
Citation: Maillard, L.; Finocchi, F.;

Trassinelli, M. Assessing Search and

Unsupervised Clustering Algorithms

in Nested Sampling. Entropy 2023, 25,

347. https://doi.org/10.3390/

e25020347

Academic Editor: Geert Verdoolaege

Received: 19 December 2022

Revised: 3 February 2023

Accepted: 10 February 2023

Published: 14 February 2023

Corrected: 9 January 2024

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Assessing Search and Unsupervised Clustering Algorithms in
Nested Sampling
Lune Maillard *, Fabio Finocchi and Martino Trassinelli *

Institut des Nanosciences de Paris, Sorbonne Université, CNRS, 75005 Paris, France
* Correspondence: lune.maillard@insp.upmc.fr (L.M.); martino.trassinelli@insp.jussieu.fr (M.T.)

Abstract: Nested sampling is an efficient method for calculating Bayesian evidence in data analysis
and partition functions of potential energies. It is based on an exploration using a dynamical set of
sampling points that evolves to higher values of the sampled function. When several maxima are
present, this exploration can be a very difficult task. Different codes implement different strategies.
Local maxima are generally treated separately, applying cluster recognition of the sampling points
based on machine learning methods. We present here the development and implementation of
different search and clustering methods on the nested_fit code. Slice sampling and the uniform
search method are added in addition to the random walk already implemented. Three new cluster
recognition methods are also developed. The efficiency of the different strategies, in terms of accuracy
and number of likelihood calls, is compared considering a series of benchmark tests, including
model comparison and a harmonic energy potential. Slice sampling proves to be the most stable
and accurate search strategy. The different clustering methods present similar results but with very
different computing time and scaling. Different choices of the stopping criterion of the algorithm,
another critical issue of nested sampling, are also investigated with the harmonic energy potential.

Keywords: nested sampling; slice sampling; unsupervised clustering; harmonic potential

1. Introduction

Function sampling can be a complicated task in multidimensional problems, especially
in multimodal ones. The nested sampling (NS) algorithm [1], created in 2004 by John
Skilling, allows to perform a smart sampling by reducing the multidimensional integral
to a one-dimensional integral that is computationally affordable. It is mainly used in
Bayesian data analysis for model selection in a variety of fields, such as cosmology [2,3]
and astrophysics [4], but also in material science for potential energy exploration [5,6].
The NS algorithm consists of evolving a dynamic set of points under a hard constraint on
the increasing (or decreasing) value of the explored function, which reduces the volume of
the sampled space at each iteration.

One of the main difficulties of the algorithm is the choice of the new sampling points.
Over the years, several methods have been used in different codes, such as uniform sam-
pling from multi-ellipsoid [3,4], slice sampling [2,4], Galilean Monte Carlo [6], Hamiltonian
Monte Carlo [6], and random walk [4,5], as well as using clustering methods, especially
in multimodal problems. A more detailed overview of the various methods to find a new
point can be found in Refs. [7,8]. Another challenge when using the nested sampling
algorithm is choosing a criterion for convergence, i.e., deciding when the parameter space
has been sufficiently explored. Evidently, the criterion for convergence depends on the
problem studied. In some cases, the choice of this criterion might be quite straightforward,
for example, when targeting a precise likelihood final accuracy in data analysis applications.

Nested sampling can also be employed in statistical mechanics for computing the
partition function [5,6], which is a sum of the microstates of the system and depends on
several macroscopic variables, such as the temperature and the volume [9]. Since one is

Entropy 2023, 25, 347. https://doi.org/10.3390/e25020347 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020347
https://doi.org/10.3390/e25020347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7048-5029
https://orcid.org/0000-0003-4414-1801
https://doi.org/10.3390/e25020347
https://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/25/2/347?type=check_update&version=2


Entropy 2023, 25, 347 2 of 26

interested not only in the partition function but also in its derivatives, which yield the
thermal observables, finding a good criterion for convergence is crucial, in contrast to
data analysis applications. Indeed, attaining a full convergence on the derivatives of the
partition function is usually quite demanding.

In the past, the performance results of different programs implementing nested sam-
pling were discussed [2,10–12]. However, the performance results of the distinct search and
cluster recognition methods, and different stopping (or convergence) criteria have not been
systematically compared within a single program. Here, we aim to provide a comparison
of four search methods, as well as four clustering algorithms, on test cases by means of
the nested_fit program, which is based on the nested sampling algorithm [1]. We will
compare the accuracy and number of likelihood calls of the different methods on several
benchmark tests. We will also discuss the choice of the stopping criterion for the specific
case of the harmonic potential.

We briefly present the nested sampling in Section 2 and the nested_fit program in
Section 3, where we also describe new search and clustering algorithms as implemented
in nested_fit. We compare the different algorithms on some test examples in Section 4,
including the harmonic potential. In the same section, we also compare the performance
of nested_fit with other nested sampling programs written in the same programming
language (Fortran). Finally, we discuss our results in Section 5.

2. Nested Sampling: General Concepts
2.1. Principle of Nested Sampling

The general need for both Bayesian model selection and partition function evaluation
is the calculation of an integral I of a function L defined over d parameters θ = (θ1, . . . , θd)
according to a measure µ:

I =
˙

Θ
L(θ)dµ(θ),

where Θ is the parameter space, that is θ ∈ Θ. Assuming that µ is a probability measure
with density π, i.e.,

¯
Θ dµ(θ) =

¯
Θ π(θ)dθ = 1, we can write

I =
˙

Θ
L(θ)π(θ)dθ. (1)

The nested sampling algorithm is based on the transformation of the multidimensional
integral I into a one-dimensional integral:

I =
ˆ 1

0
L(X)dX (2)

via the change of variable

X(L) =
˙

L(θ)>L
π(θ)dθ. (3)

X is the normalized volume weighted by the probability π(θ) on the portion of space
where the function is superior to L. L(X) is obtained by inverting the relation X(L)
(Equation (3)) [8].

2.2. Exploration and Live Points

In practice, a quadrature via the subdivision in M intervals is used to approximate
the integral from Equation (2). As an example, one can use the trapezium rule: we note
∆Xm = Xm−1−Xm+1

2 where 0 < XM < . . . < X2 < X1 < X0 = 1 and XM+1 = 0. In that case,

I ≈ ∑
m
Lm∆Xm, (4)



Entropy 2023, 25, 347 3 of 26

with Lm = L(Xm). The nested sampling strategy relies on a recursive exploration of the
function L, starting from an evolving set of K points—called “live points”. At each iteration,
the point with the lowest value θold is discarded and replaced with a point θnew that verifies
L(θnew) > L(θold). At iteration m, Lm is given by L(θold).

Algorithm 1 presents the main steps of the nested sampling algorithm in the case
where the trapezium rule is used to estimate integral I.

Algorithm 1: Nested sampling with the trapezium rule.
Input: K, L
Output: I

1 m = 0
2 I = 0
3 Sample K points from the distribution π
4 repeat
5 Find a new point θnew that verifies L(θnew) > min1≤j≤K(L(θj))

6 Update m = m + 1
7 Remove point θold verifying L(θold) = min1≤j≤K(L(θj)) = Lm

8 Update I = I + Lm∆Xm where ∆Xm = Xm−1−Xm+1
2

9 until Stopping condition met;
10 Update I = I + L̄ Xm−1+Xm+1

2 where L̄ is averaged over all K remaining points

Before the first iteration, the K points are uniformly sampled from π(θ). After that,
at each iteration, θnew is sampled from the constrained distribution π∗(θ) [8]:

π∗(θ) ∝

{
π(θ) if L(θ) > L(θold),
0 otherwise.

(5)

As a result, the volumes associated with the live points (Equation (3)) are uniformly
distributed. Therefore, when removing θold, the volume shrinks by a factor t ∼ Beta(K, 1) [1,8]—
which corresponds to the distribution of the outermost value of a set of K samples following a
Uniform([0, 1]) distribution. Thus, we use the average value of the distribution of t, that is K

K+1 ,
as an estimate of Xi

Xi−1
. Therefore, at iteration m, the corresponding volume in the parameter

space is Xm ≈
(

K
K+1

)m
≈ e−

m
K , that is, the fraction of the space that is sampled by the live points.

The sequential sampled spaces defined by the constraint are nested into each other. Furthermore,
at each iteration, the values of θold and L(θold) are stored to be available for post processing.

We describe various methods to find θnew and stopping criteria in Section 3. In some
cases, unsupervised clustering algorithms are required in addition to the search methods.
This is discussed in Section 3.

2.3. Applications

Here, we focus on two specific applications for nested sampling: (i) comparing data
with a modeling function that depends on a set of unknown parameters and (ii) computing
the partition function in statistical mechanics, with application to many-atom systems.

