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Abstract: Inbreeding depression can reduce the viability of wild populations. Detecting inbreeding
depression in the wild is difficult; developing accurate estimates of inbreeding can be time and
labor intensive. In this study, we used a two-step modeling procedure to incorporate uncertainty
inherent in estimating individual inbreeding coefficients from multilocus genotypes into estimates
of inbreeding depression in a population of Weddell seals (Leptonychotes weddellii). The two-step
modeling procedure presented in this paper provides a method for estimating the magnitude of a
known source of error, which is assumed absent in classic regression models, and incorporating this
error into inferences about inbreeding depression. The method is essentially an errors-in-variables
regression with non-normal errors in both the dependent and independent variables. These models,
therefore, allow for a better evaluation of the uncertainty surrounding the biological importance of
inbreeding depression in non-pedigreed wild populations. For this study we genotyped 154 adult
female seals from the population in Erebus Bay, Antarctica, at 29 microsatellite loci, 12 of which are
novel. We used a statistical evidence approach to inference rather than hypothesis testing because the
discovery of both low and high levels of inbreeding are of scientific interest. We found evidence for
an absence of inbreeding depression in lifetime reproductive success, adult survival, age at maturity,
and the reproductive interval of female seals in this population.

Keywords: data cloning; microsatellites; individual inbreeding coefficient; lifetime reproductive
success; statistical evidence; information criteria

1. Introduction

In his seminal work The Logic of Scientific Discovery, the philosopher Karl Popper
argued that the scientific method should be based on the falsification of hypotheses [1].
Modern statistical approaches provide powerful tools for this approach to scientific inquiry
but fail to provide evidence for a null hypothesis if it is not refuted [2]. This failure to
provide evidence of the null is problematic because well-constructed null hypotheses
are meaningful. The inability of modern statistical approaches to hypothesis testing to
address the validity of the null hypothesis can lead to a misinterpretation of the results
and/or a reduced likelihood of publication [3], a phenomenon known as the file-drawer
problem [4,5].

Inbreeding depression is a field of research that could be negatively affected by current
approaches to statistical hypothesis testing because the null hypothesis for these studies,
that inbreeding depression is not occurring in a population, is of interest in the conservation
and management of species. The reduction in fitness of inbred individuals is one of the
oldest observations of population genetics [6]. Inbreeding depression was first recognized
among domesticated species [7], but it also affects captive and wild populations [8–12].
The negative effects of inbreeding are usually stronger in the wild [10] and have the
potential to reduce the viability of these populations [12,13]. Scientists are often tempted
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to use the failure to reject the null hypothesis as evidence that the null hypothesis is
true. This interpretation is number two on Goodman’s list of common misinterpretations
of p-values [14]. This move is illegitimate and sometimes misleading under classical
statistical testing procedures, which is demonstrated by [15] in the chapters on Neyman–
Pearson hypothesis testing and Fisherian null hypothesis significance testing. This desirable
inferential move is accessible to scientists by using an evidential statistics approach. The
evidentialist is able to say either (1) the “null” model is better supported than the alternative,
if an explicit alternative is specified; or (2) the support for the alternative over the null is
no greater than the expected bias due to the estimation of unspecified parameters [2,16].
We want to emphasize that the evidentialist is not committing the fallacy of argument
from ignorance [17]. Evidence is a data-based estimate of the contrast of the divergence
of the distributions implicit in each of the compared models to the distribution of the
observations [2,16,18,19].

Although there are many methods available to test for inbreeding depression (re-
viewed in [11]), they are all based on a comparison of fitness traits between inbred and
non-inbred individuals. Whether inbreeding depression is estimated using a regression
model assuming additive effects of loci [11] or multiplicative effects of loci [20], inbreeding
coefficients are included as explanatory variables and are assumed to be known quan-
tities. Calculating inbreeding coefficients from pedigrees has been the gold standard in
estimating these parameters [21]. Although measurement error can exist in pedigree in-
breeding coefficients due to errors in the pedigree [22], non-zero inbreeding coefficients of
the founders [22,23], or relatedness of the founders [22], a high correlation in individual
inbreeding coefficients calculated from shallow (4 to 5 generations) and deep (50 genera-
tions) pedigrees [23] indicates that pedigree inbreeding coefficients are effective estimators
of inbreeding.

Multilocus heterozygosity has been used as a surrogate for pedigree inbreeding coeffi-
cients in studies of inbreeding depression when pedigree-based estimates are not available
because of the established relationship between genome-wide heterozygosity and inbreed-
ing [24]. Although substituting multilocus heterozygosity for pedigree inbreeding coeffi-
cients avoids potentially difficult or impossible historic data collection, empirical [22,25]
and simulation [23] studies indicate that multilocus heterozygosity is only weakly associ-
ated with individual inbreeding coefficients. In addition, the effect size of these studies is
often small, and the average number of analyzed loci is well below the predicted number
needed to explore these patterns [26]. Recent advances in genotyping technologies have
increased the availability of, and reduced the cost to generate, individual genotypes at the
genomic scale (e.g., [27]), and estimates of inbreeding coefficients from genomic data have
been shown to outperform pedigree estimates of inbreeding [28].

However, what are we to make of studies completed prior to the widespread appli-
cation of these next-generation sequencing technologies? The potential exists for earlier
studies of heterozygosity fitness correlations to be affected by a publication bias, although
meta-analyses disagree on this occurring (e.g., [29,30] found evidence for a bias, but [26]
did not). Here we present a study conducted as a portion of the lead author’s dissertation
research [31] that failed to statistically reject the null hypothesis that inbreeding depression
did not reduce the lifetime reproductive success of a population of Weddell seals (Leptony-
chotes weddellii). This result reduced interest in pursuing the subsequent publication of this
work, making it at an example of the file-drawer effect.

