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Abstract: Community detection is an important and powerful way to understand the latent structure
of complex networks in social network analysis. This paper considers the problem of estimating
community memberships of nodes in a directed network, where a node may belong to multiple
communities. For such a directed network, existing models either assume that each node belongs
solely to one community or ignore variation in node degree. Here, a directed degree corrected
mixed membership (DiDCMM) model is proposed by considering degree heterogeneity. An efficient
spectral clustering algorithm with a theoretical guarantee of consistent estimation is designed to fit
DiDCMM. We apply our algorithm to a small scale of computer-generated directed networks and
several real-world directed networks.
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1. Introduction

Many real-world complex networks have community structure such that nodes within
the same community (also known as cluster or module) have more links than across
communities. For example, in social networks, communities can be groups of students
in the same department; in co-authorship networks, a community can be formed by
researchers in the same field. However, community structure for a real-world network is
usually not directly observable. To process this problem, community detection, also known
as graph clustering, is a popular tool for uncovering a latent community structure in a
network [1,2]. For decades, many community detection methods have been proposed for
non-overlapping undirected networks in which each node belongs to a single community,
and the interactions between two nodes are symmetric or undirected. The stochastic block
model (SBM) [3] is a popular generative model for non-overlapping undirected networks.
In SBM, it is assumed that each node only belongs to one community and that nodes in the
same community have the same expectation degrees. Ref. [4] proposes the classical degree
corrected stochastic block model (DCSBM) which extends SBM by considering variation in
node degree. In recent years, numerous algorithms have been developed to estimate node
community for non-overlapping undirected networks generated from SBM and DCSBM,
see [5–15]. For recent developments about SBM, see the wonderful review paper [16].

However, in most real-world networks, a node may belong to more than one com-
munity at a time. In recent years, the problem of estimating mixed memberships for the
undirected network has received a lot of attention [17–29], and references therein. Ref. [17]
extends the SBM model from non-overlapping undirected networks to mixed membership
undirected networks and designs the mixed membership stochastic block (MMSB) model.
Based on the MMSB model, ref. [24] designs a model called the degree corrected mixed
membership (DCMM) model by considering degree heterogeneity, where DCMM can also
be seen as an extension of the non-overlapping model DCSBM, and ref. [24] also devel-
ops an efficient and provably consistent spectral algorithm. Ref. [27] presents a spectral
algorithm under MMSB and establishes per-node rates for mixed memberships by sharp
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row-wise eigenvector deviation. Ref. [29] proposes an overlapping continuous community
assignment model (OCCAM), which is also an extension of MMSB, by considering degree
heterogeneity. To fit OCCAM, ref. [29] develops a spectral algorithm requiring a relatively
small fraction of mixed nodes when building theoretical frameworks. Ref. [26] finds the
cone structure inherent in the normalization of the eigen-decomposition of the population
adjacency matrix under DCMM and develops a spectral algorithm to hunt corners in the
cone structure.

Though the above works are encouraging and appealing, they focus on undirected
networks. In reality, there exist substantial directed networks, such as citation networks,
protein–protein interaction networks, and the hyperlink network of websites. In recent
years, a lot of works with encouraging results have been developed for directed networks.
Ref. [30] proposes a stochastic co-block model (ScBM) and its extension DC-ScBM by
considering degree heterogeneity to model non-overlapping directed networks, where
ScBM and DC-ScBM can model directed networks whose row nodes may be different
from column nodes, and the number of row communities may also be different from
the number of column communities. Ref. [31] studies the theoretical guarantees for the
algorithm DSCORE [32] and its variants designed under DC-ScBM. Ref. [33] studies the
spectral clustering algorithms designed by a data-driven regularization of the adjacency
matrix under ScBM. Ref. [34] studies higher-order spectral clustering of directed graphs
by designing a nearly linear time algorithm. Based on the fact that the above works
only consider non-overlapping directed networks, ref. [35] develops a directed mixed
membership stochastic block model (DiMMSB), which is an extension of ScBM, and models
directed networks with mixed memberships. DiMMSB can also be seen as a direct extension
of MMSB from an undirected network to a directed network.

Recall that DCSBM, DCMM, and DCScBM are extensions of SBM, MMSB, and ScBM
by considering node degree variation, respectively, this paper aims at proposing a model
as an extension of DiMMSB by considering node degree heterogeneity and building an
efficient spectral algorithm to fit the proposed model. In this paper, we focus on the directed
network with mixed membership. Our contributions are as follows:

(i) We propose a novel generative model for directed networks with a mixed member-
ship, the directed degree corrected mixed membership (DiDCMM) model. DiDCMM
models a directed network with mixed memberships when row nodes have degree
heterogeneities, while column nodes do not. We present the identifiability of DiDCMM
under popular conditions which are also required by models modeling mixed mem-
bership networks when considering degree heterogeneity. Meanwhile, our results also
show that modeling a directed network with mixed membership when considering
degree heterogeneity for both row and column nodes needs nontrivial conditions.
DiDCMM can be seen as an extension of the DCScBM model from a non-overlapping
directed network to an overlapping directed network. DiDCMM also extends the
DCMM model from an undirected network to a directed network and extends the
DiMMSB model by considering node degree heterogeneity. For a detailed comparison
of our DiDCMM with previous models, see Remark 2.

(ii) To fit DiDCMM, we present a spectral algorithm called DiMSC, which is designed
based on the investigation that there exists an ideal cone structure inherent in the
normalized version of the left singular vectors and an ideal simplex structure inherent
in the right singular vectors of the population adjacency matrix. We prove that our
DiMSC exactly recovers the membership matrices for both row and column nodes in
the oracle case under DiDCMM, and this also supports the identifiability of DiDCMM.
We obtain the upper bounds of error rates for each row (and column) node and show
that our method produces asymptotically consistent parameter estimations under
mild conditions. Our theoretical results are consistent with classical results when
DiDCMM degenerates to SBM and MMSB under mild conditions. Numerical results
of simulated directed networks support our theoretical results and show that our
approach outperforms its competitors. We also apply our algorithm to several real-
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world directed networks to test the existence of highly mixed nodes and asymmetric
structures between row and column communities.

Notations. We take the following general notations in this paper. For a vector x and fixed
q > 0, ‖x‖q denotes its lq-norm. For a matrix M, M′ denotes the transpose of the matrix M,
‖M‖ denotes the spectral norm, ‖M‖F denotes the Frobenius norm, and ‖M‖2→∞ denotes
the maximum l2-norm of all the rows of M. Let rank(M) denote the rank of matrix M.
Let σi(M) be the i-th largest singular value of matrix M, and λi(M) denote the i-th largest
eigenvalue of the matrix M ordered by the magnitude. M(i, :) and M(:, j) denote the i-th
row and the j-th column of matrix M, respectively. M(Sr, :) and M(:, Sc) denote the rows
and columns in the index sets Sr and Sc of matrix M, respectively. For any matrix M,
we simply use Y = max(0, M) to represent Yij = max(0, Mij) for any i, j. For any matrix
M ∈ Rm×m, let diag(M) be the m×m diagonal matrix whose i-th diagonal entry is M(i, i).
Here, 1 and 0 are column vectors with all entries being ones and zeros, respectively; ei is a
column vector whose i-th entry is one, while other entries are zero. C is a positive constant
that may vary occasionally.

2. The Directed Degree Corrected Mixed Membership Model

Consider a directed network N = (Vr,Vc, E), where Vr = {1, 2, . . . , nr} is the set of
row nodes, Vc = {1, 2, . . . , nc} is the set of column nodes (nr and nc indicate the number of
row nodes and the number of column nodes, respectively), and E is the set of edges. Note
that when Vr = Vc such that row nodes are the same as column nodes, N is a traditional
directed network [31,36–42]; when Vr 6= Vc, N is a bipartite network (also known as a
bipartite graph) [30,33,35,43–45]; see Figure 1 for illustrations of the topological structures
for a directed network and a bipartite network. Without confusion, we also call bipartite
networks directed networks occasionally in this paper.

