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Abstract: Chaotic nonlinear dynamical systems, in which the generated time series exhibit high
entropy values, have been extensively used and play essential roles in tracking accurately the
complex fluctuations of the real-world financial markets. We are concerned with a system of semi-
linear parabolic partial differential equations supplemented by the homogeneous Neumann boundary
condition, which governs a financial system comprising the labor force, the stock, the money, and the
production sub-blocks distributed in a certain line segment or planar region. The system derived
by removing the terms involved with partial derivatives with respect to space variables from our
concerned system was demonstrated to be hyperchaotic. We firstly prove, via Galerkin’s method
and establishing a priori inequalities, that the initial-boundary value problem for the concerned
partial differential equations is globally well posed in Hadamard’s sense. Secondly, we design
controls for the response system to our concerned financial system, prove under some additional
conditions that our concerned system and its controlled response system achieve drive-response
fixed-time synchronization, and provide an estimate on the settling time. Several modified energy
functionals (i.e., Lyapunov functionals) are constructed to demonstrate the global well-posedness
and the fixed-time synchronizability. Finally, we perform several numerical simulations to validate
our synchronization theoretical results.

Keywords: hyperchaotic systems; financial systems; well-posedness; fixed-time synchronization;
modified energy functionals

1. Introduction

In recent years, due to the frequent application of advanced economic and/or finan-
cial tools in dealing with problems from real financial markets or social governance, it is
increasingly interesting to construct nonlinear dynamical systems, which could induce (hy-
per)chaotic behavior, to study in-depth the economic and/or financial behaviors from the
mathematical viewpoint; see [1–7] for instance, among the vast related references. Huang
and Li ([1], pp. 55–60) studied, in the 1990s, the financial scenario that the interest rate
is sufficiently influenced only by the investment demand and the price index, and intro-
duced the following 3D chaotic financial model which comprises the labor force sub-block,
the stock sub-block, the money sub-block, and the production sub-block:

v̇1 =(v2 − a)v1 + v3 in R+,

v̇2 =− bv2 − (v1)
2 + 1 in R+,

v̇3 =− cv3 − v1 in R+.

(1)
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Here and hereafter: the unknowns v1, v2, and v3 are written for the interest rate, the invest-
ment demand, and the price index, respectively; v̇ denotes the derivative of the unknown
v with respect to the time variable t, that is, v̇ = dv

dt ; the parameters a, b, c, required to be
non-negative, represents the savings, the cost per investment, and the elasticity of demand
of commercial markets, respectively; R+ = [0,+∞); see ([1], pp. 55–60) for details. It is not
difficult to find from model (1) that the surplus v2 − a between investment and savings
contributes positively to the interest rate in a proportional way, and the price index adjusts
the interest rate structurally; the cost of investment and the interest rate could reduce the
invest demand; the (nominal and/or real) interest rate can influence the inflation rate (and
equivalently, the price index). Yu, Cai, and Li [5] considered another financial scenario in
which the interest rate is influenced dramatically not only by the investment demand and
the price index, but also by the average profit margin, and modified the financial system (1)
into the following new financial system:

v̇1 =(v2 − a)v1 + v3 + v4 in R+,

v̇2 =− bv2 − (v1)
2 + 1 in R+,

v̇3 =− cv3 − v1 in R+,

v̇4 =− αv4 − βv1v2 in R+,

(2)

where the unknown v4 is written for the average profit margin (see (1) for the financial
explanation of the unknowns vk, k = 1, 2, 3), and the parameters α and β, required to
be non-negative, represent the intrinsic restriction on the financial development and the
intensity of cost due to investment and the increase in interest rate, respectively. Interested
readers can consult [1–6] for a more detailed explanation of the unknowns vk (k = 1, 2, 3, 4)
and the parameters a, b, c, α and β.

As can be seen clearly from models (1) and (2), the regional disparities of the economy
have not been taken into consideration in the existing references yet. Since different subre-
gions have different resource advantages and different development strategies and policies,
economic development exhibits inevitably regional disparities. For example, regional
inequalities of income and wealth exist commonly in eastern and western cities in China.
In the meantime, every measure taken to deal with problems in the financial system would
necessarily influence the economic development in the future, and therefore, the memory
effect that exists in dynamical systems concerning economic evolution should not be ne-
glected. However, as remarked in Reference [8] (see also References [4,9,10]), the memory
effect in dynamical systems driven by financial behaviors could result in dissipation. In
view of these two phenomena, it seems to be more natural to construct systems of parabolic
partial differential equations, whose space variables run over a line segment or a planar
region, to track the complex financial behaviors in the real-world markets.

Let Ω be a bounded connected open subset of the N-dimensional Euclidean space
RN (N ∈ N, the set of positive integers). In the sequel, we shall always assume that Ω
has a C 4 boundary, and consider our economic development in the region Ω. We shall
write hereafter ∇ and div for the gradient and the divergence operator on RN , respectively,

namely ∇ = (∂x1 , . . . , ∂xN )
> and div =

N

∑
`=1

∂x` , where ∂x` = ∂
∂x`

denotes the partial

derivative with respect to the space variable x`, ` = 1, . . . , N. In the meantime, we shall
denote by ν(x) the outward unit normal vector field along the boundary ∂Ω of the region Ω.
As alluded above, memory effect and regional inequalities in economic development in the
whole region Ω shall not be neglected in the rest of the paper. To facilitate our explanation
here, we write here temporarily v = v(x, t), (x, t) ∈ Ω × R+, for a certain economic
quantity occupying the region Ω and evolving in time t. Assume that the diffusion of v(x, t)
due to regional disparities and/or memory effect can be formulated as div(D(x)∇v(x, t)),
where the space-varying coefficient function D(x) is included to stress that the diffusion
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of the economic quantity depends on the space variables. Following these ideas and the
results in References [5,11], we are motivated to consider the new model

∂tv1 = div(D1∇v1) + (v2 − a)v1 + v3 + v4 in Ω×R+,

∂tv2 = div(D2∇v2)− bv2 − (v1)
2 + 1 in Ω×R+,

∂tv3 = div(D3∇v3)− cv3 − v1 in Ω×R+,

∂tv4 = div(D4∇v4)− αv4 − βv1v2 in Ω×R+,

∂νv1 = ∂νv2 = ∂νv3 = ∂νv4 = 0 on ∂Ω×R+,

(3)

where vk = vk(x, t) is the unknown, Dk = Dk(x) represents the intensity of the diffusion
of vk, ∂νvk denotes the normal directional derivative of vk (namely ∂νvk =

∂vk
∂ν = ν>∇vk),

and ∂νvk = 0 means that there is no flux of vk along the boundary of Ω, k = 1, 2, 3, 4. The
no-flux of vk (k = 1, 2, 3, 4) on the boundary means that we are focused on the financial
behaviors in Ω and all the ‘external effects’ on vk (k = 1, 2, 3, 4) can be neglected. The
interested readers could consult [9,12–14] for more discussions on motivations to introduce
diffusion terms to the financial system (1).

Remark 1. It is not difficult to find that all the equilibrium states Pk (k = 1, 2, 3) (see (4)) of the
financial system (2) are indeed equilibrium states of the system (3). This is the very preliminary
result of the system (3) from the viewpoint of dynamical system theory.

Remark 2. From the mathematical point of view, it seems to be unnecessary to demand that Ω be
connected. From the practical viewpoint of finance, if the concerned region is not connected, then
we can study the economic behavior separately in each connected component of the whole region.
The concerned Ω is usually very large in size; in this situation, the economic development is not
sensitive to changes in relatively small portions of the boundary of Ω, and therefore it is natural to
assume that Ω has a C 4 boundary. Besides, the assumption that Ω has its boundary in the class C 4

would facilitate our later mathematical presentation.

In the literature, the financial systems (1) and (2) have been widely studied from the
point of view of dynamical system theory; see References [3–6,15–17]. We are inspired by
these results, and therefore, we are glad to use several lines to recall the related results in
these references. It is observed by authors of Reference [5] that when

αb + cβ + abcα− cα

c(β− α)
> 0,

the system (2) has three equilibrium states, that is,

P1(

√
αb(1 + ac)
c(β− α)

+ 1,
α(1 + ac)
c(β− α)

,−1
c

√
αb(1 + ac)
c(β− α)

+ 1,− β(1 + ac)
c(β− α)

√
αb(1 + ac)
c(β− α)

+ 1),

P2(0,
1
b

, 0, 0), and

P3(−

√
αb(1 + ac)
c(β− α)

+ 1,
α(1 + ac)
c(β− α)

,
1
c

√
αb(1 + ac)
c(β− α)

+ 1,− β(1 + ac)
c(β− α)

√
αb(1 + ac)
c(β− α)

+ 1). (4)

When a = 0.9, b = 0.2, c = 1.5, α = 0.17, and β = 0.2, it is concluded in Reference [5]
that Pk is an unstable saddle point of the dynamical system (2), k = 1, 2, 3, and that the
dynamical system (2) has four Lyapunov exponents: −1.1499, 0, 0.018041, 0.034432. These
numerical simulations, together with some other calculations, imply that system (2) is
indeed hyperchaotic. As explained and visualized in Reference [18], the entropy of time
series generated by the financial system (2) exhibits relatively high values when system
(2) undergoes the hyperchaos phenomenon; see References [18–22], for instance, for more
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explanation on the relation between entropy and chaos. This could help us locate accurately
chaotic and periodic attractors in the system (2). Chaos (or hyperchaos) in financial systems
brings in difficulties in predictions and financial systems planning; see References [2,23].

To provide scientific suggestions in management and decision-making strategies to
maintain the saving amount to a certain level that restores the economic cycle’s normal-
ization, it is necessary to study, via mathematical tools, the possibility of coming up with
suitable controls to suppress (stabilize) or synchronize the (hyper)chaos; see Reference [24].
For control systems, stabilization and synchronization have close relationships. The sta-
bilization problem has already been extensively investigated for (hyper)chaotic financial
systems; the interested readers can consult, for instance, References [13,14,25–27], for some
intuition and new observations concerning this topic. Analogously to the stabilization
problem, the synchronization problem for (hyper)chaotic financial systems has also been
investigated in several references; see References [28–33]. Synchronization is one of the
most interesting collective behaviors of dynamical systems, and therefore has aroused
tremendous interest in many application fields, such as secure communication, biolog-
ical systems, and information processing; see References [26,34–37] and the references
cited therein.

As will be shown graphically, the financial system (3) is ‘chaotic’; see Section 4. One of
our aims in this paper is to study the synchronization problem for system (3). To formulate
clearly our synchronization problem, we have to introduce the response system

∂tṽ1 = div(D1∇ṽ1) + (ṽ2 − a)ṽ1 + ṽ3 + ṽ4 + W1 in Ω×R+,

∂tṽ2 = div(D2∇ṽ2)− bṽ2 − (ṽ1)
2 + 1 + W2 in Ω×R+,

∂tṽ3 = div(D3∇ṽ3)− cṽ3 − ṽ1 + W3 in Ω×R+,

∂tṽ4 = div(D4∇ṽ4)− αṽ4 − βṽ1ṽ2 + W4 in Ω×R+,

∂νṽ1 = ∂νṽ2 = ∂νṽ3 = ∂νṽ4 = 0 on ∂Ω×R+,

(5)

in which the unknown ṽk = ṽk(x, t) has the same meaning as vk in system (3), and Wk =
Wk(x, t) denotes a control input, k = 1, 2, 3, 4. For system (5), (3) is called the drive system.
Additionally, our synchronization problem is closely related to the following definition.

Definition 1. The drive system (3) and the response system (5) are said to achieve fixed-time
synchronization, or be synchronized in a fixed time, provided that there exists a positive time instant
T (usually referred to as the settling time) and a control quadruple (W1, W2, W3, W4)

>, such
that for every trajectory quadruple (v1, v2, v3, v4)

> of system (3) and every trajectory quadruple
(ṽ1, ṽ2, ṽ3, ṽ4)

> of system (5) with the control (W1, W2, W3, W4)
> implemented, we have

ṽk = ṽk a.e. in Ω× [T,+∞), k = 1, 2, 3, 4. (6)

Remark 3. The sense in which a quadruple (v1, v2, v3, v4)
> is a trajectory of system (3) and a

quadruple (ṽ1, ṽ2, ṽ3, ṽ4)
> is a trajectory of system (5) will be given as in Definition 3. As will

be illuminated by Theorems 2 and 4, we shall give (W1, W2, W3, W4)
> as in (48), and prove that

both the trajectory of system (3) and the trajectory of the controlled system (5) exist globally in time
and belong to the space C (R+; L2(Ω;R4)). This ensures that (6) makes sense and implies that
Definition 1 is indeed equivalent to (58), and also equivalent to (6) along with

(ṽ1(·, t)− v1(·, t), ṽ2(·, t)− v2(·, t), ṽ3(·, t)− v3(·, t), ṽ4(·, t)− v4(·, t))>

→ (ṽ1(·, T)− v1(·, T), ṽ2(·, T)− v2(·, T), ṽ3(·, T)− v3(·, T), ṽ4(·, T)− v4(·, T))>

= 0 in L2(Ω;R4), as t→ T.

Due to these equivalences, to establish fixed-time synchronizability, it suffices to prove (58).
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As pointed out above, several papers have already been published concerning the
synchronization problem for (hyper)chaotic financial systems. Among them, as will be seen
later, are the results in References [30–32], which are closer to the synchronization result
in this paper. Yousefpour et al. [30] designed an adaptive terminal sliding mode control,
equipped with a radial basis function neural network estimator, for the response system to
the time-fractional-order (in the Grünwald–Letnikov sense) counterpart of the financial
system (2), and came up with a criterion to guarantee that the the time-fractional-order (in
the Grünwald-Letnikov sense) counterpart of (2) and its response system with the designed
control implemented achieves finite-time synchronization. The idea of using a neural
network estimator in designing synchronization control was also applied to the financial
system (1). Yao et al. [31] proposed a suitable control for the response system corresponding
to the financial system (1) based on a neural adaptive control approach, and proved, with
the aid of a barrier Lyapunov function, that the financial system (1) and its response
system with the proposed control implemented achieved fixed-time synchronization. As
mentioned in Reference [31], the control designed in Reference [31] has many advantages
over the linear feedback control used in several other references; among them, it ensures
that the synchronization errors remain always within the predefined output constraints.
Almost in the same time period, He, Peng, and Zheng [32] considered the fixed-time
synchronization problem for time-fractional-order counterparts of the financial system
(1), more precisely, they designed an appropriate control for the response system to the
time-fractional-order (in Caputo’s sense) counterpart of the system (1), and provided a
criterion to guarantee that the the time-fractional-order (in Caputo’s sense) counterpart
of (1) and its response system with the designed control implemented achieved fixed-
time synchronization.