We present the study here largely as it was developed for initial publication, with
added discussion of how this paper and its publication history relate to evidential statistics
and the file-drawer effect. In this study, we completed a two-step maximum likelihood
analysis, which was fitted using the data-cloning algorithm [32], and it incorporated the
error in estimating inbreeding coefficients from multilocus genotypes into estimates of
inbreeding depression. We took an information-criterion-based model-selection approach
to compare models estimating the association between fitness parameters and estimated
inbreeding coefficients in a Weddell seal population that has been the focus of a long-
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term ecological study in Erebus Bay, Antarctica. Information criteria, and evidential
statistics in general, treat all models equally; in effect, there is no null hypothesis, only
multiple alternatives.

2. Materials and Methods
2.1. Study Area and Organism

Weddell seals in Erebus Bay, Antarctica, have been the focus of a long-term ecological
study since 1969 [33,34]. In this population, between 8 and 14 colonies of female Weddell
seals form each austral spring along tidal cracks in the sea ice (see [35] for a map) to pup [34].
Individuals in this population have been uniquely marked and annually surveyed [33,34],
and, as such, there is a wealth of information available about the survival and reproductive
output of female Weddell seals. Females in this population reach maturity between 4 and
14 years of age [36,37] and produce a single pup [38] every 1.5–2.2 years [39]. Individual
seals exhibit strong philopatry [35], resulting in most reproductive events of mature females
being known. Within Erebus Bay, individual survival and age at first reproduction are
known to be associated with the breeding colony in which an individual was born [37,40],
as well as the year of an individual’s birth [41]. In addition, this population of seals has
founded a smaller isolate on White Island, Antarctica, in which inbreeding is associated
with reduced pup survival [42].

2.2. Sample Selection and Genotyping

One hundred and fifty-four individual female seals, born between 1980 and 1992, were
genotyped. Seal lifetime ranged from a minimum of 7 years to an individual who was
observed in the population for a total of 29 years. Because the most recent year class of
sampled individuals had a maximum 19-year history in the population, all life histories
were truncated to a maximum of 19 years. By tracking reproductive individuals for 19 years,
we were able to capture the bulk of the reproductive output of each female because only
9% of all pups in this population were produced by mothers greater than 17 years of
age [43]. Tissue samples were collected and stored as described in [42], and individuals
were genotyped at 29 microsatellite loci.

Twelve novel microsatellite sequences were isolated by ecogenics GmbH (Switzerland),
using the high-throughput genomic sequencing approach of [44] (Table 1). A total of 1 µg of
genomic DNA was analyzed on a Roche 454 GS-FLX platform (Roche, Switzerland), using
a 1/16th run and the GS FLX titanium reagents. This produced a total of 8001 reads with an
average length of 193 bp. Of these, 273 contained a microsatellite insert suitable for primer
design with a tetra- or trinucleotide sequence repeated at least six times, or a dinucleotide
sequence of at least 10 repeats. Primers were designed for a total of 32 microsatellite inserts,
all of which were tested for polymorphism.

The 12 polymorphic microsatellite markers produced by this screen (Table 1) were split
into three multiplex reactions, each amplifying four loci. The forward primer of each locus
was labeled at the 5′ end with a specific dye (6FAM, VIC, NED and PET, Life Technologies,
Carlsbad, CA, USA). Loci in these multiplexes were (1) Lew-001339, Lew-001859, Lew-001845,
and Lew-001677; (2) Lew-001873, Lew-002658, Lew-004467, and Lew-002762; and (3) Lew-
007425, Lew-006657, Lew-006174, and Lew-005761. Multiplex PCR reactions consisted of
1 µM of each primer, 2 µL 5X MyTaq reaction buffer (Bioline, Taunton, MA, USA), 1 µM
M13 primer [45], 0.5 µg MyTaq HS DNA polymerase (Bioline, MA, USA), 1 µL of template
DNA, and enough water for a final reaction volume of 10 µL. The PCR profile consisted
of one activation step at 95 ◦C for 15 min, followed by 30 cycles (95 ◦C for 15 s, 55 ◦C
for 15 s, and 72 ◦C for 10 s), 10 cycles (95 ◦C for 15s, 53 ◦C for 15 s, and 72 ◦C for 10 s),
and a final extension step at 72 ◦C for 30 min. Microsatellite fragments were visualized
using a 3100-Avant Genetic Analyzer, with allele calls made using Genemapper v. 3.7 (Life
Technologies, CA, USA). Seals were also genotyped at Lw-4, Lw-7, Lw-10, Lw-11, Lw-16,
Lw-20, Lc-6, Lc-13, Lc-18, Lc-26, Lc-28, Hi-8, Hi-14, Hi-15, Hi-16, Hi-20 [46], and G1A [47], as
described in [46].
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Table 1. Primer sequences and marker information for the 12 novel microsatellite loci used in
this study.

