum

expected reward attainable by any strategy π for each possible state–action pair. So, the
mathematically optimal Q-function can be expressed by the Bellman equation as:

Qπ(s, a) = R(s, a) + γ ∑s′

(
P
(
s, a, s′

)
max

a′
Qπ
(
s′, a′

))
(13)

where s′ and a′ denote the value of the new state and action, respectively. After state
transition due to the actions taken and following a policy π, the agent stores all the optimal
Q-values in a tabular form. The QL algorithm uses a lookup table, also known as a Q-table,
to save the Q-values of the optimal function. The Q-table is a matrix in which the number of
rows represents the states and the columns corresponding to the actions. Once this Q-table
is constructed, at each time-step t, the agent chooses the best actions based on the ε-greedy
strategy and ε is set to the value from the latest training step. Then, the agent executes a
random action, and the action with the higher value is selected with probability 1 − ε to
avoid getting stuck at non-optimal strategies. According to the ε-greedy policy, the agent
either exploits the Q-table to obtain many rewards or explores the environment to select
better action in the future. After obtaining a new experience due to the action taken, the QL
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algorithm updates the value of a Q-table based on the feedback learning agents. The QL
update uses the following iterative approaches to train the QL algorithm:

Q
(

s(t), a(t)
)
← Q

(
s(t), a(t)

)
+ α

[
R(t+1) + γmax

a′
Q
(

s(t+1), a′
)
−Q

(
s(t), a(t)

)]
(14)

Here, γ ∈ (0, 1] is a factor that determines the priority of future rewards compared to
the current reward and lies in the [0:1] range. A value of γ = 1 means that future rewards
are more important than the current reward. Furthermore, α(0 < α ≤ 1) is a learning rate,
which denotes the proportion of newly learned data related to the given action value. When
α = 1, the agent can learn the policy, and the newly trained data are the only significant
information. For each of the current Q-value Q

(
s(t), a(t)

)
, an estimate of the expected

reward is tracked and an ε-greedy policy is selected based on these estimates. After that an
arbitrary action is chosen with probability ε(0 ≤ ε ≤ 1) while the action with highest value
is selected with probability 1− ε. Since the QL algorithm updates according to the Bellman
equation, the testing or implementation phases can be executed through online temporal
difference learning.

Traditional RL methods struggle to address real-world problems due to the inability
to efficiently model high dimensional state space’s objective. The limitation of the QL
algorithm is that it adopts the Q-table to store the Q-values. However, in many problems of
practical scenarios, the Q-table will be hard to use when the state space of the problem is too
large. Consequently, it is important to use function approximation to handle the large state-
action spaces. In this paper, we focus on the deep Q-learning network (DQN), a combination
of deep neural networks (DNN) and traditional QL. Based on the QL algorithm, DQN
uses DNN to approximate the optimal action-value function Q(s, a, θ) ≈ Q∗(s, a) on a
discrete action space. Here, Q(s, a, θ) denotes the DQN and θ is the parameter of the neural
network. Instead of using a table to store the Q-values, the DQN uses a replay memory
D to store the transition tuples (s(t), a(t), R(t+1), s(t+1)) at each time period. The memory
stores experiences to avoid correlation between input data in successive updates. The
DQN is trained with a minibatch sampled randomly from the replay memory and updates
the targets of that minibatch. The mean squared error (MSE) of the Bellman equation
is minimized by the iterative update, which is used to train the Q-network. Hence, an
experience replays to minimize the MSE, denoted as [30]:

L(θ) = ∑D

[
R(t+1) + γmax

a′
Q
(
s′, a′; θ−

)
−Q

(
s(t), a(t); θ

)]2
(15)

where θ− denotes the parameter set of learning target action-value function, which is
generated from the training DQN parameter θ periodically and fixed for successive updates.
Note that the target of Problem (15) is to train the DQN function for a random mini-batch
D(t) each time t, such that R(t)

DQN(s
′, a′) = r′ + γmax

a′
Q̂
(

s′, a′; θ(t)
)

.

