
Citation: Yuan, L.; Wang, Z.; Sun, P.;

Wei, Y. An Efficient Virtual Machine

Consolidation Algorithm for Cloud

Computing. Entropy 2023, 25, 351.

https://doi.org/10.3390/e25020351

Academic Editors: Jawad Ahmad,

Arslan Munir and Bill William

Buchanan

Received: 8 December 2022

Revised: 2 February 2023

Accepted: 10 February 2023

Published: 14 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An Efficient Virtual Machine Consolidation Algorithm for
Cloud Computing
Ling Yuan 1 , Zhenjiang Wang 1 , Ping Sun 2,3,* and Yinzhen Wei 3,4

1 Department of Computer Science, Huazhong University of Science and Technology, Wuhan 430074, China
2 School of Information, Wuhan Vocational College of Software and Engineering, Wuhan 430074, China
3 School of Computer Science, Huanggang Normal University, Wuhan 430074, China
4 School of Computer Science, Wuhan Vocational College of Software and Engineering, Wuhan 430074, China
* Correspondence: ppsun@126.com; Tel.: +86-1898-610-7450

Abstract: With the rapid development of integration in blockchain and IoT, virtual machine consoli-
dation (VMC) has become a heated topic because it can effectively improve the energy efficiency and
service quality of cloud computing in the blockchain. The current VMC algorithm is not effective
enough because it does not regard the load of the virtual machine (VM) as an analyzed time series.
Therefore, we proposed a VMC algorithm based on load forecast to improve efficiency. First, we
proposed a migration VM selection strategy based on load increment prediction called LIP. Combined
with the current load and load increment, this strategy can effectively improve the accuracy of
selecting VM from the overloaded physical machines (PMs). Then, we proposed a VM migration
point selection strategy based on the load sequence prediction called SIR. We merged VMs with
complementary load series into the same PM, effectively improving the stability of the PM load,
thereby reducing the service level agreement violation (SLAV) and the number of VM migrations due
to the resource competition of the PM. Finally, we proposed a better virtual machine consolidation
(VMC) algorithm based on the load prediction of LIP and SIR. The experimental results show that
our VMC algorithm can effectively improve energy efficiency.

Keywords: virtual machine consolidation model; load prediction; virtual machine migration; blockchain

1. Introduction

Most of the data collected by IoT devices on the blockchain system are processed in the
cloud. The large amount and high speed of real-time data sent on IoT devices pose a severe
challenge to cloud computing methods [1]. However, due to the dynamic changes of the
application load on the virtual machines (VMs), the heterogeneity of physical machine (PM)
resources in the cloud data center is often out of balance. Some PMs are overloaded, which
may result in resource competition and service level agreement violation (SLAV) [2]. Some
PMs are underloaded, which may result in low resource utilization and reduce the energy
efficiency of the data center [3]. There is an urgent need for algorithms that can effectively
improve the energy efficiency and quality of service of cloud computing in the blockchain.

The VM dynamic migration technology can dynamically change the host PM of the
VM at runtime [4]. Virtual machine consolidation (VMC) technology means that the VM
manager periodically and dynamically deploys VMs to minimize the number of running
PMs and simultaneously turn off the idle PMs according to the load conditions of each
PM [5]. VMC can effectively reduce the imbalance of the data load in the blockchain and
save energy consumption. For an overloaded PM, some of the VMs in it can be moved out
to avoid further degradation of performance to reduce the SLAV rate; for an underloaded
PM, all VMs on it can be migrated out, and it can be shut down to minimize the number of
PMs to save energy [6,7].

Entropy 2023, 25, 351. https://doi.org/10.3390/e25020351 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0160-846X
https://orcid.org/0000-0001-5855-5146
https://orcid.org/0000-0003-2594-9805
https://orcid.org/0000-0002-8106-4414
https://doi.org/10.3390/e25020351
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020351?type=check_update&version=2

Entropy 2023, 25, 351 2 of 23

However, the dynamic changes in the VM load make it extremely difficult to design
an efficient VMC algorithm. Two problems to be solved by VMC in blockchain are as
follows [8]:

(1) For an overloaded PM, which VMs on it need to be migrated out;
(2) For a VM to be migrated out, which PM is the better migration destination.

This paper focuses on the above problems, and our contribution is as follows:

(1) We proposed a migration VM selection strategy called LIP based on load increment
prediction to improve selection accuracy. It quantitatively analyzes the growth trend
of the VM load and combines the current load with load increment. We designed
a volatility-based weighted time regression prediction algorithm called VWTRP to
improve the accuracy of load trend prediction.

(2) We designed a VM migration point selection strategy called SIR based on load se-
quence prediction and optimal saturation increase rate. SIR can improve the stability
of PM load in data centers by leveraging the complementary effects of load sequences
between VMs to be migrated and VM migration points. We proposed a load pre-
diction algorithm called LSMP based on load similarity matching to compensate for
the shortcomings of load stationarity matching, which only depends on historical
load sequences.

(3) Combining LIP and SIR, we designed a VMC algorithm based on load forecasting.
We used actual load data for simulation experiments and evaluated the proposed
algorithm. The experimental results show that our proposed algorithm improves
performance in accuracy and stability.

The rest of this paper is structured as follows. Section 2 shows the related work of
virtual machine consolidation technology. Section 3 introduces our proposed algorithm,
which includes short-term load increment prediction and load sequence prediction, our
migration VM selection strategy LIP, the VMs migration point selection algorithm SIR,
and the consolidation algorithm that combines them. Section 4 introduces the experimental
methods and analyzes the experimental results. Section 5 is the conclusion.

2. Related Work

In terms of the VM migration selection strategy, Verma et al. [9] designed three kinds
of selection strategies: random choice (RC), highest potential growth (HPG), and min-
imum migration time (MMT). Beloglazov et al. [10] proposed three kinds of selection
strategies, viz., minimum migration time (MMT), random selection (RS), and maximum
correlation (MC). The minimization of VM migration (MVM) algorithm was proposed
by [11]. Masoumzadeh et al. [12] proposed an adaptive threshold-based algorithm using
dynamic fuzzy Q-learning (DFQL) method. The proposed algorithm learns to consider
a VM as an overloaded host according to its energy–performance trade-off optimization.
In recent years, the dynamic detection of the load on PMs has drawn scholars’ attention.
Bui et al. [13] deployed regression models on the historical utilization of PMs to enhance
detection accuracy. Hummaida et al. [14] proposed a reinforcement learning management
policy. The method can run decentralized and achieve fast convergence toward efficient
resource allocation, resulting in lower SLA violations.

The current methods have the following problems. Current scholars mainly focus
on predicting the load on PMs to improve the efficiency of VMC. For the selection of the
migration VM, only the current resource load of the VM is focused, and the dynamic
characteristics of it are not analyzed. Although some methods using reinforcement learning
have been proposed, most of them are time-consuming and energy-consuming, and are
not particularly suitable for industrial scenarios. In addition, the current strategies of VM
selection only restore the PM load to a normal level and neglect the root cause of the load
growth. The improper migration of VMs causes an increase in SLAV and the number
of migrations.

Entropy 2023, 25, 351 3 of 23

In terms of VM migration destination selection strategy, Dabbagh et al. [15] proposed
random choice (RC) and first fit (FF). Pascual et al. [16] proposed next fit (NF)/round
robin (RR). Farahnakian et al. [17] proposed best fit (BF). Khaleel et al. [18] calculated
the deviation between the real utilization of the running server and its threshold, then
picked the VM whose VM utilization is close to the deviation. Chen et al. [19] proposed
an algorithm using host utilization and minimal correlation methods to predict the future
utilization of the VMs and then use the predicted data to select the migration destination.
Rjoub et al. [20] applied machine learning methods and used statistics of CPU load to
predict the most proper destination.

