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Abstract: The existence of the typical set is key for data compression strategies and for the emergence
of robust statistical observables in macroscopic physical systems. Standard approaches derive its
existence from a restricted set of dynamical constraints. However, given its central role underlying
the emergence of stable, almost deterministic statistical patterns, a question arises whether typical
sets exist in much more general scenarios. We demonstrate here that the typical set can be defined
and characterized from general forms of entropy for a much wider class of stochastic processes than
was previously thought. This includes processes showing arbitrary path dependence, long range
correlations or dynamic sampling spaces, suggesting that typicality is a generic property of stochastic
processes, regardless of their complexity. We argue that the potential emergence of robust properties
in complex stochastic systems provided by the existence of typical sets has special relevance to
biological systems.

Keywords: entropy; non-exponential phase space growth; typical set; asymptotic equipartition
property; extensivity

1. Introduction

Many living systems are characterized by a high degree of internal stochasticity and
display processes that form organization of growing complexity [1-4]. Such complexifi-
cation processes exist on various scales, from the evolutionary scale [5,6], to the scale of
single organisms [7]. The increase of complexity of the different forms of living entities
triggered the debate whether the existence of open-endedness is a defining trait of biological
evolution [8-14], with the resulting challenge of finding a potential statistical-physics-like
characterization of it. At the single organism scale, the developmental process consists
in the emergence of an adult multicellular organism from a single cell [7]. This astonish-
ingly fast process of complexification sets challenges in many directions. One of these
challenges is the characterization of the evolution of the space of potential configurations
the system may acquire in time: In early embryo morphogenesis, for example, not only
does the number of cells increase exponentially, resulting in the corresponding increase of
potential configurations, but also cells differentiate into specialized cell types and create
collective structures implying, in statistical physics language, that new states enter the
system. This process is almost completely irreversible and, although highly precise, it
is known to have a strong stochastic component [15-17]. Away from biology, non stable
configuration spaces and processes of complexification have been identified in systems
with innovation [18-20]. On the other hand, one can consider processes where the potential
number of configurations decreases with time. Away from biology, recent advances in
decay dynamics in nuclear physics were achieved considering a mathematical framework
based on the stochastic collapse of the phase space [21-23]. In Figure 1 we schematically
show the kind of processes we are exploring, all taking place in dynamic phase spaces, that is,
processes where the amount of available possibilities may change (either grow or decrease)
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in time. Despite the ubiquity of such phenomena, a comprehensive characterization of sys-
tems with dynamic phase spaces, in terms equivalent to the ensemble theory of statistical
mechanics, is lacking.
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Figure 1. (a) Independent draws of the same dice, either fair or biased, define a i.i.d. stochastic
processes whose typical set is well defined and grows following approximately an exponential
trend [24]. (b) An example of a system whose typical set may show a super-exponential growth: At
every drawing we update the dice by adding, e.g., a new face. (c) Potential configurations of early
embryo development resembles, intuitively, the picture of the dice with growing number of faces.
In this biological setting, new cells appear and, with that, new configurations but, on top of that,
cells differentiate into new types—shown here in red—adding new states to the system that were not
there before. Interestingly, even highly reproducible, the whole process displays a strong stochastic
component [15]. (d) Nuclear disintegration can be studied from the framework of collapsing phase
spaces [23]. In these processes, the amount of potential configurations of the system shrinks as long
as the process unfolds. Toy models of embryo packings in (c) have been drawn using the evolver
software package.

Ensemble formalism in statistical mechanics can be grounded in the concept of typical-
ity [24-28]. Informally speaking, given the set of all potential sequences of events resulting
from a stochastic process, a subset, the typical set, carries most of the probability [24,25]. This
should not be confused with the set of most probable sequences: in the case of the biased
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coin, for example, the most probable sequence is not in the typical set. In other words,
for long enough sequences, the probability that the observed sequence or state belongs
to the subset of sequences forming the typical set goes asymptotically to 1. Generalizing
to continuous systems, this is known as the concentration of measure phenomenon [29].
Accordingly, a typical property for a stochastic system is robust and acts as a strong, almost
deterministic attractor as the process unfolds [27], and one may expect to observe it in
the vast majority of cases. Moreover, if such a typical property exists, one can use this
single property to—at least partially—characterize the system, and hence avoid a detailed
microscopic description of all of the system’s components. Arguably, considerations based
on typicality drive the connection between microscopic dynamics and macroscopic observ-
ables and underlie the existence of the thermodynamic limit [28,30,31]. In the context of
information theory, the existence of the typical set for a given information source has deep
consequences in the context of data compression [24,25].

The size of the typical set gives us valuable information on how the stochastic process
is filling the phase space. In equilibrium systems or for information sources drawing
independently from identically distributed (i.i.d.) random variables, the Gibbs—Shannon
entropic functional arises naturally in the characterization of the typical set [24,25], estab-
lishing a clear connection between thermodynamics and phase space occupation. In sys-
tems/processes with collapsing or exploding phase spaces, path dependence or strong
internal correlations [4,18-21,32-37], the phase space may grow super- or sub-exponentially,
and the emergence of the Shannon-Gibbs entropic functional derived from phase space
volume occupancy considerations is no longer guaranteed. The same situation may arise
in cases dealing with non-stationary information sources [38-42]. Generalized forms for
entropies have been proposed to encompass these more general scenarios [43-51], some
of them explicitly linking the entropic functional to the expected evolution of the phase
space volumes [36,46,52-56]. Despite the notable advances reported also for systems with
physical significance [37,57,58], the concept of typicality has not been yet explored for sys-
tems/processes with exploding or shrinking phase spaces, which display path dependent
dynamics or are subject to emergent internal constraints and correlations.

The purpose of this paper is to fill this important gap in the theory of stochastic
processes, providing results with potential implications in the theory of non-equilibrium
systems, data compression and coding strategies. As we shall see, the typical set can be
defined for processes arbitrarily away from the i.i.d. framework, by only assuming a very
generic convergence criteria, satisfied by a broad class of stochastic processes, that we refer
to here as compact stochastic processes.

