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Abstract: Voice conversion (VC) consists of digitally altering the voice of an individual to manipulate
part of its content, primarily its identity, while maintaining the rest unchanged. Research in neural VC
has accomplished considerable breakthroughs with the capacity to falsify a voice identity using a small
amount of data with a highly realistic rendering. This paper goes beyond voice identity manipulation
and presents an original neural architecture that allows the manipulation of voice attributes (e.g.,
gender and age). The proposed architecture is inspired by the fader network, transferring the
same ideas to voice manipulation. The information conveyed by the speech signal is disentangled
into interpretative voice attributes by means of minimizing adversarial loss to make the encoded
information mutually independent while preserving the capacity to generate a speech signal from
the disentangled codes. During inference for voice conversion, the disentangled voice attributes can
be manipulated and the speech signal can be generated accordingly. For experimental evaluation, the
proposed method is applied to the task of voice gender conversion using the freely available VCTK
dataset. Quantitative measurements of mutual information between the variables of speaker identity
and speaker gender show that the proposed architecture can learn gender-independent representation
of speakers. Additional measurements of speaker recognition indicate that speaker identity can be
recognized accurately from the gender-independent representation. Finally, a subjective experiment
conducted on the task of voice gender manipulation shows that the proposed architecture can convert
voice gender with very high efficiency and good naturalness.

Keywords: voice conversion; attribute manipulation; representation learning; information
disentanglement; adversarial learning; cross-entropy

1. Introduction
1.1. Context

Voice conversion (VC) consists of digitally altering the voice of an individual, e.g., its
identity, accent, or emotion, while maintaining its linguistic content unchanged. Primarily
applied to identity conversion [1,2], VC has considerably increased in both popularity and
in quality thanks to the advances accomplished with neural VC; see the three editions of
the VC challenge [3–5] for a short review of the latest challenges and contributions. Similar
to face manipulation, voice conversion has a wide range of potential applications, such as
voice cloning and deep faking [6] in the fields of entertainment and fraud, anonymization of
voice identity [7,8] in the fields of security and data privacy, and digital voice prosthesis of
impaired speech [9] in the field of digital healthcare. In its original formulation, the VC task
consisted of learning the one-to-one statistical acoustic mapping between a pair of source
and target speakers from a common set of temporarily pre-aligned sets of utterances [2].
During training, the joint acoustic distribution between the source and target speakers was
modelled from a set of parallel utterances, usually by means of a Gaussian Mixture Model
(GMM). During conversion, a linear regression was processed on this joint distribution
in order to determine the voice characteristics of the target speaker conditionally to those
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of the source speaker. The use of the same sentences shared among speakers and the
pre-alignment between them has greatly facilitated learning, as the mapping can be learned
directly from this set of perfectly paired data. On the other hand, this constraint implies that
training data have to be recorded explicitly for each speaker pair, which in turn increases
the complexity of practical applications of the methods. From this original formulation,
many advances have been proposed through years, including one-to-many, many-to-one,
and many-to-many VC, in which a set of multiple speakers is used as prior knowledge to
pre-train conversion functions which are then further adapted to an unseen utterance or
speaker during conversion [10].

Neural VC, i.e., VC based on neural networks, was first introduced in [11], following
the one-to-one and parallel VC paradigm and simply replacing GMM by NN in order
to estimate the conversion function. Leveraging the successive advances that have been
established in the theory and application of neural networks to natural language processing,
computer vision, image processing, and speech processing [12–16], Neural VC has become
a standard that has achieved highly realistic rendering of voice identity conversion on a
small amount of data from a target voice.

1.2. Related Works

Through the multiple and various contributions in neural VC that have been presented
over the recent years, an important progressive change in the VC paradigm can be
distinguished from the initially agnostic learning of one-to-one VC using parallel datasets to
today’s structured and informed learning of many-to-many VC from non-parallel datasets.
Following the historical paradigm of one-to-one parallel VC, cycle-GAN and S2S with
attention mechanism, VC models have been proposed to learn the acoustic mapping from
pairs of sentences from source and target speakers. Inspired by [16], cycle-GAN VC [17–19]
attempts to learn the identity conversion function in both directions through a cycle. Beyond
the usual GAN losses, the cycle-consistency loss is assumed to stabilize the learning by
encouraging the preservation of the linguistic content (seen as a “background”) during
conversion. In S2S VC [20,21], the conversion is formulated in the form of a recurrent
encoder and decoder, at the interface of which an attention mechanism [14] is used to learn
the alignment between the recurrent encoding of the source and target speakers sequences,
thereby optimizing the sequential learning of the conversion. However, the one-to-one VC
framework using parallel datasets remains highly limited; the size of the parallel dataset is
too small to efficiently learn a conversion, and there is no solution to exploit knowledge
from large and non-parallel dataset to overcome this limitation.