Locus Primer Sequences 5′-3′ Repeat Motif Size (bp) Number of Alleles HE

Lew-001339
F GCACTCCAGTTTCCTTGGAC

(AC)14 106–135 10 0.631R AGGAGCTTAGTAGGCAATCC

Lew-001677
F ACAAGGGATTCTTAGGGAACTG

(AC)15 214–231 15 0.799R TCCAGTGGTAATAACTTGCAAAC

Lew-001845
F TGTAACCTCAAGGGTCCCAC

(TG)12 147–153 4 0.519R GCGTCTGGAGTGTGGAATTG

Lew-001859
F TCTCCCTGTTCATTAGATCCTG

(AC)13 98–114 8 0.622R GAGCCAACTTGCATTGTGTTC

Lew-001873
F TGTTTCCGGTTGGGCTATTC

(TG)14 133–155 8 0.624R ACGATAGATTGGGCCTTGTC

Lew-002658
F ATTCTCAGACCTCAGGGAGC

(GT)16 122–146 8 0.709R CATCCTGAGTTTGGCCTTGG

Lew-002762
F TGTTCCATCTCCTGCCACTC

(AC)13 164–185 9 0.759R ATCTGGGGAAAGGTGGGTTC

Lew-004467
F TGCACAGTATAAAACAGGATAGAGG

(AC)14 90–111 11 0.788R CCAGAGAGAGCCTGTGTACG

Lew-005761
F AGAGAGGGTCATTAGAGACAGC

(AC)13 158–174 8 0.782R ATGACTCTTCATGGGCGTGC

Lew-006174
F TGGTGAACTCAACAAGGGAAAG

(AC)15 101–112 7 0.738R TGTATTGCTCAGCCCAACTC

Lew-006657
F GCATGCTGGGTCATGAGTG

(GT)13 82–103 11 0.785R GCCCCACGATGTTACTAAGTTG

Lew-007425
F AAGTTTTATGTGGGCATCCG

(GT)12 96–106 5 0.560R GCCGTTCACATTTCTGCCTC

We calculated expected heterozygosity and the mean number of alleles in this sample,
using GenAlEx version 6.501 [48,49]. We tested for the presence of pairwise linkage
disequilibrium and for whether loci were in Hardy–Weinberg equilibrium, using the exact
test of [50], using Genepop on the web [51,52]. For both of these analyses, Markov chains
were run for 10,000 iterations in each of the 200 batches.

2.3. Two-Step Maximum Likelihood Analysis

The models considered are necessarily hierarchical models (HMs) due to the pres-
ence of measurement error. Estimation of and inference on the parameters by classical
frequentist methods is difficult, if not impossible, for many HMs because of the high di-
mension integrals involved (see [32] for discussion). Such models can be estimated in a
Bayesian framework, using Markov Chain Monte Carlo (MCMC) simulation. However,
both estimation and inference in a Bayesian framework depend on the details of prior
and variable transformation used even if priors are deemed noninformative [53]. Data
Cloning [32,54–57] is a powerful algorithmic method for converting any Bayesian esti-
mation and inference to a frequentist form free of the influence of prior and transform
specification. It is well-known that as sample size increases the posterior distribution in a
Bayesian analysis converges to the large sample multivariate normal distribution of the
frequentist maximum likelihood estimates [58]. Data cloning tricks a Bayesian algorithm
into providing maximum likelihood estimates by providing the algorithm with a series of
datasets, each composed of a number of copies (clones) of the original dataset. The number
of copies is increased until parameter estimates are stable. Data cloning can also be used to
estimate the likelihood ratios needed to calculate the differences of information criteria [56].

Parameter estimates and associated estimates of uncertainty for all analyses in this pa-
per were made using the data-cloning algorithm [32]. This method allows frequentist-based
inference to be made from hierarchical models [32] and, as such, makes the hierarchical
framework available for any researcher regardless of their data-analysis philosophy. Be-
cause the data-cloning algorithm was used to fit the regression models in this study, and
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cloning the data involved copying both the number of individuals, as well as the genotypic
information for each individual, models for estimating individual inbreeding coefficients
were run separately from the regression analyses. Due to the additional steps necessary
to run a data-cloning analysis, we present its use here. Other researchers interested in a
Bayesian analysis can combine the two steps that we present into a single model with the
same formulations and make posterior inference from the original data.

2.4. Estimating Individual Inbreeding Coefficients

We used the Gibbs sampling method of [59] to estimate individual inbreeding co-
efficients. This method relates frequencies of the mth allele at the lth locus (plm) and the
inbreeding coefficient of the ith individual (Fi), which is expressed as a proportion between
zero and one, using variables indicating whether or not the alleles at a specific locus (xil)
came from a common ancestor (i.e., were identical by descent). To prevent WinBUGS
version 1.4.3 [60] from crashing, we constrained the probability of success for this Bernoulli
distribution between 0.00001 and 0.99999 [61].

We assumed that loci were independent in this analysis. While the authors of [59]
suggest using a = b = 0.001 for the beta distribution for Fi, we selected the Bayes–Laplace
prior (a = b = 1) in order to avoid the unintended informative nature of other common
“noninformative” beta prior distributions, such as the Jeffreys prior (a = b = 1

2 ) or the
Haldane prior (a = b = 0), in the case where individuals have no alleles identical by
descent [62]. Data cloning would have eventually overcome the effect of these priors, but
the Bayes–Laplace prior speeds the process.

Finally, the vector of indicator variables identifying if alleles were identical by descent
was used to specify a vector for each locus in the population (Zl) that was the total number
of alleles identical in appearance (i.e., identical by state) that were not also identical by
descent. This was simply the sum of all alleles of a given state across all individuals at the
locus, where alleles identical by decent within an individual were counted only once. This
vector was used to model the conditional distribution of allele frequencies given identity
by descent with a uniform Dirichlet prior distribution [63] on the allele frequencies (plm;
see [59]).