Our another aim of this paper comes from the observation: we have to explain in
detail what we mean by a trajectory of the financial system (3) or the financial system (5).
As is known to all, the definition of trajectories of the financial systems (1) and (2) is very
clear, and the justification of the existence of trajectories is very classical in the literature.
However, for the financial systems (3) and (5), it is very complicated to define the trajectory,
and it is difficult to verify the existence of trajectories. To overcome these difficulties, we
start by equipping the financial system (3) with the initial condition

v1(·, 0) = v0
1 in Ω,

v2(·, 0) = v0
2 in Ω,

v3(·, 0) = v0
3 in Ω,

v4(·, 0) = v0
4 in Ω,

(7)

and by equipping the financial system (5) with the initial condition
ṽ1(·, 0) = ṽ0

1 in Ω,

ṽ2(·, 0) = ṽ0
2 in Ω,

ṽ3(·, 0) = ṽ0
3 in Ω,

ṽ4(·, 0) = ṽ0
4 in Ω,

(8)

where v0
k and ṽ0

k are to be given in a certain function space, k = 1, 2, 3, 4. Now, we would
like to clarify the exact sense of a solution to the Neumann boundary value problem (3) or
a trajectory of the model (3). The definition of the trajectory of the financial system (5) can
be given in a similar way. We start by recalling the notion of classical solutions to systems
of parabolic-type partial differential equations.
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Definition 2. Let T ∈ (0,+∞). The quadruple

(v1, v2, v3, v4)
> ∈ C 2,1(Ω× (0, T];R4) ∩ C (Ω× [0, T];R4)

is said to be a classical solution to the boundary value problem (3), or a trajectory of the financial
system (3) in the strict sense, in the interval [0, T], provided that the quadruple (v1, v2, v3, v4)

>

satisfies the partial differential equations in the problem (3), and satisfies the boundary conditions
∂νv1 = ∂νv2 = ∂νv3 = ∂νv4 = 0 on ∂Ω× [0, T).

Let 0 < T 6 +∞. The quadruple (v1, v2, v3, v4)
> is said to be a classical solution to the

boundary value problem (3), or a trajectory of the financial system (3) in the strict sense, in the
interval [0, T), provided that the restriction (v1, v2, v3, v4)

>|Ω×[0,T̃], for every 0 < T̃ < T, is a
classical solution to the problem (3), or a trajectory of the system (3) in the strict sense, in the
interval [0, T̃].

In the real world, the values of (v1, v2, v3, v4)
> are indeed collected by financial work-

ers or the government. Therefore, the function vector (v1, v2, v3, v4)
> should have a lower

regularity. Thus, we are led to the following definition:

Definition 3. Given (v0
1, v0

2, v0
3, v0

4)
> ∈ L2(Ω;R4). Let T ∈ (0,+∞). The quadruple

(v1, v2, v3, v4)
> ∈ C ([0, T]; L2(Ω;R4)) ∩ L2(0, T; H1(Ω;R4))

is said to be a weak solution to to the initial-boundary value problem (3)–(7), or a trajectory of the
financial system (3) satisfying (7), in the interval [0, T], provided that the quadruple (v1, v2, v3, v4)

>

satisfies the following: For every quadruple (ϕ1, ϕ2, ϕ3, ϕ4)
> ∈ H1(Ω;R4) of test functions, it

holds that ∫
Ω

v1(x, t)ϕ1(x)dx−
∫

Ω
v0

1(x)ϕ1(x)dx

=
∫ t

0

∫
Ω

ϕ1(x)((v2(x, s)− a)v1(x, s) + v3(x, s) + v4(x, s))dxds

−
∫ t

0

∫
Ω

D1(x)∇>v1(x, s)∇ϕ1(x)dxds for t ∈ [0, T],∫
Ω

v2(x, t)ϕ2(x)dx−
∫

Ω
v0

2(x)ϕ2(x)dx

=
∫ t

0

∫
Ω

ϕ2(x)
(

1− bv2(x, s)− (v1(x, s))2
)

dxds

−
∫ t

0

∫
Ω

D2(x)∇>v2(x, s)∇ϕ2(x)dxds for t ∈ [0, T],∫
Ω

v3(x, t)ϕ3(x)dx−
∫

Ω
v0

3(x)ϕ3(x)dx

=−
∫ t

0

∫
Ω

ϕ3(x)(cv3(x, s) + v1(x, s))dxds

−
∫ t

0

∫
Ω

D3(x)∇>v3(x, s)∇ϕ3(x)dxds for t ∈ [0, T],∫
Ω

v4(x, t)ϕ4(x)dx−
∫

Ω
v0

4(x)ϕ4(x)dx

=−
∫ t

0

∫
Ω

ϕ4(x)(αv4(x, s) + βv1(x, s)v2(x, s))dxds

−
∫ t

0

∫
Ω

D4(x)∇>v4(x, s)∇ϕ4(x)dxds for t ∈ [0, T]. (9)

Let 0 < T 6 +∞. The quadruple (v1, v2, v3, v4)
> is said to be a weak solution to the initial-

boundary value problem (3)–(7), or a trajectory of the financial system (3) satisfying (7), in the
interval [0, T), provided that the restriction (v1, v2, v3, v4)

>|Ω×[0,T̃], for every 0 < T̃ < T, is a
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weak solution to the initial-boundary value problem (3)–(7), or a trajectory of the financial system
(3) satisfying (7), in the interval [0, T̃].

Definition 3 is essential in our later presentation of this paper. As will be seen later,
before we establish fixed-time synchronization results for the drive financial system (3) and
the controlled response financial system (5), we shall prove that all trajectories of these two
financial systems exist globally in time in the sense of Definition 3.

Assumption 1. 1 6 N 6 2 is an integer; Ω, required to have a C 4 boundary, designated by ∂Ω,
is a bounded connected open subset of the Euclidean space RN .

Assumption 2. Let k = 1, 2, 3, 4. Dk ∈ C 3(Ω̄), the totality of uniformly continuous functions of
which all first-order partial derivatives are uniformly continuous. We write henceforth

Dk = inf
x∈Ω

Dk(x) > 0. (10)

Remark 4. Let k = 1, 2, 3, 4. Since the domain Ω concerned in this paper is bounded and Dk is
uniformly continuous on the domain Ω (see Assumption 2), Dk is bounded on the domain Ω. We
shall write in the rest of the paper

Dk = sup
x∈Ω

Dk(x).

Our main contributions in this paper are delineated as follows:

• We introduce diffusion terms to the hyperchaotic financial system (2) to stress that the
aftereffect (or memory) in economy and regional disparities of economic development
cannot always be neglected, and equip these semi-linear parabolic partial differential
equations with the homogeneous boundary condition, thus obtaining the principal
research object of this paper, i.e., (3). To the best of our knowledge, the research
object of Reference [11] is most closely related to our research object in this paper, and
the research aims of References [9,12–14] are most closely related to our aims in this
paper. However, as remarked above, the systems concerned in References [9,12–14]
are hyperchaotic financial systems (1) incorporating diffusion terms. The inclusion
of diffusion terms in the hyperchaotic financial system (2), and the coefficients of
the diffusion terms as functions in Ω, facilitate our application of theoretical results
concerning the system (3) obtained in this paper to coming up with suggestions for
decision-making in real-world finance or economics.

• We prove rigorously that the initial-boundary value problem (3)–(7) is globally well
posed in lower regularity space L2(Ω;R4) in Hadamard’s sense: for every initial
datum in L2(Ω;R4), the initial-boundary value problem (3)–(7) admits a unique
global solution; in addition, the data-to-solution map is continuous. As alluded in
Reference [11], the initial-boundary value problem (3)–(7) admits mild solutions; we
find in this paper that mild solutions coincide with weak solutions to the initial-
boundary value problem (3)–(7). We provide this assertion a complete rigorous
proof via Galerkin’s method and by establishing two a priori estimates, and prove via
utilizing the aforementioned a priori estimates that all solutions to the initial-boundary
value problem (3)–(7) exist globally in time. Furthermore, we prove, via exploiting
semigroup theory, two new assertions (which have not been claimed in Reference [11]
or any other published paper): there exists a unique global weak (or equivalently,
mild) solution in the Fréchet space C (R+; L2(Ω;R4)) corresponding to every initial
datum in L2(Ω;R4), thus defining a mapping of the Hilbert space L2(Ω;R4) into the
Fréchet space C (R+; L2(Ω;R4)); the aforementioned mapping is continuous.

• We come up with a synchronization control for the response system corresponding
to the drive financial system (3), and provide two criteria ensuring that the drive
system (3) and its response system with the proposed control implemented achieve
fixed-time synchronization. To the authors’ knowledge, among the results in the vast
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references concerning synchronization problems for (hyper)chaotic financial systems,
only the results in References [30–32], whose main contributions were introduced
briefly above, are highly close to our fixed-time synchronization results in this paper.
The results in Reference [30] are concerned with finite-time synchronizability of the
time-fractional-order (in the Grünwald–Letnikov sense) counterpart of the financial
system (2). The results in Reference [31] are concerned with the fixed-time synchro-
nizability of the financial system (1). The results in Reference [32] are concerned
with the fixed-time synchronizability of the time-fractional-order (in Caputo’s sense)
counterpart of the financial system (1). In view of these summaries, we conclude that
our fixed-time synchronization results in this paper are indeed new.

Notational Conventions. We write N for the totality of positive integers. C k(Ω̄) with k as a
positive integer denotes the totality of bounded uniformly continuous functions defined in
Ω whose partial derivatives of orders not exceeding k are bounded uniformly continuous
functions in Ω. We denote by C (Ω̄) = C 0(Ω̄) the totality of bounded uniformly continuous
functions defined in Ω. Rk with k as a positive integer denotes the k dimensional Euclidean
space. Lp(Ω) denotes the usual Lebesgue space, 1 6 p 6 +∞. Hk(Ω) with k as a positive
integer denotes the totality of square-integrable functions in Ω whose partial derivatives,
in the distributional sense, of orders not exceeding k , are square-integrable functions in Ω.
D+ denotes the upper-right Dini derivative with respect to the time variable t.

The rest of this paper is organized as follows. In Section 2, we prove via standard
Galerkin’s method that for all initial data in L2(Ω;R4), the initial-boundary value prob-
lem (3)–(7) admits local weak solutions in the sense of Definition 3; we establish two a
priori estimates which play important roles in guaranteeing our successful application
of Galerkin’s scheme to obtain the desired local existence; we prove, with the aid of the
aforementioned two estimates, that solutions to the initial-boundary value problem (3)–(7)
actually exist globally in time; and we leave the proof of the uniqueness and continuous
dependence of solutions on initial data to the Appendix (see Appendix A). In Section 3,
we design a synchronization control candidate, namely (48), for the response system (5)
of the financial system (3); we prove, with the new global well-posedness of the initial-
boundary value problem (3)–(7) as the main ingredient, the global existence and uniqueness
of the initial-boundary value problem (5)–(8)–(48); we provide a criterion ensuring that the
drive system (3) and the response system (5), with the designed control (48) implemented,
can achieve fixed-time synchronization; and we discuss the possibility of improving the
synchronization control. In Section 4, we perform several numerical simulations to ‘ver-
ify’ the effectiveness of the synchronization control (48). In Section 5, we present several
concluding remarks.

2. Global Well-Posedness of the Initial-Boundary Value Problem (3)–(7)
2.1. Preliminaries

As indicated previously, it is relatively easy to prove the global existence of trajectories
of models (1) and (2). Actually, it is obvious that the right-hand sides of models (1) and
(2) are both locally Lipschitz continuous. By the Cauchy–Lipschitz theory of ordinary
differential equations, this implies the local existence of models (1) and (2). On the other
hand, for every trajectory (v1, v2, v3)

> of model (1), it holds that

d
dt

3

∑
k=1
|vk(t)|2 = 2(v2(t)− a)|v1(t)|2 + 2v1(t)v3(t)− 2b|v2(t)|2

− 2|v1(t)|2v2(t) + 2v2(t)− 2c|v3(t)|2 − 2v1(t)v3(t)

=− 2a|v1(t)|2 − 2b|v2(t)|2 − 2c|v3(t)|2 + 2v2(t), t ∈ R+, (11)

and for every trajectory (v1, v2, v3, v4)
> of model (2), it holds similarly that



Entropy 2023, 25, 359 9 of 38

d
dt
(
(2 + β2)|v1(t)|2 + 2|v2(t)|2 +

4

∑
k=3
|vk(t)|2 + 2βv1(t)v4(t)

)
=2(2 + β2)

(
|v1(t)|2v2(t)− a|v1(t)|2 + v1(t)v3(t) + v1(t)v4(t)

)
+ 4
(
v2(t)− b|v2(t)|2 − |v1(t)|2v2(t)

)
− 2
(
c|v3(t)|2 + v1(t)v3(t)

)
− 2
(
α|v4(t)|2 + βv1(t)v2(t)v4(t)

)
− 2βv1(t)

(
αv4(t) + βv1(t)v2(t)

)
+ 2βv4(t)

(
v1(t)v2(t)− av1(t) + v3(t) + v4(t)

)
=− 2a(2 + β2)|v1(t)|2 + 2(1 + β2)v1(t)v3(t)

+ 2(2 + β2 − αβ− aβ)v1(t)v4(t)− 4b|v2(t)|2

− 2c|v3(t)|2 + 2βv3(t)v4(t) + 2(β− α)|v4(t)|2 + 4v2(t), t ∈ R+. (12)

With the aid of local existence theory and the a priori differential identities, (11) and (12), we
can prove the global existence of models (1) and (2) via a standard continuation argument.
Let us mention that the a priori differential identity (11) could lead to ultimate boundedness
of trajectories of the financial system (1). This topic of boundedness of the trajectories of
the system (1) was investigated, via an approach different from ours in this paper, by Rao
and Li [14].

Now, we are in a position to prove the global existence of the model (3). The weak
solution to the boundary value problem (3) is closely related to the mild solution associated
to the strongly continuous semigroup generated by the dynamics of (3).

In this paragraph, we fix k = 1, 2, 3, 4 arbitrarily. Let us define an unbounded linear
operator in the Hilbert space L2(Ω) by

Ak : L2(Ω) ⊃ D(Ak)→ L2(Ω),

D(Ak) 3 ϕ 7→ div(Dk∇ϕ), (13)

in which Dk is given as in the model (3), and

D(Ak) = {ϕ ∈ H2(Ω); ∂ν ϕ = 0}. (14)

Owing to Assumption 2, we have, by ([38], Theorem 2.7, p. 211), thatAk, given by (13) along
with (14), is exactly the infinitesimal generator of an analytic semigroup {etAk}t∈[0,+∞) of
contraction operators on the Hilbert space L2(Ω). With the help of semigroup theory, the
definition of solutions to to the initial-boundary value problem (3)–(7) can be reformulated
as follows, appealing to Duhamel’s principle.