2. Results
2.1. Compact Stochastic Processes

Let us consider a general class of stochastic processes # [59,60]. This class encompasses
almost any discrete stochastic process that can be conceived. A realization of ¢ steps of the
process is denoted as #(t):

n(t) =mna... 1011,

where #1,%2 ..., 1;—1, 1+ are random variables themselves. Note that, in different realiza-
tions of t steps of the process, the sequence of random variables can be different, as the
process may display path dependence, long term correlations, or changes of the state space
dynamics itself (either shrinking or expanding). We denote a particular trajectory/path the
process may follow as:

x(t) = x1x0...x1x¢ € Q(2),

Q(t) being the set of all possible paths of the process 1 up to time . We focus on the
family of stochastic processes where there exists (i) a positive, strictly concave and strictly
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increasing function A € C? in the interval [1,00), such that A(1) = 0, and (ii) a positive,
strictly increasing, ¢ € C?, in the interval (1, ), by which:

. 1 1
o () “)
where the convergence is in probability [60]. We will call this family of stochastic processes
compact stochastic processes (CSP). Given a CSP process #, a pair of functions A, g by which
Equation (1) is satisfied define a compact scale of the CSP process 7. Note that these two
functions may not be unique for a given process, meaning that the process can, in principle,
have several compact scales.

It is straightforward to check that, if 7 is a sequence of ii.d. random variables
Xy,..., Xy ~ X, A = log and g(t) is t times the Shannon entropy of a single realiza-
tion, H(X), the above condition holds, as it recovers the standard formulation of the
Asymptotic Equipartition Property (AEP) [24,25]. Therefore, the drawing of i.i.d. random
variables ~ X is a CSP with compact scale (log, H(X)t). However, the range of potential
processes that are CSPs is, in principle, much broader. In consequence, the first question we
ask concerns the constraints that the convergence condition (1) imposes on A. Assuming
that (1) holds, one finds that the candidates to characterize CSPs are the As satisfying the
following condition; see Proposition A1l of the Appendix B.2 for details:

lim AlAz)

_ +
lim 3o =1 YA € RY. @)

Typical candidates for A are of the form A(z) = c(log(z))?, where ¢, d are two positive, real
valued constants or, more generally:

A(z) = c1(log(1 + cx(log(1 + c3(log(...))™)) )™,

where ¢y, ... and dy, . .. are positive, real valued constants. In previous approaches, these
constants have been identified as scaling exponents, enabling us to classify the different
potential growth dynamics of the phase space [54]. We observe that the existence of the
inverse function of A, A~!, by which (A~! o A)(z) = z, is guaranteed by the assumption
made in the definition of CSPs that A is a strictly monotonically growing function.

The convergence condition defining CSPs has a direct consequence on how probabili-
ties are distributed along the set of all potential paths. Indeed, from Equation (1) it follows
that there exist two non-increasing sequences of positive numbers €1, ...€¢,...,01,...0,.. .,
with im0 €; = lim;—e0 8¢ = 0, from which one can define a sequence of subsets of paths
Aleq] ... Ales] (such that Ale;] C€ Q(1),..., Aler] € Q(t)) as follows: For all x(t) € Ale]:

1 1
< p(x(t)) < , ®3)
AT+ ey = P S R agg®)
and the probability of a given path to belong to A[e¢] is bounded as:
P(x(t) S A[GtD >1-—90, (4)

where:

Px(t) e Ale]) =} p(x(t)).

x(t)€Alet]

We call the sequence of subsets A[e1] ... A[e;] of the respective sampling spaces (1) ... ()
a sequence of typical sets of 1. Informally speaking, Equation (4) tells us that, for large enough
t, the probability of observing a path that does not belong to the typical set becomes
negligible. As a consequence, the typical set can be identified for CSPs: Given a CSP, the typ-
ical set A[e;] absorbs all the probability, in the limit + — co. We summarize the above
considerations in a theorem:
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Theorem 1. If 7 is a CSP in (A, g), then there exist (a) a non-increasing sequence of positive
numbers €1,€y,...,€i-1,€t, ... with limit lim;_,. €; = 0, associated to y and hence (b) the
respective sequence of typical sets Aleq], ..., A€, ... by which:

tlgglo P(x(t) € Alet]) = 1.
Proof. Since 77 is a CSP we know, by assumption, that, as t — oo also A(1/p(4(t)))/g(t) — 1

(in probability). We can rewrite this condition by stating that, for every €,6 > 0, there exists
a to by which, for each t > t [60]:

*(Jqw () 11> <) <2

Let 7(¢, 6) be the smallest such fy. We can then use two arbitrary strictly monotonic de-
creasing functions €;; and J;; that converge to zero and construct a monotonically increasing
sequence of times t, = T(€},d;;) such that for all t > t,, it is true that

*(|* () 1) <4

From that, it is straightforward to define a non-increasing sequence €y, . . ., €, . . . converging
to 0, by just taking:
(Vt ity <t < tn-i—l)/ €t = 6:2.

Finally, the condition:
thﬁrglo P(x(t) € Alet]) =1,
follows as a direct consequence of the construction of the sequence of typical sets Aleq],
., Al€t], ..., thereby concluding the proof. [

We omitted a direct reference to the process # in the notation of the typical set (i.e.,
Alet] = Alet](n)) for the sake of readability, and we will explicitly refer to it only if it
is strictly necessary. In the next section we provide more details on the specific bounds
in size by studying a subclass of the CSPs, namely, the class of simple CSPs. For them,
the characterization of the typical set can be achieved using generalized forms of entropy.