See [59] for a more detailed description of the Gibbs sampling algorithm used for
estimating individual inbreeding coefficient.

The parameters for the beta distribution modeling individual inbreeding coefficients
were estimated by fitting the model of [59] to the original data, as well as to datasets that
had a total of 5, 10, 20, and 40 copies of the original data, using WinBUGS version 1.4.3 [60]
and the dclone package [57] in R version 2.15.0 [64]. All parameter values converged to
stable values by a data clone with 40 copies of the data.

Each model was fitted using 3 independent chains run for 10,000 iterations. We
saved every 5th sample after discarding the initial 5000 samples. Model convergence to a
stationary distribution was assessed by visual inspection of the trace plots and calculating
the R̂ statistic [65], using the coda package in R [66]. Modal values for the number of
loci identical by decent (∑

l
xil) in the ith individual were used to parameterize the beta

distribution of individual inbreeding coefficients in all cloned regression models. In cases
where the posterior distribution was multimodal, the average of the observed modes was
calculated and used.

We calculated the correlation between observed individual homozygosity and esti-
mated inbreeding coefficients. We also estimated the identify disequilibrium (g2 [67]) using
the inbreedR package in R [68].

2.5. Modeling the Association between Inbreeding and Fitness

We statistically probed for the presence of inbreeding depression in mature seals in
this population by selecting a fitness surrogate that incorporated survival across the 19-year
duration of the study, age at first maturity, and the frequency with which a seal reproduced.
This statistic is the first eigenvalue of a Leslie matrix constructed for each individual. This
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value is an individual-based analog (ri) to the instantaneous population growth rate(r).
The only difference in the calculation of ri and r is that, in the individual calculation, we
included both male and female offspring, while the population calculation considers only
female offspring. Our rationale here is that both male and female offspring contribute
to an individual’s fitness, but the population’s growth rate is limited by the number of
female offspring.

In estimating the relationship between inbreeding and ri, we included explanatory
variables for the birth colony and year of birth for each seal due to their association with
survival or reproduction in previous studies [37,40,41]. Birth colony was included as an
indicator variable specifying whether or not a seal had been born in one of the Dellbridge
Islands colonies (see [37] for a delineation of colonies).

In addition to estimating the relationship between a composite measure of lifetime
reproductive success and inbreeding, we also estimated the association between inbreeding
and survival across the 19-year duration of the study, mean age at first reproduction, and
the frequency of reproductive events. These three additional regression models were run in
an effort to identify whether a reduction in fitness at a specific stage of an individual’s life
was driving the possible inbreeding depression in lifetime reproductive success.

For estimating the association between individual inbreeding coefficients and ri, prob-
ability of survival, age at first reproduction, and probability of reproducing in a given year,
we used BIC and AICc [56,69] to select among up to 10 nested candidate models. For sim-
plicity of presentation in the description of the analyses below, we present the richest model
that was fit for each fitness variable, with all other subsets of variables being investigated,
as well. Because of known differences in the wait time following first reproduction [37], the
probability that an individual reproduced in a given year was modeled with a parallel-lines
model differentiating between the wait time following an individual’s first pup and the
wait time for all subsequent pups. This model was specified using a variable whose value
was one if the interval was following an individual’s first pup and zero otherwise.

Model selection was performed in an effort to reduce the potential loss of precision in
estimating the regression coefficient for individual inbreeding coefficient that may occur if
too many explanatory variables are in the model [70]. We computed both the BIC [71] (also
known as the Schwartz Information Criterion, or SIC) and AICc for model selection. The
BIC tends to slightly underfit (see [2,72] for discussion), and the AIC family of selection
criteria (AIC, AICc, and TIC) is slightly biased toward selecting more complex models. The
total number of parameters was assumed to equal the number of regression parameters
(k = 1, . . . , 4). Because ri was modeled as a normally distributed variable, an additional
variance parameter was also included in calculating the total number of parameters for
the models estimating the relationship between ri and the inbreeding coefficient. Models
within a ∆BIC and ∆AICc value of less than 2.77 were considered equivalent (see [73], Box 2,
for discussion of the strength of evidence represented by differences of information criteria).
∆BIC was chosen as our primary evidence function due to ease of calculation and to be most
conservative about detection of the presence of inbreeding depression [74]. All models
were sampled with WinBUGS version 1.4.3 [60], using the dclone package [57] in R version
2.15.0 [64].

The length of each chain for models investigating the association between the individ-
ual inbreeding coefficient and a given fitness surrogate was set based on visual inspection
of the trace plots and to ensure the value of the R̂ statistic [65], as calculated with the
coda package [66], was below 1.1 in the most saturated model for all parameters. For data
cloning, each model was fit on 1, 5, 10, 20, and 40 total copies of the data, with individual
inbreeding coefficients modeled with beta distributions parameterized using the modal
values for the number of loci with alleles identical by decent in an individual, as described
previously in the methods. The convergence of the data-cloning algorithm was determined
using the statistics outlined in [54], as implemented in the dclone package [57]. These
statistics were (1) the largest eigenvalue of the posterior variance covariance matrix, which
checks the degeneracy of the posterior distributions; (2) the mean squared error; and (3) a
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correlation-like fit statistic, which, together, check the sufficiency of the normal approxi-
mation [57]. We also plotted the logarithm of the posterior variances scaled based on the
posterior variance observed using the original data to ensure that they had a linear decrease
with the logarithm of the number of clones, and that ultimate scaled variance was below
0.05 [57]. Models whose parameters failed to converge to a multivariate normal distribution
based on 40 total copies of the data were removed from the subsequent analysis.