Definition 4. Given (v0
1, v0

2, v0
3, v0

4)
> ∈ L2(Ω;R4). Let T ∈ (0,+∞). The quadruple

(v1, v2, v3, v4)
> ∈ C ([0, T]; L2(Ω;R4)) ∩ L2(0, T; H1(Ω;R4))

is said to be a mild solution to to the initial-boundary value problem (3)–(7), in the interval [0, T],
provided that the quadruple (v1, v2, v3, v4)

> satisfies the following: For every t ∈ [0, T], it holds
that

v1(·, t) = etA1 v0
1 +

∫ t

0
e(t−s)A1((v2(·, s)− a)v1(·, s) + v3(·, s) + v4(·, s))ds,

v2(·, t) = etA2 v0
2 +

∫ t

0
e(t−s)A2

(
1− bv2(·, s)− (v1(·, s))2

)
ds,

v3(·, t) = etA3 v0
3 −

∫ t

0
e(t−s)A3(cv3(·, s) + v1(·, s))ds,

v4(·, t) = etA4 v0
4 −

∫ t

0
e(t−s)A4(αv4(·, s) + βv1(·, s)v2(·, s))ds.
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Let 0 < T 6 +∞. The quadruple (v1, v2, v3, v4)
> is said to be a mild solution to the

initial-boundary value problem (3)–(7), in the interval [0, T), provided that the restriction

(v1, v2, v3, v4)
>|Ω×[0,T̃],

for every 0 < T̃ < T, is a mild solution to the problem (3)–(7), in the interval [0, T̃].

The integration in Definition 4 makes sense indeed, due to the smoothing effect in
space variables of solutions to the the problem (3). The smoothing effect is attributed to the
analyticity of the semigroup {etAk}t∈[0,+∞). More precisely, we have the following lemma:

Lemma 1 (See [39]). Let Ω be a bounded open subset of RN (without assuming N 6 2) with a
C 1 boundary. There exist M1 > 0 and M2 > 0 such that for every k = 1, 2, 3, 4, we have

‖etAk ϕ‖L2(Ω) 6 M1t−
N
4 ‖ϕ‖L1(Ω), ∀ϕ ∈ L1(Ω), ∀t ∈ (0,+∞),

‖etAk ϕ‖L2(Ω) 6 M2t−
N
8 ‖ϕ‖

L
4
3 (Ω)

, ∀ϕ ∈ L
4
3 (Ω), ∀t ∈ (0,+∞), (15)

where Ak is given by (13).

To treat the nonlinearity in the model (3) in an appropriate way, it is helpful to recall
the following embedding result concerning Sobolev spaces.

Lemma 2 (See [40], Theorem 2, p. 279). Let Ω be a bounded open subset of RN with N 6 4.
The Lebesgue space L4(Ω) is continuously embedded into the Sobolev space H1(Ω); more precisely,
there exists an M3 > 0 depending merely on Ω, such that

‖ϕ‖L4(Ω) 6 M3‖ϕ‖H1(Ω), ∀ϕ ∈ H1(Ω). (16)

In this paragraph, we apply Lemmas 1 and 2 to explain in detail the reason why
Definition 4 makes sense. By applying Lemma 2 and the Cauchy–Schwarz inequality, we
have after some tedious calculations the following series of inequalities

‖
∫ t

0
e(t−s)A1 v1(·, s)v2(·, s)ds‖L2(Ω)

6
∫ t

0
‖e(t−s)A1 v1(·, s)v2(·, s)‖L2(Ω)ds

6
∫ t

0
‖v1(·, s)v2(·, s)‖L2(Ω)ds

6
∫ t

0
‖v1(·, s)‖L4(Ω)‖v2(·, s)‖L4(Ω)ds

6(M3)
2
∫ t

0
‖v1(·, s)‖H1(Ω)‖v2(·, s)‖H1(Ω)ds, t ∈ [0, T],

which, together with the Cauchy–Schwarz inequality, implies directly

‖
∫ t

0
e(t−s)A1 v1(·, s)v2(·, s)ds‖C ([0,T];L2(Ω))

6(M3)
2‖v1‖L2(0,T;H1(Ω))‖v2‖L2(0,T;H1(Ω)), (17)

where M3, in this paragraph, is a positive constant given exactly as in (16) in Lemma 2.
Additionally, by applying Hölder’s inequality and Lemmas 1 and 2, we have, after some te-
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dious but routine calculations, the following: there exists a positive constant C1T depending
merely on T and Ω, such that

‖∇
∫ t

0
e(t−s)A1 v1(·, s)v2(·, s)ds‖L2(0,T;L2(Ω))

6‖
∫ t

0
e(t−s)A1

(
v1(·, s)∇v2(·, s) + v2(·, s)∇v1(·, s)

)
ds‖L2(0,T;L2(Ω))

+ C1T‖v1‖L2(0,T;H1(Ω))‖v2‖L2(0,T;H1(Ω))

6
2M2√
4− N

T
4−N

8 ‖v1∇v2 + v2∇v1‖
L1(0,T;L

4
3 (Ω))

+ C1T‖v1‖L2(0,T;H1(Ω))‖v2‖L2(0,T;H1(Ω))

6
2M2√
4− N

T
4−N

8
(
‖v1‖L2(0,T;L4(Ω))‖∇v2‖L2(0,T;L2(Ω;R4))

+ ‖v2‖L2(0,T;L4(Ω))‖∇v1‖L2(0,T;L2(Ω;R4))

)
+ C1T‖v1‖L2(0,T;H1(Ω))‖v2‖L2(0,T;H1(Ω))

6(C1T +
4M2M3√

4− N
T

4−N
8 )‖v1‖L2(0,T;H1(Ω))‖v2‖L2(0,T;H1(Ω)).

This, together with (17), implies

‖
∫ t

0
e(t−s)A1 v1(·, s)v2(·, s)ds‖L2(0,T;H1(Ω))

6C2T‖v1‖L2(0,T;H1(Ω))‖v2‖L2(0,T;H1(Ω)), (18)

where C2T is a positive constant depending merely on T and Ω. Analogously, we have

‖
∫ t

0
e(t−s)A2(v1(·, s))2ds‖C ([0,T];L2(Ω)) 6 (M3)

2‖v1‖2
L2(0,T;H1(Ω)); (19)

‖
∫ t

0
e(t−s)A2(v1(·, s))2ds‖L2(0,T;H1(Ω)) 6 C3T‖v1‖2

L2(0,T;H1(Ω)), (20)

where C3T is a positive constant depending merely on T and Ω;

‖
∫ t

0
e(t−s)A4 v1(·, s)v2(·, s)ds‖C ([0,T];L2(Ω))

6(M3)
2‖v1‖L2(0,T;H1(Ω))‖v2‖L2(0,T;H1(Ω)); (21)

and there exists a positive constant C4T depending merely on T and Ω, such that

‖
∫ t

0
e(t−s)A4 v1(·, s)v2(·, s)ds‖L2(0,T;H1(Ω))

6C4T‖v1‖L2(0,T;H1(Ω))‖v2‖L2(0,T;H1(Ω)).

This, together with (17)–(21), guarantees that Definition 4 makes sense. To end this para-
graph, let us point that if D1(x), D2(x), D3(x), and D4(x) are all constants, then

C2T = C3T = C3T = M3

√
16(M2)2

4− N
T

4−N
4 + T(M3)2.

It is worth mentioning that, for the Neumann boundary value problem (3), classi-
cal solutions (see Definition 2) are weak solutions (see Definition 3) and also are mild
solutions (see Definition 4); weak solutions are mild solutions, and vice versa. By the
Rellich–Kondrachov theorem, we conclude that the unbounded operator Ak has compact
resolvents. Therefore, the spectrum σ(Ak) consists merely of eigenvalues of Ak. More de-
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tailed information in this direction can be reformulated as follows. Aided by Assumption 2,
by recalling the theory of boundary value problems for elliptic partial differential equations,
we know that, for k = 1, 2, 3, 4, the homogeneous Neumann problem{

−div(Dk∇ψk) = λψk in Ω,
∂νvk = 0 on ∂Ω

(22)

admits a sequence { 1√
meas Ω

; ψkn, n ∈ N} of solutions which form an orthonormal ba-

sis for the Hilbert space L2(Ω); we assume in the rest of the paper that the sequence
{ 1√

meas Ω
; ψkn, n ∈ N} is arranged so that the sequence {0; λkn, n ∈ N} of corresponding

eigenvalues satisfies
0 < λkn 6 λkm (23)

whenever n < m, m, n ∈ N. We write hereafter ψk0 = 1√
meas Ω

and λk0 = 0.

Remark 5. Since the boundary ∂Ω belongs to the class C 4 and Dk ∈ C 3(Ω̄), by regularity theory
of elliptic partial differential equations (see [40], pp. 326–346), solutions to the eigenvalue problem
(31) belong to H4(Ω). Thanks to 1 6 N 6 2 (see Assumption 1), H4(Ω) ⊂ C 2(Ω̄); see ([38],
Theorem 1.2, p. 208).

2.2. Two Useful a Priori Inequalities

Let 0 < T 6 +∞. To every quadruple

(v1, v2, v3, v4)
> ∈ C ([0, T); L2(Ω;R4)) ∩ L2

loc([0, T); H1(Ω;R4)),

we associate the functional

Ψv1,v2,v3,v4
ε (t) =(1 + β2 + ε)

∫
Ω
|v1(x, t)|2dx + (1 + ε)

∫
Ω
|v2(x, t)|2dx

+
4

∑
k=3

∫
Ω
|vk(x, t)|2dx + 2(1 + β2 + ε)

∫ t

0

∫
Ω

D1(x)|∇v1(x, s)|2dxds

+ 2(1 + ε)
∫ t

0

∫
Ω

D2(x)|∇v2(x, s)|2dxds

+ 2
4

∑
k=3

∫ t

0

∫
Ω

Dk(x)|∇vk(x, s)|2dxds + 2β
∫

Ω
v1(x, t)v4(x, t)dx

+ 2a(1 + β2 + ε)
∫ t

0

∫
Ω
|v1(x, s)|2dxds + 2b(1 + ε)

∫ t

0

∫
Ω
|v2(x, s)|2dxds

+ 2
∫ t

0

∫
Ω

(
c|v3(x, s)|2 + α|v4(x, s)|2

)
dxds

+ 2β
∫ t

0

∫
Ω

(
D1(x) + D4(x)

)
∇>v1(x, s)∇v4(x, s)dxds, t ∈ [0, T), (24)

and associate the functional

Φv1,v2,v3,v4
ε (t) =

4

∑
k=1
‖vk(·, t)‖2

L2(Ω) + 2
4

∑
k=1

∫ t

0
‖∇vk(·, s)‖2

L2(Ω;RN)ds, t ∈ [0, T). (25)

By applying the Cauchy–Schwarz inequality, utilizing Lemma 2, and performing some
tedious calculations, we can prove that there exists an M4 > 0, depending merely on a, b, c,
α, β, ε, Ω, Dk (k = 1, 2, 3, 4), but independent of t and of vk (k = 1, 2, 3, 4), such that

Ψv1,v2,v3,v4
ε (t) 6 M4Φv1,v2,v3,v4

ε (t), t ∈ [0, T). (26)
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Analogously, we can prove that when ε is sufficiently large, for instance,

ε > max
( β2(D1 + D2)

2

4D1D2
− 1− β2, 0

)
,

there exists an M5 > 0, depending merely on a, b, c, α, β, ε, Ω, Dk (k = 1, 2, 3, 4), but inde-
pendent of t and of vk (k = 1, 2, 3, 4), such that

Ψv1,v2,v3,v4
ε (t) > M5Φv1,v2,v3,v4

ε (t), t ∈ [0, T). (27)

2.3. The Global Well-Posedness

Theorem 1. Suppose that Assumptions 1 and 2 hold true. For every quadruple (v0
1, v0

2, v0
3, v0

4)
> of

initial data in the Hilbert space L2(Ω;R4), there exists a

T = T(‖v0
1‖L2(Ω), ‖v0

2‖L2(Ω), ‖v0
3‖L2(Ω), ‖v0

4‖L2(Ω), a, b, c, α, β, Ω) > 0, (28)

such that the initial-boundary value problem (3)–(7) admits a unique weak solution

(v1, v2, v3, v4)
> ∈ C ([0, T]; L2(Ω;R4)) ∩ L2(0, T; H1(Ω;R4)). (29)

in the sense of Definition 3. Furthermore, for every r ∈ (0,+∞), the data-to-solution map

{(ζ1, ζ2, ζ3, ζ4)
> ∈ L2(Ω;R4); max

16k64
‖ζk‖L2(Ω) 6 r} 3 (v0

1, v0
2, v0

3, v0
4)
>

7→ (v1, v2, v3, v4)
> ∈ C ([0, T]; L2(Ω;R4))

is Lipschitz continuous, where T depends merely on r, a, b, c, α, β, Ω.

Proof. The uniqueness and continuous dependence parts are not as close as the existence
part to the fixed-time synchronization problem concerned later in this paper. We relegate
the proof of the uniqueness and continuous dependence parts into the Appendix, and write
down in detail the proof of the existence part here. We shall prove the existence part of
Theorem 1 by a standard Galerkin procedure. First, we assume that for every positive
integer n, the homogeneous Neumann problem (3) supplemented by the initial condition

v1n(x, 0) =
n

∑
`=0

∫
Ω

v0
1(x)ψ1`(x)dxψ1`(x) for x ∈ Ω,

v2n(x, 0) =
n

∑
`=0

∫
Ω

v0
2(x)ψ2`(x)dxψ2`(x) for x ∈ Ω,

v3n(x, 0) =
n

∑
`=0

∫
Ω

v0
3(x)ψ3`(x)dxψ3`(x) for x ∈ Ω,

v4n(x, 0) =
n

∑
`=0

∫
Ω

v0
4(x)ψ4`(x)dxψk`(x) for x ∈ Ω,

(30)

admits a solution (v1n, v1n, v1n, v1n)
> of the form



v1n(x, t) =
n

∑
`=0

v̂1n`(t)ψ1`(x) for (x, t) ∈ Ω× [0,+∞),

v2n(x, t) =
n

∑
`=0

v̂2n`(t)ψ2`(x) for (x, t) ∈ Ω× [0,+∞),

v3n(x, t) =
n

∑
`=0

v̂3n`(t)ψ3`(x) for (x, t) ∈ Ω× [0,+∞),

v4n(x, t) =
n

∑
`=0

v̂4n`(t)ψ4`(x) for (x, t) ∈ Ω× [0,+∞).

(31)
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With the aid of (31), we can find readily that initial condition (30) is equivalent to

v̂1n`(0) =
∫

Ω
v0

1(x)ψ1`(x)dx for ` = 0, 1, . . . , n,

v̂2n`(0) =
∫

Ω
v0

2(x)ψ2`(x)dx for ` = 0, 1, . . . , n,

v̂3n`(0) =
∫

Ω
v0

3(x)ψ3`(x)dx for ` = 0, 1, . . . , n,

v̂4n`(0) =
∫

Ω
v0

4(x)ψ4`(x)dx for ` = 0, 1, . . . , n.