To overcome the shortcomings of this paradigm, research efforts have gradually moved
towards many-to-many and non-parallel datasets, allowing the scalability of neural VC
with large and multiple speakers datasets, with the assumption that the increase of data
can induce a substantial increase in the quality and naturalness of the VC. Among the first
attempts, starGAN VC [22,23] was proposed to extend the paradigm of cycle-GAN to many-
to-many and non-parallel VC by proposing a conditional encoder–decoder architecture. As
opposed to cycleGAN VC, starGAN VC is composed of a single encoder–decoder in which
the decoder is conditioned on the speaker identity to be reconstructed. In addition to the
usual cycle-consistency and discriminator losses of a cycle-GAN, a classifier loss is added
to determine the speaker identity from the converted speech. Further research attempted
to break the need to learn any conversion function, either one-to-one or many-to-many, by
formulating the VC problem as a conditional auto-encoder [24–26]. Similar to starGAN,
this architecture is an auto-encoder in which the encoder part encodes the source speaker
from the input source speaker’s utterance and the decoder part reconstructs the target
speaker’s utterance from the source encoding and a speaker embedding. The fundamental
difference is in the fact that during training the source and the target speakers are simply
the same. During conversion, it is only necessary to manipulate the speaker attribute in
the decoder to convert the input speech to the desired target identity. This breakthrough,
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known as few-shot [25] or zero-shot VC [26], has opened the way to high-quality VC from
a very small number of examples of the target speaker.

In another line of research, VC based on comprehensively structured speech
representations has been investigated. According to the fundamental model of speech
communication, speech conveys verbal and non-verbal information: linguistic (the primary
meaning, i.e., the text or content), para-linguistic (secondary information that helps to
understand the intended meaning, e.g., the modality of a question or emotional state of
the speaker), and extra-linguistic (which provides only information about the speaker,
e.g., their identity or socio-geographical origin). VC architectures have started to integrate
explicitly linguistic content and speaker identity [27] information, e.g., by the explicit
use of textual information (Phonetic Posterior-Grams, PPG [28,29]) and with speaker
representation, usually referred to as speaker embedding [30]. In order to efficiently learn
a structured representation from raw data, it is necessary to disentangle the information
encoded in the signal [31]. This problem can be written in the form of a neural network
and tackled by adopting an information bottleneck [32] or adversarial [12,33] strategy, both
of which are grounded in information theory [34]. In [35], three bottlenecks were used to
separately encode the speech parameters of pitch, timbre, and rhythm, while in [36,37] the
authors employed adversarial learning of disentangled representations to learn a set of
representations that encodes specifically linguistic information and speaker identity, ideally
independent from one another. While recent VC systems can achieve realistic voice identity
conversion with limited data of the target speaker, in contrast to the wealth of research
into the manipulation of face attributes [33,38,39] there do not exist many studies that
investigate the conversion of other voice attributes, such as, for example, age and gender.

1.3. Contributions of This Paper

This paper proposes a structured neural VC architecture for manipulating voice
attributes by means of disentangling the attributes in the latent representation. The main
contributions of the paper can be listed as follows:

- An extension of the VC architecture presented in [40] that allows for the encoding and
manipulation of the voice by means of multiple attributes (content, identity, age, or
gender);

- An implementation of a network for voice attribute disentanglement based on a
fader network [33], an adversarial neural network originally established for face
manipulation. In the proposed VC architecture, the speaker identity code is further
decomposed adversarially into two parts, namely, a speaker identity code that is
independent of the desired attribute and an attribute code;

- The application of the proposed neural architecture to voice gender manipulation.
While this study only focuses on voice gender manipulation, we foresee extending
it in the future to manipulate other identity-related attributes such as age, accent, or
speaking style.

The remainder of this paper is organized as follows: Section 2 presents the core VC
architecture and the proposed neural disentanglement strategy, while Section 4 presents
a complete experimental evaluation of the proposed VC architecture with application to
voice gender manipulation, including objective and subjective experiments.