2.2. The Typical Set and Generalized Entropies

Equation (1) can be related to a general form of path entropy:

1
s = % p(x(t))A(p(x(t))), )

It can be proven that S satisfies three of the four Shannon-Khinchin axioms expected by
an entropic functional [25,61,62] in Khinchin’s formulation [62], to be referred to as SK1,
SK2, SK3. In particular SK1 states that entropy must be a function of the probabilities,
which is satisfied by S, by construction. SK2 states that S5 is maximized by the uniform
distribution q over Q)(t), i.e.,

Finally, SK3 states that, if p(x(t)) = 0, then p(x(t)) does not contribute to the entropy,
which implies:

. 1y
ro0? ("(t”A(pu(t))) =0

satisfied as well for any A considered in the definition of the CSPs.
We further observe that S is a monotonically increasing function as well, in the case
of uniform probabilities: Let us suppose two CSPs 77 and 7’ that sample uniformly their
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respective sampling spaces, Q)(t), (Y (t), such that |Q(t)| < [QY(#)]). Let, in consequence, q
and ¢’ be the uniform distributions over Q)(t) and () (t), respectively. Then:

Sa(q) = A(QB)]) < A(IQ(B)]) = Sald),

where Sp(q),Sa(q") are the generalized entropies as defined in Equation (5) applied to
distributions g and ¢'. In the Proposition A3 of the Appendix C we provide details of the
above derivations. We observe that SK4 is not generally satisfied: This axiom states that
S(AB) = S(A) + S(B|A), and one can only guarantee its validity in the case of Shannon
entropy, where A = log. In the general case, this condition may not be satisfied. A different
arithmetic rule can substitute SK4 to accommodate other entropic forms [46]. Notice,
however, that the use of Shannon (path) entropy, i.e., A = log, in the compact scale of a
CSP may be used in in a broad spectrum of cases, including systems with correlations or
super-exponential sample space growth, as we will see in Section 2.3.

If the contributions to the above entropy of the paths belonging to the complemen-
tary set of Ale], that is, Q)(t) \ Ale;], are negligible in the limit of t — oo, then we call
the CSP simple. For simple CSPs with compact scale (A, g) the following convergence
condition holds:

Sa(y(t))

8(t)
Moreover, in simple CSPs, the typical set has the largest contribution to the entropy. First
we define the contribution of the typical set to the entropy, Sp (Alet]), as:

1
sl = T p(x(t))A(M).

We then demonstrate the above claim with the following proposition:

— 1. (6)

Theorem 2. If 17 is a simple CSP with compact scale (A, g), there exists a non-increasing sequence
of positive numbers €1, €, . .., €41, €4, . . . with limit lim;_,. €; = 0and its corresponding sequence
of typical sets Ale1], ..., Alet], . .., such that:

_Sa(®) _ . SalAle])

ti>oo g (i’) t—o0 g ( t)
Proof. We will start with the second equality, namely:

L SA(Aled)

e O

From the definition of typical sets we know that, for paths x(t) € Ale;], it is true that:

1 1

AT rengm) = PP S a0y

In consequence, given that P(x(t) € Alet])) > 1 — J, one can bound Sy (Alet]) as:

Sa(Alet])
g(t)

Since, by construction lim;_,« €; = lim;_« 6 = 0, this second part of the theorem is proven.
From that, the statement of the theorem:
Sa(Aler])

SA) )
t1—>oo g(t) t1—>oo g(t) L

(1—5t)(1—€t) < < (1_5t)(1+€t)-

follows directly given the assumption of simplicity. [



Entropy 2023, 25, 350

7 of 23

In consequence, the typical set can be naturally defined for simple CSPs in terms of
the generalized entropy S, . To see that, we first reword condition (1) for simple CSPs as:

. 1 1\
hom, sAm(t))A(p(n(t))) =

(in probability). We can rewrite the above condition in a more convenient form: Given
a simple CSP 7, there are two non-increasing sequences of positive numbers €1, .. . €, . . .,
(51, e (St, ceey with limt_m €r = limt_,oo (5{ = 0, by which:

P( sA<117<t>>A<p<x1<t>>> ‘1‘ g ) <o 7

Then, for each t > 0 there is a set of paths, the typical set Ale;] C Q(t), such that for all
X(f) S A[E‘t]Z

1
A7H((1+€)SA(5(1)))

IN

p(x(t))

1
S A= e)Sa(n(®)’

by which P(x(t) € Alet]) > 1 — J;. Notice that, now, the typical set is characterized using
the generalized entropy Sx.

The next obvious question refers to the cardinality of the typical set | A[e;]|. We will see
that it can be bounded from above and below in a way analogous to the standard one [24].
The first bound is obtained by observing that:

1-6 < Z p(x(t))

x(t)EAlet]
|[Aled]|
AT (I —e)Sa(n(t))
where A~ is the inverse function of A, i.e., (A~ o A)(z) = z, which exists given the

assumption that A is a monotonically growing function made in the definition of CSPs.
From that, it follows that the cardinality of the typical set is bounded from below as:

|Aler]| > (1= 6) AT (1 —e)Sa(n(1))). (8)

For the upper bound, we observe that:

1 > )Y px(t)

x(t)EAler]
| Aled]|
— AN (T 4e)San(t))

leading to:
[Aled]] < AT +e)Sa((1)))- ©)

Given the bounds provided in Equations (8) and (9), one can (roughly) estimate the cardi-
nality of the typical set as:

|Aled]| = A7 (Sa(n(1)))- (10)

We present a rigorous version of the above result as a proposition.

Proposition 1. Let 7 be a simple CSP in (g, A) with some typical localizer sequence €1, . .. €, .. .,

then:
L AGARD)
t—oo SA(n(t)) '
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Proof. From Equations (8) and (9), one can derive the following chain of inequalities:

A1 —e)A (1 —e)Sa(n(1))) < A(Alef]])
< (IT+e)Say(t)).

The last term poses no difficulties. To explore the behavior of the first one, we just rename
the term:

z= AT ((1—e)Sa(y(h)),
and rewrite the first term of the inequality:

A1 —e)A (1 —e)Sa(n(1)))) = A((1 —er)z).

We know, from Proposition Al, that the functions we are dealing with behave such that:

lim ‘X(AZZ)) 1, (V2> 0).

As a consequence:
A((1—e) A ((1—e)Sa (1))
Sa(n(t))

Therefore, since also the third term goes trivially to ~ S (#(t)), we can conclude that:

— 1.