(32)

Recalling that {ψkn}n∈N0 is an orthonormal basis for L2(Ω), k = 1, 2, 3, 4, we substitute
(31) into (3) and conduct some further routine but tedious calculations, to find that the
necessary and sufficient condition for the quadruple (v1n, v1n, v1n, v1n)

> of functions given
by (31) to be a solution to the homogeneous Neumann problem (3) is that

(v̂1n0(t), . . . , v̂1nn(t); v̂2n0(t), . . . , v̂2nn(t); v̂3n0(t), . . . , v̂3nn(t); v̂4n0(t), . . . , v̂4nn(t))>.

This is the solution to the following system of ordinary differential equations

d
dt

v̂1n`(t) =− (λ1` + a)v̂1n`(t)

+
n

∑
i=0

n

∑
j=0

v̂1ni(t)v̂2nj(t)
∫

Ω
ψ1i(x)ψ1`(x)ψ2j(x)dx

+
n

∑
i=0

v̂3ni(t)
∫

Ω
ψ1`(x)ψ3i(x)dx

+
n

∑
i=0

v̂4ni(t)
∫

Ω
ψ1`(x)ψ4i(x)dx,

d
dt

v̂2n`(t) =− (λ2` + b)v̂2n`(t) +
∫

Ω
ψ2`(x)dx

−
n

∑
i=0

n

∑
j=0

v̂1ni(t)v̂1nj(t)
∫

Ω
ψ1i(x)ψ1j(x)ψ2`(x)dx,

d
dt

v̂3n`(t) =− (λ3` + c)v̂3n`(t)

−
n

∑
i=0

v̂1ni(t)
∫

Ω
ψ1i(x)ψ3`(x)dx,

d
dt

v̂4n`(t) =− (λ4` + α)v̂4n`(t)

− β
n

∑
i=0

n

∑
j=0

v̂1ni(t)v̂2nj(t)
∫

Ω
ψ1i(x)ψ2j(x)ψ4`(x)dx,



` = 0, . . . , n. (33)

By observing that ordinary differential equations in the system (33) have local Lipschitz
continuous nonlinearity, we can apply the Cauchy–Lipschitz existence theorem to obtain
the following: There exists a T as in (28) such that (33) admits a unique solution in the
interval [0, T]. In light of Remark 5, we find that

(v1n, v2n, v3n, v4n)
> ∈ C 1([0, T]; H4(Ω;R4)). (34)

To prove Theorem 1 for general initial data, we need some a priori estimates for solutions to
the homogeneous Neumann problem (3). To this end, we associate, in the rest of this proof,
to every solution quadruple given in (31) (see also (34)), the modified energy functional

E(t) = Ψ
v1n ,v2n ,v3n ,v4n
ε (t), t ∈ [0, T]; (35)

see (24) for the definition of the functional Ψv1,v2,v3,v4
ε (t). To proceed further, let us recall

that the quadruple (31) (see also (34)) satisfies
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∂tv1n = div(D1∇v1n) + (v2n − a)v1n + v3n + v4n in Ω× (0, T),

∂tv2n = div(D2∇v2n)− bv2n − (v1n)
2 + 1 in Ω× (0, T),

∂tv3n = div(D3∇v3n)− cv3n − v1n in Ω× (0, T),

∂tv4n = div(D4∇v4n)− αv4n − βv1nv2n in Ω× (0, T),

∂νv1n = ∂νv2n = ∂νv3n = ∂νv4n = 0 on ∂Ω× [0, T].

(36)

Differentiating both sides of (35), taking integration by parts, and conducting some other
routine calcuations, we deduce with the aid of (36) that

E′(t) =2(1 + β2 + ε)
∫

Ω
v1n(x, t)∂tv1n(x, t)dx + 2(1 + ε)

∫
Ω

v2n(x, t)∂tv2n(x, t)dx

+ 2
4

∑
k=3

∫
Ω

vkn(x, t)∂tvkn(x, t)dx + 2(1 + β2 + ε)
∫

Ω
D1(x)|∇v1n(x, t)|2dx

+ 2(1 + ε)
∫

Ω
D2(x)|∇v2n(x, t)|2dx + 2

4

∑
k=3

∫
Ω

Dk(x)|∇vkn(x, t)|2dx

+ 2β
∫

Ω
v1n(x, t)∂tv4n(x, t)dx + 2β

∫
Ω

v4n(x, t)∂tv1n(x, t)dx

+ 2a(1 + β2 + ε)
∫

Ω
|v1n(x, t)|2dx + 2b(1 + ε)

∫
Ω
|v2n(x, t)|2dx

+ 2
∫

Ω

(
c|v3n(x, t)|2 + α|v4n(x, t)|2

)
dx

+ 2β
∫

Ω

(
D1(x) + D4(x)

)
∇>v1n(x, t)∇v4n(x, t)dx

=2(1 + β2 + ε)
∫

Ω
|v1n(x, t)|2v2n(x, t)dx− 2(1 + β2 + ε)

∫
Ω

D1(x)|∇v1n(x, t)|2dx

+ 2(1 + β2 + ε)
∫

Ω
v1n(x, t)

(
v3n(x, t) + v4n(x, t)

)
dx

+ 2(1 + ε)
∫

Ω
v2n(x, t)dx− 2(1 + ε)

∫
Ω

D2(x)|∇v2n(x, t)|2dx

− 2(1 + ε)
∫

Ω
|v1n(x, t)|2v2n(x, t)dx− 2

∫
Ω

v1n(x, t)v3n(x, t)dx

− 2
∫

Ω
D3(x)|∇v3n(x, t)|2dx− 2β

∫
Ω

v1n(x, t)v2n(x, t)v4n(x, t)dx

− 2
∫

Ω
D4(x)|∇v4n(x, t)|2dx + 2(1 + β2 + ε)

∫
Ω

D1(x)|∇v1n(x, t)|2dx

+ 2(1 + ε)
∫

Ω
D2(x)|∇v2n(x, t)|2dx + 2

4

∑
k=3

∫
Ω

Dk(x)|∇vkn(x, t)|2dx

− 2β
∫

Ω
D4(x)∇>v1n(x, t)∇v4n(x, t)dx− 2αβ

∫
Ω

v1n(x, t)v4n(x, t)dx

− 2β2
∫

Ω
|v1n(x, t)|2v2n(x, t)dx− 2β

∫
Ω

D1(x)∇>v1n(x, t)∇v4n(x, t)dx

+ 2β
∫

Ω
v1n(x, t)v2n(x, t)v4n(x, t)dx + 2β

∫
Ω
|v4n(x, t)|2dx

+ 2β
∫

Ω
v4n(x, t)

(
v3n(x, t)− av1n(x, t)

)
dx

+ 2β
∫

Ω

(
D1(x) + D4(x)

)
∇>v1n(x, t)∇v4n(x, t)dx

=(1 + 2β2 + 2ε)
∫

Ω
v1n(x, t)v3n(x, t)dx + 2(1 + ε)

∫
Ω

v2n(x, t)dx

+ 2(1 + β2 + ε− αβ− aβ)
∫

Ω
v1n(x, t)v4n(x, t)dx

+ 2β
∫

Ω
|v4n(x, t)|2dx + 2β

∫
Ω

v3n(x, t)v4n(x, t)dx, t ∈ [0, T]. (37)
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By utilizing the Cauchy–Schwarz inequality, we have immediately

2
∫

Ω
v2n(x, t)dx 6 meas Ω +

∫
Ω
|v2n(x, t)|2dx, t ∈ [0, T], (38)

2
∫

Ω
v1n(x, t)v3n(x, t)dx 6

∫
Ω
|v1n(x, t)|2dx +

∫
Ω
|v3n(x, t)|2dx, t ∈ [0, T], (39)

2
∫

Ω
v1n(x, t)v4n(x, t)dx 6

∫
Ω
|v1n(x, t)|2dx +

∫
Ω
|v4n(x, t)|2dx, t ∈ [0, T], (40)

2
∫

Ω
v3n(x, t)v4n(x, t)dx 6

∫
Ω
|v3n(x, t)|2dx +

∫
Ω
|v4n(x, t)|2dx, t ∈ [0, T].

This, together with (37)–(40) and (27), implies

E′(t) 6M6

4

∑
k=1
‖vkn(·, t)‖2

L2(Ω) + (1 + ε)meas Ω

6M6Ψ
v1n ,v2n ,v3n ,v4n
ε (t) + (1 + ε)meas Ω

6
M6

M5
E(t) + (1 + ε)meas Ω, t ∈ [0, T], (41)

where Φv1,v2,v3,v4
ε (t) is given as in (25), and the constant M6 is given by

M6 = max
(1 + 2β2 + 2ε

2
+ |1 + β2 + ε− αβ− aβ|, 1 + ε,

1 + 2β2 + 2ε

2
+ β, |1 + β2 + ε− αβ− aβ|+ 3β

)
. (42)

By applying Gronwall’s Lemma, we deduce from (41) that

E(t) 6
(
E(0) +

(1 + ε)M5 meas Ω

M6

)
e

M6
M5

t − (1 + ε)M5 meas Ω

M6
, t ∈ [0, T].

This, together with (25) and (27), implies

4

∑
k=1
‖vkn(·, t)‖2

L2(Ω) + 2
4

∑
k=1

∫ t

0
‖∇vkn(·, s)‖2

L2(Ω;RN)ds

6
1

M5
E(t) 6

M7

M5
e

M6
M5

T − (1 + ε)meas Ω

M6
, t ∈ [0, T]. (43)

M7 =(1 + β2 + ε)‖v0
1‖2

L2(Ω) + (1 + ε)‖v0
2‖2

L2(Ω) +
4

∑
k=3
‖v0

k‖
2
L2(Ω)

+ 2β‖v0
1‖L2(Ω)‖v0

4‖L2(Ω) +
(1 + ε)M5 meas Ω

M6
(44)

From (43), it follows that the sequence {(v1n, v2n, v3n, v4n)
>}n∈N is bounded in the Banach

space
C ([0, T]; L2(Ω;R4)) ∩ L2(0, T; H1(Ω;R4)).
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From this, it follows immediately that the sequence {(v1nv2n, (v1n)
2)>}n∈N of pairs

is bounded in the Hilbert space L2(0, T; L2(Ω;R2)). This boundedness, together with (36),
implies that the sequence {(∂tv1n, ∂tv2n, ∂tv3n, ∂tv4n)

>}n∈N is bounded in the Hilbert space
L2(0, T; H−1(Ω;R4)). Therefore, there exists a quadruple

(v1, v2, v3, v4)
> ∈ L2(0, T; H1(Ω;R4)) (45)

with
(∂tv1, ∂tv2, ∂tv3, ∂tv4)

> ∈ L2(0, T; H−1(Ω;R4))

such that the sequence {(v1n, v2n, v3n, v4n)
>}n∈N (of solution quadruples) admits a subse-

quence {(v1n′ , v2n′ , v3n′ , v4n′)
>}n′∈N satisfying the following: when n′ tends to ∞, the fol-

lowing limit assertions hold true

(v1n′ , v2n′ , v3n′ , v4n′)
> → (v1, v2, v3, v4)

> weakly in L2(0, T; H1(Ω;R4)),

(v1n′v2n′ , (v1n′)
2)> → (v1v2, (v1)

2)> weakly in L2(0, T; L2(Ω;R2)),

(∂tv1n′ , ∂tv2n′ , ∂tv3n′ , ∂tv4n′)
> → (∂tv1, ∂tv2, ∂tv3, ∂tv4)

> weakly in L2(0, T; H−1(Ω;R4)).

Since the sequence {(v1n′ , v2n′ , v3n′ , v4n′)
>}n′∈N satisfies the initial-boundary value problem

(30)–(36), by Definition 3, for every quadruple (ϕ1, ϕ2, ϕ3, ϕ4)
> ∈ H1(Ω;R4), it holds that

∫
Ω

v1n′(x, t)ϕ1(x)dx−
∫

Ω

n′

∑
`=0

∫
Ω

v0
1(x)ψ1`(x)dxψ1`(x)ϕ1(x)dx

=
∫ t

0

∫
Ω

ϕ1(x)((v2n′(x, s)− a)v1n′(x, s) + v3n′(x, s) + v4n′(x, s))dxds

−
∫ t

0

∫
Ω

D1(x)∇>v1n′(x, s)∇ϕ1(x)dxds for t ∈ [0, T],

∫
Ω

v2n′(x, t)ϕ2(x)dx−
∫

Ω

n′

∑
`=0

∫
Ω

v0
2(x)ψ2`(x)dxψ2`(x)ϕ2(x)dx

=
∫ t

0

∫
Ω

ϕ2(x)
(

1− bv2n′(x, s)− (v1n′(x, s))2
)

dxds

−
∫ t

0

∫
Ω

D2(x)∇>v2n′(x, s)∇ϕ2(x)dxds for t ∈ [0, T],

∫
Ω

v3n′(x, t)ϕ3(x)dx−
∫

Ω

n′

∑
`=0

∫
Ω

v0
3(x)ψ3`(x)dxψ3`(x)ϕ3(x)dx

=−
∫ t

0

∫
Ω

ϕ3(x)(cv3n′(x, s) + v1n′(x, s))dxds

−
∫ t

0

∫
Ω

D3(x)∇>v3n′(x, s)∇ϕ3(x)dxds for t ∈ [0, T],

∫
Ω

v4n′(x, t)ϕ4(x)dx−
∫

Ω

n′

∑
`=0

∫
Ω

v0
4(x)ψ4`(x)dxψ4`(x)ϕ4(x)dx

=−
∫ t

0

∫
Ω

ϕ4(x)(αv4n′(x, s) + βv1n′(x, s)v2n′(x, s))dxds

−
∫ t

0

∫
Ω

D4(x)∇>v4n′(x, s)∇ϕ4(x)dxds for t ∈ [0, T]. (46)
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Note that when n′ tends to ∞, it holds that

( n′

∑
`=0

∫
Ω

v0
1(x)ψ1`(x)dxψ1`,

n′

∑
`=0

∫
Ω

v0
2(x)ψ2`(x)dxψ2`,

n′

∑
`=0

∫
Ω

v0
3(x)ψ3`(x)dxψ3`,

n′

∑
`=0

∫
Ω

v0
4(x)ψ4`(x)dxψ4`

)>
→ (v0

1, v0
2, v0

3, v0
4)
> strongly in L2(Ω;R4),

we derive from (41) by passing to the limit that the quadruple (v1, v2, v3, v4)
>, given by

(45), indeed satisfies (9) in Definition 3. That is, the quadruple (v1, v2, v3, v4)
> is a weak

solution to the initial-boundary value problem (30)–(36), in the sense of Definition 3. This,
together with Appendix A, implies that the proof of Theorem 1 is complete.