The current methods have the following problems. When selecting a VM migration
point, they also only focus on the current resource load of the VM, but fail to consider the
VM resource load as a time series, ignoring the complementary effects between the VM
load sequences. If the complementary effects of the resource load sequences of each VM in
the PM are poor, the load fluctuation of the PM will be enhanced, which means frequent
VM migration. Although some methods used the strategy of machine learning, they just
focus on statistical data and need deeper data mining.

We proposed a better virtual machine consolidation (VMC) algorithm based on the
load prediction which is the organic combination of LIP and SIR. The experimental results
demonstrate that the proposed VMC algorithm can outperform the existing schemes in
terms of efficiency.

3. Algorithm Description

In this section, we proposed 7 algorithms to solve the problem of virtual machine
consolidation. To help readers quickly understand the content of this section, we provide
two tables which organize the abbreviations of the algorithms and notations of every
parameter. The table of abbreviations of proposed algorithmsis given in Table 1 and the
table of notations is given in Table 2.

Table 1. Abbreviations of proposed algorithms.

Abbreviation Full Name and Description

VWTRP Volatility-based Weighted Time Regressive Prediction. To predict short-term
load trend for a VM

DFWD Dynamic Function Warping Distance. To measure similarity of load sequence for
a VM

LSMP Load Similarity Match Predicted. To predict the load sequence of a VM

LIP Load Increment Prediction. To select VMs that need to be migrated out

SIR Saturation Increase Rate. To select the migration point for VMs

Table 2. The table of notations.

Notation Meaning

v VM

LH Historical load data of v

LI Predicted load increment of v

ls[n + 1] Load sequence

A The number of reverse orders

Z A statistic defined in Equation (3)

v[i] The volatility of acquisition point i

Entropy 2023, 25, 351 4 of 23

Table 2. Cont.

Notation Meaning

w[i] The weight of acquisition point i

curve(t) Fitted curve

Rw The goodness of fitting defined in Equation (10)

Vl The load-stationary VMs set

Vm The growth-stable VMs set

Vh The growth-significant VMs set

distance Dynamic function bending distance

lsbe f ore[n] Load sequence today lsbe f ore[n]

LShistory Load sequence in the past m days LShistory

lshistory The most similar sequence of lsbe f ore[n] in LShistory

lsbe f ore Load sequence in latest k consolidation cycles

ls[k] Load sequence after translation of lshistory for i-w integration cycles in time
period corresponding to lsbe f ore[n]

lsmatch The most similar sequence of lsbe f ore in ls[k]

ls f uture Predicted load sequence

Vout The VMs set to be migrated out

upredict(V −Vout) Predicted load of PM after Vout migrated out

LS Load sequence of PM

sir Saturation increase rate defined in Equation (29)

hj VM migration point

3.1. Short-Term Load Increment Prediction

In order to ease the growth trend of the load in overload PM from the root, the VM
whose load has a growing trend should have a high priority to be migrated out. Therefore,
we proposed an algorithm, namely volatility-based weighted time regressive prediction
(VWTRP), for short-term load trend prediction for VMs, which is the basis of the selection
strategy for VMs to be migrated out.

Program flow chart of the algorithm is shown in Figure 1.

Figure 1. The flow chart of VWTRP Algorithm.

Entropy 2023, 25, 351 5 of 23

The VWTRP algorithm divides the VMs set into three VMs sets with different priorities
according to the load increment.

The VWTRP algorithm is shown in Algorithm 1. The time complexity of it is O(nlog7),
where n is the number of acquisition periods in the consolidation period. The VWTRP
algorithm is composed of the following four important steps.

Algorithm 1 VWTRP(v, LH)

Input: VM v, Historical load data of v LH
Output: Load increment LI

1: Calculate load sequence ls[n + 1]
2: Calculate reverse orders number A
3: Calculate Z
4: if Z <= 1.96 then
5: for i = 1 to n− 1 do
6: Calculate volatility v[i]
7: Calculate weight w[i]
8: end for
9: curve(t)← timeRegression(ls[], w[])

10: Calculate Rw

11: Calculate LI
12: if LI ≤ ls[n] ∗ H ∗ T then
13: Vm ← Vm ∪ v
14: else
15: Vh ← Vh ∪ v
16: end if
17: else
18: Vl ← Vl ∪ v
19: end if
20: return LI

3.1.1. Inspection of Load Growth Trends

The load growth trend was examined based on the number of reverse order. For the
time series y1y2...ym, i f yi < yj, then it is called a reverse order, where i, j ∈ {1, 2, ..., M} and
i < j. The total number of reverse orders is denoted by A. The expectation and variance
with respect to A are shown in (1) and (2) [21].

E(A) =
1
4

M(M− 1) (1)

D(A) =
M
(
2M2 + 3M− 5

)
72

(2)

where M denotes the number of data in time series. Then, according to the above Equations,
the statistic Z which is given in (3) is a standard normal random variable, that is Z ∼ N(0, 1):

Z =

[
A + 1

2 − E(A)
]

√
D(A)

(3)

In the case of significant level α = 0.05, if Z > 1.96, then it has a growing trend.

3.1.2. Load Volatility and Weight Calculation

In the acquisition period [t, t + Ts], suppose that the acquisition module receives addi-
tional k load data items, there should be altogether k + 2 load data items, i.e., u′0, u′1, . . . , u′k,
u′k+1, where Ts is the acquisition period.

If u′i > u′i−1, and 0 < i ≤ k + 1, it is marked as “+”; otherwise, it is marked as “−”.
A continuous sequence with same symbols is defined as a Run. For example, there are five
Runs in the following symbol sequence: +−−−+++−−+. They are +,−−−,++
+,−− and +, respectively.

Entropy 2023, 25, 351 6 of 23

Supposing that the CPU historical load data at the acquisition points t0, t1, . . . , tn in
a consolidation period on the VM are denoted by u0, u1, . . . , un, then there are ki + 2 load
data items in [ti, ti+1], and the number of Runs should be pi. The load volatility at ti is
given in (4).

vi =
pi−1 − 1
ki−1 + 2

× pi − 1
ki + 2

(4)

When the load volatility is small, the load data around sampling point do not change
significantly and therefore can represent the characteristics of the load. Then, the curve
fitting should have a great weight [22]. Hence, the weight of the load data at point ti is
shown in (5):

wi = 1−
√

vi, 0 ≤ i ≤ n (5)

3.1.3. Weighted Curve Fitting and Evaluations on the Curve

We use regression analysis to model the load sequence over time. To avoid overfitting,
which affects the accuracy of prediction, the one-variable second-order linear regression
model is used in this paper. The one-variable second-order linear regression model for
CPU utilization is shown in (6):

U(t) = β0 + β1t + β2t2 + ε (6)

where β0 is a regression constant, β1, β2, . . . , βp are regression coefficients, and ε ∼ N
(
0, σ2)

is a random error.
The CPU utilization of VM during a consolidation period on the n + 1 sample points

is denoted by < U(t1),, U(t2), U(tm) >. The error of the CPU load data on the sample
point ti is εi ∼ N

(
0, σi

2).
In the regression analysis, ordinary least squares (OLS) is one of the popular methods

used for parameter estimation. The sum of squared deviations using OLS is shown in (7):

D =
n

∑
i=0

(
U(ti)− β0 − β1ti − β2t2

i

)2
(7)

However, under the heteroskedasticity, the regression curve will bias those sample
points with larger variance of error. When estimating the parameters, the weight calculated
in (5) is added in each sampling point. The sum of the squared deviations of the weighted
least squares estimate is shown in (8):

Dw =
n

∑
i=0

wi

(
U(ti)− β0 − β1ti − β2t2

i

)2
(8)

The parameter estimated value calculated by wright least squares (WLS) [23] is shown
in (9).

β̂WLS =
(
XTWTWX

)−1XTWTWU

where W =

w0 0 · · · 0 0
0 w1 · · · 0 0
...