4.2. Proposed DQL-Based Approach

In this subsection, we present our proposed approach that can perform the downlink
resource allocation on multi-cell OFDMA systems. We consider a single DQL-based al-
gorithm in which the agent makes interaction with the environment in order to learn the
optimal power allocation of the users. The wireless environment contains everything in
the OFDMA downlink transmission strategies except the agent. In the DQL algorithm, the
serving BS in different cells is used as an agent i and interacts with the environment by
mapping the observed state and performing possible actions. The agent i transmits confi-
dential information to each user using the transmit power Pi and provides the required QoS
guarantee. We denote the current state of agent i as si ∈ Si, which is comprised of environ-
ment features that are applicable to the possible actions ai ∈ Ai of agent i. As represented
in Figure 2, at the time step t, the two neighborhood BS sets are coupled together using
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the cross-coupling links hij(k). Observe that, even though the strategy sets of the BSs are
dependent on each other, they are also cross coupled in the same fashion, i.e., by the same
QoS conditions SINRi(k) > γo, for k = 1, . . . , K. In this case, the interfering BS’s transmit
power P(t)

j (k) h(t)j→i(k) will decrease due to its interference with neighboring BS-user pairs.
Due to the cross coupling of BS-receiver pairs, our proposed DRL-based algorithm will be
more complicated than the Nash equilibrium solution discussed in Section 2. Our aim is
to measure the impact of each BS’s interference on its neighbors’ transmission systems, so
we limit the exchange resources between neighboring BS-receiver pairs. Let the set of BSs
whose SINRi at user i is greater than a given threshold γo at each time step t be defined as

I(t)i (k) =
{

j ∈ K, j 6= i\h(t)j→iP
(t)
j

}
> γoσi

2 (16)

where I(t)i (k) denotes the set of “interferers” with respect to player i and h(t)j→iP
(t)
j represents

the received interference power from BS i. Similarly, let the set of users whose SNR from
BS i is also greater than the threshold value γo at each time step t be represented as

U(t)
i (k) =

{
j ∈ K, j 6= i\h(t)i→jP

(t)
i

}
> γoσi

2 (17)

From the neighboring BS-user pairs perspective, I(t)i (k) is the set of “interferers” while

in contrast U(t)
i (k) represents the set of the “interfered” neighbors’ transmissions. Next, we

consider the CSI the BS take over at each time step t. Here, we firstly assume that the BS i
learns via direct channel response h(t)i,i (k) in the same cell. Moreover, the BS i also learns
the corresponding received SINRi at user i before the update of transmit power control,
i.e., ∑K

j 6=k,j 6=i h(t)j→iP
(t)
j + σi

2(k). Moreover, at each time step t, user i will inform interfering

BS i of the received signal from its neighbors’ transmissions j ∈ I(t)i (k), i.e., h(t)j→iP
(t)
j . Note

that these measurements can only be available at BS i at each time step t.
The objective of the training is to exploit a trained DQN to replay the experience in

learning the power allocation strategy. We adopt DQL with experience replay to train our
learning algorithm. The resource optimization scheme is performed in two phases, (1) in
the learning or training stage, (2) in the testing or implementation phase. In the learning
phase, the agent is in charge of the RB allocation and learns its best actions to achieve an
optimal strategy by updating the RB allocated to each user. In the implementation phase,
the agent evaluates each action and selects the action with the maximum award in the
current environment that will be actually executed. In the following, we define the state
and action spaces, and reward function for the proposed DQL approach.

4.2.1. State Space

The wireless environment is denoted by a set of variables analogous to the resource
allocation issue, this variable set with all available values are referred to as the state space,
and it is denoted by S. In our case, the state space comprises the resource allocation-
related information of users and the channel gain from multiple cells, which follows a
certain optimization strategy. More specifically, the state space S contains i states, i.e.,
S = {S1, S2, . . . , Si}. As described above, the agent i constructs its state Si

(t) using informa-
tion from the direct channel gain and cross coupling links. We denote by Si , Ui the set of
users connected to each base station and define Si , {U1, . . . ,Ui}. At the initial interaction
with the environment, agent i sends its interference signal by using cross coupled power
hj→i

(t)(k)p(t)j (k) from BS j at receiver i. In this case the agent i uses the weights of sum-rate
wi to prioritize its interference signal. For direct information exchange, the agent i uses
the direct gain hi→i

(t)(k) at each time step t. For the coupling strategy, agent i uses the
cross-coupling links hj→i

(t)(k) at each time step t. For Si , Ui user set in m cells and n
frequency tones, we will have m × Ui × (n + 1) state size. Hence, the DQN agent uses
S(m, n) vector along with Ui of all users in a network as state and then takes action.
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4.2.2. Action Space