2. Neural VC: Manipulating Identity and Beyond

2.1. Neural VC with Content and Identity Disentanglement

The neural VC architecture used in this paper is based on the architecture presented
in [40], which was inspired by [36]. The main idea of this VC architecture is that disentangled
linguistic and speaker representation are encoded adversarially through dedicated encoders,
as illustrated in Figure 1. The inputs of the VC architecture are the speech signal matrix A,
represented by the mel-spectrogram computed on T time frames, and the sequence of T
phonemes p corresponding to the phonetic transcription of the input text aligned to the
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corresponding speech signal. Dual encoders, Ec and Es, are employed to encode linguistic
content and speaker information.
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Figure 1. Architecture of the neural VC system with adversarial learning of disentangled linguistic
and speaker representation. Top: training phase. Bottom: conversion phase. See Section 2.1 for
detailed description.

2.1.1. Speaker Encoder

The speaker encoder Es converts the speech signal A into a time-independent vector
hs, as it is assumed that the identity of a speaker does not vary within an utterance:

hs = Es(A) (1)

The speaker classification loss LSE is defined as the cross-entropy between the speaker
identity predicted from hs by a classifier Cs

s , and the true speaker identity s encoded in the
form of a one-hot vector

LSE(Cs
s |Es) = EA CE(Cs

s(h
s), s) (2)

where CE(.,.) denotes the cross-entropy between two random variables. Please note that the
cross-entropy can be interpreted directly in terms of the Kullback–Leibler divergence
between the distributions of the two considered variables, i.e., the extra quantity of
information needed to code the true distribution when using the priors of the estimated
distribution. In particular, the cross-entropy with softmax activation can be interpreted
directly in terms of mutual information between true labels and predicted labels in the case
of a classification task [41]. This indicates a strong interlacing between neural networks
and information processing in light of information theory.

2.1.2. Content Encoder

The content encoder Ec converts either the phoneme sequence p or the speech signal
A into a shared linguistic embedding Hc through a contrastive loss (see [36] for details):

Hc = Ec(A) (3)

Learning a shared encoding among both audio and text modalities can be related to
cross-modal domain adaptation, in which one wants to learn a code that is independent of
the input modality or distribution. As a result, the content encoder is trained to transcribe
the phonetic content from the speech signal. In this paper, the linguistic embedding has the
same length T as the aligned phoneme sequence (as well as the mel-spectrogram), meaning
that the time information is fully preserved during encoding.
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The content recognition loss LTC is defined as the cross-entropy between the phoneme
predicted from hc

n by the classifier Cc and the corresponding true phoneme label pn for the
nth time frame:

LTC(Cc|Ec) = Ep CE(Cc(hc
n), pn). (4)

2.1.3. Disentangling Identity and Content Information

In order to disentangle content and identity information, an adversarial strategy is
added to remove identity information from the linguistic embedding Hc. The speaker
classifier loss is defined as the cross-entropy between the speaker identity predicted from
hc

n by the classifier Cc
s and the true speaker identity s. An adversarial loss LADV(Ec) is

additionally defined with the opposite objective of learning linguistic representation Hc,
from which the speaker identity can not be recognized by the speaker classifier:

LADV(Ec|Cc
s) = EA ||u− Cc

s(h
c
n)||22 (5)

where u denotes a uniform distribution in which all speakers have the same probability
1/S, with S being the total number of speakers in the dataset.

2.1.4. Decoder

A decoder Ga conditioned on the disentangled content embedding Hc and speaker
embedding hs is employed to reconstruct an approximation Â of the original speech signal
A:

Â = Ga(hs = Es(A), Hc = Ec(A)) (6)

A reconstruction loss LRC is defined between the mel spectrogram of the reconstructed
speech signal Â and the mel spectrogram of the original speech signal A.

LRC(Es, Ec, Ga) = EA ||Ga(Es(A), Ec(A))−A||1 (7)

During training, the VC neural network is pre-trained on a dataset containing multiple
speakers. As the VC architecture mainly relies on an auto-encoder, there is no attribute
manipulation or conversion during training. This limitation has been further addressed
in [40] During conversion, the content encoder Ec computes the content embedding Hc

src,
corresponding to one utterance Asrc of the source speaker, solely from the audio modality,
as follows: Hc

src = Ec(Asrc). Meanwhile, the speaker encoder Es computes the speaker
embedding hs

tgt corresponding to one utterance A′tgt of the target speaker, as follows:
hs

tgt = Es(A′tgt). Then, the decoder Ga is conditioned on the linguistic embedding Hc
src and

the speaker embedding hs
tgt to generate the utterance Âtgt with the identity of the target

speaker, Âtgt = Ga(hs
tgt = Es(A′tgt), Hc

src = Ec(Asrc)). In this way, an utterance with the
linguistic content of the source utterance is pronounced with the identity of the target
speaker.