(i) In the data analysis case, the integral I in Equation (2) corresponds to the Bayesian
evidence (also called marginal likelihood) E(M) for model M with L(θ) = P(Data|θ,M)
being the likelihood and π(θ) = P(θ|M) being the prior distribution of parameters (see
Equation (1)), i.e., E(M) =

¯
Θ P(Data|θ,M)P(θ|M)dθ. The evidence can be used to

compare models. Indeed, the probability of a model is calculated via the Bayes’ rule
through the formula:



Entropy 2023, 25, 347 4 of 26

P(M|Data) =
E(M)P(M)

P(Data)
∝ E(M)P(M), (6)

where P(M) is the prior of the model [13], and P(Data) is the normalisation factor.
(ii) In statistical mechanics, we are interested in calculating the partition function or

exploring energy manifolds. The classical partition function in the canonical ensemble at
inverse temperature β = 1

kbT can be expressed as

Z(β) =

ˆ
exp(−βẼ(x, p))dxdp =

(
Λ
h

)3N ˆ
exp(−βE(x))dx,

where x are the positions of the particles and p their momenta. Z corresponds to the
integral I from Equation (1) with θ = (x, p), L(θ) = exp(−βẼ(x, p)) and π(θ) = 1. For N
particles in three dimensions, Z is therefore an integral over 6N variables. The separation in
the last equality can be performed if the energy Ẽ can be expressed as the sum of a potential
depending only on the positions and a kinetic term depending only on the momenta.
In that case, the latter one can be factorized out as (Λ/h)3N . We denote with E the position-
dependent part of the energy Ẽ and Zx =

´
exp(−βE(x))dx. Zx can be rewritten as an

integral over the energy [5,6]

Zx(β) =

ˆ
ρ′(E) exp(−βE)dE,

where ρ′(E) is the density of states with respect to E, which both depend solely on the
positions. In the previous equation, Zx is expressed as a one-dimensional integral and can
therefore be calculated using nested sampling as in Equation (4):

Zx(β) ≈ ∑
m

wm exp(−βEm) (7)

and therefore

Z(β) ≈
(

Λ
h

)3N

∑
m

wm exp(−βEm).

Here, wm = 1
2 (ρ(Em−1)− ρ(Em+1)) and ρ is the cumulative density of states which

corresponds to the number of states with energy lower than E:

ρ(E0) =

ˆ
{E: E<E0}

ρ′(E)dE.

In Equation (7), Zx(β), wm and exp(−βEm) correspond to I, ∆Xm and Lm from Equa-
tion (4), respectively. Hence, ρ(Em) is estimated in the same manner as Xm, i.e., ρ(Em) ≈
e−

m
K .

Minimizing the energy E is equivalent to maximizing exp(−βE) independently of the
temperature [5]—indeed, exp(−βE) is a monotonic function of E—and we can therefore
apply the nested sampling iterative procedure directly on E. Because the minimization pro-
cess does not involve the temperature as in other methods such as Monte Carlo, simulated
annealing or parallel tempering, a single run can provide the cumulative density of states
ρ(E) from which the partition function can be computed at all temperatures.

From the partition function, other properties of the system can be calculated such as
the internal energy U = − ∂ log(Z)

∂β and the heat capacity CV = ∂U
∂T . In the following, we

focus on the heat capacity. We take the Boltzmann constant kB=1 and adopt reduced units
for the temperature.



Entropy 2023, 25, 347 5 of 26

3. The nested_fitnested_fitnested_fit Program and New Implementations

Nested_fit [14–17] is a program written in Fortran and originally implemented for
atomic data analysis purposes that uses the nested sampling algorithm with the trapezium
rule. In this section, we present various aspects of the program, such as its general structure,
how to find a new point (Line 5 in Algorithm 1) or when to end a run (Line 9 in Algorithm 1),
focusing on the new implementations in particular.

3.1. General Structure of the Program

In the input file of the program, the function to explore is specified, which can be a
likelihood associated to data or an energy or a trial function, together with other parameters
required for the exploration, such as the methods used for searching new points and the
stopping criterion. The program returns two output files: In the first one, all the live points
sampled during the run are stored. The second one contains the statistics—the value of
the integral/evidence/partition function, mean and median of the parameters, number of
iterations, time taken and other information.

3.2. Searching for New Live Points

One of the main challenges of nested sampling is finding the new point θnew veri-
fying L(θnew) > L(θold), i.e., sampled from the distribution π∗(θ) (Equation (5)), in the
multi-dimensional space with a uniform probability over the entire volume defined by the
constraints. This is the task of Line 5 from Algorithm 1. Different methods have been used
in different implementations of nested sampling to solve this problem, such as uniform
sampling from multi-ellipsoid [3,4], slice sampling [2,4], Galilean Monte Carlo [6], Hamil-
tonian Monte Carlo [6] and the random walk [4,5]. In previous versions of nested_fit,
a random walk called “lawn mower robot” was implemented [15].

There are a few problems that arises when using the random walk:

1. On test examples where the value of the integral is known, the random walk has
difficulty finding the true value of the integral.

2. The random walk does not perform well in cases when the parameters entering L(θ)
are highly correlated. In this case, the isotropic exploration of Θ leads to a drop
in efficiency.

3. In the presence of multiple maxima, multiple runs are necessary to find all maxima
since the random walk is generally unable to find them all in a single run.

For the last issue, a possible solution is to use unsupervised clustering recognition
algorithms on the live points when the exploration starts to be inefficient [2]. Such an
inefficiency comes from the analysis of the characteristics of the exploration point ensemble
(mainly, the standard deviation) to determine the jump length of the random walk. When
several maxima are present, the random walk often falls into regions with low values of
the function. Recognizing the presence of cluster allows to choose the adapted exploration
parameter for each cluster. Mean shift was therefore implemented in nested_fit [15].
The addition of this algorithm reduced the computation time by roughly an order of mag-
nitude. A single run was enough to find all maxima (see [15] for more details). However,
adjusting the mean shift parameters proved to be a complicated task. Consequently, new
clustering methods were explored and implemented. They are presented in Section 3.3.
To solve the first two problems, we implemented new search algorithms that are pre-
sented below.

3.2.1. Uniform Search

The first search algorithm that was added to nested_fit is the uniform search around
the live points. It was introduced in Ref. [18] and implemented in dynesty code [4] with
cubes and spheres. The structure of this method is presented in Algorithm 2. d is the
dimension of the problem, L = L(θold) and θn = θnew. θa is the starting point which is
chosen randomly for the set of K live points, and σ is the standard deviation of the points
belonging in the same cluster as θa. If no clustering has been performed, σ is the standard



Entropy 2023, 25, 347 6 of 26

deviation of all points. The method to find a new starting point in Line 13 is the same as in
the random walk case [15]. N is the number of points rejected before a new starting point is
found and NN × N is the number of points rejected before a cluster analysis is performed
(if clustering is used). f , chosen by the user, determines the size of the box proportionally
to the standard deviation. Typically, f is chosen to be approximately 1.

Algorithm 2: Uniform search.
Input: f , θa, N, NN , L
Data: σ, d
Output: θn

1 Let P be a box centred on θa
2 for 1 ≤ i ≤ d do
3 GP

i = θa − f σi
4 DP

i = θa + f σi

5 Draw θp uniformly in P = ∏1≤i≤d[GP
i , DP

i ]
6 if L(θp) > L AND θp ∈ Θ then
7 Let p be the number of boxes where θp lies in
8 Accept θp with probability 1/p. If θp is rejected, go back to Line 5

9 else
10 if More than N tries then
11 if More than NN × N tries then
12 Perform clustering

13 New starting point, f = f
2 and back to Line 1

14 else
15 Back to Line 5

16 θn = θp

3.2.2. Slice Sampling

Slice sampling [19] is used in dynesty [4] and in Polychord codes [2], among others.
Slice sampling consists in uniformly choosing new exploration points on a slice of the
volume defined by L > L(θold). The one-dimensional algorithm is described in Algorithm 3.
The slice is initialized by randomly placing it around the starting point (Lines 1–3). In the
multidimensional case, the direction is chosen after a change of coordinate to efficiently
explore all the parameter space, even in the presence of a strong correlation. In practice, we
use the Cholesky factorization of the covariance matrix to transform the points coordinates
into new coordinates with dimensions ∼ O(1) in all directions [2]. The border of the
volume is found by a recursive method. Details of multidimensional slice sampling, which
is adapted from the one used in Polychord [2], are described in Algorithm 4. L, θa, θn,
N and NN are defined as for Algorithm 2. d is the dimension of the problem, and nb is
the number of orthogonal bases used to define the slices on the live point distribution.
In the following, the original space refers to Θ, while the transformed space refers to
H−1Θ = {θ′ : Hθ′ ∈ Θ}, where H is the Cholesky factorization of the covariance matrix.
In Polychord, the multidimensional algorithm is performed in Θ with the orthonormal
bases being generated in the transformed space (v1, . . . , vd) ∈ H−1Θ. Here, as shown in
Algorithm 4, we transform the live points from Θ to H−1Θ and carry out the slice sampling
in the transformed space. The main difference between the two implementations is that,
in nested_fit, the size of the slice w is a user-configurable parameter, while in Polychord,
its value is hard coded to three times the norm of the vector Hvi. In both programs,
the user chooses the number of steps performed—nested_fit takes a multiple of the
number of dimensions, while Polychord takes the actual number of steps as a parameter.
In nested_fit, if clustering is used, a cluster analysis is performed every 10 ∗ K iterations.