The action space is the set of all available actions the agent takes from the current
state, denoted as a(t) ∈ A. In this paper, we assumed that the agent is in charge of the RB
allocation and the DQN algorithm comes down to optimizing transmit power control for
each user in a multi-cell network. More specifically, the total number of possible actions
relies on the number of power levels the BS can distribute to the corresponding receivers.
Different actions in the set of all available action spaces denote different power controls that
the BS can schedule to mobile users in the multi-cell system. Even though the transmission
system mostly adopts continuous power values for minimizing complexity, in this paper,
we use discrete power levels between 0 and Pmax. We denote by Am the (non-empty) set
of action spaces assigned to cell m and defined am ∈ Am is the random selected action for
cell m. For each cell, we have n number of actions, and then the number of actions for M
number of cells will be M× n. Each action am ∈ Am corresponds to the power levels we
are using. The possible emitting power is quantized exponentially in |A| − 1 levels along
with a zero-power level, which indicates that there is no signal transmission. For each cell
m, we assume that the action space has |Am| > 1 discrete power levels. Therefore, the
action space can be expressed as

Am = 0,
Pmax

|Am| − 1
,

2Pmax

|Am| − 1
, . . . , Pmax (18)

Here, if there is no other described information regarding the wireless environment,
the DQN agent performs action formation am = argmax

a
Qk(st, at; θ) with probability ε.

4.2.3. Reward Function

Reinforcement learning (RL) aims to solve problems that are hard to optimize using
the traditional framework. This is typically tackled by considering the overall goal of
the problem and designing the reward signal that correlates with the ultimate goal. In
our proposed algorithm, the target function is defined to evaluate the agent’s actions and
outputs the result in a positive reward or penalty. Here, the maximum throughput of the
system corresponds to a positive reward. Moreover, a higher received signal for each user
benefits to improve the system throughput and award. On the other hand, to ensure the
QoS requirement, the achievable rate of each user that satisfies the desired threshold aids to
achieve a good reward, while the achievable rate that does not fulfil the required outcomes
is given a negative reward or penalty.

Taking into account the above points, we explain the reward function as how the
strategy P(t)

i affects the sum rate at time step t. As described in (6), we set the design
objective to maximize the sum throughput while ensuring the QoS conditions for each user.
At each time step t, for all agent i ∈ K, the training network computes the achievable rate
of each user i without the coupling interference from BS i. Accordingly, we can describe the
network trainer function for all users Ui at time period t as follows:

R(t)
ĩ
(k) = log2

1 +
P(t)

i (k)
∣∣∣h(t)i→i(k)

∣∣∣2
∑K

j 6=k h(t)j→iP
(t)
j + σi

2(k)

 (19)

Furthermore, the Q-network trainer estimates the cross coupling plus noise term (i.e.,

∑K
j 6=k,j 6=i h(t)j→iP

(t)
j + σi

2(k)) in (18) by simply subtracting h(t)i→iP
(t)
i from the total SINR power

term in time step t. Thus, the reward function in the absence of QoS at time step t is
given by

rt
i = wt

i

(
Ri

(t), . . . , RN
(t)
)

(20)

In addition, we also consider the reward signal design intending to optimize the
overall capacity of the entire system under the relevant QoS conditions. The spectral
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efficiency of each BS i is its rate R(t)
i (k), and each BS has to satisfy the constraints of power

budget and QoS requirements. As mentioned in Problem (16), since the BS i ∈ I(t)i (k), its

interference channel K in time step t, i.e., h(t)j→iP
(t)
j > γoσi

2 is perfectly measurable by user
each user i and can be generated to the training DQN. At each time step t, we consider each
BS’s interference on its neighbors’ transmissions that an interfering BS i ∈ I(t)i (k) causes to
its neighboring BS-user pairs using interference pricing. Accordingly, the impact of each
BS’s interference on its neighbors’ transmissions can be given by [52] U

π
(t)
ĩ

= wt
i

(
R(t)

ĩ
(k)− Ri

(t)
)

(21)

In this paper, we assume that wi = 1 to maximize the sum throughput. To ensure
that the QoS constraint is satisfied, the condition SINRi(k) > γo(k) is checked by agent
i ∈ K in the reward estimation. If the QoS does not meet this requirement, the algorithm
simply declares the power P(t)

i selection of that user as wrong and sets the reward to zero.
Therefore, the QoS constrained reward design at time step t can be formulated as

Rt
i =


(

Ri
(t) −∑i∈U(t)

i (k)
π
(t)
ĩ

)
, i f Pi(k)|hii(k)|2

∑K
j 6=k Pj(k)|hij(k)|2+σi

2(k)
> γo(k)

0, otherwise
(22)

According to the problems mentioned above, we can find that the reward of agent i is
composed of three main components: (i) the direct contribution to the original problem
in (6) by the same QoS constraints, (ii) the reward due to the game player satisfying the
QoS and power constraints, and (iii) the penalty due to the cross-coupling interference and
each player which does not meet the requirement to QoS target. In addition, when the peak
transmission power P(t)

i at the given time period t equal to Pmax
i , the positive contribution

and penalty will be maximized, whereas being silent gains zero reward.