...
. . .

...
...

0 0 · · · wn−1 0
0 0 · · · 0 wn

(9)

The goodness of fit of the linear regression equation is measured by using a multiple
correlation coefficient R. However, all the data are treated equally in the process of calcu-
lating the multiple correlation coefficient. By analyzing the volatility, the importance of
different load data in the time regression analysis is different. Therefore, we should take
weights into account when performing model checking. Therefore, we use a weighted

Entropy 2023, 25, 351 7 of 23

multiple correlation coefficient to evaluate the goodness of fit of the regression equation,
as shown in (10)–(13):

Rw =

√
Sw

R
Sw

T
=

√
1−

Sw
E

Sw
T

(10)

Sw
T =

m

∑
i=1

wi(yi − ȳ)2 (11)

Sw
E =

m

∑
i=1

wi(yi − ŷi)
2 (12)

Sw
R =

m

∑
i=1

wi(ŷi − ȳi)
2 (13)

where Rw ∈ [0, 1], the bigger the Rw, the better the fitting.

3.1.4. Load Volatility and Weight Calculation

The regression function Û(t) obtained from the time regression analysis has good
performance for short-term predictions. However, it would lead to large deviations for
long-term predictions. Therefore, we use the fitting function to predict load at time ∆t,
then expand it to obtain the load of the next consolidation cycle. At point ti, the CPU load
increments (LI) in the next consolidation cycle of the schedule are shown by (14)–(16):

LI =
(

I
∆t
−U(ti)

)
T (14)

I =
∫ ti+∆t

ti

Û(t)dt (15)

∆t = k× Rw × T (16)

where T represents the consolidation cycle (there are multiple acquisition periods Ts in a
consolidation cycle), and k denotes the trend continuation coefficient. The larger the k, the
longer the prediction interval, and the smaller the prediction precision.

3.2. The Load Sequence Prediction

There is a strong similarity between the CPU load sequences of each day of the VM.
Therefore, the CPU load sequence of the VM in a certain period in the future can be
approximated by using the CPU load of a certain past time.

We propose a load similarity match predicted (LSMP) algorithm based on the similarity
measurement algorithm to predict the load order of VM. The LSMP algorithm is composed
of the following three important steps.

3.2.1. Standardization of Load Sequence

The load sequences are standardized in order to eliminate the effects of amplitude
scaling and amplitude translation on the load similarity measure. For the load sequence
X =< x1, x2, · · · , xn >, the mean value of the set is µ(x) and the variance is σ2(x). The time
series can be standardized as SX =< sx1, sx2, · · · , sxn > as shown in (17):

sxi(x) =
xi − µ(x)

σ(x)
(17)

3.2.2. Function Conversion of Load Sequence

The general method based on the comparison of numerical features for the similarity
measure of time series ignores the morphological characteristics. To describe the load
change information more accurately, we use the piecewise cubic spline interpolation method

Entropy 2023, 25, 351 8 of 23

to convert a load sequence with length n x1, x2, . . . , xn into n − 1 smooth cubic curves
f1, f2, . . . , fn−1.

We use the following method to reduce the complexity of the algorithm which converts
load sequences into curve functions. First, the load sequence with length n is divided into m
segments with length m, where m = dn/ke. For the i-th segment of the load sequence with
length k xk×i, xk×i+1, . . . , x(k+1)×i−1, the starting sequence of the next segment is added into
an augmented load sequence with length k + 1 xk×i, xk×i+1, . . . , x(k+1)×i. The last segment
is processed separately. The i-th (i < m) segment of augmented load sequence is converted
into k smooth cubic curves fk×i, fk×i+1, . . . , f(k+1)×i−1. They are represented as a piecewise
function Si(t), as shown in (18):

Si(t) =

fk×i(t), tk×i < t < tk×i+1
· · ·
f(k+1)×i−1(t), t(k+1)×i−1 < t < t(k+1)×i

(18)

The complexity of the algorithm is O(k2n).

3.2.3. The Similarity Measure of Load Sequence

For the similarity measure of load sequence, the original dynamic time bending
distance has the following deficiencies: time insensitivity and high algorithm complexity.
The similarity measure of the VM load is time-sensitive and isometric [24]. When solving
for the smallest curved path, the algorithm can be optimized by limiting the search space of
the smallest curved path so that the time complexity is O(wn), where w is the search width.
The algorithm to measure similarity of load sequence is named dynamic function warping
distance algorithm (DFWD).

For the function sequences f A
1 , f A

2 , . . . , f A
n−1 and f B

1 , f B
2 , . . . , f B

n−1 corresponding to the
load sequences of two VMs A and B, we define the time-aware integral difference (TAID)
of the function f A

i and function f B
j , as shown in (19):

TAIDij = α|(j−i)|
∫ T

0

∣∣∣ f A
i (t)− f B

j (t + ((j− i)× T))
∣∣∣dt (19)

where T is the acquisition period of the load data, and α(α > 1) is the distance sensitivity
coefficient. The bigger α is, the more sensitive it is to the time when the load similarity
measure is performed:

DTW(A, B) = minW

{
∑

p
i=1 d(wi), W =< w1, w2, . . . wk >

}
where wi = (ai, bi)

d(wi) =

{
TAIDai ,bi

, |ai − bi| ≤ SearchWidth
+∞, |ai − bi| > SearchWidth

(20)

Equation (20) represents the path of the minimum dynamic function bending cost,
that is, the best correspondence between load sequence values.

Where wi = (ai, bi) is the i-th sequence value pair, and d(wi) is the corresponding
distance of wi = (ai, bi). It is measured by the TAID, and the distance is infinite when the
search width exceeds the threshold.

The DFWD between load sequences can be solved by dynamic programming. The cu-
mulative distance matrix is shown in (21):

r(i, j) = dwi + min{r(i− 1, j), r(i, j− 1), r(i− 1, j− 1)}
where |i− j| ≤ SearchWidth

(21)

At the end of the dynamic programming, r(n − 2, n − 2) represents the dynamic
function bending distance. The dynamic function bending distance is the best matching
relationship between two load sequences. The greater the dynamic function bending

Entropy 2023, 25, 351 9 of 23

distance, the smaller the similarity of the two load sequences. The DFWD algorithm is
shown as Algorithm 2.

Algorithm 2 DFWD(lsA, lsB).

Input: Load sequences lsA and lsB
Output: Dynamic function bending distance distance

1: Standardization of lsA and lsB
2: Calculate conversion function
3: r[n− 1][n− 1]
4: for i = 0 to n− 2 do
5: for j = 0 to n− 2 do
6: if abs(i, j) < SearchWidth then
7: r[i][j] = Double.Max_Value
8: else
9: Calculate taid

10: Calculate r[i][j] = taid + min{r[i− 1][j], r[i][j− 1], r[i− 1][j− 1]}
11: end if
12: end for
13: end for
14: return r[n− 2][n− 2]

To predict the load sequence of the VM, we proposed an algorithm called load simi-
larity match predicted (LSMP) based on the proposed similarity measurement algorithm
DFWD. The LSMP algorithm is shown as Algorithm 3.

Algorithm 3 LSMP(v, k).