2.2. Disentanglement of Voice Attributes with Fader network

In the previous section, we presented the disentanglement of speech content and
speaker identity which is processed adversarially between parallel encoding. In the present
section, we introduce further disentanglement of voice attributes by proposing cascade
disentanglement using a fader network [33], as illustrated in Figure 2.

The speaker embedding hs resulting from the speaker encoder Es in the speaker space
serves as the input of the proposed fader network. This fader network is an autoencoder in
which the speaker embedding is encoded by Eatt to a low-dimensional latent code zs.

zs = Eatt(hs) (8)
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Conversely, the decoder Gatt tries to reconstruct the speaker embedding ĥs from the latent
code zs and the conditioning attribute variable yatt.

ĥs = Gatt(zs, yatt) (9)

The objective of the fader network is to be able to reconstruct the input variable ĥs from the
latent code zs and the conditioning variable yatt. To ensure that the conditioning variable is
effective, the goal is to make the latent code zs independent on the conditioning variable
yatt. To do this, we employ an adversarial scheme.

hs

audio
(Mel 

spec.)

Es

s

speaker space

A

LSC

LSE

Eatt Gatt

zs

Catt

Ls
RC

Ls
ADV

hs

yatt

to Ga

to Er

^

Figure 2. Architecture of the proposed speaker disentanglement. The speaker code hs is disentangled
into an attribute code att and a speaker code zs that are independent on attribute att. For simplicity,
only the speaker space of the architecture is presented.

First, the reconstruction loss of the auto-encoder LS
RC is defined as the mean absolute

error between the speaker embedding hs and the reconstructed speaker embedding ĥs:

LS
RC(Eatt, Gatt) = EhS ‖hS − Gatt(Eatt(hS), yatt)‖1 (10)

The objective of this first loss is that the encoder Eatt encodes the information zs in such a
way that the decoder Gatt is able to reconstruct the original input from the latent code zs

and the conditioning attribute yatt.

Second, a discriminator loss LS
D is defined as the cross-entropy between the attribute

predicted by the classifier Catt and the true attribute yatt, represented in the form of a
one-hot vector:

LS
D(C

att|Eatt) = EhS CE(yatt, Catt(Eatt(hS))) (11)

The objective of this second loss is that the classifier Catt is able to predict the correct
attribute yatt from the latent code zs.

Third, an adversarial loss LS
ADV is defined as the cross-entropy between the attribute

predicted by the classifier Catt and the wrong attribute 1− yatt, as follows:

LS
ADV(Eatt|Catt) = EhS CE(1− yatt, Catt(Eatt(hS))). (12)

The objective of this loss is that the classifier Catt cannot predict the the correct attribute
yatt from the latent code zs. This is defined in order to make the latent code zs independent
on the yatt variable.

Finally, the total adversarial loss of the fader network can be written as

LS
RC(Eatt, Gatt|Catt) = LS

RC(Eatt, Gatt) + λLS
ADV(Eatt|Catt). (13)



Entropy 2023, 25, 375 7 of 16

In this paper, yatt encodes the gender of the speaker as yatt = 0.0 for female and yatt = 1.0
for male. Additionally, the attribute discriminator Catt tries to predict the attribute yatt
from the latent code zs. A discriminator that is pre-trained on the speaker embedding
hs is employed to substitute the binary attribute yatt ∈ {0, 1} by the smooth posterior
probability of the discriminator ỹatt ∈ [0, 1]. Finally this fader is directly plugged into the
speaker space of the VC system after the speaker encoder Es. It is then possible to retrain
the decoder Ga of the global VC system, which we describe in one of the configurations in
the experimental section. The proposed architecture is acoustically agnostic; the network
learns voice attribute codes directly from the mel-spectrogram representation of the speech
signal without any assumptions about the acoustic characteristics being used to encode one
particular voice attribute. For instance, hs encodes all the time-fixed information related
to the speaker’s identity, which we assume includes its gender. Then, ys is a binary code
exclusively representing the gender of the speaker and zs encodes the speaker’s identity
independently of gender. Finally, the decoder Gatt which reconstructs the speech signal
from the latent speech representation learns a mapping between the disentangled codes
and their actual acoustic characteristics by mean of a mel-spectrogram representation.