1

2
3

4

5

(a)

row 1

row 2

row 3

row 4

col 1

col 2

col 3

col 4

col 5

(b)

Figure 1. Illustration for directed network and bipartite network. Panel (a): directed network;
Panel (b): bipartite network.

We assume that the row nodes of the directed network N belong to K perceivable
communities (called row communities in this paper)

C(1)r , C(2)r , . . . , C(K)r , (1)

and the column nodes of the directed network N belong to K perceivable communities
(called column communities in this paper)

C(1)c , C(2)c , . . . , C(K)c . (2)
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Define an nr × K row nodes membership matrix Πr and an nc × K column nodes
membership matrix Πc such that Πr(i, :) is a 1× K probability mass function (PMF) for row
node i, Πc(j, :) is a 1× K PMF for column node j, and

Πr(i, k) is the weight of row node i on C(k)r , 1 ≤ k ≤ K, (3)

Πc(j, k) is the weight of column node j on C(k)c , 1 ≤ k ≤ K. (4)

Call row node i ‘pure’ if Πr(i, :) is degenerate (i.e., one entry is 1, all other K − 1 entries
are 0) and ‘mixed’ otherwise. The same definitions hold for column nodes. Note that
mixed nodes considered in this article are not the boundary nodes introduced in [46] since
boundary nodes are defined based on non-overlapping networks, while mixed nodes
belong to multiple communities.

Let A ∈ {0, 1}nr×nc be the bi-adjacency matrix ofN such that for each entry, A(i, j) = 1
if there is a directional edge from row node i to column node j, and A(i, j) = 0 otherwise.
So, the i-th row of A records how row node i sends edges, and the j-th column of A records
how column node j receives edges. Let P be a K× K matrix such that

P(k, l) ≥ 0 for 1 ≤ k, l ≤ K. (5)

Note that since we consider a directed network in this paper, P may be asymmetric.
Without loss of generality, suppose that row nodes have degree heterogeneities, while

column nodes do not i.e., row nodes have variation in degree, while column nodes do not.
Note that in a directed network, if column nodes have degree heterogeneities while row
nodes do not, to detect memberships of both row nodes and column nodes, we set the trans-
pose of the adjacency matrix as input when applying our algorithm DiMSC. Meanwhile, in
a directed network, if both row and column nodes have degree heterogeneity, to model
such a directed network with mixed memberships, we need nontrivial constraints on the
degree heterogeneities between row nodes and column nodes for model identifiability, for
detail, see Remark 1.

Let θr be an nr × 1 vector whose i-th entry is the positive degree heterogeneity of row
node i. For all pairs of (i, j) with 1 ≤ i ≤ nr, 1 ≤ j ≤ nc, DiDCMM models the entries of A
such that A(i, j) are independent Bernoulli random variables satisfying

P(A(i, j) = 1) = θr(i)
K

∑
k=1

K

∑
l=1

Πr(i, k)Πc(j, l)P(k, l). (6)

Equation (6) means that P(A(i, j) = 1) = θr(i)Πr(i, :)PΠ′c(j, :), i.e., the probability of
generating a directional edge from row node i to column node j is θr(i)Πr(i, :)PΠ′c(j, :), and
this probability is controlled by the degree heterogeneity parameter θr(i) of row node i, the
connecting matrix P, and the memberships of nodes i and j. Equation (6) functions similarly
to Equation (1.4) in [24], and both equations define the probability of generating an edge.
For comparison, Equation (6) defines the probability of generating a directional edge under
DiDCMM for a directed network, while Equation (1.4) in [24] defines the probability of
generating an edge under DCMM for an undirected network, i.e., DiDCMM can be seen as
an extension of DCMM from an undirected network to a directed network.

Introduce the degree heterogeneity diagonal matrix Θr ∈ Rnr×nr for row nodes such
that

Θr(i, i) = θr(i) for 1 ≤ i ≤ nr. (7)

Equation (7) uses a diagonal matrix Θr to contain all degree heterogeneities, and Θr is
useful for further theoretical analysis through Equation (8).

Definition 1. Call model (1)–(6) the directed degree corrected mixed membership (DiDCMM)
model, and denote it by DiDCMMnr ,nc(K, P, Πr, Πc, Θr).
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The following conditions are sufficient for the identifiability of DiDCMM:

• (I1) rank(P) = K, and P has unit diagonals.
• (I2) There is at least one pure node for each of the K row and K column communities.

When building statistical models for a network in which nodes can belong to multiple
communities, the full rank requirement of connecting matrix P and pure nodes condition
are always necessary for model identifiability, see models for an undirected network such
as MMSB considered in [23,27], DCMM considered in [24,26], and OCCAM considered
in [26,29]. Meanwhile, if models modeling networks with mixed memberships consider de-
gree heterogeneity, the unit diagonals requirement on connecting matrix P is also necessary
for model identifiability, see the identifiability requirement of DCMM and OCCAM consid-
ered in [24,26,29]. Furthermore, based on the fact that DiDCMM, DCMM, and OCCAM can
include the well-known model SBM, letting P have unit diagonals is not a serious problem
since many wonderful works study a special case of SBM when P has unit diagonals and
a network has K equal size clusters (this special case of SBM is also known as a planted
partition model), see [12,47–52].

Let Ω = E[A] be the expectation of the adjacency matrix A. Under DiDCMM, we have

Ω = ΘrΠrPΠ′c. (8)

We refer to Ω as the population adjacency matrix. Since rank(Θr) = K, rank(Πr) =
K, rank(Πc) = K and rank(P) = K by Equation (7) and Conditions (I1) and (I2), the
rank of Ω is K. Recall that K is the number of communities, and it is much smaller than
network size. We see that Ω has a low dimensional structure. The form of Ω given in
Equation (8) is powerful to build the spectral algorithm developed in this paper to fit
DiDCMM. Analyzing properties of the population adjacency matrix to build a spectral
algorithm fitting statistical model is a common strategy in community detection, for exam-
ple, references [24,26,27,35] also use this strategy to design their algorithms fitting DCMM,
MMSB, and DiDCMM.

For 1 ≤ k ≤ K, let I (k)r = {i ∈ {1, 2, . . . , nr} : Πr(i, k) = 1} and I (k)c = {j ∈
{1, 2, . . . , nc} : Πc(j, k) = 1}. By Condition (I2), I(k)r and I(k)c are nonempty for all 1 ≤ k ≤ K.
For 1 ≤ k ≤ K, select one row node from I (k)r to construct the index set Ir, i.e., Ir is the
indices of row nodes corresponding to K pure row nodes, one from each community, and
Ic is defined similarly. W.L.O.G., let Πr(Ir, :) = IK and Πc(Ic, :) = IK (Lemma 2.1 [27] has
a similar setting to design their spectral algorithm under MMSB.), where IK is the K× K
identity matrix. The proposition below shows that the DiDCMM model is identifiable.

Proposition 1. (Identifiability). When Conditions (I1) and (I2) hold, DiDCMM is identifiable: for
eligible (P, Πr, Πc, Θr) and (P̃, Π̃r, Π̃c, Θ̃r), set Ω = ΘrΠrPΠ′c and Ω̃ = Θ̃rΠ̃r P̃Π̃′c. If Ω = Ω̃,
then Θr = Θ̃r, Πr = Π̃r, Πc = Π̃c and P = P̃.