AQALe)

Sa(n(t))
as we wanted to demonstrate. [

The above proven asymptotic equivalence gives us the opportunity of rewriting the
entropy in a Boltzmann-like form:

Sa(n(t)) ~ A(|Aled]])-

This identifies the cardinality of the typical set with Boltzmann’s W, the number of al-
ternatives the system can effectively display: Finally, we notice that we can (roughly)
approximate the typical probabilities as:

1
ATH(SA(n())

We thus provided a general proof that the typical set exists and that it can be properly
defined for a wide class of stochastic processes, the CSPs, those satisfying convergence
condition (1). Moreover, we show that its volume can be bounded and fairly approximated
as a function of the generalized entropy emerging from the convergence condition, Sy,
as defined in Equation (5).

p(x(t)) =

2.3. Example: A Path Dependent Process

We briefly explore the behavior of the typical set and its associated entropic forms
through a model displaying both path dependence and unbounded growth of the phase
space. The process 7 works as follows: Let us suppose we have a restaurant with an infinite
number of tables my,...., my,,.... Aty = 0 a customer enters the restaurant and sits at
table mq. At time t a new customer enters the restaurant where already m(t) tables are
occupied; the occupation number of each table is unbounded. The customer can chose

either to sit at an already occupied table from the m;, .. ., My () occupied tables, each with

equal probability W, or in the next unoccupied one, 1,,(;, 1, again with probability
1

FGESE This process is a version of the so-called Chinese restaurant process [33,63], exhibiting
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a simple form of memory/path dependence. Hence, we refer to it as the Chinese restaurant
process with memory (CRPM). In Figure 2 we sketch the rules of this process. Crucially,
as t — oo, the random variable accounting for the number of tables m(t) has the following
convergent behavior; see Proposition A5 of the Appendix D.2 for details:

m(t)
\/27—>1
000
000
p:l 000 p:l
/\2
000 o000
1 000 1 20'0 1
—- 000, - --000 =
f/p\Ay\pj’
OXOX© 000
000 000 000
_2 000 _! 3000 _1
pW
.. 000 000
000 000
000 000

Figure 2. The rules of the Chinese restaurant process with memory. Here green circles represent
occupied tables and grey circles empty table. Notice that in the mathematical formulation of the
problem the number of tables is infinite. Arrows depict the possible transitions of the process and the
associated probabilities.

In Figure 3a we see that the prediction m(t) ~ /2t is quite accurate when compared
to numerical simulations of the process. This property enables us to demonstrate that the
CRPM we are studying is actually a CSP with compact scale (log, 5 log t); see Theorem Al
of the Appendix D.3. In particular, Equation (1) is satisfied, in this particular case as:

lim 1 lo ( 1 )—1
e Tlogt o\p(y(H))

in probability. In addition, the process is simple; see Theorem A2. Since we are using
A = log, the entropy form that will arise is Shannon path entropy, by direct application of
Equation (5), i.e., SxA(17(t)) = H(y(t)), with H(n(t)) defined as:

H(p(5) == ). p(x(t)logp(x(t)). (11)
(Heq(t)
It directly follows that:
Ha) 4 (12)
5 logt

Given the compact scale used, one can estimate the evolution of the size of the typical set as:

|Aled]] ~ /T (1), (13)
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10°

where I’ is the standard I'-function [64]. We see that the growth of the typical set as shown
in Equation (13) is clearly faster than exponential. The phenomenon of concentration of
measure [29] is clearly manifested here, as the size of the typical set vanishes in relation to the
size of the whole potential set of outcomes, Q(t). A rough estimation leads to |Q)(t)| ~ T'(¢),
leading to:

| Aled]| 1

OGO

despite P(x(t) € Alet]) — 1.

10°

104
(a) (c)
1001
5]
10 10
=
107 ] =
= <
4 ‘-6,
< 100 < 10
= .
—
T N .
10 U‘)m
10!
107!
102
10°
10° 10! 102 10° 104 100 10! 102 10° 10 10° 10! 102 10° 104
time time time

Figure 3. Numerical simulations for the Chinese Restaurant process with memory. The blue cloud
represents actual numerical outcomes, dashed orange line the theoretical prediction. Time is given in
arbitrary coordinates, representing a step in the process. In (a) we show the evolution of the amount
of occupied tables against the prediction m(t) ~ /2t. (b) The evolution of Shannon path entropy for
the CRPM, being the prediction given in (11). The dashed red line shows the function g(#) ~ % logt.
(c) Evolution of the generalized path entropy Sj, with A as defined in Equation (14). Numerical
outcomes have been obtained from 1000 replicas of the whole CRPM process up to t = 10* steps.

Additionally, in Figure 3b we see that the prediction made in Equation (12) fits perfectly
with the numerical realizations of the process. Note that we have shown the dependence
on Shannon path entropy for the clarity in the exposition. Indeed, as pointed out above,
a CSP 7 may have several compact scales. For example, taking the compact scale that led
to Shannon entropy, (log, ¢(t)), with ¢(t) = 5 logt, one can construct another compact
scale for the CRPM by composing ¢! (which, by assumption, exists) with both functions.

In consequence, one will have a new compact scale (A, §), defined as:

2log(t)

At) = (871 olog)(t) ~ V\/(Tg(t))'

g(t) =t, (14)
where W is the positive, real branch of the Lambert function [64]. In Figure 3c we see that
Sa(n(t)) fits perfectly g(t) ~ t, proving that (A, t) is a compact scale for the CRPM; see
also Appendix D.5. We observe that this particular compact scale makes the path entropy
Sa extensive when applied to the CRPM.