Entropy 2023, 25, 347 7 of 26

Algorithm 3: One-dimensional slice sampling.
Input: w, θa, L
Output: θn

1 U ∼ Uni f orm([0, 1])
2 G = θa − U ∗ w
3 D = G + w = θa + (1 − U) ∗ w
4 while L(G) ≥ L AND G ∈ Θ do
5 G = G − w

6 while L(D) ≥ L AND D ∈ Θ do
7 D = D + w

8 θp ∼ Uni f orm([G, D])
9 if L(θp) > L AND θp ∈ Θ then

10 θn = θp

11 else
12 if θp < θa then
13 G = θp

14 else
15 D = θp

16 Back to Line 8

Algorithm 4: Multidimensional slice sampling.
Input: w, θa, nb, L, N, NN
Data: Live points, d
Output: θn

1 Compute covariance matrix C
2 Compute H, the Cholesky factorisation of C
3 θ′a,1 = H−1θa

4 for 1 ≤ i ≤ nb do
5 Generate an orthonormal basis (v1, . . . , vd)
6 for 1 ≤ j ≤ d do
7 Algorithm 3:: w ∗ vj, θ′a and L as Input and θ′n as Output . Lines 10–13 from

Algorithm 2 (without f = f /2) are inserted between Lines 11–12 with
parameters N and NN . The number of tries is counted over i and j.

8 θ′a = θ′n

9 θn = Hθ′n

For the determination of the border of the slice, an alternative of the original slice
sampling was developed and implemented in nested_fit that will be referred to as slice
sampling adapt:

• Lines 1–3 from Algorithm 3 are replaced by Algorithm 5. The value of minit is defined
in nested_fit.

• Lines 4–5 from Algorithm 3 are replaced by Algorithm 6. Identically, Lines 6–7
are replaced by Algorithm 6, changing G into D and the updates G = G − w and
G = G + w into D = D + w and D = D − w, respectively. The value of mext is defined
in nested_fit.

When using slice sampling adapt, Algorithm 3 is adapted as described in Line 7
from Algorithm 4. Furthermore, we put a limit on the number of extensions that is
allowed in each direction for both slice sampling and slice sampling adapt. However, this
implementation of slice sampling breaks detailed balance with the potential introduction



Entropy 2023, 25, 347 8 of 26

of error in the evidence evaluation. Note also that the original implementation of random
walk in nested_fit partially breaks the detailed balance [15], as pointed out in Ref. [7].

Algorithm 5: Slice sampling adapt: initialization of the slice.

1 U ∼ Uni f orm([0, 1])
2 G = θa − U ∗ w
3 D = G + w = θa + (1 − U) ∗ w
4 i=0
5 if G /∈ Θ OR D /∈ Θ then
6 Update i = i + 1
7 if i > minit then
8 Update w = w/2, i = 0

9 Back to Line 1

Algorithm 6: Slice sampling adapt: extension of the slice.

1 j=0
2 while L(G) ≥ L do
3 G = G − w
4 if G /∈ Θ then
5 G = G + w
6 Update w = w/2, j = j + 1
7 if j > mext then
8 Exit while loop

9 Back to Line 3

10 Put w back to its value from Line 1

3.3. Unsupervised Clustering

As it was presented in the previous section, the recognition of the sampling points into
different clusters can considerably improve the search algorithm. We implemented three
new clustering methods in nested_fit next to the mean shift algorithm: density-based
spatial clustering for applications with noise, agglomerative clustering with single linkage
and k-nearest neighbors. These methods were chosen because they are unsupervised and
the number of clusters is not a parameter of the method; rather, it is determined during
each run of the algorithm along with the clustering. In all the following paragraphs, we
use the Euclidean norm. These methods are used in Line 12 in Algorithm 2 and in Line 7
in Algorithm 4. In Algorithms 7 and 8, a min-max normalization is performed on the
positions of the points at the beginning of the clustering algorithms, i.e., the coordinates are
transformed according to the formula

xj − minj

maxj − minj
∀j,

where xj is the initial j-th coordinate of point x and minj and maxj are the minimum and
maximum j-th coordinate among the points, respectively. After the transformation, all
points have coordinates between 0 and 1.

3.3.1. Density-Based Spatial Clustering for Applications with Noise

Density-based spatial clustering for applications with noise (DBSCAN) [20] was re-
cently implemented as a post-processing step to recluster points sampled by MultiNest [3]
since the clustering methods used in the program (X-means and k-means) were not adapted
to a specific problem (microseismic events) [21]. DBSCAN requires two input parameters



Entropy 2023, 25, 347 9 of 26

that are chosen by the user: a radius ϵ and a minimal number of neighbors m. Using these
parameters, the points are divided into three categories:

• Core points. Those are the points that have at least m points—themselves included—
within an ϵ distance.

• Border points. They are within an ϵ distance from l core points with 1 ≤ l ≤ m − 1.
• Outliers. Those are the other points. (An outlier can be within an ϵ distance from a

border point.) Outliers belong to no cluster.

The algorithm corresponding to DBSCAN is presented in Algorithm 7. When the
starting point selected in the algorithm is an outlier, all of the points are used to calculate
the standard deviation and covariance matrix as if no clustering was performed.

Algorithm 7: DBSCAN
Input: ϵ, m
Data: Points
Output: Clustering of the points

1 Min-max normalization of the points
2 Divide the points into core points, border points and outliers
3 repeat
4 Select a core point that is not already in a cluster to form a new cluster
5 Add all points that are within an ϵ distance from that point and not already in

a cluster
6 Repeat Line 5 for all core points added
7 until All core points are in a cluster;

3.3.2. Agglomerative Clustering with Single Linkage

Agglomerative clustering [22,23] is an iterative algorithm based on the measure of
dissimilarity between two clusters. The case of single linkage is presented in Algorithm 8.

Algorithm 8: Agglomerative clustering with single linkage.
Input: α
Data: Points
Output: Clustering of the points

1 Min-max normalisation of the points
2 All points form their own cluster
3 repeat
4 Compute D(A, B) = mina∈A,b∈B d(a, b) between the clusters
5 Join the two closest clusters according to D
6 until D(A, B) > maxx,y∈points d(x, y);

D(A, B) = mina∈A,b∈B d(a, b) is the dissimilarity measure between clusters A and B.
The value of α is chosen by the user.

3.3.3. K-Nearest Neighbors

The k-nearest neighbors (KNN) method [24] is inspired by the method described in
Polychord [2]. It is presented as Algorithm 9. The difference between our implementation
and the one in Polychord is that in nested_fit, the clusters of two points are merged if
there are respectively in each others’ k-nearest neighbors, while in Polychord, they are
merged if one is in the other point’s k-nearest neighbors. There are no adjustable parameters
for this clustering method.



Entropy 2023, 25, 347 10 of 26

Algorithm 9: KNN.
Input: None
Data: Points
Output: Clustering of the points

1 k = 2
2 repeat
3 All points form their own cluster
4 Compute k-nearest neighbors for each point
5 Merge the clusters of two points if they are respectively in each other’s

k-nearest neighbors
6 Update k = k + 1
7 until Same clustering as the previous iteration OR only one cluster is found;
8 if More than one cluster then
9 Back to Line 1 for each cluster until one sub-cluster is found per cluster

3.4. Stopping Criterion

In the previous version of nested_fit, only one criterion was implemented to stop the
nested sampling algorithm (Line 9 of Algorithm 1): a run stopped when the ratio between
the estimated total integral Iest,tot and the calculated integral Iest,m was below a predefined
value (chosen by the user), i.e.,

Iest,tot/Iest,m < δ0, (8)

with Iest,m = ∑m
i=1 Li∆Xi and Iest,tot = Iest,m + Lmax(e−

m+1
K + e−

m−1
K )/2 at iteration m. The

term Lmax(e−
m+1

K + e−
m−1

K )/2 corresponds to an estimate by the excess of the part of the
integral that is ignored if the run stops at iteration m.

Contrary to the case of the evaluation of the Bayesian evidence from a likelihood, this
criterion is not adapted to study potential energy landscapes. Indeed, this criterion consists
in evaluating the partition function at a temperature T = 1 (in our units). This criterion
thus does not provide a good enough convergence at lower temperatures T ≪ 1. To fulfill
this application correctly, two additional stopping criteria were added:

1. The first criterion is equivalent to the one in Equation (8) but directly applied to the
partition function. A run stops when the ratio between the estimated total partition
function Zest,tot and the calculated partition function Zest,m is below a predefined
value, i.e.,

Zest,tot/Zest,m < δ1, (9)

with Zest,m = ∑m
i=1 wie−βsEi and Zest,tot = Zest,m + e−βsEmin(e−

m+1
K + e−

m−1
K )/2 at itera-

tion m.
Since the partition function depends on the temperature, a pre-defined Ts = β−1

s must
then be provided by the user. Choosing the temperature equal to 1 is equivalent to
using the same stopping criterion than for the evidence.