Remark 1. (The reason that we do not model a directed network with mixed memberships where
both row and column nodes have degree heterogeneities). Suppose both row and column nodes have
degree heterogeneities in a mixed membership directed network. To model such a directed network,
the probability of generating an edge from row node i to column node j is

P(A(i, j) = 1) = θr(i)θc(j)
K

∑
k=1

K

∑
l=1

Πr(i, k)Πc(j, l)P(k, l),

where θc is an nr × 1 vector whose j-th entry is the degree heterogeneity of column node j.
Set Ω = E[A], then Ω = ΘrΠrPΠ′cΘc, where Θc ∈ Rnc×nc is a diagonal matrix whose j-th diago-
nal entry θc(j). Set Ω = UΛV′ as the compact SVD of Ω. Follow similar analysis as Lemma 1, we
see that U = ΘrΠrBr and V = ΘcΠcBc (without causing confusion, we still use Bc here for conve-
nience.). For model identifiability, follow similar analysis as the proof of Proposition 1, since
Ω(Ir, Ic) = Θr(Ir, Ir)Πr(Ir, ; )PΠ′c(Ic, :)Θc(Ic, Ic) = Θr(Ir, Ir)PΘc(Ic, Ic) = U(Ir, :
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)ΛV′(Ic, :), we see that Θr(Ir, Ir)PΘc(Ic, Ic) = U(Ir, :)ΛV′(Ic, :). To obtain Θr(Ir, Ir) and
Θc(Ic, Ic) from U(Ir, :)ΛV′(Ic, :), when P has unit diagonals, we see that it is impossible to
recover Θr(Ir, Ir) and Θc(Ic, Ic) unless we add a condition that Θr(Ir, Ir) = Θc(Ic, Ic). Now,
suppose Θr(Ir, Ir) = Θc(Ic, Ic) holds and call it Condition (I3); we have Θr(Ir, Ir)PΘr(Ir, Ir) =
U(Ir, :)ΛV′(Ic, :); hence, Θr(Ir, Ir) = Θc(Ic, Ic) =

√
diag(U(Ir, :)ΛV′(Ic, :)) when P has

unit diagonals. However, Condition (I3) is nontrivial since it requires Θr(Ir, Ir) = Θc(Ic, Ic),
and we always prefer a directed network in which there are no connections between row nodes degree
heterogeneities and column nodes degree heterogeneities. For example, when all nodes are pure
in a directed network, ref. [30] models such directed network using model DC-ScBM such that
Ω = ΘrΠrPΠ′cΘc when all nodes are pure, and Θr and Θc are independent under DC-ScBM.
Because Condition (I3) is nontrivial, we do not model a mixed membership directed network with all
nodes having degree heterogeneities.

For DiDCMM’s identifiability, the number of row communities should equal that of
column communities when both row and column nodes may belong to more than one
community. However, when only row nodes have mixed memberships while column nodes
do not, the number of row communities can be lesser than that of column communities,
and this is also discussed in [53]. All proofs of our theoretical results are provided in the
Appendix A.1.

Unless specified, we treat Conditions (I1) and (I2) as default from now on. Proposition 1
is important since it guarantees that our model DiDCMM is well-defined, and we can design
efficient spectral algorithms to fit DiDCMM based on its identifiability. The reason that
we do not consider degree heterogeneity for column nodes for our DiDCMM is mainly
for its identifiability. As analyzed in Remark 1, considering degree heterogeneity for both
row and column nodes make the model unidentifiable unless adding some nontrivial
conditions on model parameters. Meanwhile, many previous statistical models in the
community detection areas are identifiable, and spectral algorithms can be applied to
fit them. For examples, SBM [3], DCSBM [4], MMSB [17], DCMM [24], OCCAM [29],
ScBM (and DCScBM), [30], and DiMMSB [35] are identifiable. Especially, though different
statistical models may have different requirements on model parameters for identifiability,
the proof of identifiability enjoys a similar idea as that of Proposition 1, for instance,
Proposition 1.1 [24] and Theorem 2.1 [27] build theoretical guarantees on identifiability for
DCMM and MMSB, respectively.

Remark 2. We compare our DiDCMM with some previous models in this remark.

• When Θr = ρI for ρ > 0, Equation (8) gives Ω = ρΠrPΠ′c and DiDCMM degenerates to
DiMMSB [35], where ρ is known as a sparsity parameter [9,27,35]. So, DiDCMM includes
DiMMSB as a special case, and the relationship between DiDCMM and DiMMSB is similar to
that between DCSBM [3,4]. Meanwhile, DiDCMM considers degree heterogeneity parameter
Θr at the cost that DiDCMM requires P to have unit diagonals for model identifiability, while
there is no such requirement for P on DiMMSB’s identifiability. Note that both DiDCMM
and DiMMSB are identifiable only when P is a full-rank square matrix.

• When Θr = ρI for ρ > 0 and all nodes are pure, DiDCMM reduces to ScBM [30]. DiDCMM
can model a directed network in which nodes enjoy overlapping memberships, while ScBM
cannot. Meanwhile, DiDCMM enjoys this advantage at the cost of requiring rank(P) = K for
model identifiability, while ScBM is identifiable even when P is not a square matrix, i.e., ScBM
can model a directed network in which the number of row communities can be different from
the number of column communities. A comparison between DiDCMM and DCScBM [30]
is similar.

• When Θr = ρI and the network is undirected, DiDCMM reduces to MMSB [17]. However,
DiDCMM models directed networks with mixed memberships, while MMSB only models
undirected networks with mixed memberships. Again, DiDCMM enjoys its advantage at
the cost of P having unit diagonals for its identifiability (not that DiDCMM allows P to be
asymmetric since DiDCMM models directed networks), while MMSB is identifiable even when
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P has non-unit diagonals (note that P is symmetric under MMSB since it models undirected
networks). Meanwhile, the identifiability of both DiDCMM and MMSB requires the square
matrix P to have full rank.

• When Θr = ρI, the network is undirected and all nodes are pure, DiDCMM reduces to
SBM [3]. For comparison, DiDCMM models directed networks and allows nodes to belong
to multiple communities, while SBM only models undirected networks in which a node only
belongs to one community. Meanwhile, DiDCMM enjoys these advantages at the cost of
requiring P to be full rank with unit diagonals for its identifiability, while SBM is identifiable
even when P is not full rank and P has non-unit diagonals. Note that DiDCMM allows P to be
asymmetric, while P must be symmetric for SBM since DiDCMM models directed networks,
while SBM models undirected networks. Comparison between DiDCMM and DCSBM [4]
is similar.

• Compared with DCMM introduced in [24] and OCCAM introduced in [29], DCMM, and
OCCAM model undirected networks with mixed memberships, while DiDCMM models
directed networks with mixed memberships. DiDCMM, DCMM, and OCCAM all consider
degree heterogeneity for overlapping networks, and they are identifiable only when the full rank
matrix P has unit diagonals. These three models are identifiable only when the square matrix
P is full rank. Meanwhile, DiDCMM allows P to be asymmetric, while P must be symmetric
for DCMM and OCCAM since DiDCMM models directed networks, while DCMM and
OCCAM model undirected networks.

3. Algorithm

The primary goal of the proposed algorithm is to estimate the row membership matrix
Πr and column membership matrix Πc from the observed adjacency matrix A with given
K. We start by considering the ideal case when Ω is known, and then we extend what we
learn in the ideal case to the real case.

3.1. The Ideal Simplex (IS), the Ideal Cone (IC), and the Ideal DiMSC

Recall that rank(Ω) = K under Conditions (I1) and (I2), and K is much smaller than
min{nr, nc}. Let Ω = UΛV′ be the compact singular value decomposition of Ω such that
U ∈ Rnr×K, Λ ∈ RK×K, V ∈ Rnc×K, U′U = IK, V′V = IK. The goal of the ideal case is to
use U, Λ, and V to exactly recover Πr and Πc. As stated in [8,24], θr is one of the major
nuisances, and similar to [7], we remove the effect of θr by normalizing each row of U
to have a unit l2 norm. Set U∗ ∈ Rnr×K by U∗(i, :) = U(i,:)

‖U(i,:)‖F
, and let NU be the nr × nr

diagonal matrix such that NU(i, i) = 1
‖U(i,:)‖F

for 1 ≤ i ≤ nr. Then, U∗ can be rewritten as
U∗ = NUU. The existences of the ideal cone (IC for short) structure inherent in U∗ and the
ideal simplex (IS for short) structure inherent in V are guaranteed by the following lemma.