3. Implementation Details
3.1. Neural VC Architecture

The model configuration parameters are the same as those described in [36], with the
exception of the recognition encoder Er and the decoder Ga (referred to as Da in [36]), which
are modified for the time-synchronized VC system. Table 1 presents the details of these
modification, together with the components of the fader network used for identity and
gender disentanglement, namely, the encoder Eatt, the classifier Catt, and the decoder Gatt.
The simplifications realized with respect to the recognition encoder Er and the decoder
Ga enable time-synchronous conversions and consequent savings in computation time
equating to approximately 33% of the total computation time for training on our server
with a single GPU GForce GFX 1080Ti.

Table 1. Model configuration details. FC refers to a fully-connected layer, BLSTM to a bi-directional
LSTM, and Tanh to the hyperbolic tangent activation function. The right arrow→ indicates successive
layers in the network.

Er 2 layers BLSTM-Dropout(0.2), 256 cells each direction→
FC-512-Tanh

Es 2 layers BLSTM-Dropout(0.2), 128 cells each direction→
average pooling→

FC-128-Tanh

Ga 2 layers BLSTM, 64 cells each direction→
FC-80

Eatt FC-60

Gatt FC-1

Gatt FC-128-Tanh

3.2. Pre- and Post-Processing

Following [36], our system operates on a mel-spectrogram representation of the speech
signal. For the signal analysis we follow the parameterization proposed in [42], that, is
the input signal is downsampled to 16 kHz, then converted into an STFT using a Hanning
window of 50 ms with hop size of 12.5 ms and an FFT size of 2048. We then use 80 mel
bins covering the frequency band from 0 to 8 Khz and convert the result into the log
amplitude domain. A standardization of the log-mel-spectrogram is applied at the input
of the VC system, i.e., on each mel bin, removing the mean and diving by the standard
deviation, which are pre-computed on the entire training dataset. A multi-speaker approach
is required for rendering audio from a generated mel spectrogram, as the generated mel
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spectrograms are not linked to any existing speaker identity. We initially used a Griffin
and Lim [43] algorithm for phase reconstruction; however, this did not provide sufficient
quality for perceptual evaluations. We then resorted to a multi-speaker waveglow-type
decoder, loosely following [44]. This decoder was trained over 900, 000 iterations using all
samples of the VCTK database with a batch size of 50 and segment length of 375 ms and
using the Adam optimizer with a learning rate of 10−4. While the quality of this decoder
is far from perfect, it provided consistently better results than the quality obtained with
the Griffin and Lim algorithm, and was used for the perceptual tests. The decoder has a
slight tendency to produce an overly rough voice quality, indicating instability on F0. The
decoder is subject to further research, and will be published elsewhere.

3.3. Computation Infrastructure and Runtime Costs

All training runs were performed on a single GPU (GForce GFX 1080Ti). The inference
and the mel inversion were run on the CPU (Xeon(R) CPU E5-2630 v4 @ 2.20 GHz), while a
number of the figures have been generated using the GPU. The duration of the VC model
training is 20 min per epoch with 80 epochs (roughly 27 h), and the training of the gender
autoencoder model lasts 1 min and 30 s per epoch with 400 epochs (total of 10 h). The
inference of one sentence of 1.5 s takes around 2 s for computing the mel-spectrogram plus
two seconds for mel inversion when using our CPU.

With respect to the training parameters, the VC system makes use of the Adam
optimizer with a learning rate equal to 10−3 and a batch size of 32, while training of the
gender autoencoder is carried out with the SGD optimizer using a learning rate equal to
10−4, with the momentums set to 0.9 and a batch size of 64. In addition, the pre-trained
gender discriminator makes use of the SGD optimizer, again with a learning rate equal to
10−4 and momentum of 0.9; three epochs are used, with each epoch lasting 1 min and 30 s,
and the batch size is equal to 64.

4. Experiments
4.1. Dataset

The English multi-speaker VCTK corpus [45] is used for VC and gender model training
as well as for gender conversion. The VCTK dataset contains speech data uttered by 110
speakers and the corresponding text transcripts. Each speaker reads about 400 sentences
selected from English newspaper, which represents a total of about 44 hours of speech. All
speakers were included in the training and validation sets. For each speaker, we split the
database into a training set with 90% of the sentences and a validation set with 10% of
them. The total duration of the database was around 27 h after removing silences at the
beginning and end of each sentence.