Input: VM v, Prediction length k
Output: Load sequence of v in the future k consolidation periods ls f uture

1: Initialize lshistory, minDistance
2: Get generated load sequence lsbe f ore[n]
3: Get past m-day load sequence LShistory
4: for ls ∈ LShistory do
5: distance = DFWD(lsbe f ore[n], ls)
6: if distance < minDistance then
7: minDistance = distance
8: lshistory = ls
9: end if

10: end for
11: Initialize lsmatch, minDistance
12: Get latest k consolidation cycles load sequence lsbe f ore
13: for i = 0 to w ∗ 2 do
14: Calculate ls[k]
15: distance = DFWD(lsbe f ore, ls[k])
16: if distance < minDistance then
17: minDistance = distance
18: lsmatch = ls[k]
19: end if
20: end for
21: Calculate ls f uture
22: return ls f uture

Algorithm 3 first uses the CPU load sequence ls generated by the VM v today to
find the historical load sequence lshistory with the highest similarity in the same time
period through the similarity measure. Then, it uses the load sequence lsbe f ore of the most
recent k scheduling points to match the isometric load sequence lsmatch with the highest
similarity. Finally, it uses the load sequence ls f uture in lsmatch of lshistory in the subsequent k
consolidation cycles to represent the CPU utilization for the next k consolidation cycles and

Entropy 2023, 25, 351 10 of 23

adjusts the amplitude. The time complexity of Algorithm 3 is O(n), where n is the number
of consolidation cycles during a day.

3.3. VMs to Be Migrated Selection Strategy

Program flow chart is shown in Figure 2.

Figure 2. The flow chart of VMs to be migrated selection strategy.

The CPU load increment of VM is predicted by the VMTRP algorithm. After this
process, the VMs set on the overloaded PM is divided into three parts: a load-stationary
VMs set, a growth-stable VMs set, and a growth-significant VMs set. The priority of these
sets increases in turn. We search from the VMs set with the highest priority. If there is a
certain VM such that the PM predicted load fitness becomes positive after it is moved out,
then the virtual machine is chosen to be migrated out, and the program ends. Otherwise,
selecting the VMs with the highest CPU load in the set for migration, we repeat the
previous step.

3.3.1. Design of Load Fitness Function

The CPU load threshold of the overloaded PM is denoted by H. The load threshold is
only set to prevent further increases in the PM load and reduce the risk of SLAV. If CPU
load is close to the threshold, then the probability of overloading in the next cycle would be
large. As a result, frequent VM migrations may occur, and the performance of applications
will be affected.

Therefore, we use a fitness function to examine the PM load level, which is given
in (22):

f (u) =

m
g u , 0 ≤ u ≤ g

m
log 1−g

1−H
log 1−u

1−H , g < u < 1

−1 , u = 1

(22)

Entropy 2023, 25, 351 11 of 23

3.3.2. PM Load Prediction

The set of all the VMs on the overloaded PM is denoted by V{v0, v2, . . . , vn−1}. The set
of VMs to be migrated is denoted by Vout, and the set of remaining VMs is denoted by Vrest.
According to the (23), the total load of the VMs set for a specific consolidation cycle can
be calculated:

VL = ∑n−1
i=0 ∑m−1

j=0 uij × T (23)

where uij is CPU utilization of the j-th acquisition point at a specific cycle of the VM vi.
The sets of VMs with a growing load in the VMs set V and in the VMs set to be

migrated Vout are respectively denoted by VUP and Vup. First, according to (18), the total
load VLnow, VLpre, VLUP

now and VLUP
pre of the VMs set V and VUP in the current consolidation

cycle and in the previous consolidation cycle, respectively, is calculated. Then, according
to (24), the conversion ratio of the VMs set VUP load increment to the PM load increment
is calculated:

cr =
VLUP

now −VLUP
pre

VLnow −VLpre
(24)

Then, the predicted load increments LIUP and LIup for the VM set VUP and Vup are calcu-
lated, respectively. Finally, the predicted load of the remaining VMs set Vrest(v0, v1, . . . , vm−1)
is calculated based on (25):

upredict =
cr×LIUP+T×∑m−1

i=0 ui−LIup
T

(25)

where m represents the number of VMs in Vrest, ui indicates the current CPU utilization
of the VM vi, and cr ∗ LIUP denotes the predicted load increments when the PM does
not perform any VM migration. The time complexity is O(n ∗ m), where n is the num-
ber of sampling periods in the consolidation cycle, and m is the number of VMs in the
overloaded PM.

The LIP strategy selects the VMs to be migrated from the above three sets in order
according to the priority through a two-stage greedy selection. The LIP Algorithm is shown
as Algorithm 4.

The time complexity of Algorithm 4 is O(n ∗m3), where n is the number of acquisition
periods in the consolidation period, and m is the number of VMs in the overloaded PM.
Since the aggregate resource demands of VMs in the same PM do not exceed the resource
capacity of the PM, the number of VMs deployed on the PM is limited [25]. Therefore, m is
small, and the time complexity of this algorithm is acceptable.

The LIP algorithm improves the accuracy of the migrated VMs selection by combining
the predicted load increments and current load. On the one hand, it can effectively prevent
the massive resource fragmentation caused by the improper selection of migrated VMs.
On the other hand, it can effectively reduce the probability of the PM being overloaded
again and reduce the number of migrations.

Entropy 2023, 25, 351 12 of 23

Algorithm 4 LIP(Vl , Vm, Vh).

Input: The stable load VMs set Vl , The stable growth load VMs set Vm, The significant growth load
VMs set Vh

Output: The VMs set to be migrated Vout
1: while upredict(V −Vout) is overload do
2: Get Vc (with the highest priority in Vl , Vm, Vh)
3: Initialize success, maxFit, vb
4: for v ∈ Vc do
5: if PMLP(V −Vout − v) is not overload then
6: Calculate f it
7: end if
8: if f it > maxFit then
9: maxFit = f it

10: vb = v
11: success = true
12: end if
13: if success = true then
14: Vout ← Vout

⋃
vb

15: Vc ← Vc − vb
16: Return Vout
17: else
18: Get Vh (with the highest priority in Vc)
19: Vout ← Vout

⋃
vb

20: Vc ← Vc − vb
21: end if
22: end for
23: end while
24: return Vout

3.4. VMs Migration Destination Selection Strategy

After selecting the VMs to be migrated from the overloaded PM, we need to se-
lect a suitable target PM for each VM. For a specific VM vm, and a set of target PMs
H(h1, h2, . . . , hp), the PM with the largest saturation increase rate after migration needs to
be selected as the VM migration point. That is, it is necessary to select such a PM hj that
meets (26):

hj ∈ H|∀ha ∈ H, SIRa ≤ SIRj (26)

The traditional VMC algorithm always uses a static constant to characterize the load
of a VM. If the load level of the VM is characterized by the mean, although the resource
utilization of the PM can be effectively improved, the probability of the loads peak overlap
among the VMs increases [26].

The VMC algorithm with static parameters cannot sense the dynamic characteristics
of the load sequence, so the complementary characteristics between the load sequences
cannot be used for further resource optimization. Some algorithms have begun to consider
characterizing VMs through resource load sequences. However, these schemes only per-
form complementary matching of resources before the consolidation of VMs, and there is
still no complementary matching detection for the resource load sequence in the consolida-
tion process.

Therefore, we proposed the SIR algorithm to select the best migration point by calcu-
lating the saturation increase ratio of the PM sequence before and after the VM migration.
The strategy consists of three steps. First, predict the load sequence of the PM after migrating
the VM to this PM. Then calculate the saturation increase ratio according to Equation (29).
Finally, the PM with the largest saturation increase ratio is selected as the destination point.
Next, we introduce the concepts of saturation and saturation increase ratio.

Entropy 2023, 25, 351 13 of 23

3.4.1. Saturation

For the VMs set V(v1, v2, . . . , vk), the load sequence composed of the past k and the fu-
ture k scheduling points load sequence of VM vi is represented as Xi(xi(t1), xi(t2), . . . , xi(t2k)).
The load sequence of the VMs set V is Y(y(t1), y(t2), . . . , y(t2k)), as shown in (27):

Y
(
tj
)
= ∑2k

i=1 xi
(
tj
)
, 1 < j < m (27)

The load saturation of the VMs set V is shown in (28):

S = µ
µ+2σ (28)

where µ is the mean of the load data set {y(t1), y(t2), . . . , y(t2k)}, and σ2 is the variance.