Lemma 1. (Ideal Simplex and Ideal Cone). Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), there exist
a unique K× K matrix Br and a unique K× K matrix Bc such that

• U = ΘrΠrBr, where Br = Θ−1
r (Ir, Ir)U(Ir, :), and U∗ = YU∗(Ir, :) where

Y = NMΠrΘ−1
r (Ir, Ir)N−1

U (Ir, Ir) with NM being an nr × nr diagonal matrix whose
diagonal entries are positive. Meanwhile, U∗(i, :) = U∗(ī, :) if Πr(i, :) = Πr(ī, :) for
1 ≤ i, ī ≤ nr.

• V = ΠcBc, where Bc = V(Ic, :). Meanwhile, V(j, :) = V( j̄, :) if Πc(j, :) = Πc( j̄, :) for
1 ≤ j, j̄ ≤ nc.

Lemma 1 says that the rows of V form a K-simplex in RK which we call the ideal
simplex (IS), with the K rows of Bc being the vertices. Such IS is also found in [24,27,35].
Lemma 1 also shows that the form of U∗ = YU∗(Ir, :) is actually the ideal cone structure
mentioned in [26]. Meanwhile, we remove the influence of θr by normalizing each row
of U to have a unit norm in this paper. Using the idea of the entry-wise ratio in [8] also
works, where ref. [24] develops their spectral algorithms to fit DCMM using the idea of
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entry-wise ratio. Designing algorithms based on the nonnegative matrix factorization [25]
to fit DiDCMM by adding some constraints on Ω may also work. We leave the study of
using these ideas to fit DiDCMM or its submodels for our future work.

For column nodes (recall that column nodes have no degree heterogeneities), since Bc
is full rank if V and Bc are known in advance, ideally we can exactly recover Πc by setting
Πc = VB′c(BcB′c)−1 ≡ VB−1

c . For convenience, to transfer the ideal case to the real case, set
Zc = VB−1

c . Since Zc ≡ Πc, we have

Πc(j, :) =
Zc(j, :)
‖Zc(j, :)‖1

, 1 ≤ j ≤ nc.

With given V, since it enjoys IS structure V = ΠcBc ≡ ΠcV(Ic, :), as long as we can
obtain V(Ic, :) (i.e., Bc), we can recover Πc exactly. As mentioned in [24,27], for such IS,
the successive projection (SP) algorithm [54] (i.e., Algorithm A2 in the Appendix E) can be
applied to V with K column communities to find the column corner matrix Bc. The above
analysis gives how to recover Πc with given Ω and K under DiDCMM ideally.

Next, we aim to recover Πr from U with the given K. Since rank(U∗) = K, rank(U∗(Ir, :
)) = K. As U∗(Ir, :) ∈ RK×K, the inverse of U∗(Ir, :) exists. Therefore, Lemma 1 also
gives that

Y = U∗U−1
∗ (Ir, :). (9)

Equation (9) holds because U∗ = YU∗(Ir, :) and U∗(Ir, :) is a nonsingular matrix.
By Lemma 1, we know that for row nodes, their membership matrix Πr appears in the
expression of Y. Therefore, we aim to use Equation (9) to find the exact expression of
Πr using U, V, and Λ by putting Y at the left-hand side of equality. For our next step,
we aim at finding Πr using Equation (9). Since Y = NMΠrΘ−1

r (Ir, Ir)N−1
U (Ir, Ir) by

Lemma 1 and U∗ = NUU, using NMΠrΘ−1
r (Ir, Ir)N−1

U (Ir, Ir) and NUU to replace Y and
U∗ in Equation (9), respectively, we have N−1

U NMΠrΘ−1
r (Ir, Ir)N−1

U (Ir, Ir) = UU−1
∗ (Ir, :),

which gives

N−1
U NMΠr = UU−1

∗ (Ir, :)NU(Ir, Ir)Θr(Ir, Ir). (10)

From Equation (10), we have found the expression of Πr as a function of U, U∗, Θr, NU ,
and Ir, where we do not move N−1

U NM to the right-hand side of Equation (10) because
it is a diagonal matrix and does not influence the expression of Πr, see our next step for
details. When designing a spectral algorithm in the ideal case with given Ω and K, we aim
at recovering Πr and Πc by taking advantage of the singular value decomposition of Ω.
We find that though Equation (10) provides an expression for Πr by Ω’s SVD, there is a
term Θr(Ir, Ir) which relates to degree heterogeneity, and we aim at expressing Θr(Ir, Ir)
through Ω’s SVD. By the proof of Lemma 1, we know that Θr(Ir, Ir) = diag(U(Ir, :
)ΛV′(Ic, :)) when Condition (I1) holds. Thus, substituting diag(U(Ir, :)ΛV′(Ic, :)) for
Θr(Ir, Ir) in Equation (10), we obtain an expression of Πr such that this expression is
directly related to Ω’s SVD and two index set Ir and Ic. For convenience, set J∗ =
NU(Ir, Ir)Θr(Ir, Ir) ≡ diag(U∗(Ir, :)ΛV′(Ic, :)), Zr = N−1

U NMΠr, Y∗ = UU−1
∗ (Ir, :). By

Equation (10), we have

Zr = Y∗ J∗ ≡ UU−1
∗ (Ir, :)diag(U∗(Ir, :)ΛV′(Ic, :)). (11)

Equation (11) looks similar to Equation (7) of [55]. However, Equation (11) is related to
two index sets Ir and Ic, while Equation (7) of [55] is only related to one index set because
Equation (11) aims at designing a spectral algorithm for directed network generated under
DiDCMM and Equation (7) of [55] aims at reviewing the generation of the SVM-cone-
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DCMMSB algorithm proposed in [26] for undirected network generated under DCMM.
Meanwhile, since N−1

U NM is an nr × nr positive diagonal matrix, we have

Πr(i, :) =
Zr(i, :)
‖Zr(i, :)‖1

, 1 ≤ i ≤ nr. (12)

With given Ω and K, we can obtain U, V; thus, the above analysis shows that once the
two index sets Ir and Ic are known, we can exactly recover Πr by Equations (11) and (12).
Meanwhile, from Equation (10), we see that it is important to express Θr(Ir, Ir) as a
combination of U, V, Λ, and the two index sets Ir and Ic, where we successfully obtain an
expression of Θr(Ir, Ir) by Condition (I1), the unit diagonal constraint on P. Otherwise,
if P has no unit diagonals, we cannot obtain an expression of Θr(Ir, Ir) unless adding
some nontrivial conditions on model parameters, just as analyzed in Remark 1. Similarly,
references [24,26] also design their spectral algorithms to fit DCMM by using the unit
diagonal constraint on P to obtain an expression of a sub-matrix of degree heterogeneity
matrix, see Equations (6)–(8) of [55] as an example.

Given Ω and K, to recover Πr in the ideal case, we need to obtain Zr by Equation (11),
which means that the only difficulty is in finding the index set Ir since V(Ic, :) can be
obtained by SP algorithm from the IS structure V = ΠcV(Ic, :). From Lemma 1, we
know that U∗ = YU∗(Ir, :) forms the IC structure. In [26], their SVM-cone algorithm (i.e.,
Algorithm A3 in the Appendix F) can exactly obtain the row nodes corner matrix U∗(Ir, :)
from the ideal cone U∗ = YU∗(Ir, :) as long as the Condition (U∗(Ir, :)U′∗(Ir, :))−11 > 0
holds (see Lemma 2).

Lemma 2. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), (U∗(Ir, :)U′∗(Ir, :))−11 > 0 holds.