4.2. Preliminary Illustration

Figure 3 shows four spectrograms superimposed with related pitch contours (F0, in
red solid lines). The sentence “Ask her to bring these things with her from the store” is uttered
by a male speaker (left) and by a female speaker (right). The top figures show the original
signals and the bottom figures correspond to the conversion conditioned on the opposite
gender. The gender conversion algorithm clearly transposes the average F0 in line with
what we would have done to convert between male and female speakers using traditional
vocoders (±1 octave) [46]. However, in contrast to what we would have done when using
traditional vocoders, here the transposition is dynamic, changing the intonation contours
as well. Additionally, the algorithm creates vocal fry at the final words of the utterance
when converting from male to female, while it does the opposite when converting from a
female to a male voice. We conjecture that this presence or absence of vocal fry reflects a
general tendency of the male and female voices in the database.
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Figure 3. Visualization of the spectrograms and F0 curves of the sentence “Ask her to bring these
things with her from the store.” Top: Two spectrograms of original speech signals of a male speaker
(left) and a female speaker (right). Bottom: Spectrograms of the two signals after gender conversion
using the proposed model. The solid red line is the F0. The y-axis shows the frequency in Hertz,
while the x-axis shows the time in seconds.

4.3. Objective Evaluations

To assess whether the proposed framework is successful in disentangling speaker
identity and gender representation, a set of objective evaluations were conducted: a gender
classification task (including a short ablation study on the fader structure), a speaker
classification task, the mutual information between the embeddings and the true gender,
and a 2D visualization of the embeddings.

4.3.1. Experiment 1: Gender Recognition

Table 2 reports the gender classification accuracy computed with the pre-trained
gender discriminator at the original speaker embedding hs (original) or the reconstructed
speaker embedding ĥs of the gender autoencoder with different values of gender
conditioning w: with the estimated gender ŵ from the original speech signal (est. gender),
by swapping to the opposite gender 1− ŵ (inv. gender), or by neutralizing the gender
1/2 (de-gender). With the adversarial setting, the original speaker embedding and the
reconstructed speaker embedding with the estimated gender have very high accuracies.
When swapping the gender by conditioning the reconstructed embedding on the opposite
of the estimated gender the accuracy becomes zero, which is expected because the gender
is inverted. With reconstruction conditioned on 1/2, the accuracy is around 50%, which
corresponds to a random decision in a binary classification problem. In the ablation study
conducted by removing the adversarial component from the fader network, the accuracies
are very high in all conditions, which means that the gender conditioning is ineffective.
Therefore, the adversarial loss is necessary for disentangling the speaker’s gender from the
speaker’s identity. This shows that the adversarial loss is both required and highly efficient
for disentangling and manipulating speaker gender with respect to speaker identity.
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Table 2. Ablation study: gender classification accuracy using the pre-trained discriminator computed
on the original speaker embedding hs and the reconstructed speaker embedding conditioned on the
gender w. The dimension of the speaker embedding hs is 128 and the dimension of the latent code zs

to 60.

Gender Accuracy [%]

with adv. loss
Original hs 99.2
Est. Gender (w = w̃) 99.0
Inv. Gender (w = 1− w̃) 0.8
De-gender (w = 1/2) 54.6

without adv. loss
Original hs 99.2
Est. Gender (w = w̃) 99.2
Inv. Gender (w = 1− w̃) 98.8
De-gender (w = 1/2) 99.1

4.3.2. Experiment 2: Speaker Recognition

A Receiver Operating Characteristic curve, or ROC curve, is a graphical plot that
illustrates the diagnostic ability of a binary classifier as its discrimination threshold is
varied. The ROC curve is created by plotting the true positive rate (TPR) against the false
positive rate (FPR) at various threshold settings. The Equal Error Rate (EER) is the error
rate of a binary classifier when the operating threshold for the accept/reject decision is
adjusted such that the probability of false acceptance and that of false rejection become
equal. On the ROC curve, it corresponds to the intersection with the anti-diagonal line.
Figure 4 presents the Receiver Operation Characteristic (ROC) curves corresponding to
the speaker classification from the original speaker embedding and the reconstructed
speaker embedding conditioned on gender, while Table 3 summarizes the equal error
rates (EERs) obtained from the original speaker embedding and the reconstructed speaker
embedding conditioned on gender. The EER is very low (2.8%) for the original speaker
embedding, which indicates that the speaker classifier is very efficient at determining
speaker identity from the speaker embedding. Manipulation of the gender conditioning w
degrades the EER in all cases; however, these rates remain relatively low, at around 6.8%
for the gender estimated from the pre-trained classifier and w = 1/2 and around 9.2%
when the gender is swapped. This means that most of the speaker identity is preserved
after gender manipulation. However, the speaker identity cannot be totally preserved, as
identity and gender are certainly not linearly separable variables.