3.4.2. Saturation Increase Rate

The VMs set on the PM Hj is denoted by V(v1, v2, . . . , vk). The load mean value
and saturation of the VMs set V are denoted by µpre and Spre. The load mean value and
saturation of the VMs set V′ = V ∪ v after the VM v is migrated to the PM Hj are denoted
by µpost and Spost. Then the saturation increase rate is shown as (29):

SIRj =
(
spost − spre

)
× upre

upost−upre (29)

The saturation increase rate calculated by (29) can effectively shield the difference in
the PM load level. The higher the PM load, the weaker the saturation increase.

The SIR algorithm is shown as Algorithm 5.

Algorithm 5 SIR(vm, H).

Input: VM to be migrated vm, Target PMs set H(h1, h2, . . . , hp)
Output: VM migration point hj

1: Initialize hj, maxSIR
2: lsm[2k] = LSMP(vm)
3: for h ∈ H do
4: for v ∈ V do
5: for i = 0 to 2k− 1 do
6: LS[i]+ = ls[i]
7: end for
8: end for
9: Calculate sPre, sPost

10: Calculate sir
11: if sir > maxSIR then
12: hj ← h
13: maxSIR = sir
14: end if
15: end for
16: return hj

First, we use the LSMP algorithm to predict the load sequence of the future k schedul-
ing points of the VM vm. Then the load sequence lsm with length 2k is obtained by
combining the load sequence of the past k scheduling points. For any PM h in the PMs
set H, the overall load sequence LS of the PM is obtained by accumulating the load se-
quences of the VMs. Then the saturation increase rate is calculated. The time complexity
of Algorithm 5 is O(n ∗m), where n represents the number of VMs to be migrated and m
represents the length of the predicted sequence.

3.5. Virtual Machines Consolidation

Our VMC algorithm based on load prediction contains the following two parts.

Entropy 2023, 25, 351 14 of 23

3.5.1. Over-Loaded Host Process

The goal of this process is to migrate VMs on over-loaded PMs to reduce SLAV. For the
active PM set H, the overloaded PM set H0 is first obtained through comparing the current
load to threshold, and the remaining PM set is called Hrest. We use the LIP strategy to
select the set of VMs Vm to be migrated for each PM hs in H0. All VMs are ranked in
descending order of CPU load. For each VM in Vm, the best migration point hbest is selected,
then < hs, v, hbest > is added to the migration plan M and the resource information of the
PM hd is updated. If a suitable VM migration point cannot be found, a new PM hnew will
start. < hs, v, hnew > will be added to the migration plan M, and hnew will be added to H.
The algorithm is shown as Algorithm 6.

Algorithm 6 overUtilizedHostProcess(H).
Input: Active PM set H
Output: Migration plan M

1: Calculate H0
2: Hrest = H − H0
3: for hs ∈ H0 do
4: Calculate Vm by LIP
5: for v ∈ Vm do
6: maxSIR = Double.MIN
7: maxHost = NULL
8: for hd ∈ H do
9: if v(c, r, b) + (c, r, b) < Thr(c, r, b, hd) then

10: Calculate sir
11: if sir > maxSIR then
12: maxSIR = sir
13: maxHost = hd
14: end if
15: end if
16: end for
17: if maxHost! = NULL then
18: M = M

⋃
< hs, v, maxHost >

19: Update(maxHost(c, r, b))
20: else
21: newHost
22: M = M

⋃
< hs, v, newHost >

23: Update(newHost(c, r, b))
24: end if
25: end for
26: end for
27: return M

The time complexity of Algorithm 6 is O(n ∗m ∗ k), where n represents the number of
VMs to be migrated, m represents the number of target PMs, and k represents the length of
the predicted sequence.

3.5.2. Under-Loaded Host Process

The goal of this process is to migrate out all VMs on low-load PMs to reduce energy
consumption. First, the set of non-overload PMs Hrest obtained from the over-utilized
host process is ranked in descending load. The algorithm starts from the PM with the
lowest load. We use the SIR strategy to select the appropriate migration point hd for
each VM and update the PM resources after a successful selection. If a VM cannot find a
suitable migration point, all previous attempts need to be undone, and the algorithm will
be terminated. If suitable migration points can be found for all the VMs on the PM hs, they
will be migrated out, and the resources update of the PM hs during the trial will be saved.
At the same time, < hs, v, hd > will be added to the migration plan, and the PM will be
shut down to save energy. The algorithm is showed as Algorithm 7.

Entropy 2023, 25, 351 15 of 23

The time complexity of Algorithm 7 is O(n ∗m ∗ k ∗ p), where n represents the number
of under load PMs, m represents the number of target PMs, k represents the length of the
predicted sequence, and p represents the number of VMs on PM.

Algorithm 7 underUtilizedHostProcess(Hrest, M).

Input: Non-over load PMs set Hrest, migration plan M
Output: Migration plan M

1: Sort Hrest
2: for hs ∈ Hrest do
3: if hs > H then
4: Return M
5: end if
6: success = true
7: Sort VM
8: for v ∈ VM do
9: Calculate hd by SIR

10: if hd == NULL then
11: success = f alse; break
12: end if
13: M = M

⋃{< hs, v, hd >}
14: Update(hd(c, r, b))
15: if success == true then
16: Shutdown(hd)
17: else
18: Recover(hs)
19: Return M
20: end if
21: end for
22: end for
23: return M

4. Performance Analysis
4.1. Experiment Environment

CloudSim was used as a simulation platform that has 800 heterogeneous PMs and
supports 800 VMs running on it. The simulation experiments lasted 24 h, and the consol-
idation period was 300 s. Two host configurations were selected: HP G4 (VM monitor:
Xen, processor: 2 × 1860 MHz, memory: 4 GB, network bandwidth: 1 GB/s) and HP G5
(VM monitor: Xen, processor: 2 × 2660 MHz, memory: 4 GB, network bandwidth: 1 GB/s).
In the experiments, the number of G4 servers and G5 servers each accounted for half.

The simulation experiments used four types of VMs provided by AmazonEC2, as shown
in Table 3. The real load data used in the simulation experiment are derived from single-
core VMs. Therefore, the VMs in the experiment are all set to single-core. Specifically,
each VM is allocated 30% of its requested CPU resource when it is initialized. Next, in the
consolidation cycle, resources are allocated to each VM according to the resource request of
the load history.

Table 3. Configuration information of VMs.

High-CPU Large Small Micro

Kernel 1 1 1 1

RAM (MB) 870 1740 1740 613

Disk (GB) 2.5 2.5 2.5 2.5

Bandwidth (MB/s) 100 100 100 100

Frequency (MIPS) 2500 2000 1000 500

Entropy 2023, 25, 351 16 of 23

To ensure the validity of the simulation experiment evaluation results, we used real
data provided by the CoMon project [27], which contains the real CPU load data of over
a thousand VMs from more than 500 locations around the world. The load data are
obtained by collecting every five minutes. In the simulation experiment, the real operating
environment of the data center is reproduced by binding the real resource load mode
(Table 4).

Table 4. The characteristics of load data.

Date VMs Number Mean Standard Deviation Median

3 March 2011 1052 12.31% 17.09% 6%

6 March 2011 898 11.44% 16.83% 5%

9 March 2011 1061 10.70% 15.57% 4%

22 March 2011 1516 9.26% 12.78% 5%

25 March 2011 1078 10.56% 14.14% 6%

3 April 2011 1463 12.39% 16.55% 6%

9 April 2011 1358 11.12% 15.09% 6%

11 April 2011 1233 11.56% 15.07% 6%

12 April 2011 1054 11.54% 15.15% 6%

20 April 2011 1033 10.43% 15.21% 4%

4.2. Evaluation Index

The goal of the VMC algorithm includes the following: (1) Ensure that SLA is not
violated. (2) Minimize energy consumption. (3) Minimize the number of VM migrations.
Therefore, the performance of the algorithm is evaluated by the following indicators: SLAV,
EC, NOM, COM and EPB.