2. The second criterion is the one used in Refs. [5,6] and corresponds to stopping a
run when the contribution of new points to the partition function becomes small
compared to previous contributions. A run stops when the difference between the
logarithm of the current contribution to the partition function cm and the maximum
of the logarithms of previous contributions to the partition function cmax is below a
predefined value (chosen by the user), i.e.,

cm − cmax < δ2, (10)

with cm = log(wm)− βsEm and cmax = maxi≤m(ci) at iteration m. Again, this is com-
puted at a specific temperature Ts chosen by the user.



Entropy 2023, 25, 347 11 of 26

The main difference between the two approaches is that the stopping criterion from
Equation (9) is based on the estimation of future evaluations—what is left to explore—while
the stopping criterion from Equation (10) only looks at the past contributions.

4. Results

In this section, we compare the search algorithms on different benchmark functions,
without clustering in Section 4.1, with clustering in Section 4.2, and with a brief com-
parison between the different clustering algorithms only (without the implementation in
nested_fit) in Section 4.2.1. In Section 4.3, the different search methods are studied for
model comparison applications. We then look at the evolution of the performance results
with the dimension in Section 4.4. Finally, in Section 4.5, we compare the nested_fit
performance results with two other programs implementing the nested sampling algorithm.
Almost all calculations and analyses were done with the version 4.3 of nested_fit on a
64 bits computer with 4 CPUs of frequency 3.5 GHz, each with one single threaded core.
The comparison of the computing time of the clustering methods and the comparison
with other programs were conducted without parallelization. Parallelization was simply
implemented via OpenMP on recursive calculation over the input parameters and the
data files’ channels. On examples with real data, we observe that the 350–400% of CPU is
used, while on other examples, it varies between 250% and 400%. (Since 4 CPUs are used,
the maximum value is 400%).

The values of the parameter sets used for the different search methods are listed in
Table 1. A thousand live points were used and eight runs were performed. The stopping
criterion presented in Equation (8) was used for every function with ln(δ0) = 10−4 for
the Gaussian Shells and ln(δ0) = 10−5 for the rest, except the harmonic potential. For the
harmonic potential, the stopping criteria presented in Equations (9) and (10) were used with
ln(δ1) = 10−5 and δ2 = −10, respectively, with Ts = 0.01.

Table 1. Parameter sets for the different search methods used for the comparison.

Random walk Set 1 Set 2 Set 3
Search parameter 1 (Size of the step) 0.1 0.2 0.1

Search parameter 2 (Number of steps) 20 20 40

Uniform Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Search parameter 1 (Size of the box f ) 0.1 0.2 0.3 0.4 0.5 1
Search parameter 2 (Number of steps) 1 1 1 1 1 1

Slice sampling Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Search parameter 1 (Size of the interval w) 1 0.2 1 0.2 1 0.2

Search parameter 2 (Number of bases) 1 1 3 3 5 5

Slice sampling adapt Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Search parameter 1 (Size of the interval w) 1 0.2 1 0.2 1 0.2

Search parameter 2 (Number of bases) 1 1 3 3 5 5

4.1. Searching New Points without Clustering Methods

In order to compare the performance results of the four search methods without
the use of clustering, we consider four examples—presented in details in the following
sections—for which the value of the integral I is known.

4.1.1. Gauss

The first test function is a multivariate normal distribution with a diagonal covariance
matrix with all the diagonal elements identical to each other. In n dimensions, it has
the following form:

1

(2πσ2)
n
2

exp
(
− 1

2σ2 (x − µ)T(x − µ)

)
,



Entropy 2023, 25, 347 12 of 26

where x = (x1, . . . xn)T , µ = (µ1, . . . µn)T is the vector of means and σ is the standard
deviation. We took µ = 0.5 and σ = 0.01, n = 5 and a uniform prior over [0, 1] for
all dimensions.

4.1.2. Gauss with Correlation

The second test function is a multivariate normal distribution in n dimensions with a
non-diagonal matrix:

1

(2π)
n
2 Det(Σ)

1
2

exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
,

where x = (x1, . . . xn)T , µ = (µ1, . . . µn)T is the vector of means and Σ is the covariance
matrix. We took µ = 0, n = 2,

Σ =

(
0.01 0.009
0.009 0.01

)
.

and a uniform prior over [−0.5, 0.5] for all dimensions. The projection of the likelihood is
represented in Figure 1 (left).

Figure 1. Projection of benchmark functions. Left: Gaussian with correlation. Right: Rosenbrock 2D.

4.1.3. Rosenbrock

The last two examples are the Rosenbrock likelihood in two and four dimensions. In n
dimensions, the function has the following form:

exp

(
−

n−1

∑
i=1

[
(1 − xi)

2 + 100(xi+1 − x2
i )

2
])

.

The projection of the Rosenbrock likelihood in two dimensions is represented in
Figure 1 (right). For our analysis, we considered a uniform prior over [−5, 5] for all dimensions.

The comparison of the different search algorithms is presented in Figure 2. We can see
that slice sampling performs well for all choices of the parameters and is able to recover the
true value of the integral for every test function. It is also the most stable search method.
For slice sampling adapt, there is a bias in the results when a too small size of the interval
w is chosen. This bias could be a consequence of the detailed balance being broken or
of the limited number of extension allowed being too small. The number of bases used
seems not to have an effect on the calculated integral. When a larger interval is used, slice
sampling adapt performs well. Overall, the slice sampling algorithm outperforms the
random walk search. The uniform search is the least effective and robust method, which
depends on the choice of the parameters in unpredictable ways. These poor performance
results could be explained by the exclusion of the relevant part of the space above the
likelihood constraint leading to a biased sampling of the space [18]. Moreover, as visible in
Figure 3, for the uniform search, the number of likelihood calls increases with the size of the



Entropy 2023, 25, 347 13 of 26

box. Furthermore, for slice sampling and slice sampling adapt, the number of likelihood
calls increases with the number of bases and inversely to the size of the slice.

(a)

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

100

80

60

40

20

0

Ev
id

en
ce

 (l
og

)

2
1
0
1
2

(b)

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

Ev
id

en
ce

 (l
og

)

(c)

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

30
27.5

25
22.5

20
17.5

15
12.5

Ev
id

en
ce

 (l
og

)

16
15.5

15
14.5

14

(d)

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

6.0

5.8

5.6

5.4

5.2

5.0

Ev
id

en
ce

 (l
og

)

Figure 2. Comparison for the different search methods without clustering. The evidence is represented
with the expected value represented by the black line: 0 for Gauss and Gauss with correlation, −5.804
for Rosenbrock 2D [11], −15.1091 for Rosenbrock 4D [2]. (a) Gauss. (b) Gauss with correlation. (c)
Rosenbrock 4D. (d) Rosenbrock 2D.

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

106

107

Nu
m

be
r o

f l
ik

el
ih

oo
d 

ca
lls

Figure 3. Number of likelihood calls by the different search methods for Rosenbrock 2D.

4.1.4. Partition Function of the Harmonic Potential

For a test with a partition function, we consider the harmonic potential

Vharm(x, y, z) =
1
2

mω2(x2 + y2 + z2)



Entropy 2023, 25, 347 14 of 26

for a particle in three dimensions. The reason for studying this particular example is that the
classical partition function can be computed analytically: Z(β) = (h̄βω)−3 and CV = 3kb.

Therefore, we can compare straightforwardly the internal energy and heat capacity
found by using nested_fit with the formulas given above. The parameters used for
the different search methods are listed in Table 1. We consider a system with 7 atoms
evolving in a box of side L = 10au centered in 0. For such a system, the partition function

is approximately Z̃(V, β) ≈ (h̄βω)−3
(

1 − exp
(
−mω2βL2

2π

))3/2
, with V = L3 = 103au3. Z̃

is calculated for a sphere of volume V and depends explicitly on the volume, in contrast to
Z. Therefore, the size of the box in which the atoms are placed is an important parameter
to take into account. Indeed, there is a temperature above which the box becomes too small
to correctly sample the space. More specifically, the box prevents the atoms from exploring
high-energy configurations and we can therefore see a decrease in the slope of the internal
energy, i.e., in the heat capacity, which we observe in our simulations.

In Figure 4, we see that there is no difference between the heat capacity calculated
from Z and Z̃ for the temperatures we are studying. We can also see that slice sampling
has good performance results as well as slice sampling adapt for the larger size of the
interval w and with a bias with the small size of w (see Algorithms 4–6). Again, this bias
could be a consequence of the detailed balance being broken. Finally, random walk and
uniform sampling show poor performance results, and the heat capacity in the output
differs significantly from one set of search parameters to another. Furthermore, while
the finite volume does not have an impact on the partition function at low temperatures,
at higher temperatures, Z and Z̃ no longer coincide (see Figure 5).