3. Discussion

We demonstrated that, for a very general class of stochastic processes, which we refer
to as compact stochastic processes, the typical set is well defined, as the probability measure
tends to concentrate in clearly identifiable regions of the space of possible outcomes of the
process. These processes can be path dependent, contain arbitrary internal correlations or
display dynamic behavior of the phase space, showing sub- or super-exponential growth
on the effective number of configurations the system can achieve. The only requirement
is that there exist two functions A, g for which Equation (1) holds. Along the existence
of the typical set, a generalized form of entropy naturally arises, from which, in turn,
the cardinality of the typical set can be computed.
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The existence of the typical set in systems with arbitrary phase space growth opens
the door to a proper characterization, in terms of statistical mechanics, of a number of
processes, mainly biological, where the number of configurations and states changes over
time. In particular, it paves the path towards the statistical-mechanics-like understanding
of processes showing open-ended evolution on the basis of typicality. For example, this
could encompass thermodynamic characterizations of—part of—the developmental paths
in early stages of embryogenesis. The existence of the typical set, even in some extreme
scenarios of stochasticity and phase space behavior, leads us to the speculative hypothesis
that typicality may underlie the astonishing reproducibility and precision of some biolog-
ical processes. In this scenario, stochasticity would drive the system to the set of correct
configurations—those belonging to the typical set—with high accuracy. Selection, in turn,
would operate on typical sets, thereby promoting certain stochastic processes over others.
More specific scenarios are nevertheless required in order to make this intriguing hypothe-
sis more sound. Further works should clarify the potential of the proposed probabilistic
framework to accommodate generalized, consistent forms of thermodynamics and explore
the complications that can arise due to the loss of ergodicity that is characteristic for some
of the processes that are nonetheless compatible with the above description.

Importantly, our results provide a potential starting point for an ensemble formalism
for systems with sub- or super-exponential phase space growth. This opens the possibility
to extend the concept of thermodynamic limit to these systems without requiring further
conditions such as microscopic detailed balance, which cannot be justified in a broad range
of out-of-equilibrium processes. Questions like the definition of free energies or the possible
need of extensivity, which have to be answered in order to progress towards a complete
and consistent thermodynamic picture remain, however, open. For tentative answers to
those questions, connections to early proposals could be drawn, both on the thermody-
namic grounds; see, e.g., [36,65,660], and from the perspective of entropy characterization;
see, e.g., [37,44,46,53,54]. In this paper we meet an equivalence relation underlying com-
pact scales, which allows us to transform between compact scales that do not differ too
strongly, i.e., not more than by a power, without essentially changing the structure of the
typical set sequence, a fact that one can utilize to give the entropic functional particular
properties. For instance making the entropy associated with the compact scale extensive,
as we demonstrated above for the CRPM. However, this also introduces the possibility
that processes may have more than one inequivalent compact scale. We are aware that,
in order to demonstrate the full potential of the theory one should aim at examples more
extreme than the Chinese restaurant process we present. However, this would require
an additional inquiry into the potentially hierarchic structure of potentially inequivalent
compact scales that both in technical terms and conceptual terms go beyond the scope
of this paper. This intriguing issue may be related to different levels of coarse graining,
and deserves further investigations.

We finally point out the implications of our results for the study of information sources,
given the fundamental role the typical set plays in optimal coding and data compression.
The existence of the typical set in these broad class of information sources, where, simply
put, the information flow is not constant, may open the possibility of new compressing
strategies. These strategies could be based, for example, on properties of the specific
CSP representing the information source and the compact scale A, g that characterize
the process.
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Appendix A

In this appendix we provide the mathematical details required to completely justify
the results contained in the main text of the manuscript “The typical set and entropy in
stochastic systems with arbitrary phase space growth”.

Appendix B. Compact Categorial Processes

We start by providing a general framework for the processes considered in the paper.
In Figure A1, below, we outline the hierarchy that our study induces over stochastic pro-
cesses.

--------------------------- > n(t) = mng.. -1

() ((r;(t)))“v Al A )

72 (o) = 10 141~ A~ (a0

log( ) L, JA]~2VHEO
p t

Figure A1l. A potential hierarchy of discrete stochastic processes. The largest class would correspond
to the categorial processes, which comprise almost anything that can be conceived as a discrete stochas-
tic process. A subclass of categorial processes are the compact processes, by which the convergence
condition stated in the Equation (1) of the main text holds and, therefore, a sequence of typical sets
can be identified. Inside the compact processes, we identify the subclass of simple processes, where
the sequence of typical sets can be defined in terms of a general form of entropy. Finally, the simplest
subclass is the one defined by stochastic processes defined by sequences of independent, identically
distributed random variables ~ X, by which the sequence of typical sets can be defined from the
entropy in Shannon-like form. In turn, in i.i.d. systems, the path entropy up to time ¢ can be written as
t times the contribution of a single event [24]. Note that no assumptions of independence or stability
of the sampling space are needed in the two first subclasses. Even the typical set can be consistently
identified. In addition, as we will see in Appendix D, the use of Shannon entropy to characterize the
sequence of typical sets is not restricted to i.i.d. systems.

Appendix B.1. Categorial Processes

Categorial processes 1 are processes that at any time f sample one state from a finite
number of distinguishable states collected in the set (), called the sample space of the process
at time ¢. If we look at a discrete time line T = 1,2,3, ... we represent the process # up to
time ¢ as a sequence of random variables 7;, i.e.,

n(t) =mnz- - ne-1ne.

The process 7 neither needs to consist of statistically independent random variables 7; nor
does the sample space of the process need to be constant. That is, the local sample spaces
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) of the variable #; can differ from the sample space () of another variable 7. If we
sample #7(t) this provides us with a particular path:

x(t) = x1xp - - Xp_1%¢,
with x(t) € Q(t), being Q(t) defined as:
Q) =01 x Oy X -+ - X Q1 Xy, (A1)

in other words, the Cartesian product of all local sample spaces )y up to time ¢.

In principle it could be that also the sample space (); depends on the path x(t — 1) the
process has taken up to time t — 1. In consequence, Q)(t) could contain many paths that
are not possible for the process 1 and, therefore, have zero probability of being sampled.
However, in such a case we can always consider the non-empty subset Q)(t) C Q(t), which
contains all paths x(f), and only those paths of 1, with p(x(t)) > 0.

Definition A1. Let 1 be a categorial process. We call p(x(t)) the probability of paths x(t) € Q(t)
to be sampled by 1 and, then, we call:

O(t) = {x(t) € Q(t) = p(x(1)) >0}, (A2)
the well formed interior of Q)(t) or the path sample space of the process.