4.2.1. SLAV (SLA Violation)

Beloglazov et al. [28] proposed a load-independent SLA violation evaluation standard.
Here, the SLA violations due to over-utilization caused by competition for PM resources
are focused. Therefore, SLAV is defined as the proportion of time that the CPU is fully
loaded, as shown in (30):

SLAV =
∑M

i=1 Tsi
∑M

i=1 Tai
(30)

where M is the number of PMs, Tsi is the total time that the CPU is fully loaded for the PM
i, and Tai is the total time that the PM i is in an active state.

4.2.2. EC (Energy Consumption)

In this paper, the overall energy consumption of the data center EC is the total energy
consumption of each PM. The energy consumption of a PM is calculated by its CPU
utilization [29], as shown in (31) and (32):

EC = ∑M
i=0 Ei (31)

Ei = ∑n
j=1 Uc

i
(
tj
)
× T × P

(
Uc

i
(
tj
))

(32)

where Ei is the energy consumption of PM i, T is the acquisition period for the PM load,
Uc

i
(
tj
)

is the CPU utilization of the PM i at the moment tj, and P
(
Uc

i
(
tj
))

is the PM power
corresponding to CPU utilization.

The energy consumption models of PM G4 and G5 in the simulation experiments
made the experimental results more credible by using the real energy consumption data
provided by the SPECpower benchmark.

Entropy 2023, 25, 351 17 of 23

4.2.3. NOM (Number of Migration)

NOM is the number of migrations. The migration process of VMs will bring additional
overhead to the system, including the CPU resources of the source PM, the bandwidth
between the source PM and the destination PM, and the service downtime in the process.
Therefore, the value of NOM should be as small as possible.

4.2.4. COM (Cost of Migration)

Most current studies only measure the quality of the algorithm by the NOM. Exper-
iments in [9] show that the performance degradation and pause time caused by virtual
machine migration depends on the memory size and CPU usage of the virtual machine.
The larger the virtual memory, the longer the migration time required for dynamic virtual
machine migration under certain network bandwidth conditions. The higher the CPU
usage of the virtual machine, the higher the memory update frequency, and the more
dirty pages generated during the memory migration process, which not only increases the
transfer time and system overhead, but also increases the pause time. This paper used COM
to evaluate the efficiency of VM selection algorithms and VM migration points selection
algorithms. The COM of VM i is shown in (33) and (34):

COMi = Tmi ×
(
1 + k×Uc

i
)

Tmi =
Mi
Bi

(33)

where Tmi is the time required for the migration of the VM i under normal circumstances,
Bi is the network bandwidth of the PM, Mi is the memory size of the VM i, Uc

i is the CPU
usage of the VM i, and the parameter k is the CPU load influence factor that is the extra
overhead for the VM migration caused by the VM maintaining the execution state in the
VM migration process. The experiment is set as k = 1.

4.2.5. EPB (Energy Performance Balance)

The goal of VMC technology is to achieve the best balance between energy consump-
tion and service performance. The main metrics are energy consumption, SLAV and cost of
migration; however, these metrics are typically negatively correlated. Therefore, we pro-
pose a combined metric that captures all these three metrics. The EPB can comprehensively
evaluate the algorithm, as shown in (35):

EPB = EC× SLAV × COM (34)

4.3. The Results Analysis
4.3.1. The Evaluation of Migration VM Selection Strategy

Our LIP algorithm was compared with random selection (RS) [9], maximum load
(Max), minimum load (Min), and minimum migration time (MMT) [9]. In order to exclude
the influence of the VM migration point selection strategy, the random selection strategy
was adopted uniformly in this experiment.

(a) EC (energy consumption) comparison

Figure 3a shows the energy consumption of different migration VM selection strategies
under different PM load thresholds. Compared to Max, RS, Min, and MMT, LIP reduced
energy consumption by approximately 10%, 25%, 45%, and 30%, respectively. It can be
seen that the overall energy consumption of the data center presents a downward trend
as the load threshold increases. In addition, choosing VM with a relatively high load to
migrate causes less energy consumption. The reasons are due to two aspects. First, when
the load of the VM is small, it is easy to use the remaining fragment resources to select
the target PM. Therefore, it is easier to minimize the number of PMs in the process of
VMC and reduce energy consumption. However, VM load increasing is more likely to
happen if the VM load is too small. The load of the data center will be unbalanced due to
the dynamic changes of the load after the integration. Finally, it will reduce the average

Entropy 2023, 25, 351 18 of 23

resource utilization and increase energy consumption of the data center. Second, the more
frequent VMC causes the PM state to be switched more frequently, which needs to consume
additional energy [30,31].

(a) (b)

(c) (d)

(e)

Figure 3. Performance comparison of LIP algorithms under different indicators. (a) The EC of
different migration VM selection strategies. (b) The SLAV of different migration VM selection
strategies. (c) The NOM of different migration VM selection strategies. (d) The COM of different
migration VM selection strategies. (e) The EPB of different migration VM selection strategies.

(b) SLAV (SLA violation) comparison

Figure 3b shows the SLAV under different PM load thresholds for different migration
VM selection strategies. Compared to Max, RS, Min, and MMT, LIP reduced SLAV by
approximately 55%, 60%, 59%, and 53%, respectively. The SLAV of LIP is significantly
smaller than those of the other algorithms. In particular, when the load threshold is close
to 100%, the SLAV of LIP does not drastically increase. This is because LIP has an overall
analysis and prediction of the VM load change trend, which kept the PM load as saturated
as possible after the VM migration, thereby effectively reducing the probability of the PM
resource competition.

Entropy 2023, 25, 351 19 of 23

(c) NOM (Number of Migration) and COM (Cost of Migration) Comparison

Figure 3c,d show the number of VM migrations (NOM) and the cost of migration
(COM) for different migration VM selection strategies under different PM load thresholds.
Compared to Max, RS, Min, and MMT, LIP reduced the cost of migration by approximately
43%, 61%, 66%, and 57%, respectively.

The experimental result shows that when the VM with high CPU load is selected to
be migrated, the number of migration and cost of migration are relatively low. The reason
is that it significantly eases the competition for the CPU resources on the PM. Therefore,
the number of VMs to be migrated will be effectively reduced. In addition, MMT differs
drastically from RS in terms of NOM and COM. Because the overall load of VMs with low
COM is relatively small, frequent VMC is likely to occur, resulting in more VM migrations.
However, due to the short migration time, the cost is effectively reduced.

(d) EPB (energy performance balance) comparison

Figure 3e shows EPB for each migration VM selection strategy under different PM
load thresholds. Compared to Max, RS, Min, and MMT, the EPB of LIP was reduced by
approximately 75%, 88%, 91%, and 87%, respectively. As can be seen from Figure 3e, energy
consumption and service performance reach the best balance when the load threshold is
around 0.8. In the process of increasing the load threshold, the EPB of LIP remains stable,
which fully demonstrates the accuracy of LIP in the selection of the migration VM.

4.3.2. The Evaluation of VM Migration Point Selection Strategy

Our SIR algorithm was compared with random selection (RS) [9], minimum energy
increase (MEI), and minimum resource fragmentation (MRF). In order to exclude the
influence of the migration VM selection strategy, the random selection strategy was adopted
uniformly in this experiment.

(a) EC (energy consumption) comparison

Figure 4a shows the energy consumption under different PM load thresholds for
different strategies. Compared to MEI, RS, and MRF, SIR reduced energy consumption by
approximately 30%, 41%, and 6%, respectively. Although the goal of MEI is to minimize the
increase in energy, the energy consumption is higher than that of MRF and SIR. The reason
is that MEI fails to fully utilize the resource fragmentation of the PM, resulting in a low
utilization rate of the data center. The goal of MRF is to minimize resource fragmentation
and has a significant reduction in energy consumption compared to RS and MRF. The goal
of SIR is to increase the smoothness of the PM load sequence. When the PM load sequence is
smooth, the utilization rate of PM will increase, therefore reducing the energy consumption
of data center.