16

17

18

19

20

21

22

23

24

C V
 (r

ed
uc

ed
 u

ni
ts

)

Random Walk

Theoretical (from Z( ))
Theoretical (from Z(V, ))
Search params 1

Search params 2
Search params 3

Uniform

Theoretical (from Z( ))
Theoretical (from Z(V, ))
Search params 1
Search params 2

Search params 3
Search params 4
Search params 5
Search params 6

0.1 0.2 0.3 0.4 0.5 0.6
T (reduced units)

16

17

18

19

20

21

22

23

24

C V
 (r

ed
uc

ed
 u

ni
ts

)

Slice Sampling

Theoretical (from Z( ))
Theoretical (from Z(V, ))
Search params 1
Search params 2

Search params 3
Search params 4
Search params 5
Search params 6

0.1 0.2 0.3 0.4 0.5 0.6
T (reduced units)

Slice Sampling Adapt
Theoretical (from Z( ))
Theoretical (from Z(V, ))
Search params 1
Search params 2

Search params 3
Search params 4
Search params 5
Search params 6

Figure 4. Heat capacity for the harmonic potential as computed via the distinct search methods, using
a single run with 1000 live points and stopping criterion from Equation (9).



Entropy 2023, 25, 347 15 of 26

1 2 3 4 5
T (reduced units)

20.00

20.25

20.50

20.75

21.00

21.25

21.50

21.75

22.00

C V
 (r

ed
uc

ed
 u

ni
ts

)

Theoretical (from Z( ))
Theoretical (from Z(V, ))
Slice Sampling with parameters 1 and 3

Figure 5. Comparison between the heat capacity for Z, Z̃ and our simulation using slice sampling
with parameters 1 and 3, 1000 points and the stopping criterion from Equation (9).

We tested the stopping criteria presented in Equations (9) and (10) with ln(δ1) = 10−5

and δ2 = −10 respectively and Ts = 0.01. When using the stopping criterion from
Equation (10), we find heat capacity curves that are similar to the one from Equation (9)
up to the fluctuations of the curves around the theoretical value. The number of iterations
performed also vary little between the two criteria.

We also tested the impact of the choice of the temperature Ts for the stopping criterion
of Equation (9). The results are presented in Figure 6. We can see that the choice of the
temperature Ts has an impact on the value of the heat capacity. Indeed, we note that the
correct value of the heat capacity is only found for temperatures higher than or equal to Ts.

0.1 0.2 0.3 0.4 0.5 0.6
T (reduced units)

12

14

16

18

20

22

C V
 (r

ed
uc

ed
 u

ni
ts

)

Theoretical (from Z( ))
Theoretical (from Z(V, ))
Ts = 0.01
Ts = 0.02
Ts = 0.05
Ts = 0.1

Ts = 0.2
Ts = 0.5
Ts = 1
Ts = 2
Ts = 5

Figure 6. Heat capacity for the harmonic potential for different values of the temperature Ts in the
stopping criterion. 1000 live points were used. The stopping criterion from Equation (9) was used.
Slice sampling with parameters 1 and 3 was used. One run was performed.

To summarise, slice sampling algorithms are able to correctly sample the partition
function of harmonic oscillators, except when using the smaller size of the interval in
slice sampling adapt. Although nested sampling can provide the partition function at all
temperatures, in practice their range is limited by two parameters: the lower temperature
is fixed by the precision of the convergence criterion; the higher temperature is limited by
the initial size of the volume.



Entropy 2023, 25, 347 16 of 26

4.2. Searching New Points with Clustering Methods

To compare the performances of the search methods and clustering methods together,
we consider three examples for which the value of the integral I is known. Before that, we
compare the time taken by the different clustering algorithms alone. This comparison is
performed outside the nested_fit program. The algorithms were coded in Fortran and
separated from the rest of the code to perform this comparison.

4.2.1. Preliminary Test on Unsupervised Clustering

To compare the performances, in terms of execution time, of the different clustering
algorithms with respect to the number of points, we used the two-ring example (represented
in Figure 7 (left)). On this example, DBSCAN, Agglomerative and KNN were able to
separate the two rings into two distinct clusters while Mean Shift constructed a series of
clusters containing points from both rings.

6×10² 10³ 2×10³ 3×10³ 4×10³
Number of points

10 2

10 1

100

101

102

103

Ti
m

e 
(s

) Time (Number of points)x

Agglomerative, x 3
KNN, x 1.9
DBSCAN, x 1.3
Mean Shift (gaussian) x 2
Mean Shift (flat) x 1.9

Figure 7. Left: two analysed rings. Right: time taken by the different clustering methods in function
of the number of points used for the two rings example.

Only one run was performed for each number of points. From the representation
of the execution time as a function of the number of live points (Figure 7 (right)), it can
be noticed that there is a cubic dependency of the time on the number of points used for
Agglomerative and a quadratic or almost quadratic dependency for KNN and Mean Shift
for both kernels. For DBSCAN, the dependency is between linear and quadratic.

In the next section we investigate on the performances of the search methods and
clustering methods that we jointly used.

4.2.2. Eggbox

The first function is the eggbox which is a synthetic and periodic function with the
following form:

L(x, y) = exp
[(

2 + cos
( x

2

)
cos
(y

2

))5
]

.

This function, represented in Figure 8 (left), has several maxima and therefore, in principle,
it could present a challenge if no cluster analyses are performed.

The results are presented in Figure 9 and Table 2, for which we took a uniform prior
over [0, 10π] for x and y. We notice that the choice of the clustering method does not seem
to have an impact on the value found of the evidence. The main difference between the
clustering methods is that the last set of parameters for the uniform only worked with
Mean Shift. In this example, both slice sampling adapt and uniform are able to recover the
true value of the integral most of the times. In particular, there is no bias for slice sampling
adapt. Slice sampling again has good performances. The mean squared error is slightly



Entropy 2023, 25, 347 17 of 26

smaller for slice sampling adapt than for slice sampling. The random walk and the uniform
search have much higher mean squared errors. Detailed balanced being broken for the
random walk could explain why it is unable to find the correct value for the evidence.

x

0
5

10
15

20
25

30y

0 5 10 15 20 25 30

50
100
150
200

Figure 8. Benchmark functions. Left: eggbox. Center: Gaussian shells. Right: LogGamma.

(a)

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

235.6

235.8

236.0

236.2

236.4

236.6

Ev
id

en
ce

 (l
og

)

(b)

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

235.2
235.4
235.6
235.8
236.0
236.2
236.4
236.6

Ev
id

en
ce

 (l
og

)

(c)

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

235.4

235.6

235.8

236.0

236.2

236.4

236.6

236.8

Ev
id

en
ce

 (l
og

)

(d)

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

235.4

235.6

235.8

236.0

236.2

236.4

236.6

Ev
id

en
ce

 (l
og

)

(e)

Slice
Sampling

Slice
Sampling

Adapt

235.70

235.75

235.80

235.85

235.90

235.95

236.00

Ev
id

en
ce

 (l
og

)

Figure 9. Comparison for the different search methods on the eggbox. The expected value is represented
by the black line: 235.88 [3]. The missing cases failed to converge. (a) Mean Shift. (b) DBSCAN.
(c) Agglomerative. (d) KNN. (e) Without clustering.

In Figure 9e, we can see that slice sampling and slice sampling adapt have good
performances on the eggbox even if no clustering is performed. In particular, there is no
bias for slice sampling adapt. When no clustering is used or when Agglomerative is used,
the number of likelihod calls is slightly higher for the larger size of the slice and slightly
lower for the smaller size of the slice than for the other three methods.



Entropy 2023, 25, 347 18 of 26

Table 2. Comparison of the mean squared error for the different search and clustering methods on
the eggbox. The expected value for the evidence is 235.88 [3].

Mean Shift DBSCAN Agglomerative KNN No Clustering

Random walk 0.2546 0.2009 0.2530 0.2195 /

Uniform 0.0087 0.0342 0.0189 0.0149 /

Slice sampling 0.0026 0.0010 0.0012 0.0016 0.0012

Slice sampling adapt 0.0010 0.0004 0.0009 0.0016 0.0012

4.2.3. Gaussian Shells

The second example we study is the Gaussian shells case. In n dimensions, the function
is written as

1√
2πσ2

1

exp

(
− (||x − µ1|| − r1)

2

2σ2
1

)
+

1√
2πσ2

2

exp

(
− (||x − µ2|| − r2)

2

2σ2
2

)
,

where x = (x1, . . . xn)T , µ1 = (−3.5, 0, . . . , 0) and µ2 = (3.5, 0, . . . , 0) are the centres,
r1 = r2 = 2 are the radii and σ1 = σ2 = 0.01 the widths. The likelihood is represented
in Figure 8 (center) in two dimensions. We took n = 2 with a uniform prior over [−6, 6]
for all parameters. In this example, we had to change the value of ln(δ0) in the stopping
criterion (Equation (8)) from 10−5 to 10−4 otherwise convergence was never reached by the
different methods.

The results are presented in Figure 10 and Table 3. We notice that in this example the
random walk search did not work whatever the clustering method. The uniform search
worked well with KNN, did not work with DBSCAN and only the two smallest size of the
box worked with Mean Shift. Again, slice sampling and slice sampling adapt have good
performances except with KNN for the smallest size of the interval and smallest number
of bases used. For this case too, the bias for slice sampling adapt is not present; the mean
squared error is slightly higher for slice sampling adapt than for slice sampling and the
uniform search.