Estimates of regression parameters were calculated as the mean of the posterior
distribution of the model fit on 40 total copies of the data, with 95% Wald’s confidence
intervals calculated in the dclone package [57]. We also developed confidence bands and
prediction bands for each model.

Confidence bands were developed by taking 10,000 random draws from a multivariate
normal distribution with a vector of means and a variance covariance matrix calculated
from all MCMC chains post convergence for the model fit on 40 total copies of the data.
Confidence bands were calculated as the 2.5 and 97.5% quantiles of the distribution of
estimated individual fitness trait values at a given inbreeding coefficient.

Prediction bands for these individual regressions were developed by calculating the
variance–covariance matrix of regression coefficients from the model fit on 40 total copies of
the data. This matrix and the mean coefficient values were then used to parameterize a new
WinBUGS model, in which posterior draws of individual based instantaneous population
growth rate, individual maximum ages, age at maturity, or wait time between reproductive
events were saved for each of 1000 equally spaced inbreeding coefficient values on the
interval (0, 0.25). This interval was chosen to span the data-cloned estimates of observed
individual inbreeding coefficients in the sample. Prediction bands were calculated as the
2.5 and 97.5% quantiles of the draws of individual fitness trait values at a given inbreeding
coefficient from a single chain run for 10,000 iterations, saving every 5th iteration after
discarding the first 5000 samples. For more detail on the construction of prediction bands
from data-cloned models, see [57].

2.5.1. Lifetime Reproductive Success

We modeled the following:
ri ∼ N

(
µi, σ2

r

)
(1)

where this normal distribution was truncated below zero and censored above 0.3819509.
The distribution was truncated at zero because, by including only reproductive individuals
in this analysis, the minimum individual-based instantaneous population growth rate was
zero (a single pup produced). In addition, the distribution was censored above 0.3819509
because this was the maximum observable value across the first 19 years of an individual’s
life (corresponding to a seal maturing at four years of age and producing a single pup every
year until age 19). A normal distribution was selected because an instantaneous population
growth rate is commonly assumed to be normally distributed [75], an assumption which
has been found to hold for three Australian mammal populations [76].

The richest model fit was as follows:

µi = β0 + β1∗Fi + β2 ∗ Coli + β3 ∗ Fi ∗ Coli + γ (2)

where Coli was an indicator variable whose value was one if an individual was born in
a Dellbridge Island colony and zero otherwise. The k regression parameters, k = 0, . . . ,
3, were estimated using priors of βk ∼ N

(
0, σ2 = 10,000

)
, with the intercept parameter,

β0, truncated between 0 and 0.3819509, using the truncated normal distribution in Win-
BUGS [77]. These prior distributions were selected to be flat over a much larger region
than the range of expected parameter values [78]. We modeled σr ∼ half-Cauchy(0, 0.013)
and γ ∼ N

(
0, σ2

γ

)
where σγ ∼ half-Cauchy(0, 0.004). The scale parameter for these

half-Cauchy prior distributions was set to be four times larger than the observed stan-
dard deviations in the data [79]. For these models, the individual inbreeding coefficient
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was modeled as Fi ∼ Beta(Ai, Bi). The values of Ai and Bi were the modal values of
the shape and scale parameters of the posterior distribution of individual inbreeding
coefficients calculated in the first step of the analysis. Individual-based instantaneous
population growth rate models were run on three independent chains (starting values
drawn from β0 ∼ N

(
0.15, σ2 = 0.0001

)
, βc(1,2,3) ∼ N

(
0, σ2 = 0.01

)
, Fi ∼ Unif(0.01, 0.1),

σr = |ξ|/√χ, ξ ∼ N
(
0.1, σ2 = 0.000225

)
, χ ∼ N

(
0.3, σ2 = 0.36

)
, σγ = |ζ|/

√
τ, ζ ∼

N
(
0.002, σ2 = 0.000025

)
, and τ ∼ N

(
0.4, σ2 = 0.36

)
) for 20,000 iterations, saving every

5th iteration after discarding the first 15,000 samples.

2.5.2. Survival across the Study

The probability of and individual’s survival, si, was assumed constant across all ages
of mature seals [36]. This decision was based on the best evidence available at the time of
analysis. Subsequent work [80] found that the survival of reproductive females varies with
age; however, most of these declines in survival occur after age 20, an age that is beyond
what is being considered in this paper. We modeled age of death as

deathi ∼ Geom(si) (3)

and censored it between 4 and 19 to account for the fact that seals were not commonly
observed between their birth year and their age at primiparity, the minimum age of which
is 4 [37], and the minimum number of years for which all individuals had been tracked was
19. The richest model that was fit to the data was as follows:

log
(
(1− si)

si

)
= β0 + (β 1 + θY)∗Fi + β2 ∗ Coli + β3 ∗ Fi ∗ Coli + γY (4)

where Coli and Fi were identical to the regression models fit to ri. The parameters θY and
γY were group level variables for the year (Y = 1980, . . . , 1992) in which an individual
was born. The k regression parameters, k = 0, . . . , 3, were modeled as βk ∼ N(0, 10,000);
θY ∼ N

(
0, σ2

θ

)
, where σθ ∼ Unif(0, 100); and γY ∼ N

(
0, σ2

γ

)
, where σγ ∼ Unif(0, 100).

Age-of-death models were run on three independent chains (starting values drawn from
βk ∼ N

(
0, σ2 = 1

)
, θY ∼ N

(
0, σ2 = 1

)
, γY ∼ N

(
0, σ2 = 1

)
, σθ ∼ Unif(0, 10), and

σγ ∼ Unif(0, 10)) for 20,000 iterations, saving every 5th iteration after discarding the first
15,000 samples.