(b) SLAV (SLA violation) comparison

Figure 4b shows the SLAV of different strategies under different PM load thresholds.
Compared to MEI, RS, and MRF, the SLAV of SIR was reduced by approximately 55%, 79%,
and 64%, respectively. First, the SLAV increases with the increase of the load threshold.
When the load threshold exceeds 0.8, the SLAV increases sharply. Secondly, the SLAV
of MEI is lower than MRF. This is because MRF makes the PM resources fragmentation
smaller, which increases the risk of resource competition. SIR makes the PM load more
stable and effectively reduces the SLAV caused by the full load of the PM CPU.

(c) NOM (number of migration) and COM (cost of migration) comparison

Figure 4c,d respectively show NOM and COM for different strategies under different
PM load thresholds. Compared with MEI, RS, and MRF, SIR reduced COM by approxi-
mately 23%, 87%, and 60%, respectively. SIR makes the PM load sequence smooth, and the
performance improvement effect in terms of NOM and COM is obvious. When the load
threshold reaches 0.9, NOM and COM of MEI dramatically increase because MEI fails to
consider the intense competition of PM resources. Secondly, there is a clear consistency

Entropy 2023, 25, 351 20 of 23

between NOM and COM because the choice of VM migration points does not affect the
VM migration cost.

(d) EPB (energy performance balance) comparison

Figure 4e shows the EPB for different strategies under different PM load thresholds.
Compared to MEI, RS, and MRF, SIR reduced energy consumption by approximately 91%,
77%, and 88%, respectively. It can be seen that energy consumption and service performance
reach the optimal balance when the load threshold is around 0.8. SIR demonstrated
performance improvements over the other strategies.

All the above experimental results show that the proposed VMC algorithm has better
efficiency good in terms of accuracy, stability, and energy efficiency than existing schemes.
Therefore, it can reduce the cloud computing pressure brought by the growth of IoT devices.

(a) (b)

(c) (d)

(e)

Figure 4. Performance comparison of SIR algorithms under different indicators. (a) The EC of
different VM migration point selection strategies. (b) The SLAV of different VM migration point
selection strategies. (c) The NOM of different VM migration point selection strategies. (d) The COM
of different VM migration point selection strategies. (e) The EPB of different VM migration point
selection strategies.

Entropy 2023, 25, 351 21 of 23

4.4. Engineering Applications

The cloud data center in the blockchain is composed of a large number of physical
machines (PM), as shown in Figure 5. In order to provide diversified services, the cloud
data center uses virtualization technology to construct a virtual resource pool of computing
resources (CPU, memory, GPU, and FPGA), storage resources, and network resources
(routing, and bandwidth).

Figure 5. Application of vmc algorithm in industrial cloud computing center and blockchain.

Virtual machine integration technology is a good solution to the problem of high
energy consumption in the blockchain. The idea is to migrate virtual machines on some
physical machines to other active physical machines so that some physical machines
switch to low-energy mode or sleep mode and finally reduce energy consumption in the
blockchain. The VMC algorithm proposed in this paper can be widely used in existing cloud
data processing centers used in blockchain. These cloud data center energy-saving methods
based on virtual machine online migration and load-aware integration technologies can
effectively reduce the number of physical servers actually required by the cloud data center,
shut down physical servers running without load, increase the overall utilization of server
resources, and achieve green energy saving.

5. Conclusions

With the development of blockchain and explosive growth of the number of IoT
devices, with the existing real-time cloud computing, it is difficult to meet the current
requirements in terms of accuracy, stability, and energy consumption [32]. This article
creatively uses the predicted future load data of VMs and PMs for virtual machine consoli-
dation, improving the performance of mobile cloud computing. The experimental results

Entropy 2023, 25, 351 22 of 23

showed that the performance of LIP migration virtual machine selection strategy and SIR
virtual machine migration point selection strategy can be significantly improved over other
strategies in terms of various evaluation indexes. This means that the proposed VMC
algorithm can effectively improve the overall service performance of cloud computing in
blockchain, including good accuracy, good stability, and energy efficiency.

Since the resources of virtual machines include not only the CPU load, but also the
memory and network bandwidth, their competition for hardware resources will also cause
service level agreement violation (SLAV). Therefore, we need to further study the impact of
the differences and the correlation between the load sequences of different resources on the
efficiency of virtual machine consolidation. As IoT devices are being upgraded, we need
to consider other factors that may affect the process of VMC to improve the universality
of our method. The time complexity of the algorithm needs to be optimized since it is
significantly related to the number of VMs and PMs. In addition, the accuracy of the load
prediction algorithm needs to be further improved based on real data from other projects.

Author Contributions: Conceptualization, L.Y. and Z.W.; methodology, L.Y.; software, Z.W., P.S. and
Y.W.; validation, P.S. and Y.W.; formal analysis, Z.W.; investigation, Z.W., P.S. and Y.W.; data curation,
P.S.; writing—original draft preparation, L.Y. and Z.W.; writing—review and editing, L.Y., Z.W., P.S.
and Y.W.; visualization, P.S. and Y.W.; supervision, L.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is funded by the National Natural Science Foundation of China under Grant
No.62272180, the Philosophy and Social Science Research Project of Hubei Province University
under Grant No.21D111 and the Hubei Social Science Foundation under Grant No.20ZD096. The
computation is completed in the HPC Platform of Huazhong University of Science and Technology.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The real load data provided by the CoMon project [27] come from the
real CPU load data of over a thousand VMs in more than 500 locations around the world.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gai, K.; Guo, J.; Zhu, L.; Yu, S. Blockchain meets cloud computing: A survey. IEEE Commun. Surv. Tutor. 2020, 22, 2009–2030.

[CrossRef]
2. Beloglazov, A.; Buyya, R. Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under

quality of service constraints. IEEE Trans. Parallel Distrib. Syst. 2012, 24, 1366–1379. [CrossRef]
3. Masdari, M.; Zangakani, M. Green cloud computing using proactive virtual machine placement: challenges and issues. J. Grid

Comput. 2020, 18, 727–759. [CrossRef]
4. Clark, C.; Fraser, K.; Hand, S.; Hansen, J.G.; Warfield, A. Live Migration of Virtual Machines. In Proceedings of the Symposium

on Networked Systems Design & Implementation, Santa Clara, CA, USA, 25–27 February 2005.
5. Bermejo, B.; Juiz, C. Virtual machine consolidation: A systematic review of its overhead influencing factors. J. Supercomput. 2020,

76, 324–361. [CrossRef]
6. Arockia, R.A.; Arun, S. Virtual machine consolidation framework for energy and performance efficient cloud data centers.

In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN),
Pondicherry, India, 29–30 March 2019; pp. 1–7.

7. Abohamama, A.S.; Hamouda, E. A hybrid energy–aware virtual machine placement algorithm for cloud environments. Expert
Syst. Appl. 2020, 150, 113306. [CrossRef]

8. Zolfaghari, R.; Sahafi, A.; Rahmani, A.M.; Rezaei, R. Application of virtual machine consolidation in cloud computing systems.
Sustain. Comput. Inform. Syst. 2021, 30, 100524. [CrossRef]

9. Verma, A.; Ahuja, P.; Neogi, A. pMapper: Power and Migration Cost Aware Application Placement in Virtualized Systems. In
Proceedings of the Middleware, Acm/ifip/usenix International Middleware Conference, Leuven, Belgium, 1–4 December 2008.