Based on the above analysis, we are now ready to give the following four-stage
algorithm which we call ideal DiMSC. Input Ω, K. Output: Πr and Πc.

• Let Ω = UΛV′ be the compact SVD of Ω such that U ∈ Rnr×K, V ∈ Rnc×K, Λ ∈
RK×K, U′U = I, V′V = I. Let U∗ = NUU, where NU is an nr × nr diagonal matrix
whose i-th diagonal entry is 1

‖U(i,:)‖F
for 1 ≤ i ≤ nr.

• Run the SP algorithm on V assuming that there are K column communities to ob-
tain the column corner matrix V(Ic, :) (i.e.,Bc). Run the SVM-cone algorithm on U∗
assuming that there are K row communities to obtain Ir.

• Set J∗ = diag(U∗(Ir, :)ΛV′(Ic, :)), Y∗ = UU−1
∗ (Ir, :), Zr = Y∗ J∗ and Zc = VV−1(Ic, :).

• Recover Πr and Πc by setting Πr(i, :) = Zr(i,:)
‖Zr(i,:)‖1

for 1 ≤ i ≤ nr, and Πc(j, :) = Zc(j,:)
‖Zc(j,:)‖1

for 1 ≤ j ≤ nc.

The following theorem guarantees that ideal DiMSC exactly recovers nodes memberships,
and this verifies the identifiability of DiDCMM in turn. Meanwhile, it should be noted that
many spectral algorithms designed to fit identifiable statistical models in the community
detection area can exactly recover node memberships for the ideal case. For example, the
spectral clustering for K many clusters algorithm addressed in [5] under SBM, the regu-
larized spectral clustering designed in [7] under DCSBM, the SCORE algorithm designed
in [8] under DCSBM, the two algorithms designed and studied in [9] under SBM and
DCSBM, the RSC-τ algorithm studied in [11] under SBM, the mixed-SCORE algorithm
designed in [24] under DCMM, the DI-SIM algorithm designed in [30] under DCScBM, the
D-SCORE algorithm studied in [31,32] under DCScBM, the SVM-cone-DCMMSB algorithm
designed in [26] under DCMM, and the SPACL algorithm designed in [27] under MMSB
can exactly recover membership matrices under respective models for the ideal case by
using the population adjacency matrix to replace the adjacency matrix in the input of
these algorithms. The fact that ideal cases for the above spectral algorithms can return
community information also supports the identifiability of the above models.
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Theorem 1. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), the ideal DiMSC exactly recovers the row
nodes membership matrix Πr and the column nodes membership matrix Πc.

To demonstrate that U∗ has the ideal cone structure, we drew Panel (a) of Figure 2.
The simulated data used for Panel (a) is generated from DiDCMMnr ,nc(K, P, Πr, Πc, Θr)
with nr = 600, nc = 400, K = 3; each row (and column) community has 120 pure nodes. For
the 240 mixed row nodes, we set Πr(i, 1) = rand(1)/2, Πr(i, 2) = rand(1)/2, Πr(i, 3) =
1−Πr(j, 1)−Πr(j, 2), where rand(1) is any random number in (0, 1),

and i is a mixed row node. For the 40 mixed column nodes, set Πc(j, 1) = rand(1)/2,
Πc(j, 2) = rand(1)/2, Πc(j, 3) = 1 − Πc(j, 1) − Πc(j, 2). For the degree heterogeneity
parameter, set θr(i) = rand(1) for all row nodes i. The matrix P is set as

P =

 1 0.4 0.3
0.2 1 0.1
0.1 0.4 1

.

Under such a setting, after computing Ω and obtaining U∗, V from Ω, we can plot
Figure 2. Panel (a) shows that all rows respective to mixed row nodes of U∗ are located at
one side of the hyperplane formed by the K rows of U∗(Ir, :), and this phenomenon occurs
since each row of U∗ is a scaled convex combination of the K rows of U∗(Ir, :) guaranteed
by the IC structure U∗ = YU∗(Ir, ; ). Thus Panel (a) shows the existence of the ideal cone
structure formed by U∗. Similarly, to demonstrate that V has the ideal simplex structure,
we drew Panel (b) of Figure 2, where Panel (b) is obtained under the same setting as Panel
(a). Panel (b) shows that rows respective to mixed column nodes of V are located inside of
the simplex formed by the K rows of V(Ic, :), and this phenomenon occurs since each row
of V is a convex linear combination of the K rows of V(Ic, :) guaranteed by the IS structure
V = ΠcV(Ic, ; ). Thus Panel (b) shows the existence of the ideal simplex structure formed
by V.

(a) U∗: Ideal Cone (b) V: ideal simplex

Figure 2. Panel (a): plot of U∗ and the hyperplane formed by U∗(Ir, :). Blue points denote rows
respective to mixed row nodes of U∗, and black points denote the K rows of the corner matrix
U∗(Ir, :). The plane in Panel (a) is the hyperplane formed by the triangle of the 3 rows of U∗(Ir, :).
Panel (b): plot of V and the ideal simplex formed by V(Ic, :). Blue points denote rows respective to
mixed column nodes of V, and black points denote the K rows of the corner matrix V(Ic, :). Since
K = 3, for visualization, we have projected these points from R3 to R2.

3.2. Dimsc Algorithm

We now extend the ideal case to the real case. Set Ã = ÛΛ̂V̂′ to be the top-K-
dimensional SVD of A such that Û ∈ Rnr×K, V̂ ∈ Rnc×K, Λ̂ ∈ RK×K, Û′Û = IK, V̂′V̂ = IK,
and Λ̂ contains the top K singular values of A. Let Û∗ be the row-wise normalization of Û
such that Û = NÛÛ, where NÛ ∈ Rnr×nr is a diagonal matrix whose i-th diagonal entry
is 1
‖Û(i,:)‖F

. For the real case, we use Ĵ∗, Ŷ∗, Ẑr, Ẑc, Π̂r, Π̂c given in Algorithm 1 to estimate
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J∗, Y∗, Zr, Zc, Πr, Πc, respectively. Algorithm 1 called directed mixed simplex and cone
(DiMSC for short) algorithm is a natural extension of the ideal DiMSC to the real case.

Algorithm 1 Directed Mixed Simplex and Cone (DiMSC) algorithm

Require: The adjacency matrix A ∈ Rnr×nc of a directed network, the number of row
(column) communities K.

Ensure: The estimated nr×K row membership matrix Π̂r and the estimated nc×K column
membership matrix Π̂c.

1: Obtain Ã = ÛΛ̂V̂′, the top-K-dimensional SVD of A. Compute Û∗ from Û.
2: Apply SP algorithm (i.e., Algorithm A2) on the rows of V̂ assuming there are K column

communities to obtain Îc, the index set returned by SP algorithm.
3: Similarly, apply SVM-cone algorithm (i.e., Algorithm A3) on the rows of Û∗ with K row

communities to obtain Îr, the index set returned by SVM-cone algorithm.
4: Set Ĵ∗ = diag(Û∗( Îr, :)Λ̂V̂′(Îc, :)), Ŷ∗ = ÛÛ−1

∗ (Îr, :), Ẑr = Ŷ∗ Ĵ∗ and Ẑc = V̂V̂−1(Îc, :).
Then, set Ẑr = max(0, Ẑr) and Ẑc = max(0, Ẑc).

5: Estimate Πr(i, :) by Π̂r(i, :) = Ẑr(i, :)/‖Ẑr(i, :)‖1, 1 ≤ i ≤ nr and estimate Πc(j, :) by
Π̂c(j, :) = Ẑc(j, :)/‖Ẑc(j, :)‖1, 1 ≤ j ≤ nc.