Let us call O[x(t — 1)] the set of states of (); that can be sampled at time ¢ provided that
our trajectory up to time t — 1 was x(t — 1). The set of potential states that can be visited at
time t, will then be:

O = U Ox(t—1)],
x(t=1)eQ)(t-1)

i.e., () contains all states the process could possibly sample at time ¢ after all possible
histories the process could have sampled up to time t — 1. In this way we can always
assume that we can find Q(t) and its well formed interior ()(t) by pruning all ill formed
sequences from () x Q) (t — 1). All information on how the sample space (); gets sampled
then solely resides in the hierarchy of transition probabilities p(x¢|x(t — 1)), where x; € ()
and x(t — 1) € Q(t — 1). We therefore get:

Q) = {x(t) € U x At —1) : plxe|x(t —1)) > 0}

In the context of categorial processes, p(x(t)) is clearly a monotonic decreasing function
in time bounded below by zero, p(x(t)) > 0. In consequence, lim;_,« p(x(t)) converges
for all possible paths x(t) of the process 7. This also means that for almost all paths the
probability lim; . p(x(t)) = 0 even though some finite number of paths could have non-
zero probabilities even in the limit  — oo, although convergence is guaranteed (Unlike for
processes, for systems, e.g., particles in a box, it is not guaranteed that adding a new particle,
as analog of to a new sample step, p(x(t)) < p(x(t — 1). In consequence, for systems, we
cannot guarantee convergence of p(x(t)) as the system size t — c0). After this general
description of categorial processes, we can start by characterizing the subclass of them we
are interested in. In the following we provide the condition of compactness that we impose
to categorial processes in order to ensure the existence of a typical set.

Definition A2. Let 11 be a categorial process  and let 1(t) denote the process up to time t and
Q(t) denote the path sample space of 11(t) (as discussed above). Let us consider pairs of functions
(A, Q), such that A is a twice continuously differentiable, strictly monotonic increasing and strictly
concave function on the interval [1,00) with lim;_,e A(t) = o0 and A(1) = 0; and g is a twice
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continuously differentiable strictly monotonically increasing function on the interval [0, c0). If we
can associate such a pair of functions (A, g) with the process 1, such that:

1 1
lim —A () =1,
toe0 g () \p(n(t))
(in probability), then we call the process 11 compact in (A, g), and (A, g) a compact scale of 1.

We will call these processes Compact Stochastic Processes (CSP). Note that compact scales
(A, g) associated to a given CSP need not be unique (The fact that we can find different
pairs of functions, (A, g), in which a process 7 is compact, leads to questions related to
equivalence relations on the space of pairs, (A, g). As it turns out, following up the idea of
typical sets, that we are to explore below, a process # induces an equivalence relation on
this space, partitioning the space into monads of equivalent compact scales, (A, g), of the
process. At the same time this means that there exist inequivalent compact scales, which
can be thought of as different "scales of resolution" to look at a process.).

Appendix B.2. Properties of A

The next step is to check what kind of functions A can be expected when dealing with
CSPs. To that end, we will impose a condition to the CSP, namely, that the CSP is filling.
From this, very mild, condition, we will then check which functions enable the convergence
criteria to be fullfilled. First of all, we need to introduce some technical terms.

Definition A3. Let n7 be a CSP in (A,g). Let €1,...,€, ... be a non-increasing sequence of
real numbers such that lim;_, €; = 0, from which one can construct a sequence of typical sets
Aleq] ... Alet] of the respective sample spaces Q)(1) ... Q(t) such that P(x(t) € Alet]) — 1. We
define the upper and lower typical ratios, r+(t), in (A, g) as:

A S (LETF{())
Al(g(t)) 7

where A~ is the inverse function of A, which exists due to the strict monotonicity of A.

Note that, by construction, r4 (f) > 1and r_(t) < 1.

Definition A4. We call a CSP 1 filling in (A, g) if its typical ratios have the property lim;_,co 7 ()
= oo and limy_,e r—(t) = 0.

We can now say something about the shape of functions A.

Proposition A1l. If 1 is a filling CSP in (A, g), then it follows that:

im A(Az)
A

=1,
forall A > 0.

Proof. We note that for filling CSP y it is true that:

1 _
g(ft)/\(ri(t)/\ M) =1,
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as t — co. We can rewrite z; = A~!(g(t)) and for A > 1 we find a ty such that A = r_ (o).
Therefore for all t > t;, we find:

A(Azp) < A(ry(H)ze)

'S A@) 7 Al

— 1.

The other case, 0 < A < 1, we prove analogously using r_ instead of 7, and the proposition
follows. [

To get an idea which kind of functions satisfy this condition we can look at the
following example:

Proposition A2. For any c > 0 the function A(z) = log(z)¢ has the property lim; o A(Az)/
A(z) =1forall A > 0.

Proof. We can prove this by direct computation, i.e.,
A(Az)  [(log(Az)\©
A(z)  \ log(z)

log(4) )
1 .
(1 e
Since log(z) — oo, one can easily read from the last line that the example family of
functions A fulfills the proposition. [

In general we can say that candidates for A of filling CSPs are of the form A(z) =
clog(z)? for some positive constants ¢ and d or even slower growing functions of the form:

A = c1log(1+ cplog(1 + c3log(- - - )da)dz)dy
where cq,...and dy, ... are positive, real valued constants.

Appendix C. Properties of the Generalized Entropies
The generalized entropy associated to a CSP 7 in (A, g) is defined as:

Definition A5. Let 17 be a CSP in (A, g), then we call the measure, S of 11(t), defined as:

B 1
SCORp (t>P<X<f>>A(p<x<t>>)f (A3)

a generalized path entropy associated with 1. Note that for a set B C Q(t) the generalized
entropy measure, Sx(B), is given by SA(B) = Ly(y)ep p(x())A(1/p(x(t))).

In the following proposition we see that the above defined entropy satisfies three of the
four Shannon-Khinchin axioms for an entropy measure [62] (SK1, SK2, SK3). The fourth
axiom (SK4) is not generally satisfied.