10. Beloglazov, A.; Buyya, R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in Cloud data centers. Concurr. Comput. Pract. Exp. 2012, 24, 1397–1420. [CrossRef]

11. Beloglazov, A.; Abawajy, J.; Buyya, R. Energy-aware resource allocation heuristics for efficient management of data centers for
Cloud computing. Future Gener. Comput. Syst. 2012, 28, 755–768. [CrossRef]

12. Masoumzadeh S.S.; Hlavacs, H. An intelligent and adaptive threshold-based schema for energy and performance efficient
dynamic VM consolidation. Energy Effic. Large Scale Distrib. Syst. COST IC0804 Eur. Conf. 2013, 28, 85–97.

http://doi.org/10.1109/COMST.2020.2989392
http://dx.doi.org/10.1109/TPDS.2012.240
http://dx.doi.org/10.1007/s10723-019-09489-9
http://dx.doi.org/10.1007/s11227-019-03025-y
http://dx.doi.org/10.1016/j.eswa.2020.113306
http://dx.doi.org/10.1016/j.suscom.2021.100524
http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.1016/j.future.2011.04.017

Entropy 2023, 25, 351 23 of 23

13. Bui, K.T.; Nguyen, L.V.; Tran, T.V.; Pham, T.V.; Tran, H.C. A load balancing vms migration approach for multi-tier application in
cloud computing based on fuzzy set and q-learning algorithm. In Research in Intelligent and Computing in Engineering; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 617–628.

14. Hummaida, A.R.; Paton, N.W; Sakellariou, R. Scalable Virtual Machine Migration using Reinforcement Learning. J. Grid Comput.
2022, 20, 15. [CrossRef]

15. Dabbagh, M.; Hamdaoui, B.; Guizani, M.; Rayes, A. Toward energy-efficient cloud computing: Prediction, consolidation, and
overcommitment. Netw. IEEE 2015, 29, 56–61. [CrossRef]

16. Pascual, J.A.; Lorido-Botrán, T.; Miguel-Alonso, J.; Lozano, J.A. Towards a Greener Cloud Infrastructure Management using
Optimized Placement Policies. J. Grid Comput. 2015, 13, 375–389. [CrossRef]

17. Farahnakian, F.; Pahikkala, T.; Liljeberg, P.; Plosila, J.; Hieu, N.T.; Tenhunen, H. Energy-aware VM Consolidation in Cloud Data
Centers Using Utilization Prediction Model. IEEE Trans. Cloud Comput. 2016, 7, 524–536. [CrossRef]

18. Khaleel, M.I.; Zhu, M.M. Adaptive virtual machine migration based on performance-to-power ratio in fog-enabled cloud data
centers. J. Supercomput. 2021, 77, 11986–12025. [CrossRef]

19. Chen, J.; Wang, Y.L. A hybrid method for short-term host utilization prediction in cloud computing. J. Electr. Comput. Eng. 2019,
2019, 2782349. [CrossRef]

20. Rjoub, G.; Bentahar, J.; Abdel Wahab, O.; Saleh Bataineh, A. Deep and reinforcement learning for automated task scheduling in
large-scale cloud computing systems. Concurr. Comput. Pract. Exp. 2021, 33, e5919. [CrossRef]

21. Kusic, D.; Kephart, J.O.; Hanson, J.E.; Kandasamy, N.; Jiang, G. Power and performance management of virtualized computing
environments via lookahead control. Clust. Comput. 2009, 12, 1–15. [CrossRef]

22. Wang, B.; Liu, F.G.; Lin, W.W. Energy-efficient VM scheduling based on deep reinforcement learning. Future Gener. Comput. Syst.
2021, 125, 616–628. [CrossRef]

23. Schick, A. Weighted least squares estimates in partly linear regression models. Stat. Probab. Lett. 1996, 27, 281–287. [CrossRef]
24. Djelouat, H.; Al Disi, M.; Boukhenoufa, I.; Amira, A.; Bensaali, F.; Kotronis, C. Real-time ECG monitoring using compressive

sensing on a heterogeneous multicore edge-device. Microprocess. Microsyst. 2020, 20, 102839. [CrossRef]
25. Hwang I.; Pedram M. Hierarchical virtual machine consolidation in a cloud computing system. In Proceedings of the 2013 IEEE

Sixth International Conference on Cloud Computing, Santa Clara, CA, USA, 28 June–3 July 2013; pp. 196–203.
26. Ming, C.; Hui, Z.; Su, Y.Y.; Wang, X.; Yoshihira, K. Effective VM sizing in virtualized data centers. In Proceedings of the 12th

IFIP/IEEE International Symposium on Integrated Network Management, IM 2011, Dublin, Ireland, 23–27 May 2011.
27. Park, K.S.; Pai, V.S. CoMon: A Mostly-Scalable Monitoring System for PlanetLab. Acm Sigops Oper. Syst. Rev. 2006, 40, 65–74.

[CrossRef]
28. Beloglazov, A.; Buyya, R. Adaptive Threshold-Based Approach for Energy-Efficient Consolidation of Virtual Machines in Cloud

Data Centers. MGC@ Middlew. 2010, 4, 1890799–1890803.
29. Liu, H.; Xu, C.Z.; Hai, J.; Gong, J.; Liao, X. Performance and energy modeling for live migration of virtual machines. In

Proceedings of the 20th ACM International Symposium on High Performance Distributed Computing, HPDC 2011, San Jose, CA,
USA, 8–11 June 2011.

30. Paulraj, G.J.L.; Francis, S.A.J.; Peter, J.D.; Jebadurai, I.J. Resource-aware virtual machine migration in IoT cloud. Future Gener.
Comput. Syst. 2018, 85, 173–183. [CrossRef]

31. Min, J.; Xiang, Z.; Zhang, Z.M.; Tentzeris, M.M. Short-term power load forecasting using grey correlation contest modeling.
Expert Syst. Appl. Int. J. 2012, 39, 773–779.

32. Pan, J.; McElhannon, J. Future Edge Cloud and Edge Computing for Internet of Things Applications. IEEE Internet Things J. 2018,
5, 439–449. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10723-022-09603-4
http://dx.doi.org/10.1109/MNET.2015.7064904
http://dx.doi.org/10.1007/s10723-014-9312-9
http://dx.doi.org/10.1109/TCC.2016.2617374
http://dx.doi.org/10.1007/s11227-021-03753-0
http://dx.doi.org/10.1155/2019/2782349
http://dx.doi.org/10.1002/cpe.5919
http://dx.doi.org/10.1007/s10586-008-0070-y
http://dx.doi.org/10.1016/j.future.2021.07.023
http://dx.doi.org/10.1016/0167-7152(95)00086-0
http://dx.doi.org/10.1016/j.micpro.2019.06.009
http://dx.doi.org/10.1145/1113361.1113374
http://dx.doi.org/10.1016/j.future.2018.03.024
http://dx.doi.org/10.1109/JIOT.2017.2767608

	Introduction
	Related Work
	Algorithm Description
	Short-Term Load Increment Prediction
	Inspection of Load Growth Trends
	Load Volatility and Weight Calculation
	Weighted Curve Fitting and Evaluations on the Curve
	Load Volatility and Weight Calculation

	The Load Sequence Prediction
	Standardization of Load Sequence
	Function Conversion of Load Sequence
	The Similarity Measure of Load Sequence

	VMs to Be Migrated Selection Strategy
	Design of Load Fitness Function
	PM Load Prediction

	VMs Migration Destination Selection Strategy
	Saturation
	Saturation Increase Rate

	Virtual Machines Consolidation
	Over-Loaded Host Process
	Under-Loaded Host Process

	Performance Analysis
	Experiment Environment
	Evaluation Index
	SLAV (SLA Violation)
	EC (Energy Consumption)
	NOM (Number of Migration)
	COM (Cost of Migration)
	EPB (Energy Performance Balance)

	The Results Analysis
	The Evaluation of Migration VM Selection Strategy
	The Evaluation of VM Migration Point Selection Strategy

	Engineering Applications

	Conclusions
	References