In the third step, we set the negative entries of Ẑr as 0 by setting Ẑr = max(0, Ẑr) for
the reason that weights for any row node should be nonnegative, while there may exist
some negative entries of Ŷ∗ Ĵ∗. A similar argument holds for Ẑc. The flowchart of DiMSC is
displayed in Figure 3. Meanwhile, in community detection, researchers often use top-K-
dimensional SVD of A or its variants such as Laplacian matrix or regularized Laplacian
matrix to design their spectral clustering algorithms to fit identifiable statistical models such
as spectral methods designed or studied in [5,7–9,11,24,26,27,29,31,33,35,56]. Furthermore,
as discussed in [57], the SVS+ and SVS∗ algorithms may be used as substitutions of the
SP algorithm in our DiMSC for a better estimation of Πr. When applying the entry-wise
normalization idea developed in [8] to deal with U, as analyzed in [24], we obtain a simplex
structure, and we can use the SP algorithm (or the combinatorial vertex search and sketched
vertex search approaches developed in [24]) to hunt for the corners. The above ideas suggest
that we can design different spectral algorithms to fit our model DiDCMM. We leave them
for our future work. In particular, in this paper, we apply the SVM-cone algorithm to hunt
for the corners of the cone structure inherent in U∗ mainly for the theoretical convenience
of the SVM-cone algorithm because ref. [26] has developed a nice theoretical framework on
the performance for the SVM-cone algorithm.

Input:
A, K

Obtain ÛΛ̂V̂′

and Û∗ from A.

Run SVM-cone
on Û∗ to obtain
Îr. Run SP on
V̂ to obtain Îc

Compute Ẑr
and Ẑc. Obtain

Π̂r and Π̂c
from Ẑr and Ẑc

Output:
Π̂r, Π̂c

Figure 3. Flowchart of Algorithm 1.

3.3. Computational Complexity

The computing cost of DiMSC mainly comes from SVD, SP, and SVM-cone. The compu-
tational complexity of SVD is O(max(nr, nc)min(n2

r , n2
c )). Since the adjacency matrix A for

real-world network data sets is usually sparse, using the power method discussed in [58],
the computation complexity for obtaining the top-K-dimensional SVD of A is only slightly
larger than O(max(n2

r , n2
c )K) [8,24]. The SP algorithm step in DiMSC has a complexity of

O(max(nr, nc)K2) [24]. The complexity of the one-class SVM step for SVM-cone algorithm
is O(max(nr, nc)K2) [26,59]. The complexity of the K-means step for SVM-cone algorithm
is O(max(nr, nc)K2) [60]. Since the number of communities K considered in this paper is
much smaller than the network size, the total complexity of DiMSC is O(max(n2

r , n2
c )K).

Results in Section 5 show that, for a computer-generated network with 15,000 nodes un-
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der SBM, DiMSC takes hundreds of seconds to process a standard personal computer
(Thinkpad X1 Carbon Gen 8) using MATLAB R2021b. Meanwhile, many spectral methods
developed under models SBM, DCSBM, MMSB, ScBM, DCScBM, OCCAM, DCMM, and
DiMMSB for community detection also have complexity O(max(n2

r , n2
c )K), see spectral

algorithms designed or studied in [5,7–9,11,24,26,27,29–31,33,35,61,62]. Researchers de-
sign spectral algorithms for community detection under various identifiable statistical
models mainly for their convenience on building a theoretical guarantee of consistent
estimation, and we also provide a theoretical guarantee on DiMSC’s estimation consistency
in next section.

4. Consistency Results

In this section, we show the consistency of our algorithm for fitting the DiDCMM by
proving that the sample-based estimates Π̂r and Π̂c concentrate around the true mixed
membership matrices Πr and Πc. Throughout this paper, K is a known positive integer. Set
θr,max = max1≤i≤nr θr(i) and θr,min = min1≤i≤nr θr(i). Assume that

Assumption 1. Pmaxmax(‖θr‖1, θr,maxnc) ≥ log(nr + nc).

Assumption 1 means that the network cannot be too sparse, and it also means that we
allow θr,max to go to zero with increasing numbers of row nodes and column nodes. When
building theoretical guarantees on consistent estimation, controlling network sparsity is
popular in the community detection area. For examples, Condition (2.9) of [8], Theorem 3.1
of [9], Condition (2.13) of [24], Assumption 3.1 of [27], and Assumption 2 of [31] all control
network sparsity for their theoretical analysis. Especially, when DiDCMM reduces to SBM
by letting Θr = ρI, n = nr = nc, Πr = Πc, and all nodes are pure for ρ > 0, Assumption 1
requires that ρn� log(n), which is consistent with the sparsity requirement in [8,9,24,31].
As analyzed in [55], we know that our requirement on network sparsity is optimal since it
matches the sharp threshold of obtaining a connected Erdös–Rényi (ER) random graph [63]
when SBM reduces to an ER random graph by letting K = 1.

For notation convenience, set v = max(‖ÛÛ′ − UU′‖2→∞, ‖V̂V̂′ − VV′‖2→∞), f̂r
= max1≤i≤nr‖e′i(Π̂r −ΠrPr)‖1, f̂c = max1≤j≤nc‖e′j(Π̂c −ΠcPc)‖1, and πr,min = min1≤k≤K

1′Πrek, where v is the row-wise singular vector deviation which can be bounded by Theo-
rem 4.4 of [64], f̂r and f̂c measures per node clustering error of DiMSC, and πr,min measures
the minimum summation of row nodes belonging to a certain row community. Increas-
ing πr,min makes the network tend to be more balanced and vice versa. Meanwhile,
row-wise singular vector deviation is important when building a theoretical guarantee
of spectral methods fitting models for a network with mixed memberships, for example,
refs. [24,26,27,35] also consider v when building consistent estimation for their spectral
methods.

The next theorem gives theoretical bounds on estimations of memberships for both
row and column nodes, which is the main theoretical result for our DiMSC method.

Theorem 2. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), let Π̂r and Π̂c be obtained from Algorithm 1,
when Assumption 1 holds, suppose σK(Ω) ≥ C

√
θr,maxPmax(nr + nc)log(nr + nc), with proba-

bility at least 1− o((nr + nc)−3), we have

f̂r = O(
K5.5θ15

r,maxvκ4.5(Π′rΠr)κ(Πc)λ1.5
1 (Π′rΠr)

θ15
r,minπr,min

), f̂c = O(vKκ(Π′cΠc)
√

λ1(Π′cΠc)).

In Theorem 2, the Condition σK(Ω) ≥ C
√

θr,maxPmax(nr + nc)log(nr + nc) is neces-
sary when applying Theorem 4.4 [64] to obtain a theoretical upper bound of v. When
building a theoretical guarantee on estimation consistency for spectral methods fitting
models modeling network with mixed memberships, it is necessary to have a lower bound
requirement on σK(Ω), see [24,26,27,35]. Actually, this requirement matches with the con-
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sistent requirement on σK(P)√
Pmax

obtained from the theoretical upper bound of error rates for a
balanced network, see Remark 4 for details. Meanwhile, similar to [7,11,30], we can design
a spectral algorithm via an application of regularized Laplacian matrix to fit DiDCMM.

The following corollary is obtained by adding conditions on model parameters similar
to Corollary 3.1 in [27], where these conditions give a directed network in which each
community has the same order of size, and each node has the same order of degree, i.e., a
balanced network.

Corollary 1. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), when conditions of Theorem 2 hold, sup-
pose λK(Π′rΠr) = O( nr

K ), λK(Π′cΠc) = O( nc
K ), πr,min = O( nr

K ) and K = O(1), with probability
at least 1− o((nr + nc)−3), we have

f̂r = O((
θr,max

θr,min
)15.5 1

σK(P)

√
Pmaxlog(nr + nc)

θr,minnc
), f̂c = O((

θr,max

θr,min
)0.5 1

σK(P)

√
Pmaxlog(nr + nc)

θr,minnr
).