(a)

Uniform Slice
Sampling

Slice
Sampling

Adapt

1.90

1.85

1.80

1.75

1.70

1.65

1.60

Ev
id

en
ce

 (l
og

)

(b)

Slice
Sampling

Slice
Sampling

Adapt

1.90

1.85

1.80

1.75

1.70

1.65

1.60

Ev
id

en
ce

 (l
og

)

(c)

Uniform Slice
Sampling

Slice
Sampling

Adapt

1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
1.55

Ev
id

en
ce

 (l
og

)

Figure 10. Comparison for the different search methods on the Gaussian shells. The expected value
is represented by the black line: −1.75 [3]. The missing cases failed to converge. (a) Mean Shift.
(b) DBSCAN. (c) KNN.



Entropy 2023, 25, 347 19 of 26

Table 3. Comparison of the mean squared error for the different search and clustering methods on
the Gaussian shells. The expected value for the evidence is −1.75 [3].

Mean Shift DBSCAN KNN

Uniform 0.0002 / 0.0016

Slice sampling 0.0007 0.0003 0.0008

Slice sampling adapt 0.0015 0.0015 0.0031

4.2.4. LogGamma

The third example we study is the LogGamma [18]. In n dimensions, the function
takes the following form:

1
2
(ga(x1) + gb(x1))×

1
2
(nc(x2) + nd(x2))×

n

∏
i=3

di(xi),

where 

ga ∼ LogGamma(1, 1
3 , 1

30 )

gb ∼ LogGamma(1, 2
3 , 1

30 )

nc ∼ Normal( 1
3 , 1

30 )

nd ∼ Normal( 2
3 , 1

30 )

di ∼ LogGamma(1, 2
3 , 1

30 ) if 3 ≤ i ≤ n+2
2

di ∼ Normal( 2
3 , 1

30 ) if i > n+2
2 .

We have that the probability density functions are

f (x; c, µ, σ) =
exp

(
c
(

x−µ
σ

)
− exp

(
x−µ

σ

))
σΓ(c)

and f (x; µ, σ) =
1√
2πσ

exp
(
− (x − µ)2

2σ2

)
for the LogGamma(c, µ, σ) and the Normal(µ, σ) respectively, where Γ is the gamma func-
tion. We took n = 2 and n = 10 with a uniform prior over [0, 1] for all parameters. The like-
lihood is represented in Figure 8 (right) in two dimensions. This function is asymmetric
and heavy-tailed with four maxima [18].

The results are presented in Figure 11. We notice that again slice sampling is able to
recover the true value of the evidence in most cases. Moreover, we again see the bias for
slice sampling adapt, especially in the 10D case. The random walk is unable to recover
the true value of the integral in two dimensions. In ten dimensions, it manages to find the
correct value in two cases. Lastly, the uniform search still presents a wide variation of the
results with the size of the box, more visible in the 10D case. In ten dimensions, even though
clustering was activated, no analysis was performed for the uniform search except for the
last set of parameters. Furthermore, slice sampling and slice sampling adapt encountered
difficulties finding new points at the beginning leading to the algorithm stopping early.
Often, multiple tries were necessary to obtain full convergence on the eight runs.

4.3. Bayesian Model Comparison for Data Analysis

Here, we study the example of a likelihood associated to real data which corresponds
to a high-resolution X-ray spectrum of a helium-like intrashell transition of uranium [25].
They are represented in Figure 12a. The data set is characterised by low statistics with the
presence of many local maxima of the likelihood function.



Entropy 2023, 25, 347 20 of 26

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

0.4

0.2

0.0

0.2

0.4

0.6

Ev
id

en
ce

 (l
og

)

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

30

20

10

0

Ev
id

en
ce

 (l
og

)

2
1
0
1
2

Figure 11. Comparison for the different search methods on the LogGamma 2D (left) and 10D (right).
The expected value is represented by the black line: 0 [18]. Mean Shift was used as the clustering algorithm.

(a) Data

300 350 400 450 500 550 600
Position (ch.)

0

2

4

6

8

10

12

Co
un

ts

(b) Number of likelihood calls

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

106

107

108
Nu

m
be

r o
f l

ik
el

ih
oo

d 
ca

lls

(c) Evidence

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

585

580

575

570

565

560

Ev
id

en
ce

 (l
og

)

Two gaussian peaks
Three gaussian peaks
Four gaussian peaks

(d) Evidence—Difference with two-peak model

Random
walk

Uniform Slice
Sampling

Slice
Sampling

Adapt

4

2

0

2

4

6

Ev
id

en
ce

 d
iff

er
en

ce
 (l

og
) Two gaussian peaks

Three gaussian peaks
Four gaussian peaks

Figure 12. Comparison for the different search methods for model comparison. One thousand live
points were used. Eight runs were performed each time. Mean Shift was used as the clustering
algorithm. (a) The data used for the model comparison. (b) The number of likelihood calls by the
different methods for the model with four peaks. (c) Comparison of the evidence of the three models
using the different search methods. (d) Difference between the evidence of the three models with the
two-peak model.

For our model, we take n Gaussian peaks with the same width and a flat background.
There are 2n + 2 parameters: the position and amplitude of each peak, the width (common
to all peaks) and the value of the background. n! maxima of the likelihood are present
corresponding to the permutations of the position of the n peaks.



Entropy 2023, 25, 347 21 of 26

We choose n = 2, 3, 4. The evidence for one peak is small compared to the other cases;
therefore we are not considering the one-peak model here.

In Figure 12b, we see that slice sampling and slice sampling adapt make more likeli-
hood calls than the other two methods. We also notice that the number of calls increases
proportionally to the number of bases used and inversely to the size of the interval. Slice
sampling adapt requires slightly more calls than slice sampling.

As visible in Figure 12c,d and Table 4, we again notice that slice sampling is the most
stable method and uniform sampling the least stable one. Indeed, we see that slice sampling
always chooses the model with two peaks with probabilities around 60–65%. Slice sampling
adapt also favours the two-peak model; however, the probabilities of the different models
vary with the size of the slice. The uniform search tends to slightly favour the three-peak’
model except for the three smallest sizes of the box where in one case, it chooses the model
with four peaks and the model with two peaks in the other two. The random walk gives
similar probabilities to the model with two peaks and the one with three peaks. Finally, we
notice that for the uniform search and the random walk, the uncertainties of the evidence of
the different models overlap while this is not the case for both versions of the slice sampling
algorithm. To note, a difference of 0.9 in log corresponds to a p-value of 0.05 in favour of
the more complex model [26].

Table 4. Probabilities in % of each model (two, three and four Gaussian peaks) for the data in
Figure 12a calculated with the evidences shown in Figure 12c. Equation (6) was used with equal prior
for each model. The search methods are presented in the same order as they appear in Table 1.

Random Walk Uniform

Two
peaks 50.1 40.8 39.1 0.1 89.2 46.4 34.8 37.0 36.7

Three
peaks 37.4 40.4 48.0 0.4 5.0 40.9 49.0 41.5 41.8

Four
peaks 12.5 18.8 12.9 99.5 5.9 12.7 16.2 21.5 21.5

Slice Sampling Slice Sampling Adapt

Two
peaks 60.9 63.3 64.4 64.7 67.1 65.4 61.2 77.6 65.9 79.3 61.6 78.2

Three
peaks 35.0 32.3 31.4 31.1 29.0 30.0 33.8 20.6 29.4 18.4 33.6 19.5

Four
peaks 4.0 4.4 4.2 4.2 4.0 4.7 5.0 1.8 4.7 2.3 4.8 2.2

4.4. Scaling with the Dimension

To study the evolution of the performance with the dimension of the problem, we
consider the Gaussian case presented in Section 4.1.1 in two, four, eight, sixteen and
thirty-two dimensions. We consider four cases: slice sampling with 5 bases and w = 1,
the uniform search with a box size of f = 0.4, the random walk with 160 steps of size 0.1
and the random walk with the number of steps corresponding to five times the dimension
of the problem and a step size of 0.1. The case in thirty-two dimensions is the same for both
random walk.

In Figure 13, we see that only slice sampling was able to recover the true value of the
integral in every case. For the other methods, they were not able to recover the correct
value, except the random walk with a variable number of steps in two dimensions. We
also notice that for slice sampling and both random walk, the number of likelihood calls
increases with the number of dimensions. In the case of the uniform search, the number
of likelihood calls decreases between two and four dimensions before increasing with the
dimension from four to thirty-two dimensions. This initial decrease could be due to the



Entropy 2023, 25, 347 22 of 26

box being too big in two dimensions, leading to the rejection of many points. In the case of
random walk, for a fixed number of steps, the number of calls increases slower than for a
variable number of steps.