2.5.3. Age at First Reproduction

The age of an individual’s first reproduction was modeled as follows:

repi ∼ NBin(4, pi) (5)

We needed to observe four events of yearly survival because those correspond to
the minimum age at maturity in the population [37]. The minimum age at maturity was
subtracted from all responses prior to model fit. The richest model was the following:

log
(

4 ∗ (1− pi)

pi

)
= β0 + (β 1 + θY)∗Fi + β2 ∗ Coli + β3 ∗ Fi ∗ Coli + γY (6)

where Coli and Fi were identical to the regression models fit to ri, and θY and γY were
group level parameters given the year of an individual’s birth (Y = 1982, . . . , 1992). The
k regression parameters, k = 0, . . . , 3, were modeled as βk ∼ N

(
0, σ2 = 10,000

)
; θY ∼

N
(
0, σ2

θ

)
, where σθ ∼ Unif(0, 100); and γY ∼ N

(
0, σ2

γ

)
, where σγ ∼ Unif(0, 100). Age-

at-first-reproduction models were run on three independent chains (starting values drawn
from βk ∼ N

(
0, σ2 = 1

)
, θY ∼ N

(
0, σ2 = 1

)
, γY ∼ N

(
0, σ2 = 1

)
, σθ ∼ Unif(0, 10), and

σγ ∼ Unif(0, 10)) for 10,000 iterations, saving every 5th iteration after discarding the first
5000 samples.
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2.5.4. Frequency of Reproduction

Finally, the wait time between pups was modeled as

waiti ∼ Geom(πi) (7)

after subtracting a single year from each individual’s response. The probability that a seal
reproduced in a given year was assumed constant for all pups, except if it was following
the first pup [37], which was based on the best information available at the time but a
simplification of the latest findings for females in the population [80]. The richest model fit
was as follows:

log
(
(1−πi)

πi

)
= β0 + (β 1 + θY)∗Fi + β2 ∗ Coli + β3 ∗ Fi ∗ Coli + β4 ∗ Firsti + γY (8)

where Coli and Fi were identical to the regression models fit to ri, and θY and γY were group
level parameters given the year of an individual’s birth (Y = 1982, . . . , 1992). The variable
Firsti had a value of one if the wait time was following an individual’s first pup, and zero
if not. The k regression parameters, k = 0, . . . , 4, were modeled as βk ∼ N(0, 10,000);
θY ∼ N

(
0, σ2

θ

)
, where σθ ∼ Unif(0, 100); and γY ∼ N

(
0, σ2

γ

)
, where σγ ∼ Unif(0, 100).

Individual wait-time models were run on three independent chains (starting values drawn
from βk ∼ N

(
0, σ2 = 1

)
, θY ∼ N

(
0, σ2 = 1

)
, γY ∼ N

(
0, σ2 = 1

)
, σθ ∼ Unif(0, 10), and

σγ ∼ Unif(0, 10)) for 20,000 iterations, saving every 5th iteration after discarding the first
15,000 samples.

3. Results

The expected heterozygosity was estimated as 0.716 (95% confidence interval from
0.668 to 0.764) in this population of seals, with an average of 10.2 alleles per genotyped
locus. Expected heterozygosities at our newly developed microsatellite markers were
within the range observed in previously described loci (Lc-28 = 0.297, and Lc-6 = 0.888;
Table 1), although these loci, in general, had fewer observed alleles (average observed in
previously described loci = 11.2, Table 1). In addition, the expected heterozygosity was
consistent with observed levels in non-exploited placental mammals (0.677 ± 0.01 SE; [81]),
despite harvest occurring in this population of Weddell seals in the 1950s and 1960s [82].
We did not detect linkage disequilibrium between loci following a Benjamini–Hochberg
false-discovery-rate correction ([83]; smallest p-value = 0.0012, and adjusted α = 0.0001). Of
the 29 amplified loci, 1 had an excess of homozygotes (Lew-001677, p-value = 0.00, and FIS
= 0.1076) based on estimated FIS values [84]. This locus was retained in the final analysis
because the estimated FIS value was within the range observed across loci (−0.1549 to
0.1078). However, an excess of homozygotes could indicate that this newly described locus
contains a null allele. With no observed null homozygotes in the sample, we estimated
that the frequency of a potential null allele would be 0.0283, using the method of [85].
Because we sampled only a single population, we were unable to examine whether there
was a consistent pattern of an excess of homozygotes across populations. Future studies
genotyping this locus should therefore continue to investigate the potential existence of a
null allele.

Across the 29 microsatellite loci, individual homozygosity was correlated with esti-
mated inbreeding coefficients (ρ = 0.67, Figure 1), but identity disequilibrium (g2= −0.001)
was not greater than 0 (p-value = 0.76, and 95% confidence interval from −0.003 to 0.001).