Table 3. Equal Error Rates in percentages of speaker classification using speaker encoder classifier
computed on the original speaker embedding hs and the reconstructed speaker embedding
conditioned on the gender w. The dimension of the speaker embedding hs is 128 and the dimension
of the latent code zs is 60.

EER [%]

Original hs 2.8
Est. Gender (w = w̃) 6.9
Inv. Gender (w = 1− w̃) 9.2
De-gender (w = 1/2) 6.8
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Figure 4. Receiver Operating Characteristic curves of speaker classification using the speaker
encoder classifier as computed on the original speaker embedding hs and the reconstructed speaker
embedding conditioned on the gender w. In black, w is the actual binary gender; green is the gender
as classified by the pre-trained gender classifier w = w̃; finally, blue is the inverse gender as classified
by the pre-trained gender w = 1− w̃.

4.3.3. Experiment 3: Mutual Information and Visualization of Embeddings

Table 4 presents the approximated calculation of the mutual information between
the true gender and the original speaker embedding and the conditionally reconstructed
speaker embeddings. This score is computed using an estimator of the mutual information
between discrete and continuous variables, as described in [47]. The dimension of the
continuous data is reduced from 128 to 8 using PCA and the mutual information is obtained
by selecting the pair of coordinates that maximize the latter. The PCA coordinates used to
plot the 2D visualizations in Figure 5 are selected in the same way. From Table 4, the mutual
information corresponding to the latent code zs and the de-gender w = 1/2 are much
lower that the others. This indicates that the latent code zs contains very little information
about the gender and becomes mostly gender-independent, as illustrated in Figure 5, as
well as that the conditioning w = 1/2 successfully generates a speaker embedding that
is mostly genderless. This highlights the fact that the proposed method for achieving
disentanglement between speaker identity and gender is highly effective.

Table 4. Approximation of the mutual information between the true gender and the continuous
multi-dimensional embedding. The dimension of the speaker embedding hs is 128 and the dimension
of the latent code zs is 60.

Mutual Information

Original hs 0.47
Est. Gender (w = w̃) 0.44
Inv. Gender (w = 1− w̃) 0.38
De-gender (w = 1/2) 0.16
Latent code zs 0.11
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Figure 5. Left: PCA visualization of the speaker encoder embeddings hs on the evaluation set; the
selected components are 1 and 2. Right: PCA visualization of the latent code zs on the evaluation set;
the selected components are 3 and 7.

4.4. Subjective Evaluation

To assess whether the proposed architecture is efficient at converting the gender of the
voice, a subjective evaluation was conducted.

4.4.1. Baseline Algorithm

To the best of our knowledge, there are no neural gender conversion algorithms
available in the literature; therefore, we used a traditional signal processing approach as
our baseline for perceptual tests. Classic voice transformation algorithms perform gender
manipulation by means of modifying the average of the fundamental frequency (F0) and
the positions of the vocal tract resonances (known as formants). Due to physiological
differences between the female and male voice organs, notably the size of the vocal folds
and vocal tract, these two parameters have average values which generally differ for
male and female voices. These differences have been measured and documented in
the literature [48,49]. Considering that these parameters are part of the physiological
configurations of the vocal organs, they are part of the speaker’s identity; it has been
shown in [46] that a constant and independent transposition of the F0 and the formants
can be used to successfully modify the perceived gender and age of a voice. Following
these findings, we use the following parameters for gender conversion: F0 is shifted by
± one octave (±1200 cents) and the spectral envelope is shifted by ±3 semi-tones (i.e.,
±300 cents), where the sign of the shift depends on the gender of the original sound. For
male to female, a positive sign is used, while a negative sign is used for female to male
conversion. A shape-invariant phase vocoder [50] is used for signal manipulation by using
the true envelope estimator for the representation of the formant structure [51]. These
types of algorithms have been used successfully in the past for gender transformation for
professional uses. However, the default setup does not work equally well for all voices, and
manual fine tuning is generally employed to optimize the coherence of the transformed
voice signal. As the proposed algorithm is fully automatic, we did not apply manual tuning
for the signals used in the subjective tests.