Theorem 2. Suppose that Assumptions 1 and 2 hold true. For every quadruple (v0
1, v0

2, v0
3, v0

4)
>

of initial data in the Hilbert space L2(Ω;R4), the initial-boundary value problem (3)–(7) admits a
unique weak solution

(v1, v2, v3, v4)
> ∈ C (R+; L2(Ω;R4)) ∩ L2

loc(R
+; H1(Ω;R4))

in the sense of Definition 3. Moreover, the solution quadruple (v1, v2, v3, v4)
> automatically

satisfies
4

∑
k=1
‖vk(·, t)‖2

L2(Ω) + 2
4

∑
k=1

∫ t

0
‖∇vk(·, s)‖2

L2(Ω;RN)ds 6 M8

4

∑
k=1
‖v0

k‖
2
L2(Ω)e

M9t, t ∈ R+, (47)

with the positive constants M8 and M9 depending merely on a, b, c, α, β, Ω, Dk (k = 1, 2, 3, 4),
and independent of t and of vk (k = 1, 2, 3, 4). Moreover, for every T ∈ (0,+∞), the following map

L2(Ω;R4) 3 (v0
1, v0

2, v0
3, v0

4)
> 7→ (v1, v2, v3, v4)

> ∈ C ([0, T]; L2(Ω;R4))

is locally Lipschitz continuous.

Proof. The estimate (47), alongside with a standard continuation argument, implies imme-
diately the global well-posedness of the initial-boundary value problem (3)–(7) and follows
directly from (43) and (44). We choose to omit the detailed proof here.

3. Existence Result of (5)–(8)–(48) and the Fixed-Time Synchronizability of the
Drive-Response Systems (3) and (5) Controlled by (48)

In this section, our aim is to design for the response system (5) a control to enable the
drive-response systems (3) and (5) to achieve fixed-time synchronization.

3.1. Design of the Synchronization Control

In this subsection, we are focused on finding the clue to designing a suitable control
which would synchronize certainly, in a fixed time, the drive-response systems (3) and (5).
Enlightened by the result in Lemma 3, we introduce the following control candidate:



Entropy 2023, 25, 359 19 of 38

W1(x, t) =− (m11 +
1
2
|v1(x, t)|+ β + 2

2
|v2(x, t)|)(ṽ1(x, t)− v1(x, t))

−m12
( 4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)

)µ−1
(ṽ1(x, t)− v1(x, t))

−m13|ṽ1(x, t)− v1(x, t)|2γ−2(ṽ1(x, t)− v1(x, t))

− 2β

3
|ṽ1(x, t)− v1(x, t)|(ṽ1(x, t)− v1(x, t)),

W2(x, t) =− (m21 +
1 + β

2
|v1(x, t)|)(ṽ2(x, t)− v2(x, t))

−m22
( 4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)

)µ−1
(ṽ2(x, t)− v2(x, t))

−m23|ṽ2(x, t)− v2(x, t)|2γ−2(ṽ2(x, t)− v2(x, t))

− 2β

3
|ṽ2(x, t)− v2(x, t)|(ṽ2(x, t)− v2(x, t)),

W3(x, t) =−m31(ṽ3(x, t)− v3(x, t))−m33|ṽ3(x, t)− v3(x, t)|2γ−2(ṽ3(x, t)− v3(x, t))

−m32
( 4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)

)µ−1
(ṽ3(x, t)− v3(x, t)),

W4(x, t) =− (m41 +
β

2
|v1(x, t)|+ β

2
|v2(x, t)|)(ṽ4(x, t)− v4(x, t))

−m42
( 4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)

)µ−1
(ṽ4(x, t)− v4(x, t))

−m43|ṽ4(x, t)− v4(x, t)|2γ−2(ṽ4(x, t)− v4(x, t))

− 2β

3
|ṽ4(x, t)− v4(x, t)|(ṽ4(x, t)− v4(x, t)), (48)

where the parameter mkh is to be determined later, k = 1, 2, 3, 4, h = 1, 2, 3, the parameter
µ can take any value in the interval (0, 1), and the parameter γ can take any value in the
interval (1,+∞). It is not difficult to observe that the synchronization problem for the
financial systems (3) and (5) is equivalent to the stabilization problem for the error system

∂tw1 =div(D1∇w1) + (w2 + v2 − a)w1 + v1w2

+ w3 + w4 + W1 in Ω×R+,

∂tw2 =div(D2∇w2)− bw2 − (w1 + 2v1)w1 + W2 in Ω×R+,

∂tw3 =div(D3∇w3)− cw3 − w1 + W3 in Ω×R+,

∂tw4 =div(D4∇w4)− αw4 − βw1w2 − βv2w1

− βv1w2 + W4 in Ω×R+,

∂νw1 =∂νw2 = ∂νw3 = ∂νw4 = 0 on ∂Ω×R+

(49)

where the new unknowns wk is given by

wk(x, t) = ṽk(x, t)− vk(x, t), k = 1, 2, 3, 4. (50)



Entropy 2023, 25, 359 20 of 38

Plug (48) and (50) into (49), to obtain

∂tw1 =div(D1∇w1) + (w2 + v2 − a)w1 + v1w2 + w3 + w4

− 2β

3
|w1|w1 −m12

( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1w1

−m13|w1|2γ−2w1 − (m11 +
1
2
|v1|+

β + 2
2
|v2|)w1 in Ω×R+,

∂tw2 =div(D2∇w2)− bw2 − (w1 + 2v1)w1

− 2β

3
|w2|w2 −m22

( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1w2

−m23|w2|2γ−2w2 − (m21 +
1 + β

2
|v1|)w2 in Ω×R+,

∂tw3 =div(D3∇w3)− cw3 − w1 −m31w3

−m32
( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1w3 −m33|w3|2γ−2w3 in Ω×R+,

∂tw4 =div(D4∇w4)− αw4 − βw1w2 − βv2w1 − βv1w2

− 2β

3
|w4|w4 −m42

( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1w4

−m43|w4|2γ−2w4 − (m41 +
β

2
|v1|+

β

2
|v2|)w4 in Ω×R+,

∂νw1 =∂νw2 = ∂νw3 = ∂νw4 = 0 on ∂Ω×R+.

(51)

Obviously, wk (k = 1, 2, 3, 4) given by (50) satisfies the initial condition
w1(·, 0) = ṽ0

1 − v0
1 in Ω,

w2(·, 0) = ṽ0
2 − v0

2 in Ω,

w3(·, 0) = ṽ0
3 − v0

3 in Ω,

w4(·, 0) = ṽ0
4 − v0

4 in Ω.

(52)

We shall establish a stabilization criterion for the nonlinear system (51) with variable
coefficients and, in the meantime, provide two fixed-time synchronization criteria for
the drive financial system (3) and the response system (5) upon which the control (48)
is implemented.

3.2. Global Existence of the Problems (51) and (5)–(48)

In view of Theorem 2 and its proof, we give first the following global existence and
uniqueness for the initial-boundary value problem (51) and (52).

Theorem 3. Suppose that Assumptions 1 and 2 hold true. Assume that mkh ∈ (0,+∞), k =
1, 2, 3, 4, h = 2, 3, and that mk1 ∈ R, k = 1, 2, 3, 4. For every quadruple (v0

1, v0
2, v0

3, v0
4)
> and every

quadruple (ṽ0
1, ṽ0

2, ṽ0
3, ṽ0

4)
> of initial data in the Hilbert space L2(Ω;R4), the initial-boundary value

problem (51) and (52) admits a unique weak solution

(w1, w2, w3, w4)
> ∈ C (R+; L2(Ω;R4)) ∩ L2

loc(R
+; H1(Ω;R4))
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in a similar sense as that in Definition 3. Moreover, (w1, w2, w3, w4)
> satisfies automatically

4

∑
k=1
‖wk(·, t)‖2

L2(Ω) + 2
4

∑
k=1

∫ t

0
‖∇wk(·, s)‖2

L2(Ω;RN)ds

+ 2
4

∑
k=1

∫ t

0

∫
Ω
|wk(x, s)|2λdxds

+ 2
∫ t

0

∫
Ω

(
|v1(x, s)|+ |v2(x, s)|

)
|w1(x, s)|2dxds

+ 2
∫ t

0

∫
Ω
|v1(x, s)||w2(x, s)|2dxds

+ 2
∫ t

0

∫
Ω

(
|v1(x, s)|+ |v2(x, s)|

)
|w4(x, s)|2dxds

+
2β

3

∫ t

0

∫
Ω

(
|w1(x, s)|3 + |w2(x, s)|3 + |w4(x, s)|3

)
dxds

6M10eM11
∫ t

0 (1+‖v1(·,s)‖H1(Ω)
+‖v2(·,s)‖H1(Ω)

)ds
4

∑
k=1
‖ṽ0

k − v0
k‖

2
L2(Ω), t ∈ R+, (53)

where the quadruple (v1, v2, v3, v4)
> is the unique solution to the initial-boundary value problem

(51) corresponding to the initial data (v0
1, v0

2, v0
3, v0

4)
> (see Theorem 2), the positive constants M10

and M11 depend on a, b, c, α, β, Ω, Dk (k = 1, 2, 3, 4) and mkh (k = 1, 2, 3, 4, h = 1, 2, 3), but are
independent of t, wk, and vk.

Proof. The existence and uniqueness can be proved by applying Theorems 1 and 2, and
the idea in the proof of Theorem 1. We choose to omit the detailed proof of the existence
and uniqueness parts of the proof of Theorem 3.

Now, let us begin proving the estimate (53). Mimicking the proof of Theorem 1 (see
(35) and (24), in particular), we come up with the following auxiliary functional for every
solution quadruple (v0

1, v0
2, v0

3, v0
4)
> for the initial-boundary value problem (51) and (52):

Ẽ(t) =
4

∑
k=1

∫
Ω
|wk(x, t)|2dx + 2

4

∑
k=1

∫ t

0

∫
Ω

Dk(x)|∇wk(x, s)|2dxds

+ 2
4

∑
k=1

mk3

∫ t

0

∫
Ω
|wk(x, s)|2λdxds

+
2β

3

∫ t

0

∫
Ω

(
|w1(x, s)|3 + |w2(x, s)|3 + |w4(x, s)|3

)
dxds

+ 2
∫ t

0

∫
Ω

(
a|w1(x, s)|2 + b|w2(x, s)|2 + c|w3(x, s)|2 + α|w4(x, s)|2

)
dxds

+
∫ t

0

∫
Ω

(
|v1(x, s)|+ (β + 2)|v2(x, s)|

)
|w1(x, s)|2dxds

+ (1 + β)
∫ t

0

∫
Ω
|v1(x, s)||w2(x, s)|2dxds

+ β
∫ t

0

∫
Ω

(
|v1(x, s)|+ |v2(x, s)|

)
|w4(x, s)|2dxds, t ∈ R+. (54)

Mimicking the steps in (37), we have
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D+Ẽ(t) =2
4

∑
k=1

∫
Ω

wk(x, t)∂twk(x, t)dx + 2
4

∑
k=1

∫
Ω

Dk(x)|∇wk(x, t)|2 dx

+ 2
4

∑
k=1

mk3

∫
Ω
|wk(x, t)|2λdx + (1 + β)

∫
Ω
|v1(x, t)||w2(x, t)|2 dx

+
2β

3

∫
Ω

(
|w1(x, t)|3 + |w2(x, t)|3 + |w4(x, t)|3

)
dx

+ 2
∫

Ω

(
a|w1(x, t)|2 + b|w2(x, t)|2 + c|w3(x, t)|2 + α|w4(x, t)|2

)
dx

+
∫

Ω

(
|v1(x, s)|+ (β + 2)|v2(x, t)|

)
|w1(x, t)|2 dx

+ β
∫

Ω

(
|v1(x, t)|+ |v2(x, t)|

)
|w4(x, t)|2 dx

=
∫

Ω

(
2v2(x, t)− 2a− 2m11 − |v1(x, t)| − (β + 2)|v2(x, t)|

)
|w1(x, t)|2dx

+ 2
∫

Ω

(
w3(x, t) + w4(x, t)− v1(x, t)w2(x, t)

)
w1(x, t)dx

− 2
∫

Ω
D1(x)|∇w1(x, t)|2dx− 4β

3

∫
Ω
|w1(x, t)|3dx

− 2m12
( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1‖w1(·, t)‖2
L2(Ω) − 2m13

∫
Ω
|w1(x, t)|2γdx

−
∫

Ω

(
2b + 2m21 + (1 + β)|v1(x, t)|

)
|w2(x, t)|2dx

− 4β

3

∫
Ω
|w2(x, t)|3dx− 2m22

( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1‖w2(·, t)‖2
L2(Ω)

− 2
∫

Ω
D2(x)|∇w2(x, t)|2dx− 2m23

∫
Ω
|w2(x, t)|2γdx

− 2
(
c +m31

) ∫
Ω
|w3(x, t)|2dx− 2

∫
Ω

w1(x, t)w3(x, t)dx

− 2m32
( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1‖w3(·, t)‖2
L2(Ω)

− 2m33

∫
Ω
|w3(x, t)|2γdx− 2

∫
Ω

D3(x)|∇w3(x, t)|2 dx

−
∫

Ω

(
2α + 2m41 + β|v1(x, t)|+ β|v2(x, t)|

)
|w4(x, t)|2dx

− 2β
∫

Ω

(
w1(x, t)w2(x, t) + v2(x, t)w1(x, t) + v1(x, t)w2(x, t)

)
w4(x, t)dx

− 4β

3

∫
Ω
|w4(x, t)|3dx− 2m42

( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1‖w4(·, t)‖2
L2(Ω)

− 2m43

∫
Ω
|w4(x, t)|2γdx− 2

∫
Ω

D4(x)|∇w4(x, t)|2dx

+ 2
4

∑
k=1

∫
Ω

Dk(x)|∇wk(x, t)|2dx + 2
4

∑
k=1

mk3

∫
Ω
|wk(x, t)|2λdx

+
2β

3

∫
Ω

(
|w1(x, t)|3 + |w2(x, t)|3 + |w4(x, t)|3

)
dx

+ 2
∫

Ω

(
a|w1(x, t)|2 + b|w2(x, t)|2 + c|w3(x, t)|2 + α|w4(x, t)|2

)
dx

+
∫

Ω

(
|v1(x, t)|+ (β + 2)|v2(x, t)|

)
|w1(x, t)|2 dx

+ (1 + β)
∫

Ω
|v1(x, t)||w2(x, t)|2dx + β

∫
Ω

(
|v1(x, t)|+ |v2(x, t)|

)
|w4(x, t)|2dx



Entropy 2023, 25, 359 23 of 38

=2
∫

Ω

(
v2(x, t)−m11

)
|w1(x, t)|2dx− 2

∫
Ω

v1(x, t)w1(x, t)w2(x, t)dx

+ 2
∫

Ω
(1− βv2(x, t))w1(x, t)w4(x, t)dx− 2m21

∫
Ω
|w2(x, t)|2dx

− 2m31

∫
Ω
|w3(x, t)|2dx− 2m41

∫
Ω
|w4(x, t)|2dx− 2β

∫
Ω

v1(x, t)w2(x, t)w4(x, t)dx

− 2β

3

∫
Ω

(
|w1(x, t)|3 + |w2(x, t)|3 + |w4(x, t)|3

)
dx

− 2β
∫

Ω
w1(x, t)w2(x, t)w4(x, t)dx

− 2
( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1
4

∑
k=1

mk2‖wk(·, t)‖2
L2(Ω) 6 g(t)Ẽ(t), t ∈ R+, (55)

which, together with Gronwall’s Lemma, implies directly

Ẽ(t) 6e
∫ t

0 g(s)ds Ẽ(0)

=e
∫ t

0 g(s)ds
4

∑
k=1
‖ṽ0

k − v0
k‖

2
L2(Ω)

, t ∈ R+, (56)

where the function g(t) is given by

g(t) = max
(
1 + 2|m11|+ ‖v1(·, t)‖H1(Ω) + (2 + β)‖v2(·, t)‖H1(Ω),

2|m21|+ (1 + β)‖v1(·, t)‖H1(Ω), 2|m31|,

1 + 2|m41|+ β‖v1(·, t)‖H1(Ω) + β‖v2(·, t)‖H1(Ω)

)
, t ∈ R+.