Meanwhile,

• when θr,max = O(ρ), θr,min = O(ρ) (i.e., θr,min
θr,max

= O(1)), we have

f̂r = O(
1

σK(P)

√
Pmaxlog(nr + nc)

ρnc
), f̂c = O(

1
σK(P)

√
Pmaxlog(nr + nc)

ρnr
).

• when nr = O(n), nc = O(n) and θr,max = O(ρ), θr,min = O(ρ), we have

f̂r = O(
1

σK(P)

√
Pmaxlog(n)

ρn
), f̂c = O(

1
σK(P)

√
Pmaxlog(n)

ρn
).

Consider a directed mixed membership network under the settings of Corollary 1
when θr,max = O(ρ), θr,min = O(ρ) for ρ > 0, to obtain consistent estimations for both row

nodes and column nodes, by Corollary 1, σK(P)√
Pmax

should shrink slower than
√

log(nr+nc)
ρmin(nr ,nc)

,

where consistent estimation means that the theoretical upper bound of error rate goes to
zero when increasing network size. Especially, when nr = O(n) and nc = O(n), σK(P)√

Pmax

should shrink slower than
√

log(n)
n . We further assume that P = (2− β)IK + (β− 1)11′

for β ∈ [1, 2) ∪ (2, ∞) and let P̃ = ρP (note that for this P, we have σK(P) = |β− 2| and
Pmax = max(1, β− 1)). So the diagonal elements for P̃ are ρ and non-diagonal elements
are ρ(β− 1). Set pin as the diagonal entries of P̃, and pout as the non-diagonal entries of P̃,

we have pin = ρ , pout = ρ(β− 1), and |pin−pout|√
max(pin,pout)

=
√

ρ|β−2|√
max(1,β−1)

=
√

ρσK(P)√
Pmax

. Hence, for

consistent estimation, we see that |pin−pout|√
max(pin,pout)

should shrink slower than
√

log(nr+nc)
min(nr ,nc)

by

Corollary 1 and should shrink slower than
√

log(n)
n when nr = O(n) and nc = O(n), where

this result is consistent with classical separation condition for a standard network with two
equal-sized clusters by applying the separation condition and sharp threshold criterion
developed in [55].

Remark 3. When the network is undirected (i.e., nr = nc = n, Πr = Πc) with K = O(1) by
setting θr(i) = ρ for 1 ≤ i ≤ nr, DiDCMM degenerates to MMSB considered in [27], the upper

bound of error rate for DiMSC is O( 1
σK(P)

√
log(n)

ρn ) when Pmax = 1. Replacing the Θ in [24] by
Θ =

√
ρI, their DCMM model degenerates to MMSB. Then, their conditions in Theorem 2.2 are

our Assumption 1 and λK(Π′Π) = O( n
K ), where Π = Πr = Πc for MMSB. When K = O(1),

the error bound in Theorem 2.2 in [24] is O( 1
σK(P)

√
log(n)

ρn ), which is consistent with ours.
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Remark 4. By Lemma A5 in the Appendix D, we know σK(Ω) ≥ θr,minσK(P)σK(Πr)σK(Πc).
To ensure the Condition σK(Ω) ≥ C(θr,maxPmax(nr + nc)log(nr + nc))1/2 in Theorem 2 holds,
we need

σK(P)√
Pmax

≥ C
( θr,max(nr + nc)log(nr + nc)

θ2
r,minλK(Π′rΠr)λK(Π′cΠc)

)1/2. (13)

When K = O(1), nr = O(n), nc = O(n), λK(Π′rΠr) = O( nr
K ), λK(Π′cΠc) = O( nc

K ) and

θr,max = O(ρ), θr,min = O(ρ), Equation (13) gives that σK(P)√
Pmax

should shrink slower than
√

log(n)
ρn ,

which matches with the consistency requirement on σK(P)√
Pmax

of Corollary 1.

For convenience, we need the following definition.

Definition 2. Let DiDCMM(n, K, Πr, Πc, αin, αout) be a special case of DiMMDFnr ,nc(K, P, Πr,
Πc, Θr) when Θr = ρI, nr = nc = n, λK(Π′rΠr) = O(n/K), λK(Π′cΠc) = O(n/K), πr,min =

O(n/K), K = O(1), and P̃ = ρP has diagonal entries pin = αin
log(n)

n and non-diagonal entries

pout = αout
log(n)

n .

DiDCMM(n, K, Πr, Πc, αin, αout) denotes a special directed network such that row
communities have nearly equal sizes since λK(Π′rΠr) = O(n/K), and column commu-
nities also have nearly equal sizes. By Corollary 1, for consistent estimation, we need
|pin−pout|√
max(pin,pout)

�
√

log(n)
n under DiDCMM(n, K, Πr, Πc, αin, αout). Since |pin−pout|√

max(pin,pout)
=

|αin−αout|
√

log(n)
n√

max(αin,αout)
, for consistent estimation, we need

|αin − αout|√
max(αin, αout)

� 1 (14)

Our numerical results in Section 5 support that DiMSC can estimate memberships for both
row and column nodes when the threshold |αin−αout|√

max(αin,αout)
� 1 holds under DiDCMM(n, K,

Πr, Πc, αin, αout).

Remark 5. When K = 2, the network is undirected (i.e., Πr = Πc), all nodes are pure, and each
community has an equal size, DiDCMM(n, K, Πr, Πc, αin, αout) reduces to the SBM case such
that nodes connect with probability pin within clusters and pout across clusters. This case has been
well studied in recent years, see [50] and references therein. Especially, for this case, ref. [50] finds
that exact recovery is possible if |√αin −

√
αout| >

√
2 and impossible if |√αin −

√
αout| <

√
2.

For convenience, we use SBM(n, pin, pout) to denote this case. Our numerical results in Section 5
show that DiMSC return consistent estimation under SBM(n, pin, pout) when αin and αout are set
in the impossible region of exact recovery but satisfy Equation (14).

Remark 6. In information theory, Shannon entropy [65] quantifies the amount of information in
a variable, and it is a measure of uncertainty information of a probability distribution. We use a
node membership entropy (NME) derived from Shannon theory to measure the node’s uncertainty
about the node and all communities [66,67]. For row node i with membership Πr(i, :), since
∑K

k=1 Πr(i, k) = 1 and Πr(i, k) can be seen as the probability that row node i belongs to row cluster
k for 1 ≤ k ≤ K, NME of row node i is the Shannon entropy related to Πr(i, :):

NME(i) = −
K

∑
k=1

Πr(i, k)log(Πr(i, k)). (15)

For column node j with membership Πc(j, :), we can also obtain its NME by Equation (15). In
particular, if a node belongs to each cluster with equal probability 1

K , its NME is log(K) which is
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the maximum among all NME; if a node belongs to two clusters with equal probability 1
2 , its NME

is log(2) which is less than log(K) when K ≥ 3. Generally, we see that recovering memberships
for mixed nodes is harder than for pure nodes since NME is 0 for pure nodes, while NME is larger
than 0 for mixed nodes by the definition of NME.