4.4.2. Experimental Protocol

The task consisted of listening to one speech sample (converted or not) and judging
the following:

(1) whether the voice is typically perceived as: feminine, rather feminine, uncertain, rather
masculine, or masculine;

(2) the sound quality on a standard Mean Opinion Score (MOS) 5-degree scale from 1 (bad)
to 5 (perfect), which is commonly used for experimental evaluation of Text-To-Speech
and Voice Conversion systems.



Entropy 2023, 25, 375 13 of 16

Each participant had to judge twenty speech samples which were randomly selected
from among all of the speech samples produced for the subjective experiments. Four
speakers were used for the experiment, two males (p232 and p274) and two females (p253
and p300), with five randomly chosen sentences per speaker in the validation set. Six
configurations were compared (the term in parenthesis is used as an identifier in Figure 6):

(1) the original audio signal (True) and converted audio signal with:
(2) the original VC system (VC);
(3) a phase vocoder (phase voc.; see supplementary for details) with two cases: female-to-

male conversion (f2m) and male-to-female conversion (m2f);
(4) the VC system with the proposed gender autoencoder (base) with five conditioning

values of the parameter w̃ ∈ {0, 1/4, 1/2, 3/4, 1};
(5) the VC system with the gender autoencoder but trained without the fader loss (nofader),

with the five values of the w̃ parameter; and
(6) the VC system with the gender autoencoder with the VC decoder re-trained (adapt)

with the five values of the w̃ parameter.

Figure 6. Top: MOS scores obtained for the six configurations (mean and 95% confidence interval).
Bottom: perceived voice gender for the six configurations (mean and 95% confidence interval).

4.4.3. Results and Discussion

Figure 6 presents the MOS scores and perceived gender for the compared system
configurations (mean and 95% confidence interval). Regarding the perceived quality, the
original speech samples have the highest score (4.6), the original VC system samples have
similar scores as the ones reported in [36] (2.90), and the samples converted with the
phase vocoder have fairly low scores (1.6), which is due to the use of the default settings
and indicates the limitation of voice conversion based on signal processing only. The
three versions of our proposed VC system have similar scores that are comparable to
those of the original system (between 3.0 and 4.0): 2.9 for the base VC system, 3.11 for
the nofader VC system, and 2.97 for the adapt VC system. This shows that the addition of
the gender auto-encoder does not degrade the conversion quality. While MOS scores do
not constitute a direct measurement of speech intelligibility, the perceived quality of the
speech signal clearly is an indicator of speech intelligibility. The scores that we obtained
show that the proposed VC has a high rendering sound quality. This quality tends to
be degraded in the case of the base VC system from female to male; however, this trend
tends to disappear for the adapt VC system in which the VC decoder is re-trained together
with the gender auto-encoder. Regarding the perceived gender, the true gender is easily
recognized for the original speech samples, the converted speech with the original VC
system, and the converted speech with the phase vocoder. As mentioned previously, the VC
system with a gender autoencoder without fader loss is totally inefficient at converting the
gender. For the proposed VC system with gender auto-encoder, the gender conditioning is
efficient at manipulating the perceived gender during conversion, as a clear variation of the
perceived gender can be observed with respect to the conditioned gender. In the base VC
system, however, there is a discontinuity around the value w = 1/2, which means that the
conversion jumps from female to male and fails to generate genderless voices. This appears
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to be much more linear in the adapt VC system, which again indicates that the re-training of
the VC decoder can improve conversion around the genderless value (w = 1/2).

5. Conclusions

This paper presents a structured neural VC architecture that allows the manipulation
of voice attributes (e.g., gender and age) based on adversarial learning of a hierarchically
structured speech and speaker encoding. The proposed VC architecture employs multiple
auto-encoders to encode speech as a set of idealistically independent linguistic and extra-
linguistic representations, which are learned adversarially and can be manipulated during
VC. Moreover, the proposed architecture is time-synchronized, meaning that the original
voice timing is preserved during conversion; this enables its use in lip-syncing applications.
A set of objective and subjective evaluations conducted on the VCTK dataset shows the
efficiency of the proposed framework on the task of voice gender manipulation. Our
further work will investigate the generalization of the proposed framework to other voice
attributes, such as age, attitude, and emotion.
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