2 4 8 16 32
Number of dimensions

7.5

5

2.5

0

2.5

5

7.5

10

12.5

Ev
id

en
ce

 (l
og

)

-1
0
1

Slice sampling
Random walk with
fixed number of steps
Random walk with
variable number of steps
Uniform

2 4 8 16 32
Number of dimensions

106

107

108

109

Nu
m

be
r o

f l
ik

el
ih

oo
d 

ca
lls

Slice sampling
Random walk with
fixed number of steps
Random walk with
variable number of steps
Uniform

Figure 13. Comparison of evolution of different search methods with dimension on the Gaussian
(Section 4.1.1) in two, four, eight, sixteen and thirty-two dimensions. Eight runs were performed for
each case. On the left, the computed values are represented. The expected value is represented by
the black line: 0. On the right, the correspondent number of likelihood calls are reported.

4.5. Comparison with Polychord and MultiNest

Finally, we compare the performance results of nested_fit with the ones of two
other programs, implementing the nested sampling algorithm and based on the same
programming language (Fortran): Polychord [2,27] and MultiNest [3,28,29].

The comparison is conducted on two examples: the eggbox presented in Section 4.2.2
in two dimensions, and the Gaussian presented in Section 4.1.1 in two, four, eight, sixteen
and thirty-two dimensions. For nested_fit, we chose to use slice sampling with w = 1
and 5 bases, that is, the number of steps performed is five times the number of dimensions.
The stopping criterion is the one from Equation (8) with log(δ0) = 10−5. For Polychord,
the number of steps was set to five times the number of dimensions. For MultiNest, we
did not use the importance nested sampling option. For both Polychord and Multinest,
we set the tolerance to 10−5, which is equivalent to the stopping criterion in nested_fit.
(In Polychord and Multinest, the stopping criterion used is (Iest,tot − Iest,m)/Iest,m < tol
where tol is the tolerance. In Polychord, the remaining part of the evidence is estimated
with the mean value of the likelihood while it is estimated with the maximum value of
the likelihood in nested_fit.) We used 1000 live points in all programs. Clustering was
used for the eggbox (KNN in the case of nested_fit, the default one for Polychord and
Multinest). Eight runs were performed for each program and example to evaluate the
evidence uncertainty. Polychord and Multinest were used in pure-Fortran mode. For all
three programs, the number of iterations performed were roughly the same.

In Table 5, we see that nested_fit is able to recover the true value of the integral
while Polychord and Multinest slightly overestimate it. The values of the uncertainties—
corresponding to the standard deviation of the eight runs—vary little between the programs.
Moreover, MultiNest requires much fewer likelihood calls than the two other programs,
and Polychord requires slightly fewer likelihood calls than nested_fit.

Table 5. Comparison of nested_fit, Polychord and MultiNest on the eggbox function. Expected
value for the evidence is 235.88 [3].

Evidence Number of Likelihood Calls

nested_fit 235.879 ± 0.117 10,030,647

Polychord 236.071 ± 0.043 6,520,085

MultiNest 235.950 ± 0.049 456,459



Entropy 2023, 25, 347 23 of 26

For the Gaussian functions, in Figure 14 (left), we see that, while Polychord and
nested_fit are able to recover the value of the integral for all dimensions, MultiNest fails
in 32 dimensions. In Figure 14 (right), we notice that, again, nested_fit requires slightly
more likelihood calls than Polychord—around 1.5 times as many. MultiNest is the program
needing the fewest likelihood calls; however, we observe a bias in the values found.

2 4 8 16 32
Number of dimensions

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Ev

id
en

ce
 (l

og
)

nested_fit
Polychord
MultiNest

2 4 8 16 32
Number of dimensions

106

107

108

109

Nu
m

be
r o

f l
ik

el
ih

oo
d 

ca
lls

nested_fit
Polychord
MultiNest

Figure 14. Comparison of nested_fit, Polychord and MultiNest on the Gaussian (Section 4.1.1) in
two, four, eight, sixteen and thirty-two dimensions. Eight runs were performed for each case. On the
left, the computed values are represented. The expected value is represented by the black line: 0.
On the right, the correspondent number of likelihood calls are reported.

The errors presented in Figure 14 (left) and Table 5 were estimated from eight runs.
However, Polychord and Multinest estimate this error with each run. We find that the two
methods lead to errors of the same order of magnitude.

5. Discussion

After the development and implementation of new search and clustering methods,
we test and compare their use with the nested sampling algorithm. For the clustering
method, we saw that a crucial factor to consider when choosing which method to use is the
computation time, especially for a large number of sampling points K. Indeed, there is a
wide disparity in the scaling of the different methods with K, while they have comparable
final performance results on cluster recognition efficiency. As we can see in Figure 7,
for a large number of points, it is preferable to use DBSCAN since it is the fastest method.
Agglomerative should not be used in that case, as the time taken to perform the clustering
can outweigh the benefit of performing said clustering. In any case, from the study of the
different cases, it emerges that the method used must be chosen in accordance with the
problem studied.

About the search methods, from the test of a variety of very different benchmarks, it
results that slice sampling is the most robust and accurate method to find new live points;
it manages to find the expected value most of the time. Uniform search has very unstable
results and can vary considerably between two sets of parameters. The random walk is
seldom able to find the correct value. These observations could be explained by the fact
that slice sampling effectively explores the whole space by extending the slice, while the
random walk only explores the space within around a standard deviation of its initial point.
Similarly, in the uniform search, where the new point is randomly chosen in a box centered
on a random live point, large portions of the space may be ignored. For slice sampling
adapt, a bias is present for some choices of the parameters. This bias, appearing for the
smaller size of the interval, could be due to the volume not being fully explored due to the
slice being too small. This bias and the poor performances of the random walk could also
be a consequence of the detailed balance being broken. We also saw that, while performing
cluster analyses is needed in some cases with the uniform search and the random walk, slice
sampling and slice sampling adapt are able to work with and without clustering except in
the LogGamma case. Furthermore, we saw that slice sampling still has good performance
when increasing the dimension.



Entropy 2023, 25, 347 24 of 26

In terms of the run time of the different algorithms, we can see that slice sampling
adapt requires a higher number of likelihood calls than slice sampling for the same set of
parameters. This is probably due to the fact that, in slice sampling, when the border of
the slice is outside the bound, the extension is stopped without calculating the likelihood,
while in slice sampling adapt, the likelihood is calculated for every extension inside the
bound (see Algorithms 3 and 5). We also saw that, for those two methods, the number of
calls increases with the number of bases used—which is expected since augmenting the
number of bases is equivalent to augmenting the number of steps performed. The size of
the slice also has an impact on the number of likelihood calls. Indeed, there are more calls
when smaller intervals are chosen. A possible explanation is that, for a smaller interval,
the slice needs to be extended more times. For the uniform search, we noticed that the
number of calls tends to increase with the size of the box. This can be due to the fact that
when the box size is increased, there is also a potential increase in the proportion of its
volume lying below the likelihood constraint, which decreases the probability of sampling
a new point verifying the nested sampling constraint. There is also a potential increase in
the number of points inside the box leading to an increase in the probability of rejecting the
new point. For the random walk, the number of likelihood calls increases with the number
of steps. The size of the step does not have much of an impact on the number of calls.

When choosing the search method, one must make a compromise between the accuracy
of the method and the number of likelihood calls, especially for the computationally
expensive likelihood. Indeed, for slice sampling, which gives the most reliable and stable
results throughout the examples we studied, its number of calls is very dependent on
the dimension of the problem. Other factors must be taken into account when choosing
a method, such as its ability to reach convergence, as we saw that for the LogGamma
example, slice sampling, while providing the best results, had difficulties finding new
points at the start. One has also to carefully consider the parameters of the method, as we
saw that choosing a smaller size of the interval for slice sampling adapt can result in a bias,
or increasing the number of bases in slice sampling considerably increases the number of
likelihood calls.

In the case of model comparison for a given data set, as we can see in Table 4, the dif-
ferent search methods do not favor the same model. For this specific case, we do not know
the value of the evidence or the correct model. Evaluating which method performs best is
thus more complex that on test examples. In light of the results on the test cases, the use of
slice sampling should be favored in this case too.

For the harmonic potential, we saw that slice sampling is the best method to calculate
the partition function and its derivatives. We also saw that restricting the space to a finite
volume, which is mandatory with nested_fit, means that the partition function cannot be
fully explored above a certain temperature that depends on the volume considered.

Concerning the choice of the stopping criterion and more specifically of the virtual
temperature Ts when computing a partition function, we saw that it must be smaller than
the physical temperature. It would be interesting to see if this observation still holds
when studying more complex systems, especially one that presents phase transitions.
The stopping criteria from Equations (9) and (10) give similar results, and both can be used
to study an energy. However, the stopping criterion from Equation (8)—which is equivalent
to choosing the criterion from Equation (9) with a temperature of 1—should not be used.

Finally, when different codes are compared, we saw that, while MultiNest is faster than
Polychord and nested_fit, it is not able to find the correct value for the Gaussian in thirty-
two dimensions. It may be preferable to use MultiNest when the number of dimensions is
not too high, while Polychord or nested_fit perform better in higher dimensions. This
corresponds to the conclusion found in Ref. [2] when comparing Polychord and MultiNest.
We also notice that Polychord requires fewer likelihood calls than nested_fit and might
therefore be preferable. For both programs, the number of likelihood calls is of the same
order of magnitude..