This, together with (54) and (56), implies immediately that the estimate (53) in Theorem 3
on solutions to the initial-boundary value problem (51) and (52) holds true.

Enlightened by Theorem 3, we have the following global existence and uniqueness for
the initial-boundary value problem (5)–(8)–(48).

Theorem 4. Suppose that Assumptions 1 and 2 hold true. Assume that mkh ∈ (0,+∞), k =
1, 2, 3, 4, h = 2, 3, and that mk1 ∈ R, k = 1, 2, 3, 4. For every quadruple (v0

1, v0
2, v0

3, v0
4)
> and every

quadruple (ṽ0
1, ṽ0

2, ṽ0
3, ṽ0

4)
> of initial data in the Hilbert space L2(Ω;R4), the initial-boundary value

problem (5)–(8)–(48) admits a unique weak solution

(ṽ1, ṽ2, ṽ3, ṽ4)
> ∈ C (R+; L2(Ω;R4)) ∩ L2

loc(R
+; H1(Ω;R4))

in a similar sense as that in Definition 3. Moreover, (ṽ1, ṽ2, ṽ3, ṽ4)
> satisfies automatically

4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)
+ 2

4

∑
k=1

∫ t

0
‖∇ṽk(·, s)−∇vk(·, s)‖2

L2(Ω;RN )
ds

+ 2
4

∑
k=1

∫ t

0

∫
Ω
|ṽk(x, s)− vk(x, s)|2λdx ds

+ 2
∫ t

0

∫
Ω

(
|v1(x, s)|+ |v2(x, s)|

)
|ṽ1(x, s)− v1(x, s)|2dx ds

+ 2
∫ t

0

∫
Ω
|v1(x, s)||ṽ2(x, s)− v2(x, s)|2dx ds

+ 2
∫ t

0

∫
Ω

(
|v1(x, s)|+ |v2(x, s)|

)
|ṽ4(x, s)− v4(x, s)|2dx ds

+
2β

3

∫ t

0

∫
Ω

(
|ṽ1(x, s)− v1(x, s)|3 + |ṽ2(x, s)− v2(x, s)|3 + |ṽ4(x, s)− v4(x, s)|3

)
dxds

6M10e
M11

∫ t
0 (1+‖v1(·,s)‖H1(Ω)

+‖v2(·,s)‖H1(Ω)
)ds 4

∑
k=1
‖ṽ0

k − v0
k‖

2
L2(Ω)

, t ∈ R+,

where the quadruple (v1, v2, v3, v4)
> is the unique solution to the initial boundary value problem

(51) corresponding to the initial data (v0
1, v0

2, v0
3, v0

4)
> (see Theorem 2), the positive constants M10

and M11, given as in Theorem 3, depend on a, b, c, α, β, Ω, Dk (k = 1, 2, 3, 4), mkh (k = 1, 2, 3, 4,
h = 1, 2, 3), but are independent of t, ṽk and vk.
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Proof. Theorem 4 is simply a reformulation of Theorem 3; therefore, the proof of Theorem 4
is omitted here.

Remark 6. By applying mainly Hölder’s inequality, we can prove

4

∑
k=1

∫ t

0

∫
Ω
|wk(x, s)|2µdxds 6(t meas Ω)1− µ

λ

4

∑
k=1

( ∫ t

0

∫
Ω
|wk(x, s)|2λdxds

) µ
λ

6(t meas Ω)1− µ
λ
( 4

∑
k=1

∫ t

0

∫
Ω
|wk(x, s)|2λdxds

) µ
λ .

Therefore, we chose to omit the term

4

∑
k=1

∫ t

0

∫
Ω
|wk(x, s)|2µdxdsds

in the estimate of (w1, w2, w3, w4)
> in Theorem 3. Similarly, we have

4

∑
k=1

∫ t

0

∫
Ω
|ṽk(x, s)− vk(x, s)|2µdx ds

6(t meas Ω)1− µ
λ
( 4

∑
k=1

∫ t

0

∫
Ω
|ṽk(x, s)− vk(x, s)|2λdxds

) µ
λ ,

therefore, we chose to omit the term

4

∑
k=1

∫ t

0

∫
Ω
|ṽk(x, s)− vk(x, s)|2µdxds

in the estimate of (ṽ1, ṽ2, ṽ3, ṽ4)
> in Theorem 4.

3.3. The Fixed-Time Synchronizability of the Drive-Response Systems (3) and (5) Controlled
by (48)

Theorem 5. Suppose that Assumptions 1 and 2 hold true. Assume that mkh ∈ (0,+∞), k =
1, 2, 3, 4, h = 2, 3, and that mk1 ∈ R+ (k = 1, 2, 3, 4) render the matrix

m11 + a 0 0 − 1
2

0 m21 + b 0 0
0 0 m31 + c 0
− 1

2 0 0 m31 + α


to be semi-positive definite. For every pair (µ, γ), with 0 < µ < 1 < γ, there exists a

T0 6
1

2(1− µ)
max(

1
m12

,
1

m22
,

1
m32

,
1

m42
)

+
(4 meas Ω)γ−1

2(γ− 1)
max(

1
m13

,
1

m23
,

1
m33

,
1

m43
), (57)

such that for every quadruple (v0
1, v0

2, v0
3, v0

4)
> and every quadruple (ṽ0

1, ṽ0
2, ṽ0

3, ṽ0
4)
> of initial data

in the Hilbert space L2(Ω;R4), the solution quadruple (v1, v2, v3, v4)
> to the initial-boundary

value problem (3)–(7) and the solution quadruple (ṽ1, ṽ2, ṽ3, ṽ4)
> to the initial-boundary value

problem (5)–(8)–(48) satisfy

4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)
= 0, t ∈ [T0,+∞). (58)
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Lemma 3 ([41,42]). Let V : R+ → R+ be a continuous function. If there exists a quadruple
(µ, δ, γ, γ)> ∈ (R+)4, with λ > 0, µ > 0 and 0 < µ < 1 < γ, such that

D+V(t) 6 −λVµ(t)− δVγ(t), t ∈ R+

then there exists a T0 > 0 (the settling time) with

T0 6
1

λ(1− µ)
+

1
δ(γ− 1)

such that
V(t) ≡ 0, t ∈ [T0,+∞).

Proof. As pointed in Section 3.1, the proof of Theorem 5 boils down to proving fixed-
time stabilizability of the controlled error system (51). To every solution quadruple
(w1, w2, w3, w4)

> to the initial-boundary value problem (51) and (52), we associate the
following functional

V(t) =
∫

Ω

4

∑
k=1
|wk(x, t)|2dx =

4

∑
k=1
‖wk(·, t)‖2

L2(Ω)
for t ∈ R+. (59)

Taking similar steps as in (37) and (55), we have

D+V(t) =2
4

∑
k=1

∫
Ω

wk(x, t)∂twk(x, t)dx

=2
∫

Ω

(
v2(x, t)− |v2(x, t)|

)
|w1(x, t)|2dx− 2

4

∑
k=1

∫
Ω

Dk(x)|∇wk(x, t)|2dx

−
∫

Ω

(
2v1(x, t)w1(x, t)w2(x, t)− |v1(x, t)||w1(x, t)|2 − |v1(x, t)||w2(x, t)|2

)
dx

− β
∫

Ω

(
2v2(x, t)w1(x, t)w4(x, t)− |v2(x, t)||w1(x, t)|2 − |v2(x, t)||w4(x, t)|2

)
dx

− β
∫

Ω

(
2v1(x, t)w2(x, t)w4(x, t)− |v1(x, t)||w2(x, t)|2 − |v1(x, t)||w4(x, t)|2

)
dx

− 2
∫

Ω


w1(x, t)

w2(x, t)

w3(x, t)

w4(x, t)


>

m11 + a 0 0 − 1
2

0 m21 + b 0 0

0 0 m31 + c 0

− 1
2 0 0 m31 + α




w1(x, t)

w2(x, t)

w3(x, t)

w4(x, t)

dx

− 4β

3

∫
Ω

(
|w1(x, t)|3 + |w2(x, t)|3 + |w4(x, t)|3

)
dx

− 2β
∫

Ω
w1(x, t)w2(x, t)w4(x, t)dx− 2

4

∑
k=1

mk3

∫
Ω
|wk(x, t)|2γdx

− 2
( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1
4

∑
k=1

mk2‖wk(·, t)‖2
L2(Ω)

6− 2
( 4

∑
k=1
‖wk(·, t)‖2

L2(Ω)

)µ−1
4

∑
k=1

mk2‖wk(·, t)‖2
L2(Ω)

− 2
4

∑
k=1

mk3

∫
Ω
|wk(x, t)|2γdx

6− 2 min
16k64

mk2
(
V(t)

)µ − 2 min
16k64

mk3

4

∑
k=1

∫
Ω
|wk(x, t)|2γdx

6− 2 min
16k64

mk2
(
V(t)

)µ − 2(meas Ω)1−γ min
16k64

mk3

4

∑
k=1

( ∫
Ω
|wk(x, t)|2dx

)γ

6− 2 min
16k64

mk2
(
V(t)

)µ − 2(4 meas Ω)1−γ min
16k64

mk3
(
V(t)

)γ, t ∈ R+.

By Lemma 3, there exists a positive time instant T0 fulfilling (57) such that

V(t) ≡ 0, t ∈ [T0,+∞).

This, together with (59), implies that the proof of Theorem 5 is complete.
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It is observed in Reference [18] that (hyper)chaotic financial systems cannot always be
completely synchronized, but by Theorem 5, the control (48) could certainly synchronize
the drive-response financial system (3)–(5) in a fixed time. It is worth giving several remarks
concerning the possibility to improve the control (48).

• In the control law (48), the term

−2β

3
|ṽk(x, t)− vk(x, t)|(ṽk(x, t)− vk(x, t))

in Wk(x, t) can be ‘weakened’ to

− (1 + ϑ)β

3
|ṽk(x, t)− vk(x, t)|(ṽk(x, t)− vk(x, t)),

where ϑ is any positive constant, k = 1, 2, 4. We insist on requiring that the constant
ϑ is positive to guarantee that wk belongs to L3

loc([0,+∞); L3(Ω)), k = 1, 2, 4, where
(w1, w2, w3, w4)

> is any trajectory quadruple of the controlled error system (51).
• In the control law (48), it depends not only on the structure of the drive-response

financial system (3)–(5), but also on the information of the trajectory (v1, v2, v3, v4)
>

of the drive financial system (3). More precisely, in the control law (48), the control
W1(x, t) includes

−(1
2
|v1(x, t)|+ β + 2

2
|v2(x, t)|)(ṽ1(x, t)− v1(x, t)),

the control W2(x, t) includes

−1 + β

2
|v1(x, t)|(ṽ2(x, t)− v2(x, t)),

and the control W4(x, t) includes

−( β

2
|v1(x, t)|+ β

2
|v2(x, t)|)(ṽ4(x, t)− v4(x, t)).

From the point of view of system or control theory, it is flawed to incorporate trajectory
information in the synchronization control. The flaw in the control law (48) arises
due to the nonlinearity of the financial system (3). This flaw could be eliminated by
restricting the trajectory quadruple (v1, v2, v3, v4)

> of the financial system (3) to be
bounded in L∞(Ω;R4).

Theorem 6. Suppose that Assumptions 1 and 2 hold true. Assume that mkh ∈ (0,+∞), k =
1, 2, 3, 4, h = 2, 3, and that mk1 ∈ R+ (k = 1, 2, 3, 4) render the matrix

m11 + a 0 0 − 1
2

0 m21 + b 0 0

0 0 m31 + c 0

− 1
2 0 0 m31 + α


to be semi-positive definite. For every pair (µ, γ), with 0 < µ < 1 < γ, there exists a positive
time instant T0 satisfying (57), such that for every quadruple (v0

1, v0
2, v0

3, v0
4)
> of initial data in the

Hilbert space L2(Ω;R4) rendering the corresponding solution quadruple (v1, v2, v3, v4)
> to the

initial-boundary value problem (3)–(7) satisfies

max
16k64

ess sup
t∈R+

‖vk(·, t)‖L∞(Ω) 6 B,

where B is a given absolute positive constant, and every quadruple (ṽ0
1, ṽ0

2, ṽ0
3, ṽ0

4)
> of initial data

in the Hilbert space L2(Ω;R4), we have
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4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω) = 0, t ∈ [T0,+∞),

where the quadruple (ṽ1, ṽ2, ṽ3, ṽ4)
> is the unique trajectory of the system (5)–(8) upon which the

following control is implemented:

W1(x, t) =− (m11 +
B(β + 3)

2
)(ṽ1(x, t)− v1(x, t))

−m12
( 4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)

)µ−1
(ṽ1(x, t)− v1(x, t))

−m13|ṽ1(x, t)− v1(x, t)|2γ−2(ṽ1(x, t)− v1(x, t))

− 2β

3
|ṽ1(x, t)− v1(x, t)|(ṽ1(x, t)− v1(x, t)),

W2(x, t) =− (m21 +
B(1 + β)

2
)(ṽ2(x, t)− v2(x, t))

−m22
( 4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)

)µ−1
(ṽ2(x, t)− v2(x, t))

−m23|ṽ2(x, t)− v2(x, t)|2γ−2(ṽ2(x, t)− v2(x, t))

− 2β

3
|ṽ2(x, t)− v2(x, t)|(ṽ2(x, t)− v2(x, t)),

W3(x, t) =−m31(ṽ3(x, t)− v3(x, t))−m33|ṽ3(x, t)− v3(x, t)|2γ−2(ṽ3(x, t)− v3(x, t))

−m32
( 4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)

)µ−1
(ṽ3(x, t)− v3(x, t)),

W4(x, t) =− (m41 + Bβ)(ṽ4(x, t)− v4(x, t))

−m42
( 4

∑
k=1
‖ṽk(·, t)− vk(·, t)‖2

L2(Ω)

)µ−1
(ṽ4(x, t)− v4(x, t))

−m43|ṽ4(x, t)− v4(x, t)|2γ−2(ṽ4(x, t)− v4(x, t))

− 2β

3
|ṽ4(x, t)− v4(x, t)|(ṽ4(x, t)− v4(x, t)).