Based on BIC values, the regression model estimating the individual-based instan-
taneous population growth rate as a function of individual inbreeding coefficient was
equivalent to the null model (Table 2). Based on this sample of 154 individuals, we es-
timated that, for every increase in the individual inbreeding coefficient of 0.0625 (the
equivalent of a first cousin mating), there was an associated change in the individual-based
instantaneous population growth rate of approximately −0.0066 (95% confidence interval
from −0.0154 to 0.0022). This estimated decrease corresponds to a lifetime reproductive
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success for an individual that was the product of a first-cousin mating that is 96.6% as
large as a non-inbred individual (95% confidence interval from 91.5% to 101.1%). While
neither BIC nor AICc values indicated that including individual inbreeding coefficients in
the model led to a better fit (Table 2), and the 95% confidence interval around the regression
parameter for individual inbreeding coefficient included zero, the maximum likelihood
estimate for inbreeding suggests that inbreeding may reduce the lifetime reproductive
success of individual Weddell seals in this population to some small degree (Figure 2). The
two information criteria differ as to whether the no inbreeding depression model or an
inbreeding depression model has the lowest criterion value, but both agree that the models
are not distinguishable. The scientific conclusions are the same for both criteria.
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Figure 1. Individual homozygosity at 29 microsatellite loci and estimated individual inbreeding
coefficients for 154 Weddell seals.

Table 2. Candidate regression models for each of the individual fitness surrogates ranked based
on their relationship to the model with the minimum BIC value, with relative AICc values also
reported. Only those models that converged are shown. Explanatory variables included individual
inbreeding coefficient (INB), birth location (COL), and a variable in the mean wait time between
pupping intervals’ models, indicating whether the interval was following an individual seal’s first
pup (FIRST).

Model Structure K ∆BIC ∆AICc

ri
β0 3 0.00 2.63
β0 + β1 INB 4 0.32 0.00
β0 + β1 INB + β2COL 5 3.34 0.09
β0 + β1 INB + β2COL + β3 INB ∗ COL 2 8.39 2.24

Minimum age
β0 1 0.00 0.00
β0 + β1 INB 2 4.53 1.55
β0 + β1 INB + β2COL 3 9.44 3.5
β0 + β1 INB + β2COL + β3 INB ∗ COL 4 14.34 5.47

Age at maturity
β0 1 0.00 0.00
β0 + β1 INB 2 4.55 1.57
β0 + β1 INB + β2COL 3 9.51 3.57
β0 + β1 INB + β2COL + β3 INB ∗ COL 4 14.55 5.68

Pupping interval
β0 + β4FIRST 1 0.00 0.00
β0 + β1 INB + β4FIRST 2 3.99 1.04
β0 + β1 INB + β2COL + β4FIRST 3 7.96 2.07
β0 + β1 INB + β2COL + β3 INB ∗ COL
+ β4FIRST 4 11.61 2.83
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Figure 2. Lifetime reproductive success, measured as an individual-based instantaneous population
growth rate, given an individual seal’s inbreeding coefficients. Panel (A) shows the point estimates
and the 2.5% and 97.5% quantiles of the distributions of individual inbreeding coefficients estimated
with the final data-clone model fit in the first step of the analysis. Panel (B) only shows point estimates
for individual inbreeding coefficients for clarity. The solid line in Panel (B) represents the estimated
association between individual inbreeding coefficient and the lifetime reproductive success of a seal
based on a truncated-normal-regression model fit to censored data, with the 95% prediction band for
this analysis denoted by the gray shading and the 95% confidence band for the regression denoted by
the dotted lines.

We estimated that, for an increase in the individual inbreeding coefficient of 0.0625,
there was approximately an associated 1.02-times increase in the mean maximum observed
age (95% confidence interval from 0.86 to 1.22 times). We also estimated that an increase in
the individual inbreeding coefficient of 0.0625 corresponded approximately to a 1.04-times
increase in the mean age at maturity (95% confidence interval from 0.92 to 1.18 times).
Finally, after accounting for whether a given pup was the mother’s first, there was an
estimated increase of approximately 1.06 times in the wait time between pups for every
increase in the individual inbreeding coefficient of 0.0625 (95% confidence interval from
0.94 to 1.20 times). The average estimated wait time following the first pup in this popula-
tion was approximately 2.08-times longer than for subsequent pups across all inbreeding
coefficient values (95% confidence interval from 1.59 to 2.73 times).

4. Discussion

We used molecular data to estimate the association between inbreeding and lifetime
reproductive success of mature female Weddell seals in Erebus Bay, Antarctica. The use of
a two-step maximum likelihood analysis allowed us to incorporate uncertainty in estimat-
ing individual inbreeding coefficients from multilocus genotypes into our assessment of
inbreeding depression in this population.

Using a classical hypothesis testing analysis, we were unable to reject the null hypoth-
esis of no inbreeding depression. This is a null result with very ambiguous interpretation
because, in the hypothesis-testing paradigm, absence of evidence cannot be taken as evidence
of absence. As a consequence, the publication of this work was tabled for almost a decade.
A reanalysis in an evidential framework was able to present this work in a much clearer
and more useful fashion: the model of no inbreeding depression is statistically indistin-
guishable here from a model of very slight depression, but both are distinguishable from
models with even modest levels of inbreeding depression. What we can say is that there
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is evidence for, at most, low levels of inbreeding depression in this population. For the
conservation biology of Weddell seals, this is very good news—a statistical null hypothesis
is not necessarily a biologically null hypothesis.