Entropy 2023, 25, 347 25 of 26

Author Contributions: Conceptualisation, L.M., M.T. and F.F.; methodology, L.M., M.T. and F.F.;
software, M.T and L.M.; validation, L.M.; formal analysis, L.M. and M.T.; investigation, L.M. and
M.T.; resources, F.F.; data curation, L.M. and M.T.; writing—original draft preparation, L.M.; writing—
review and editing, F.F. and M.T.; visualisation, L.M.; supervision, M.T. and F.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Raw data can be provided on demand.

Acknowledgments: Work realised with the support of the Sorbonne Center for Artificial Intelligence—
Sorbonne University—IDEX SUPER 11-IDEX-0004. We thank Julien Salomon for reviewing carefully
the manuscript and for his valuable suggestions. L.M. thanks Philippe Depondt for discussion on
parallelisation and Fortran and Luis Gonzalez-Miret Zaragoza for discussion on nested_fit. We
thank the reviewers for their comments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Skilling, J. Nested Sampling. In AIP Conference Proceedings; AIP: Garching, Germany, 2004; Volume 735, pp. 395–405. [CrossRef]
2. Handley, W.J.; Hobson, M.P.; Lasenby, A.N. polychord: Next-generation nested sampling. Mon. Not. R. Astron. Soc. 2015,

453, 4385–4399. [CrossRef]
3. Feroz, F.; Hobson, M.P.; Bridges, M. MultiNest: An efficient and robust Bayesian inference tool for cosmology and particle physics.

Mon. Not. R. Astron. Soc. 2009, 398, 1601–1614. [CrossRef]
4. Speagle, J.S. Dynesty: A dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R.

Astron. Soc. 2020, 493, 3132–3158. [CrossRef]
5. Pártay, L.B.; Bartók, A.P.; Csányi, G. Efficient Sampling of Atomic Configurational Spaces. J. Phys. Chem. B 2010, 114, 10502–10512.

[CrossRef]
6. Pártay, L.B.; Csányi, G.; Bernstein, N. Nested sampling for materials. Eur. Phys. J. B 2021, 94, 159. [CrossRef]
7. Buchner, J. Nested Sampling Methods. arXiv 2021, arXiv:2101.09675.
8. Ashton, G.; Bernstein, N.; Buchner, J.; Chen, X.; Csányi, G.; Fowlie, A.; Feroz, F.; Griffiths, M.; Handley, W.; Habeck, M.; et al.

Nested sampling for physical scientists. Nat. Rev. Methods Prim. 2022, 2, 39. [CrossRef]
9. Tuckerman, M.E. Statistical Mechanics: Theory and Molecular Simulation; Oxford University Press: Oxford, UK; New York, NY,

USA, 2010.
10. Albert, J.G. JAXNS: A high-performance nested sampling package based on JAX. arXiv 2020, arXiv:2012.15286.
11. Graff, P.; Feroz, F.; Hobson, M.P.; Lasenby, A. BAMBI: Blind accelerated multimodal Bayesian inference: BAMBI. Mon. Not. R.

Astron. Soc. 2012, 421, 169–180. [CrossRef]
12. Moss, A. Accelerated Bayesian inference using deep learning. Mon. Not. R. Astron. Soc. 2020, 496, 328–338. [CrossRef]
13. von Toussaint, U. Bayesian inference in physics. Rev. Mod. Phys. 2011, 83, 943–999. [CrossRef]
14. Trassinelli, M. Bayesian data analysis tools for atomic physics. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater.

Atoms 2017, 408, 301–312. [CrossRef]
15. Trassinelli, M.; Ciccodicola, P. Mean Shift Cluster Recognition Method Implementation in the Nested Sampling Algorithm.

Entropy 2020, 22, 185. [CrossRef] [PubMed]
16. Trassinelli, M. The Nested_fit Data Analysis Program. In Proceedings of the 39th International Workshop on Bayesian Inference

and Maximum Entropy Methods in Science and Engineering, Garching, Germany, 30 June–5 July 2019; MDPI: Basel, Switzerland,
2019; p. 14. [CrossRef]

17. Trassinelli, M. Nested_fit. Available online: https://github.com/martinit18/nested_fit (accessed on 28 January 2023).
18. Buchner, J. A statistical test for Nested Sampling algorithms. Stat. Comput. 2016, 26, 383–392. [CrossRef]
19. Neal, R.M. Slice sampling. Ann. Stat. 2003, 31, 705–767. [CrossRef]
20. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with

noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; AAAI Press: Portland, OR, USA, 1996; KDD’96, pp. 226–231.

21. Das, S.; Hobson, M.; Feroz, F.; Chen, X.; Phadke, S.; Goudswaard, J.; Hohl, D. Microseismic event detection in large heterogeneous
velocity models using Bayesian multimodal nested sampling. Data-Centric Eng. 2021, 2, e1. [CrossRef]

22. Nielsen, F. Hierarchical Clustering. In Introduction to HPC with MPI for Data Science; Nielsen, F., Ed.; Undergraduate Topics in
Computer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 195–211. [CrossRef]

23. Murtagh, F.; Contreras, P. Methods of Hierarchical Clustering. arXiv 2011, arXiv:1105.0121.
24. Jarvis, R.; Patrick, E. Clustering Using a Similarity Measure Based on Shared Near Neighbors. IEEE Trans. Comput. 1973,

C-22, 1025–1034. [CrossRef]

http://doi.org/10.1063/1.1835238
http://dx.doi.org/10.1093/mnras/stv1911
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://dx.doi.org/10.1093/mnras/staa278
http://dx.doi.org/10.1021/jp1012973
http://dx.doi.org/10.1140/epjb/s10051-021-00172-1
http://dx.doi.org/10.1038/s43586-022-00121-x
http://dx.doi.org/10.1111/j.1365-2966.2011.20288.x
http://dx.doi.org/10.1093/mnras/staa1469
http://dx.doi.org/10.1103/RevModPhys.83.943
http://dx.doi.org/10.1016/j.nimb.2017.05.030
http://dx.doi.org/10.3390/e22020185
http://www.ncbi.nlm.nih.gov/pubmed/33285961
http://dx.doi.org/10.3390/proceedings2019033014
https://github.com/martinit18/nested_fit
http://dx.doi.org/10.1007/s11222-014-9512-y
http://dx.doi.org/10.1214/aos/1056562461
http://dx.doi.org/10.1017/dce.2021.1
http://dx.doi.org/10.1007/978-3-319-21903-5_8
http://dx.doi.org/10.1109/T-C.1973.223640


Entropy 2023, 25, 347 26 of 26

25. Trassinelli, M.; Kumar, A.; Beyer, H.F.; Indelicato, P.; Märtin, R.; Reuschl, R.; Kozhedub, Y.S.; Brandau, C.; Bräuning, H.; Geyer, S.;
et al. Observation of the 2p 3/2 →2s 1/2 intra-shell transition in He-like uranium. EPL Europhys. Lett. 2009, 87, 63001. [CrossRef]

26. Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 2008, 49, 71–104. [CrossRef]
27. Handley, W.J.; Hobson, M.P.; Lasenby, A.N. PolyChord: Nested sampling for cosmology. Mon. Not. R. Astron. Soc. Lett. 2015,

450, L61–L65. [CrossRef]
28. Feroz, F.; Hobson, M.P. Multimodal nested sampling: An efficient and robust alternative to Markov Chain Monte Carlo methods

for astronomical data analyses: Multimodal nested sampling. Mon. Not. R. Astron. Soc. 2008, 384, 449–463. [CrossRef]
29. Feroz, F.; Hobson, M.P.; Cameron, E.; Pettitt, A.N. Importance Nested Sampling and the MultiNest Algorithm. Open J. Astrophys.

2019, 2. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1209/0295-5075/87/63001
http://dx.doi.org/10.1080/00107510802066753
http://dx.doi.org/10.1093/mnrasl/slv047
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://dx.doi.org/10.21105/astro.1306.2144

	Introduction
	Nested Sampling: General Concepts
	Principle of Nested Sampling
	Exploration and Live Points
	Applications

	The =1ex=1pt-.25ex Program and New Implementations
	General Structure of the Program
	Searching for New Live Points
	Uniform Search
	Slice Sampling

	Unsupervised Clustering
	Density-Based Spatial Clustering for Applications with Noise
	Agglomerative Clustering with Single Linkage
	K-Nearest Neighbors

	Stopping Criterion

	Results
	Searching New Points without Clustering Methods
	Gauss
	Gauss with Correlation
	Rosenbrock
	Partition Function of the Harmonic Potential

	Searching New Points with Clustering Methods
	Preliminary Test on Unsupervised Clustering
	Eggbox
	Gaussian Shells
	LogGamma

	Bayesian Model Comparison for Data Analysis
	Scaling with the Dimension
	Comparison with Polychord and MultiNest

	Discussion
	References