Proposition A3. The entropy functional Sadefined in Equation (A3) satisfies the first three of the
four Shannon—Khinchin axioms for an entropy measure as formulated in [62]:

SK1 Sy is a continuous function only depending on the probabilities p(x(t)).

SK2 S is maximized if (Vp(x(t))) p(x(t)) = m, i.e., equiprobability.

SK3 If p(x(t)) = 0, then: p(x(t))A(W) = 0, i.e., events with zero probability have no

contribution to the entropy.
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Proof. To demonstrate SK1, it is enough to observe that S, is only function of the proba-
bilities and to take into account that, by assumption, A € C2, therefore, S continuous.
To demonstrate SK2, we need to maximize the functional ¢, defined as:

¢=5A(77(t))—0¢( )3 P(X(t))—1>,
)eQ(t)

x(t

where « is a Lagrangian multiplier implementing the normalization constraint. Maximizing
§ with respect to a p(x(t))yields:

99
0=-—F"—=A(z) —zN(z) —q,

Ip(x(t))
where z = 1/p(x(t)) and A’ is the first derivative of A. Note that if the equation does not
depend explicitly on x(t) and if it has a unique solution then the proposition is proved,
since all p(x(t)) have the same value. To see that a unique solution exists we need to show
that f(z) = A(z) — zA/(z) is strictly monotonic. To see that, it is enough to note that the
first derivative of f is given by f'(z) = —zA"/(z) > 0, since, by definition of compactness,
A € C? and strictly concave; and therefore A”(z) < 0.
Finally, to demonstrate that S satisfies SK3 we apply the I'Hopital rule. First, by defining
y = 1/z, one has that:

lim zA (1) = lim 1A(y).

20 z y—ooy
Then, considering that, by definition, A € C? is a strictly growing and concave function,
one is led, after application to the 1'Hopital rule for the limit, to:

lim SA(y) = lim A'(y) =0,

y—ooy y—roo
thereby concluding the proof. O

We observe that SK3 enables us to safely perform the sum for the entropy over the
whole set of paths Q)(t), since La(t)edr(t) () = Lxea (+)-

Appendix D. The Chinese Restaurant Process

We now turn to analyzing the version of the Chinese restaurant process with memory
(CRPM) discussed in the main body of the paper. The version presented here is a variation
of the standard Chinese Restaurant process as found in [33,63].

Appendix D.1. Definition and Basics

Suppose a restaurant with an infinite set of tables my, ..., my, ... each with infinite
capacity. The first customer enters and sits at the first table ;. The second customer now
has a choice to also sit down at the first table m; together with the first customer or to
choose a free table m;, each with probability 1/2. Let m(t — 1) be the number of occupied
tables at t — 1. If the #'th customer finds that m(t — 1) tables are already occupied by some
guests, then again the customer will choose one of the non-empty tables:

mq,.. .,mm(t,l),

each with probability 1/ (m(t — 1) 4+ 1), in which case m(t) = m(t — 1), or the next empty
table m,,;_1)11, also with probability 1/ (m(t — 1) + 1). In this latter case m(t) = m(t —
1) 4 1. The key point is therefore the number of occupied tables m(t). We observe that the
amount of occupied tables can be rewritten as a stochastic recurrence:

m(t+1) =m(t) +Z(m(t)), (A4)
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where {(m(t)) is a random variable by which:

pltm() = 0) = D plEn() = 1) = s

Clearly,
m(t) =1+ ) Z(m(t)),
p<t
is a non-decreasing function in t. Now let us define My (t) as a random variable taking
values uniformly at random over the set my, . .., my, my 1 at time t. The sequence of random
variables accounting describing the CRPM #(t) can be written as:

1’](t) = M1(1),M1(2),Mm(2) (3), .. '/Mm(t)(t + 1), ceey
leading to paths x(t) of the kind:
x(t) = my, my, my, my, mo, m3, my, Mo, my, M3, ...

We emphasize that the tables visited are distinguishable and can be visited repeatedly. The
CRPM however does not fill up Q)(t), i.e., there exist elements in Q)(t) = x!,_; Qy, that are
not potential paths of the CRP. This includes all sequences that select a table m; without
ever having chosen some table m;, with j < i before. For example, the path x(t) =
(my, my, my, my, m3, my, ms, my, ms, - - - ) is not possible, because ms is chosen before 1.
The CRPM therefore gives us the opportunity to introduce sampling spaces conditional
to a particular well formed path. In this particular case, it is enough to observe that the

sampling space some well formed path x(t) € Q)(t — 1) sees at time f is given by:

fx(t = 1)] = {my,ma, -, My 4—1y]41 ) (A5)

where m[x](t — 1) is the number of different tables the well formed CRPM path x(t — 1)
has sampled at time t — 1. By convention, we define m[x|(1) = 1.

Appendix D.2. Statistics of the CRPM
We start computing the probability of a particular path x(t) € Q(t).

Proposition A4. Let process 17(t) be the CRPM and x(t) € C)(t) be a given path of the process
up to time t. Let m[x|(t') be the number of occupied tables in the restaurant associated with the
path x(t') at time t'. Then the probability to observe the particular sequence of tables, p(x(t)) is
given by:
t
-1
p(x(t) = [T (m[x](t) +1) .
t=1

Proof. The proposition follows from direct calculation. [

Now we will see that the sequence corresponding to the number of occupied tables
converges to a tractable functional form.

Proposition A5. Given the sequence of occupied tables of the CRPM m(1), ..., m(t) as defined in
Equation (A4), then:

in probability.
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Proof. Consider the random variable At denoting the amount of steps by which m(t) = k.
Aty is a geometric random variable with associated law:

i—1
p(Ab, = i) = <1 - }{) % (AL =k, (M) = K2 — k.

Now we construct a new set of renormalized random variables, dtq, .. ., dt; as:

At 1
Sty = Tk , (Ot =1, 0%(6t) =1— T

In that context, the sum of dt, ..., dt; is the sum of k random variables with mean 1 and
02 < 1. Therefore, there exists a monotonically increasing function, y(t) by which, by the
law of large numbers, for each pair €, < 0, there exists ¢y such that, for t > #y:

Yk<m(t) Otk
P(‘ﬂ(t) —1’ >e) < 9.