The data suggest that if inbreeding affects lifetime reproductive success in this popu-
lation of seals, the effect is very minor. The estimated cost of inbreeding (δ sensu [86]) in
lifetime reproductive success for mature individuals with an inbreeding coefficient of 0.25
(equivalent to a full sibling mating) was lower (0.137, 95% confidence interval from 0.032 to
0.260) than the average cost of inbreeding for mortality in wild (2.155 after standardizing for
F = 0.25; [10]) or captive mammal populations (0.33; [9]). It is important to note that these
costs of inbreeding are calculated at an inbreeding coefficient beyond any of the median
values observed in our sample. In addition, the conclusion that the effect of inbreeding
depression is small is supported by the fact that the estimated 5.5% reduction in lifetime
reproductive success (95% confidence interval from 4.7 to 6.5%) of mature female seals
with an inbreeding coefficient of 0.1 is at the low end of the expected range of inbreeding
depression based on a rule of thumb derived from agricultural systems ([87] reported
by [12]). Therefore, this low cost of inbreeding in lifetime reproductive success indicates
that inbreeding depression does not play as large a role in determining the lifetime repro-
ductive success of mature female Weddell seals as it does in shaping fitness parameters in
other mammalian or in agricultural populations.

Although the estimated value of inbreeding depression in the lifetime reproductive
success of female Weddell seals in this population from Erebus Bay was low, inbreeding
was detected, thus reducing juvenile survival of Weddell seals, in an isolated population
on White Island that was founded by individuals from Erebus Bay [42]. Therefore, we may
not have detected a strong signature of inbreeding depression because juvenile survival
was not included in our analysis. In estimating the lifetime reproductive success of female
seals in this population, we analyzed only mature individuals. Seals that died before
reproducing were not included in this analysis. It is possible that inbreeding depression in
Weddell seals may manifest itself early in the seals’ life and have little effect upon adults
that reach breeding age. Because our study did not cover the entire lifespan of individuals,
it is also possible that, in addition to juvenile survival, inbreeding depression may affect
senescing individuals, but this should have very little effect on ri [88,89]. As an example,
the ri of a female who survived to 29 years and pupped every other year, starting at age 8,
is only about 1% greater than the ri for the same life table truncated at age 19.

By tracking individuals across 19 years, we captured only a single year of the senescent
period for body mass in female Weddell seals [33] and missed the bulk of senescent declines
in annual survival rate [80], and, as such, we may not have been able to detect the effects
of senescence in this population. Therefore, as this population is the focus of a long-term
study, the effects of inbreeding on the senescence of seals should be revisited once all
genotyped individuals have completed their life cycle.

In this study, we were unable to detect previously identified associations between
either the colony of birth or the year of birth, and any of the life history parameters
we investigated. This fact raises the possibility that our sample was not representative
of the larger population. However, the similarity between our estimated probability of
survival, age at maturity, and reproductive interval and previous findings in this population
indicates that this is not the case. For example, we estimated the annual probability of
survival for a non-inbred mature individual to be 0.945 (95% confidence interval from
0.933 to 0.954), which compares well with previous reported probabilities of survival for
mature individuals (0.94 [36]; 0.905–0.942 [39]; 0.93–0.94 [37,80]). Our estimated mean
age at first reproduction for non-inbred seals of 7.39 years (95% confidence interval from
6.93 to 7.92 years) matched well with previously reported estimates in this population
(7.67 years [36]; 7.55–8.45 years [37]). We estimated the probability of reproduction in the
year following an individual’s first pup to be 0.548 (95% confidence interval from 0.442 to
0.649), which was close to the estimated probability (0.46) of [37]. We also estimated the
probability that an experienced breeder produced a pup the following year to be 0.716 (95%
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confidence interval from 0.684 to 0.746), which was slightly higher than was previously
reported (0.67, SD = 0.09) by [37] and lower than what was reported for females 8 to 19 years
of age by [80].

While small effect sizes are typical of other studies of heterozygosity fitness correla-
tions [26], the imprecise measure of inbreeding coefficients with only a small number of
markers could lead to an underestimate of inbreeding depression. In addition, the lack of
identity disequilibrium identified in this sample of Weddell seals could be caused by the
number of genotyped loci. For example, Ref. [90] found that nearly half of their simulations
with a similar numbers of microsatellite loci failed to detect statistically significant identity
disequilibrium even when statistically significant heterozygosity fitness correlations existed.
Therefore, the association between inbreeding and lifetime reproductive success could
strengthen if investigated with larger numbers of markers that are now available through
next-generation sequencing.

The two-step model presented in this study provides a method for incorporating some
of the uncertainty inherent in estimating individual inbreeding coefficients from multilocus
genotypes into estimates of inbreeding depression. This analysis method allowed us
to provide an appropriate context (i.e., the maximum plausible amount of inbreeding
depression in this population was modest) for the observed level of inbreeding depression
in this non-pedigreed population of Weddell seals.

5. Conclusions

While this study is an example of the file-drawer effect, it also highlights the benefit of
taking an evidentiary approach to comparing competing models as opposed to focusing
on statistical hypothesis testing alone. We were unable to reject the null hypothesis that
inbreeding depression does not reduce the lifetime reproductive success of Weddell seals
in this population. A strict focus on the failure to reject the null hypothesis would miss
the biological implications identified in this study. We were able to weigh evidence for
the competing hypotheses and estimate the impact of inbreeding on individual lifetime
reproductive success in this population by selecting between competing biological models.
With this approach, we found evidence that is consistent with, at most, a slight decrease in
lifetime reproductive success at values of inbreeding detected in this population.

Weighing evidence for competing biological models can allow managers to assess
the potential impacts of alternate approaches and determine how to best use limited
conservation resources more accurately. For example, our study found only a minor
influence of inbreeding depression on individual lifetime reproductive success, indicating
that inbreeding is not currently a primary concern to the conservation of this population of
Weddell seals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e25030403/s1, PowellEtAlSupplementalDataFile: file containing
biological and genetic data used in the presented analyses; PowellEtAlSupplementalModelFile: file
containing WinBUGS models used in the presented analyses.
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