4.3. DQL-Algorithm Description

The goal of the DQN agent is to maximize the total weighted sum throughput, as
shown in (6), and assumes the throughput of each user can be evaluated based on the
SIR requirements. The learning process begins from an initial state Si

(t) and continues as
long as the throughput increases by executing the possible actions. The agent’s possible
actions ai

(t) to update the resource allocation for different users can be chosen by the
following approaches. (i) allocate a free RB with more SIR to different users in the same cell,
(ii) update the allocated resource to the user with the worst SIR in the same cell, (iii) For a
certain RB, cluster the users with the best SIR in the neighboring cell with user with the
worst SIR in the same cell. Note that the third strategy is used to avoid assigning the same
RB to users in neighboring cells that are positioned near to the edge of each cell. Once all
possible actions of the agent are selected, the agent gives more emphasis on maximizing
the overall capacity of the entire system.

4.3.1. Training the DQL Algorithm

The objective of the training model is to utilize a trained DQN to reply to the ac-
cumulated experience in training the power allocation strategy. The overall procedure
for training the DQL algorithm is presented in Algorithm 1. We first define the essential
parameters of the Q-network, such as discount factor, learning rate, number of layers, and
activation functions. Here, we directly assume that the input and output layer sizes are the
same as the state space and the total number of action sizes, respectively. At the output
layer, the individual slot provides the approximate of training DQN with current state input
and the possible action output. In the initialization phase, we first define the user’s channel
information, replay memory D, the action-value function Q and the learning target DQN
Q̂. In particular, the DQN with experience replay is used to train the DQN function Q [30].
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The DQN takes the current observable state s(t) as input and outputs the agent’s possible
action-value. Multiple episodes are executed to train the DQN function and accumulate
experiences with its connection with the environment. Since we utilize a single DQN agent
scenario, the state transition of the environment relies upon the agent’s possible actions.

Algorithm 1 DQL-Based Resource Allocation

1: Initialize the current environment E (all available CSI)
2: BUi ← B % Initialize usable sub-bands for all users
3: Initialize replay memory D to capacity M
4. Initialize the state space S and action space A
5: Initialize train DQN Q and target DQN Q̂ with weights θ & θ−, respectively.
6: {BS1, BS2, BS1, . . . , BSk} ← BS , where BS ∈ BUi

7: for each episode do
8: Allocate a free RB with higher SIR for Ui in each cell.
9: for t = 1, . . . , ∞ do
10: SINRi % calculate the SINR for Ui in the network
11: Use the throughput of each user as state space Si

(t)

12: for i = 1, . . . , K do
13: Select a random action a(t)k from A with probability ε for user k.

14: Otherwise choose ak = argmax
a

Qk
(

si
(t), ai

(t)
)

15: end for
16: Execute action ak = [a1, a2, . . . , ak] and observe reward rt% calculate wt

i Ri
(t) the

throughput for entire system.
17: State transition happens st+1 & move from st to st+1

18: Store all transition tuples
(

s(t), a(t), R(t+1), s(t+1)
)

in D.

19: Sample mini-batch from D and train it at each time t, D(t).
20: Optimize the loss function between learning target Q̂ and train Q-function using
tools of stochastic gradient descent algorithm, (15).
21: Update the target DQN Q̂ to be equal to train DQN Q.
22: end for
23: end for

After the transition of the environment due to the change of CSI and the actions taken,
the agent stores all the transition tuple

(
s(t), a(t), R(t+1), s(t+1)

)
in a replay memory. At each

step, a mini-batch of accumulated experience is sampled randomly from memory. The mini
batch is adopted to train the DQN and a stochastic gradient-descent step is used to update
the action-value DQN parameters. The objective is to minimize the sum-squared error
based on (15) at each time step t. The target DQN function Q̂ is initialized by duplicating
the parameters of the training DQN function Q and after a certain amount of time the two
DQNs are updated to clone the parameters of the training DQN. The process of training
the DQN is repeated until the parameters converge.