Proof. The proof of Theorem 6 actually resembles that of Theorem 5. Therefore, we choose
to omit here the details of the proof.

4. Numerical Simulations

In this section, we shall perform some numerical simulations to illustrate that our
suggested control law (48) is effective in synchronizing the drive financial system (3) and
the response system (5) in a fixed time. The basic assumption in our numerical research is
that Ω = (0, 8), a = 0.9, b = 0.2, c = 1.5, α = 0.17, β = 0.2, and D1(x) = D2(x) = D3(x) =
D4(x) ≡ 0.001 always hold in the drive system (3) and the response system (5).

First of all, we solve numerically, via MATLAB, the initial-boundary value prob-
lem (3)–(7) with v0

1(x) ≡ 1, v0
2(x) ≡ 2, v0

3(x) ≡ −0.5, v0
4(x) ≡ −0.2, x ∈ (0, 8), to ar-

rive at the solution, denoted by (v1(x, t), v2(x, t), v3(x, t), v4(x, t))>. The surfaces (see
Figure 1) of this solution and projections of this solution at the midpoint x = 4 of
the interval Ω = (0, 8) (see Figure 2) ‘demonstrate’ visually and intuitively that the
drive financial system (3) is chaotic. Similarly, we solve numerically, via MATLAB,
the initial-boundary value problem (5)–(8)–(48) with W1 = W2 = W3 = W4 ≡ 0 (in
other words, there is no control implemented upon the response system in this situ-
ation), ṽ0

1(x) = cos(π
4 x) − 1, ṽ0

2(x) = cos(π
2 x) + 1, ṽ0

3(x) = − cos(πx) − 2, ṽ0
4(x) =

− cos(π
4 x) + 1, to arrive at (ṽ1(x, t), ṽ2(x, t), ṽ3(x, t), ṽ4(x, t))>. Thanks to the chaos phe-

nomenon in the system (3) (see Figures 1 and 2), we are not inclined to imagine that
(ṽ1(x, t), ṽ2(x, t), ṽ3(x, t), ṽ4(x, t))> approaches (v1(x, t), v2(x, t), v3(x, t), v4(x, t))> as time
t escapes to infinity. Actually, the quadruple (ṽ1(x, t), ṽ2(x, t), ṽ3(x, t), ṽ4(x, t))> does not
approach the quadruple (v1(x, t), v2(x, t), v3(x, t), v4(x, t))> as t→ +∞ can also be numer-
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ically ‘proved’; see Figure 3. To summarize here, the numerical simulations mentioned in
this paragraph reveal that the drive financial system (3) and the response system (5) cannot
achieve synchronization in a fixed time unless extra control is implemented.
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Figure 1. Numerical and graphical illustration of the occurrence of chaos phenomenon in the financial
system (3) (an infinite-dimensional dynamical system) distributed in a line segment: The quadruple
(v1(x, t), v2(x, t), v3(x, t), v4(x, t))> denotes the solution to the initial-boundary value problem (3)–(7),
with the interval Ω = (0, 8), the parameters a = 0.9, b = 0.2, c = 1.5, α = 0.17, and β = 0.2, the
diffusion coefficients D1(x) = D2(x) = D3(x) = D4(x) ≡ 0.001, and the initial data v0

1(x) ≡ 1,
v0

2(x) ≡ 2, v0
3(x) ≡ −0.5, and v0

4(x) ≡ −0.2, x ∈ Ω = (0, 8); (a–d) display the graphs (surfaces) of
the functions (having two indeterminates x and t) v1 = v1(x, t), v2 = v2(x, t), and v3 = v3(x, t),
respectively, x ∈ Ω = (0, 8), t ∈ [0, 100]; the unit against which the time t is measured could be set
arbitrarily to be second, hour, day, week, month, or some other suitable time period; the unit against
which the space variable x is measured could be set arbitrarily to be meter, kilometre, or some other
reasonable reference standard for measurement of length; the units of the time t and space variable x
are actually chosen, in an arbitrary way, and fixed at the very beginning of the construction of the
financial model (3); as with the space variable x and the time t, the units against which the economic
quantities vk are measured (see Section 1 for the brief introduction of vk), k = 1, 2, 3, 4, can also be set
in several different ways; during our choosing the aforementioned units, we should abide by two
basic rules (i) the choice of unit of each economic quantity vk should not contradict the choices of
the units of the other three economic quantities, and (ii) the choices of units of the space variable
x, the time t, and the economic quantities vk (k = 1, 2, 3, 4) should facilitate later calculations and
applications of the obtained theoretical results, we could choose, say, the aforementioned units as in
References [1,5].
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Figure 2. Numerical and graphical illustration of the occurrence of chaos phenomenon in the financial
system (3) (an infinite-dimensional dynamical system) distributed in the line segment Ω = (0, 8).
The quadruple (v1(x, t), v2(x, t), v3(x, t), v4(x, t))> denotes the solution, in the time interval [0, 100],
to the initial-boundary value problem (3)–(7), with the parameters a = 0.9, b = 0.2, c = 1.5, α = 0.17,
and β = 0.2, the diffusion coefficients D1(x) = D2(x) = D3(x) = D4(x) ≡ 0.001, and the initial
data v0

1(x) ≡ 1, v0
2(x) ≡ 2, v0

3(x) ≡ −0.5 and v0
4(x) ≡ −0.2, x ∈ Ω = (0, 8); the quadruple

(v1(4, t), v2(4, t), v3(4, t), v4(4, t))> denotes the restriction to the line segment {x; x = 4} × [0, 100] of
the quadruple (v1(x, t), v2(x, t), v3(x, t), v4(x, t))>; (a–d) display the projections (three-dimensional
curves) onto the three-dimensional Euclidean spaces v1 − v2 − v3, v1 − v2 − v4, v1 − v3 − v4, and
v2 − v3 − v4, respectively, of the parametrized curve (v1(4, t), v2(4, t), v3(4, t), v4(4, t))> in the four-
dimensional Euclidean space R4 with the time parameter t running over the interval [0, 100]; see
Figure 1 for the detailed explanation of the choices of the units against which the space variable x,
the time t, and the economic quantities vk (k = 1, 2, 3, 4) are measured.
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Figure 3. Numerical and graphical illustration of the asynchrony of the drive financial system (3)
and its response system (5), without any control input, distributed in the line segment Ω = (0, 8).
The quadruples (v1(x, t), v2(x, t), v3(x, t), v4(x, t))> and (ṽ1(x, t), ṽ2(x, t), ṽ3(x, t), ṽ4(x, t))> denote
the solutions, in the time interval [0, 100], to the initial-boundary value problems (3)–(7) and (5)–(8),
respectively, with the parameters a = 0.9, b = 0.2, c = 1.5, α = 0.17, and β = 0.2, the diffusion
coefficients D1(x) = D2(x) = D3(x) = D4(x) ≡ 0.001, the initial data v0

1(x) ≡ 1, v0
2(x) ≡ 2,

v0
3(x) ≡ −0.5 and v0

4(x) ≡ −0.2, the initial data ṽ0
1(x) = cos(π

4 x) − 1, ṽ0
2(x) = cos(π

2 x) + 1,
ṽ0

3(x) = − cos(πx)− 2, and ṽ0
4(x) = − cos(π

4 x) + 1, the control W1(x, t) = W2(x, t) = W3(x, t) =

W4(x, t) ≡ 0, x ∈ Ω = (0, 8), t ∈ [0, 100]; the quadruples (v1(4, t), v2(4, t), v3(4, t), v4(4, t))> and
(ṽ1(4, t), ṽ2(4, t), ṽ3(4, t), ṽ4(4, t))> denote the restrictions to the line segment {x; x = 4} × [0, 100] of
the quadruples (v1(x, t), v2(x, t), v3(x, t), v4(x, t))> and (ṽ1(x, t), ṽ2(x, t), ṽ3(x, t), ṽ4(x, t))>, respec-
tively; (a–d) display the graphs (curves) of v1 = v1(4, t) (the solid curve) vs. ṽ1 = ṽ1(4, t) (the dotted
curve), v2 = v2(4, t) (the solid curve) vs. ṽ2 = ṽ2(4, t) (the dotted curve), v3 = v3(4, t) (the solid
curve) vs. ṽ3 = ṽ3(4, t) (the dotted curve), and v4 = v4(4, t) (the solid curve) vs. ṽ4 = ṽ4(4, t) (the
dotted curve), respectively, with the time parameter t running over the interval [0, 100]; see Figure 1
for the detailed explanation of the choices of the units against which the space variable x, the time t,
and the economic quantities vk (k = 1, 2, 3, 4) are measured.

Illuminated by Theorem 5, we design the control (48) for the drive financial system
(3) and the response system (5). As revealed in Theorem 5, the parameter µ can take an
arbitrary value in (0, 1) and γ can take an arbitrary value in (1,+∞). For the sake of
simplicity, we put µ = 1

2 and γ = 2. Additionally, as indicated in the synchronization
criterion provided in Theorem 5, to obtain the desired fixed-time synchronizability, mkh
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(k = 1, 2, 3, 4, h = 1, 2, 3) are required to satisfy mkh ∈ (0,+∞) (k = 1, 2, 3, 4, h = 2, 3), and
mkh ∈ R+ (k = 1, 2, 3, 4, h = 1) render the matrix

m11 + 0.9 0 0 − 1
2

0 m21 + 0.2 0 0
0 0 m31 + 1.5 0
− 1

2 0 0 m31 + 0.17


to be semi-positive definite (it is not difficult to find that the semi-positive definiteness
is equivalent to m21 ∈ R+, m31 ∈ R+ and (m11 + 0.9)(m41 + 0.17) > 0.25). For the
convenience of later computations, we put mkh = 1 (k = 1, 2, 3, 4, h = 2, 3), m11 = m21 =
m31 = 0, m41 = 0.1078. Theoretically, these choices could guarantee that the drive financial
system (3) and the response system (5) achieve fixed-time synchronization; see Theorem 5.
After some computations, we find that [17,+∞) is contained in the totality of the settling
times. As plausibly shown by Figures 4 and 5, our theoretical results of this paper (see
Theorems 5 and 6) are indeed effective.
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Figure 4. Numerical and graphical illustration of the idea that the response system (5) could
be synchronized, in fixed time, to the drive financial system (3), distributed in the line seg-
ment Ω = (0, 8), by the control law (48): The quadruples (v1(x, t), v2(x, t), v3(x, t), v4(x, t))> and
(ṽ1(x, t), ṽ2(x, t), ṽ3(x, t), ṽ4(x, t))> denote the solutions, in the time interval [0, 2], to the initial-
boundary value problems (3)–(7) and (5)–(8) supplemented by the nonlinear term (48), respectively,
with the parameters a = 0.9, b = 0.2, c = 1.5, α = 0.17, β = 0.2, µ = 1

2 , γ = 2, mkh = 1
(k = 1, 2, 3, 4, h = 2, 3), m11 = m21 = m31 = 0, and m41 = 0.1078; the diffusion coefficients
D1(x) = D2(x) = D3(x) = D4(x) ≡ 0.001, the initial data v0

1(x) ≡ 1, v0
2(x) ≡ 2, v0

3(x) ≡ −0.5, and
v0

4(x) ≡ −0.2, the initial data ṽ0
1(x) = cos(π

4 x)− 1, ṽ0
2(x) = cos(π

2 x)+ 1, ṽ0
3(x) = − cos(πx)− 2, and

ṽ0
4(x) = − cos(π

4 x) + 1, x ∈ Ω = (0, 8); (a–d) display the graphs (surfaces) of the functions (having
two independent variables, that is, x and t) ṽ1(x, t)− v1(x, t), ṽ2(x, t)− v2(x, t), ṽ3(x, t)− v3(x, t),
and ṽ4(x, t)− v4(x, t), respectively, x ∈ Ω = (0, 8), t ∈ [0, 2]; see Figure 1 for the detailed explanation
of the choices of the units against which the space variable x, the time t, and the economic quantities
vk (k = 1, 2, 3, 4) are measured.
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Figure 5. Numerical and graphical illustration of the idea that that the response system (5)
could be synchronized, in fixed time, to the drive financial system (3), distributed in the line seg-
ment Ω = (0, 8), by the control law (48): The quadruples (v1(x, t), v2(x, t), v3(x, t), v4(x, t))> and
(ṽ1(x, t), ṽ2(x, t), ṽ3(x, t), ṽ4(x, t))> denote the solutions, in the time interval [0, 2], to the initial-
boundary value problems (3)–(7) and (5)–(8)–(48), respectively, with the parameters a = 0.9, b = 0.2,
c = 1.5, α = 0.17, β = 0.2, µ = 1

2 , γ = 2, mkh = 1 (k = 1, 2, 3, 4, h = 2, 3), m11 = m21 = m31 = 0,
and m41 = 0.1078, the diffusion coefficients D1(x) = D2(x) = D3(x) = D4(x) ≡ 0.001, the initial
data v0

1(x) ≡ 1, v0
2(x) ≡ 2, v0

3(x) ≡ −0.5, and v0
4(x) ≡ −0.2, the initial data ṽ0

1(x) = cos(π
4 x)− 1,

ṽ0
2(x) = cos(π

2 x) + 1, ṽ0
3(x) = − cos(πx) − 2, and ṽ0

4(x) = − cos(π
4 x) + 1, x ∈ Ω = (0, 8); the

quadruples (v1(4, t), v2(4, t), v3(4, t), v4(4, t))> and (ṽ1(4, t), ṽ2(4, t), ṽ3(4, t), ṽ4(4, t))> denote the re-
strictions to the line segment {x; x = 4}× [0, 2] of the quadruples (v1(x, t), v2(x, t), v3(x, t), v4(x, t))>

and (ṽ1(x, t), ṽ2(x, t), ṽ3(x, t), ṽ4(x, t))>, respectively; (a–d) display the graphs (curves) of v1 =

v1(4, t) (the solid curve) vs. ṽ1 = ṽ1(4, t) (the dotted curve), v2 = v2(4, t) (the solid curve) vs.
ṽ2 = ṽ2(4, t) (the dotted curve), v3 = v3(4, t) (the solid curve) vs. ṽ3 = ṽ3(4, t) (the dotted curve),
and v4 = v4(4, t) (the solid curve) vs. ṽ4 = ṽ4(4, t) (the dotted curve), respectively, with the time
parameter t running over the interval [0, 2]; see Figure 1 for the detailed explanation of the choices of
the units against which the space variable x, the time t, and the economic quantities vk (k = 1, 2, 3, 4)
are measured.