Notice that, in this setting, we have that the deviations behave close to a discrete random
walk centered at 0 and with step length 0 < 1. Since for all 5t;, (5t;) = 1:

m(t) . .
—2 — 1, (in probability),
() (inp y)

and, since, by construction:

Y kéty =t,

k<u(t)

one has that:

u(t) ~ V2t

where “~” means asymptotically equivalent, as we wanted to demonstrate. [J

Appendix D.3. The Typical Set of the CRP
Theorem A1. The CRPM is compact with compact scale (A, g(t)) = (log, 5 logt).

Proof. We need to demonstrate that:

1
%logt

1 . -
log<p(17(t)>) — 1, (in probability).

We first note that, according to the definition of the sequence of the number of occupied
tables given in Equation (A4), and the statement of Proposition A4, one can rewrite the
logarithmic term of the condition for compactness as:

1 /
log<p(17(t))> =) log(m(t)).

H<t
Now, let us define a new random variable z(¢) as follows:
z(t) = m(t) — p(b),

with pu(t) = v/2t. Notice that, according to Proposition A5, we have that:

——= — 0, (in probability).
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We can then rewrite condition of compactness, with g(t) = Y-y <;log(u(t)), as:

1 1
thgtlog(ﬂ(t’))1og(p(17(t))) = zmlog Eﬂ"g
= —Zlog ()

Zt’<t log tl<t
= =— log( )+log(1 + )
Yr<t log tgt Bk &

_ ; 2(t')
- “):t/gtlog(w))tgt ( (t/))

It remains to see that the second term of the sum goes to 0. Clearly, by Proposition A5:

log(l + ((t)))

t
— 0, (in probability).
Tog (1)) (in probability)

Consequently:

1 1
Yoot log(u(F) 10g<P(f7(t))>

Finally, we need to compute the asymptotic form of Y ;log(j(t')). Observing that we
have a Riemann sum, one can consider:

Y log(u(t')) ~ /tlog(@)dt/ ~ élogt,

H<t

— 1, (in probability).

thus concluding the proof. [

Appendix D.4. The Entropy of the CRP

We demonstrate here that the CRPM is simple. In consequence, the typical set can be
computed as a function of the entropy. In that case, one can show that a suitable choice is
= log, chosen for the sake of simplicity, implying that the associated entropy is Shannon
path entropy. However, we emphasize that this choice is not unique. Given a different
choice of g, one could have another A by which the process is also simple and, therefore,
the typical set could be defined through another form of entropy. We briefly comment on
this point in the next section, sketching how another potential pair (A, g) functions would
work as well.

Theorem A2. The CRPM is simple in (A, g(t)) = (log, 5 logt).

Proof. Since the CRPM is compact with compact scale (A, g(t)) = (log, 5logt), we
know that there is a typical localizer sequence €y, .. ., €, ... with associated é4,...,6;, ...,
such that limy_,e €; = lim; 0 6y = 0. The paths belonging to the typical set Ale;], are
those satisfying:

67(1+e,‘)%logt < p(x(t)) < ef(lfet)%logt.

In addition, the measure associated to the typical set Ale;] is given by:

P(x(t) € Alet]) > 1 — 6.
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In consequence,

(1—e)1-d)zlogt < — Y p(x(t)logp(x(t))
x(t)eAlet]

< (I+e)(1- (50% log t.
Now let us consider that the complement of the typical set Q(f) \ A[e¢], whose measure is:
P(x(t) € Q\ Alet]) < &,
is completely populated by those paths by which:

x(t) € Q\ Alet] , p(x™(t)) = gl(itr)l{r’(x(f))}r

therefore, for all paths x(t) € Q(t):

—logp(x(t)) < —logp™(x(t)).

The least probable path is the one that increases the number of tables at every step, having
a probability p*(x(t)) of:

pe) = 5

t’
leading to — log p*(x(t)) ~ tlogt, thanks to the Stirling approximation [64]. In that context:

T px(t)logp(x(t)) < stlogt.
x(H)eQ(t)\Aler]

Collecting the above reasoning, and by observing that the defined entropy is actually the
Shannon path entropy, Sx(17(t)) = H(y(t)) [24]:

H(y(t) =— ). p(x(t)logp(x(t)),

x(t)eQ(t)

one has that:

(1-e)(1-&)5logt < H(y(t))

< ﬂ+®ﬂ—&%by+&Wgt

In consequence, by defining g(t) = £ logt, one is led to:

(1-6)(1—e) < H(0)) < (1—=61)(1 +et) + 24

8(t)
Since we know that lim;_,« €; = lim;_,o 8¢ = 0 we conclude that:
HOW)
8(t)

as we wanted to demonstrate. [
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Appendix D.5. A Different Compact Scale (A, G) for the CRP

We finally briefly comment how another compact scale made of different (A, g) func-
tions could be used to characterize the typical set and the generalized entropy of the CRP.
We avoid the technical details, for the sake of simplicity. We start computing the inverse

function of g, g~ 1
2z

_1 ~
g (B~ W(2z)’
where W is the Lambert function [64], where only the positive, real branch is taken into

account. Then we compose it with the log function, thereby defining a new function A as:

AE) = (57" 0log)(2) ~ gyl (A6)

We observe that A as above defined is a strictly growing, concave function with contin-
uous second derivatives. Clearly, (71 o ¢)(t) ~ t. Therefore, as a direct consequence of
Theorem A1, the CRPM is compact in (A, t):

IR SR DA DR U DA
¢ 1(iogh) 1°g)<p<r;<t>>> t"(p(v(t)))“

(in probability). In consequence, the size of the typical set and the typical probabilities can
be approximated from the following generalized entropy Sx:

_ 210 37
SA(W(t))—x(tgw)P(x(t))w[ﬂog(mﬂ. (A7)

where we explicitly wrote it in terms the functional form of A = ¢~ ! o log as defined in

Equation (A6).
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