4.3.2. Testing the DQL Model

In the testing phase, at time step t, the agent or the network trainer takes action ai
(t)

and receives the experiences of available channel information si
(t) based on the current

decision policy. For testing the DQL Model, ε is set to the value from the very last training
step. Since the agent is working to maximize the original problem in (6) with relevant
reward signal design has been discussed in Section 4.2.3, it can benefit from this experience.
After that the agent evaluates the action with the maximum value at the training DQN
output. Once the agent chooses the action corresponding to transmit power, it starts to
adjust the RB allocation to maximize the overall capacity of the entire system. Each BS
then learns its optimal power allocation strategy, which runs the DQL model. Note that
the training procedure presented in Algorithm 1 can be performed offline because it is
computationally expensive for a large number of channel conditions. On the other hand,
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for computationally inexpensive scenarios, the testing phase can be performed online for
the actual deployment of the network.

5. Numerical Simulations

In this section, we intend to present the performance evaluation of the proposed
DQL-based power allocation scheme via numerical simulations. We consider a downlink
OFDMA transmission with random distribution of BSs and mobile devices over multiple
channels in multi-cell network as shown in Figure 2. It has to be noted that the path loss
and channel coefficients are modeled using the standards of independent and identically
distributed complex Gaussian noise, while the power of the additive noise at each receiver
has been normalized. According to [53], the path loss related to distance is given by
128.1 + 37.6 log10 d dB, where d is the distance between the serving BS and each receiver
in kms. The maximum transmit power budget for BS over multiple channels is given
as 33 dBm, which is reusable in multi-cells. For the downlink OFDMA, all users share a
bandwidth B and each user occupies of B/N, where B is given as 10 MHz and N is the
number of receivers. The capacity requirement for each receiver is 1b/s/Hz. The additive
noise power at each user is −114 dBm and the noise PSD is set to −174 Bm.

We next define the training parameters for our DQN model. Determination of these
hyperparameter values becomes more challenging in DL-based resource allocation [42]. In
this work, we do not over-parameterize the structure of a neural network. Our goal is to
accelerate the learning process, so we adopt a small architecture of deep neural networks
for training purposes. To train a DQN, we use a deep neural network with three hidden
layers, including 200, 100, and 40 neurons, where both the input and output layers are
taken as 1. We also use the ReLU, f (x) = max(0, x) as an activation function for the hidden
layers. We assume that the F RBs are equally distributed between N channels, which
exhibiting the same bandwidth B. Each linear unit has F number of RB allocation that may
be grouped in N channels. ReLU is used to avoid the vanishing gradient problem and
allows the DQL model to learn faster and perform better [54]. We also normalize the input
layer size of the Q-network with some parameters relying on the maximum total power
constraint, inter-cell path loss, etc., to optimize the performance metrics. Furthermore, we
use the RMSProp optimizer method with learning rate of 0.001 for updating the weights of
the DQN function. Given the value of discount factor γ = 0.5 and updating the DQN over
3000 episodes. However, as the value of discount factor γ increases, the outcome of DQL
keeps improving for most of its applications [35]. We also apply the ε-greedy algorithm to
facilitate the training of DQN network. Herein, the DQN agent takes action randomly with
probability ε and can control the search algorithm by adjusting the value of ε.

Performance evaluation in terms of sum throughput maximization, power consump-
tion and spectral capacity will be carried out to compare the proposed method with several
methods in the simulations. The proposed method uses several benchmarks, such as a
‘WMMSE’ method developed in [5] and an ‘ideal WMMSE’ with instantaneous full CSI.
Furthermore, we also use the downlink OFDMA with random power allocation method
(‘OFDMA random’) and ‘full power allocation’ scenarios. In the case of ‘OFDMA random’,
the DQL agent will choose its transmitted power for multiple channels at random between
0 and Pmax while in the ‘full power allocation’, the agent will use the maximum transmit
power for all channels.