5. Conclusions

In this paper, are focused on studying a financial system, comprising the labor force,
the stock, the money, and the production sub-blocks distributed in a certain line segment or
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planar region, whose dynamics can be governed by the system (3) of semi-linear parabolic
partial differential equations supplemented by the homogeneous Neumann boundary
condition. We obtained the new financial system (3) by adding diffusion terms to the well-
studied financial system (2), which was shown by Yu, Cai, and Li [5] to be hyperchaotic.
In principle, chaos in dynamical systems causes the generated time series to display high
entropy values. This phenomenon for the financial system (2), the basis for the new system
(3), was illustrated graphically in Reference [18]. We provided economic/financial scenarios
in which the diffusion terms should be added to the classical financial system (2), yielding
the system (3). Our explanation complements the motivations provided in References [9,14]
for introducing diffusion terms to the system (2).

We provided a precise definition of the trajectories of the financial system (3) and its
corresponding (controlled or uncontrolled) response system (5) in the infinite dimensional
state space L2(Ω;R4). Based on the definition of trajectories, we proved that there exists a
unique trajectory, existing globally in time, of the system (3) or the system (5), a continuous
curve in the Hilbert space L2(Ω;R4), with its initial state given arbitrarily in L2(Ω;R4),
and that trajectories the system (3) depend continuously on their initial states.

We proposed a synchronization control, namely (48), for the response system (5),
and provided two criteria ensuring that the drive system (3) and the response system
(5) with the proposed control (48) implemented achieve fixed-time synchronization. We
also performed several numerical simulations to prove that, in a visional manner, our
synchronization theoretical results in this paper are indeed effective.

To provide a precise definition of trajectories the systems (3) and (5), we ‘borrowed’
the notion of weak solutions of evolution partial differential equations. To prove the global
(in time) existence of trajectories of the system (3) or the system (5), we used the celebrated
Galerkin’s method and two a priori estimates on two modified energy functionals (can
also be viewed as Lyapunov functionals) established in this paper. To prove that every
element in L2(Ω;R4) admits a unique trajectory of the system (3) or the system (5) having
this element as its initial state, and that trajectories of the system (3) depend continuously
on their initial states, we used semigroup theory of bounded linear operators in functional
analysis. To provide the claimed fixed-time synchronizability criteria, we proposed a new
novel Lyapunov functional (can be viewed as a certain modified energy functional).
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Appendix A. Proof of the Continuous Dependence and Uniqueness Parts of Theorem 1

In this section, we shall complete the proof of Theorem 1 by proving that for every
initial datum, the initial-boundary value problem (3)–(7) admits a unique solution corre-
sponding to this datum, and by proving that the data-to-solution is continuous in a certain
sense. Let us recall first Euler’s Gamma function

Γ(z) =
∫ +∞

0
tz−1e−tdt for z ∈ C with Re z > 0,

and the Mittag-Leffler function

Eυ(z) =
∞

∑
k=0

zk

Γ(kυ + 1)
for z ∈ C,
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where the parameter υ is required to be positive in this paper. It is not difficult to find that
Eυ(z) is strictly increasing in R+. To begin our proof, we prepare the following necessary
lemma.

Lemma A1 (see [43]). Let υ, T ∈ (0,+∞). Suppose that the functions a(t) and b(t) are non-
decreasing and take values in R+. Let e(t) be a continuous function mapping [0, T] into R+.
If

e(t) 6 a(t) + b(t)
∫ t

0
(t− s)υ−1e(s)ds for t ∈ [0, T],

then
e(t) 6 a(t)Eυ(Γ(υ)b(t)tυ) for t ∈ [0, T].

Proof. We assume that (v́1, v́2, v́3, v́4)
> and (v̀1, v̀2, v̀3, v̀4)

>, belonging to

C ([0, T]; L2(Ω;R4)) ∩ L2(0, T; H1(Ω;R4)),

are solutions, in the same time interval [0, T], to the initial-boundary value problem (3)–(7),
corresponding to the initial data (v́0

1, v́0
2, v́0

3, v́0
4)
> and (v̀0

1, v̀0
2, v̀0

3, v̀0
4)
>, respectively.

By applying Duhamel’s principle, we have

v́1(·, t) = etA1 v́0
1 +

∫ t

0
e(t−s)A1((v́2(·, s)− a)v́1(·, s) + v́3(·, s) + v́4(·, s))ds, (A1)

v́2(·, t) = etA2 v́0
2 +

∫ t

0
e(t−s)A2

(
1− bv́2(·, s)− (v́1(·, s))2

)
ds, (A2)

v́3(·, t) = etA3 v́0
3 −

∫ t

0
e(t−s)A3(cv́3(·, s) + v́1(·, s))ds, (A3)

v́4(·, t) = etA4 v́0
4 −

∫ t

0
e(t−s)A4(αv́4(·, s) + βv́1(·, s)v́2(·, s))ds, (A4)

v̀1(·, t) = etA1 v̀0
1 +

∫ t

0
e(t−s)A1((v̀2(·, s)− a)v̀1(·, s) + v̀3(·, s) + v̀4(·, s))ds, (A5)

v̀2(·, t) = etA2 v̀0
2 +

∫ t

0
e(t−s)A2

(
1− bv̀2(·, s)− (v̀1(·, s))2

)
ds, (A6)

v̀3(·, t) = etA3 v̀0
3 −

∫ t

0
e(t−s)A3(cv̀3(·, s) + v̀1(·, s))ds, (A7)

and

v̀4(·, t) = etA4 v̀0
4 −

∫ t

0
e(t−s)A4(αv̀4(·, s) + βv̀1(·, s)v̀2(·, s))ds. (A8)

After some routine calculations, we deduce from (A1) and (A5) immediately

v́1(·, t)− v̀1(·, t) = etA1(v́0
1 − v̀0

1) +
∫ t

0
e(t−s)A1

(
v́1(·, s)v́2(·, s)− v̀1(·, s)v̀2(·, s)

)
ds

− a
∫ t

0
e(t−s)A1

(
v́1(·, s)− v̀1(·, s)

)
ds +

∫ t

0
e(t−s)A1

(
v́3(·, s)− v̀3(·, s)

)
ds

+
∫ t

0
e(t−s)A1

(
v́4(·, s)− v̀4(·, s)

)
ds. (A9)
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By applying Lemmas 1 and 2, we have

‖
∫ t

0
e(t−s)A1

(
v́1(·, s)v́2(·, s)− v̀1(·, s)v̀2(·, s)

)
ds‖L2(Ω)

=
1
2
‖
∫ t

0
e(t−s)A1

(
(v́1(·, s)− v̀1(·, s))(v́2(·, s) + v̀2(·, s))

+ (v́1(·, s) + v̀1(·, s))(v́2(·, s)− v̀2(·, s))
)
ds‖L2(Ω)

6
M1

2

∫ t

0
(t− s)−

N
4 ‖(v́1(·, s)− v̀1(·, s))(v́2(·, s) + v̀2(·, s))

+ (v́1(·, s) + v̀1(·, s))(v́2(·, s)− v̀2(·, s))‖L1(Ω)ds

6
M1

2

∫ t

0
(t− s)−

N
4
(
‖v́1(·, s)− v̀1(·, s)‖L2(Ω)‖v́2(·, s) + v̀2(·, s)‖L2(Ω)

+ ‖v́1(·, s) + v̀1(·, s)‖L2(Ω)‖v́2(·, s)− v̀2(·, s)‖L2(Ω)

)
ds.

This, together with (A9), implies immediately

‖v́1(·, t)− v̀1(·, t)‖L2(Ω) 6 ‖etA1(v́0
1 − v̀0

1)‖L2(Ω)

+ ‖
∫ t

0
e(t−s)A1

(
v́1(·, s)v́2(·, s)− v̀1(·, s)v̀2(·, s)

)
ds‖L2(Ω)

+ a‖
∫ t

0
e(t−s)A1

(
v́1(·, s)− v̀1(·, s)

)
ds‖L2(Ω)

+ ‖
∫ t

0
e(t−s)A1

(
v́3(·, s)− v̀3(·, s)

)
ds‖L2(Ω)

+ ‖
∫ t

0
e(t−s)A1

(
v́4(·, s)− v̀4(·, s)

)
ds‖L2(Ω)

6 ‖v́0
1 − v̀0

1‖L2(Ω) + a
∫ t

0
‖v́1(·, s)− v̀1(·, s)‖L2(Ω)ds

+
M1

2

∫ t

0
(t− s)−

N
4
(
‖v́1(·, s)− v̀1(·, s)‖L2(Ω)‖v́2(·, s) + v̀2(·, s)‖L2(Ω)

+ ‖v́1(·, s) + v̀1(·, s)‖L2(Ω)‖v́2(·, s)− v̀2(·, s)‖L2(Ω)

)
ds

+
∫ t

0
‖v́3(·, s)− v̀3(·, s)‖L2(Ω)ds +

∫ t

0
‖v́4(·, s)− v̀4(·, s)‖L2(Ω)ds. (A10)

By mimicking steps in (A10), we deduce from (A2) and (A6) that

‖v́2(·, t)− v̀2(·, t)‖L2(Ω) 6 ‖v́0
2 − v̀0

2‖L2(Ω) + b
∫ t

0
‖v́2(·, s)− v̀2(·, s)‖L2(Ω)ds

+ M1

∫ t

0
(t− s)−

N
4 ‖v́1(·, s) + v̀1(·, s)‖L2(Ω)‖v́1(·, s)− v̀1(·, s)‖L2(Ω)ds. (A11)

By mimicking steps in (A10) and (A11), we deduce from (A3) and (A7) that

‖v́3(·, t)− v̀3(·, t)‖L2(Ω) 6 ‖v́0
3 − v̀0

3‖L2(Ω) +
∫ t

0
‖v́1(·, s)− v̀1(·, s)‖L2(Ω)ds

+ c
∫ t

0
‖v́3(·, s)− v̀3(·, s)‖L2(Ω)ds. (A12)
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By mimicking steps in (A10)–(A12), we deduce from (A4) and (A8) that

‖v́4(·, t)− v̀4(·, t)‖L2(Ω) 6 ‖v́0
4 − v̀0

4‖L2(Ω) + α
∫ t

0
‖v́4(·, s)− v̀4(·, s)‖L2(Ω)ds

+
M1β

2

∫ t

0
(t− s)−

N
4
(
‖v́1(·, s)− v̀1(·, s)‖L2(Ω)‖v́2(·, s) + v̀2(·, s)‖L2(Ω)

+ ‖v́1(·, s) + v̀1(·, s)‖L2(Ω)‖v́2(·, s)− v̀2(·, s)‖L2(Ω)

)
ds. (A13)

For the convenience of our later presentation, we denote

s(t) =
4

∑
k=1
‖v́k(·, t)− v̀k(·, t)‖L2(Ω) for t ∈ [0, T], (A14)

from which it follows that

s(0) =
4

∑
k=1
‖v́0

k − v̀0
k‖L2(Ω). (A15)

By using the celebrated GM-AM inequality, we can prove

4

∑
k=1

(
‖v́k(·, t)‖L2(Ω) + ‖v̀k(·, t)‖L2(Ω)

)
62 +

4

∑
k=1
‖v́k(·, t)‖2

L2(Ω) +
4

∑
k=1
‖v̀k(·, t)‖2

L2(Ω), t ∈ [0, T].

However, in view of (43) and (44) in the proof of Theorem 1 (see also Theorem 2), we find

4

∑
k=1
‖v́k(·, t)‖2

L2(Ω) 6 M8

4

∑
k=1
‖v́0

k‖
2
L2(Ω)e

M9t for t ∈ [0, T],

4

∑
k=1
‖v̀k(·, t)‖2

L2(Ω) 6 M8

4

∑
k=1
‖v̀0

k‖
2
L2(Ω)e

M9t for t ∈ [0, T],

where the positive constants, M8 and M9, given exactly as in (47) in Theorem 2, depend
merely on a, b, c, α, β, Ω, Dk (k = 1, 2, 3, 4). Based on (A10)–(A13), we have, by utilizing
some calculations,

s(t) 6 s(0) + max(a + 1, b, c + 1, α + 1)
∫ t

0
s(s)ds

+
M1
(

max(β, 1) + 1
)

2

∫ t

0
(t− s)−

N
4

2

∑
k=1

(
‖v́k(·, s)‖L2(Ω) + ‖v̀k(·, s)‖L2(Ω)

)
s(s)ds

6 s(0) + r(t)
∫ t

0
(t− s)−

N
4 s(s)ds, t ∈ [0, T], (A16)

where the function r(t) is given by

r(t) = t
N
4 max(a + 1, b, c + 1, α + 1)

+
M1
(

max(β, 1) + 1
)

2
(
2 + M8(

4

∑
k=1
‖v́0

k‖
2
L2(Ω) +

4

∑
k=1
‖v̀0

k‖
2
L2(Ω))e

M9t), t ∈ [0, T].



Entropy 2023, 25, 359 37 of 38

Thanks to the observation that the function r(t) is strictly increasing in [0, T] and that the
function E 4−N

4
(z) is strictly increasing in R+, by Lemma A1, we deduce from (A16) that

s(t) 6s(0)E 4−N
4
(Γ(

4− N
4

)r(t)t
4−N

4 )

6s(0)E 4−N
4
(Γ(

4− N
4

)r(T)T
4−N

4 ), t ∈ [0, T].

This, together with (A14) and (A15), implies

sup
t∈[0,T]

4

∑
k=1
‖v́k(·, t)− v̀k(·, t)‖L2(Ω) 6 E 4−N

4
(Γ(

4− N
4

)r(T)T
4−N

4 )
4

∑
k=1
‖v́0

k − v̀0
k‖L2(Ω).

This, together with Theorem 2, implies that for every T ∈ (0,+∞), the data-to-solution
map

L2(Ω;R4) 3 (v0
1, v0

2, v0
3, v0

4)
> 7→ (v1, v2, v3, v4)

> ∈ C ([0, T]; L2(Ω;R4))

is locally Lipschitz continuous. Lastly, it is worth mentioning that it is not difficult to
find that the uniqueness follows directly from the local Lispchitz continuity of the data-to-
solution map.
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