Figure 3 illustrates the sum throughput performance of different power allocation
methods in a 5-user scenario with QoS threshold γo = 3. It can be seen from the figure
that the sum throughput of the proposed DQN method and the state-of-the-art power
allocation algorithms increases with an increasing of transmit power, which contributes
to improving the achievable weighted sum rate performance. The WMMSE approach
in [5] and ideal WMMSE with perfect CSI provide better sum-rate performance due to
higher available sub-bands for each cell network while these methods do not maintain the
QoS constraints. The proposed DQN scheme however considers the QoS constraint and
achieves a higher sum rate than the full-power and random power allocation methods.
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Furthermore, the protection of cell-edge users in neighboring transmissions against severe
cross-coupling interference in the proposed scheme adds to its performance. As expected,
the full-power and random OFDMA allocations tend to display lower sum throughput
performance compared to the proposed DQN and WMMSE algorithms. For the random
OFDMA-based system, since each user uses the Pmax, the throughput obtained does not
change with the sum-rate requirements.
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To further elaborate on the performance of our proposed method, we plot the average
sum throughput versus the transmit power budget with the absence of a QoS constraint
in Figure 4. It can be seen from the Figure that the proposed DQN approach achieves a
higher sum throughput than the WMMSE and random OFDMA methods. This setting
has been discussed with the reward design in Problem (20). When we ignore the QoS
constraint, the reward signal is designed to optimize the utility function of each BS i and
capable of obtaining better sum-rate performance. Indeed, the proposed scheme is aiming
to maximize the overall capacity of the entire system under the QoS conditions and has
also achieved the better result. From Figure 3, it is evident that with the increase of the
transmit power budget, the proposed DQN approach is capable of obtaining a better result
with distributed execution while satisfying the QoS requirement.
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Figure 5 shows the relationship between the average sum rate and the number of
users with different power budgets. From the figure, it is found that the average sum
rate slowly decreases with the cell user number increasing for varying transmit power
budgets. As expected, when the user’s number increases, the average sum throughput
performance of the proposed approach decreases gradually because, in such situations,
additional interference will generate when the cell users become large. However, as evident
from Figure 5, increasing transmit power budget of each user leads to a compromise.
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Computational Complexity Analysis

In order to solve the original NP-hard problem in (6), we further unified it under the
Gaussian interference game framework in (9). We realize the potential of applying the DRL
techniques on various resource-limited networks as proof of the optimization techniques.
Then, a DRL-based solution with experience replay is developed to reduce computational
complexity. The performance of the DQL-based power allocation model is evaluated for
several training scenarios, including increasing cell user demands, varying transmit power
budgets. We have run the learning process an average of 9 to 10 randomly initialized
experiments. The computational complexity of the learning process is inherently addressed
using the two separate DQN functions (i.e., the train DQN and learning target DQN with
parameters set θ). For comparison purposes, we use the sum rate performance metrics for
the optimization solution achieved through different power allocation methods. As can be
observed from the numerical simulations, it is evident that the proposed DQL approach
performs better than other power allocation methods.

As expected, the complexity of the DRL algorithm mainly relies on the wireless
network sizes. According to Figure 5, it is evident that with the increase in the number of
destination receivers, the average sum throughput performance of the proposed DRL-based
approach decreases gradually. This is because, with the increase of cell users, the wireless
network size increases while the state-action space also increases accordingly. As a result,
the learning algorithm can figure out more exploration to estimate the optimal action-value
functions. This is why the sum-rate performance of the DQN model decreases gradually
with the increase of cell users.

6. Conclusions

In this paper, we have studied a distributed wireless interference system for OFDMA
networks. In particular, we proposed a DRL-based resource optimization scheme in a
downlink multi-cell OFDMA system and investigated the weighted sum throughput maxi-
mization problem. To maximize the sum rate, the objective function was first formulated
using a non-cooperative game model. Then, we developed a DRL-based scheme that
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interactively learns the resource allocation over multiple interference channels while satis-
fying the QoS requirements for each user. We utilized a DQN with experience replay to
understand the transmission strategies for the proposed DQL scheme. We have evaluated
the performance of the proposed distributive optimization approach with other power
allocation methods, such as random OFDMA, WMMSE, and instantaneous maximum
power allocation schemes. Our theoretical investigation and numerical simulations demon-
strate that the proposed optimization method can improve the sum rate performance while
guaranteeing each user’s throughput.
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DL Deep learning
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DQL Deep Q-learning
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DRL Deep reinforcement learning
FDM Frequency division multiplexing
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GNEP Generalized Nash equilibrium problem
KPI Key performance indicator
ML Machine learning
MSE Mean squared error
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PSD Power spectral density
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RB Resource block
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RL Reinforcement learning
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