5. Simulations

In this section, several experiments are conducted to investigate the performance of
our DiMSC under DiDCMM. We compare our DiMSC with three model-based methods
that can be thought of as special cases of our model DiDCMM. Model-based methods we
compare include the DISIM algorithm proposed in [30], the DSCORE algorithm studied
in [31], and the DiPCA algorithm which is obtained by using the adjacency matrix A to
replace the regularized graph Laplacian matrix in the DISIM algorithm. Similar to [24,27],
for simulations, we measure the errors for the inferred community membership matrices
instead of simply each node. We measure the performance of DiMSC and its competitors
by the mixed Hamming error rate (MHamm for short) defined below

MHamm = max(
minP∈SP ‖Π̂rP −Πr‖1

nr
,

minP∈SP ‖Π̂cP −Πc‖1

nc
), (16)

where SP is the set of K× K permutation matrices.
For all simulations in this section, unless specified, we set the parameters (nr, nc, K, P, Πr,

Πc, Θr) under DiDCMM as follows: let each row community and each column community
have n0 pure nodes; let all mixed row nodes (and mixed column nodes) have membership
(1/K, 1/K, . . . , 1/K); for z ≥ 1, we generate the degree parameters for row nodes as below:

let θ̄r ∈ Rnr×1 such that 1/θ̄r(i)
iid∼ U(1, z) for 1 ≤ i ≤ nr, where U(1, z) denotes the uniform

distribution on [1, z], and set θr = ρθ̄r, where we use ρ to control the sparsity of the network;
when K = 2, P is set as

P1 =

[
1 0.1

0.2 1

]
or P2 =

[
0.8 0.1
0.2 0.9

]
;

when K = 3,

P3 =

 1 0.1 0.3
0.2 1 0.4
0.5 0.2 1

or P4 =

0.8 0.1 0.3
0.2 0.9 0.4
0.5 0.2 1

;

where P2 and P4 have non-unit diagonals, and we consider the two cases because we want
to investigate DiMSC’s sensitivity when P has non-unit diagonals such that P disobeys
Condition (I1).

After obtaining P, Πr, Πc, θr, similar to the five simulation steps in [8], each simulation
experiment contains the following steps:

(a) Let Θr be the nr × nr diagonal matrix such that Θr(i, i) = θr(i), 1 ≤ i ≤ nr. Set
Ω = ΘrΠrPΠ′c.

(b) Let W be an nr × nc matrix such that W(i, j) are independent centered-Bernoulli
with parameters Ω(i, j). Let Ã = Ω + W.

(c) Set S̃r = {i : ∑nc
j=1 Ã(i, j) = 0} and S̃c = {j : ∑nr

i=1 Ã(i, j) = 0}, i.e., S̃r (S̃c) is the set
of row (column) nodes with 0 edges. Let A be the adjacency matrix obtained by removing
rows respective to nodes in S̃r and removing columns respective to nodes in S̃c from Ã.
Similarly, update Πr by removing nodes in S̃r and update Πc by removing nodes in S̃c.

(d) Apply the DiMSC algorithm (and its competitors) to A. Record MHamm under
investigations.

(e) Repeat (b)–(d) 50 times, and report the averaged MHamm over the 50 repetitions.
Let nr,A be the number of rows of A and nc,A be the number of columns of A. In

our experiments, nr,A and nc,A are usually very close to nr and nc; therefore we do not
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report the exact values of nr,A and nc,A. After providing the above steps about how
to generate A numerically under DiDCMM and how to record the error rates, now we
describe our experiments in detail. We consider six experiments here. In experiments 1–6,
we study the influence of the fraction of pure nodes, degree heterogeneity, connectivity
across communities, sparsity, phase transition, and network size on performances of these
methods, respectively.

Experiment 1 (a): Fraction of pure nodes. Set nr = 200, nc = 300, z = 5, ρ = 1
and P as P1. Let n0 range in {10, 20, 30, . . . , 100}. The numerical results are shown in Panel
(a) of Figure 4. The results show that as the fraction of pure nodes increases for both row
and column communities, all approaches perform better. Meanwhile, DiMSC performs
best among all methods in Experiment 1 (a).

Experiment 1 (b): Fraction of pure nodes. All parameters are set the same as
Experiment 1 (a) except that we set P as P2 here. The numerical results are shown in Panel
(b) of Figure 4. The results show that all methods perform better as n0 increases, DiMSC
outperforms its competitors, and DiMSC enjoys satisfactory performance even when P has
non-unit diagonals.

Experiment 1 (c): Fraction of pure nodes. Set nr = 600, nc = 900, z = 5,
ρ = 1, and P as P3. Let n0 range in {20, 40, 60, . . . , 200}. The numerical results are shown in
Panel (c) of Figure 4, and we see that all methods perform better when there are more pure
nodes and our DiMSC performs best.

Experiment 1 (d): Fraction of pure nodes. All parameters are set the same as
Experiment 1 (c) except that we set P as P4 here. The numerical results are shown in Panel
(d) of Figure 4, and the analysis is similar to that of Experiment 1 (b).
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Figure 4. Errors against increasing n0. y-axis: MHamm. Panel (a): Experiment 1 (a); Panel (b):
Experiment 1 (b); Panel (c): Experiment 1 (c); Panel (d): Experiment 1 (d).

Experiment 2 (a): Degree heterogeneity. Set nr = 200, nc = 300, n0 = 80, ρ = 1,
and P as P1. Let z range in {2, 3, 4, . . . , 12}. A lager z generates lesser edges. The results
are displayed in Panel (a) of Figure 5. The results suggest that the error rates of DiMSC for
both row and column nodes tend to increase as z increases. This phenomenon happens
because decreasing degree heterogeneities for row nodes lowers the number of edges in
the directed network; thus the network becomes harder to be detected for both row and
column nodes. Meanwhile, DiMSC outperforms its competitors in this experiment, and
it is interesting to see that the error rates of DI-SIM, DiPCA, and DSCORE are almost the
same for this experiment.

Experiment 2 (b): Degree heterogeneity. All parameters are set the same as
Experiment 2 (a) except that we set P as P2 here. The results are displayed in Panel (b) of
Figure 5, and we see that DiMSC performs satisfactorily when the directed network is not
too sparse (i.e., a small z case) even when P has non-unit diagonals. Meanwhile, DiMSC
significantly outperforms its competitors in this experiment.

Experiment 2 (c): Degree heterogeneity. Set nr = 600, nc = 900, n0 = 150,
ρ = 1, and P as P3. Let z range in {2, 3, 4, . . . , 12}. The results are shown in Panel (c)
of Figure 5 and can be analyzed similarly to Experiment 2 (a).

Experiment 2 (d): Degree heterogeneity. All parameters are set the same as
Experiment 2 (c) except that we set P as P4 here. The results are displayed in Panel (d) of
Figure 5 and are similar to that of Experiment 2 (b).
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Experiment 2 (e): Degree heterogeneity. All parameters are set the same as
Experiment 2(a) except that we set n0 = 0 (so there are no pure nodes in both row and
column communities), and all mixed row nodes have two different memberships (0.9, 0.1)
and (0.1, 0.9), each with nr

K = 100 number of row nodes, and all mixed column nodes also
have the above two memberships, each with nc

K = 150 number of column nodes. Panel (e)
of Figure 5 shows the results, and we see that DiMSC performs satisfactorily for a small
z even for the case when there are no pure nodes for both row and column communities.
Meanwhile, DiMSC performs better than its competitors when z < 7, and it perform
poorer than its competitors when z ≥ 8 for this experiment. Furthermore, compared with
numerical results of Experiment 2 (a), we see that DI-SIM, DiPCA, and DSCORE have
better performances in Experiment 2 (e). The possible reason is the memberships (0.9, 0.1)
and (0.1, 0.9) are close to (1, 0) and (0, 1) somewhat.

Experiment 2 (f): Degree heterogeneity. All parameters are set the same as
Experiment 2 (b) except that we set Πr and Πc the same as Experiment 2 (e). The results
are shown in Panel (f) of Figure 5 and are similar to that of Experiment 2 (e).

Experiment 2 (g): Degree heterogeneity. All parameters are set the same as
Experiment 2 (c) except that we set n0 = 0, all mixed row nodes have three different
memberships (0.8, 0.1, 0.1), (0.1, 0.8, 0.1), and (0.1, 0.1, 0.8), each with nr

K = 200 number of
row nodes, and all mixed column nodes also have the above four memberships, each with
nc
K = 300 number of column nodes. The results are displayed in Panel (g) of Figure 5 and
are similar to that of Experiment 2 (e).

Experiment 2 (h): Degree heterogeneity. All parameters are set the same as
Experiment 2 (d) except that we set Πr and Πc the same as Experiment 2 (g). The results
are shown in Panel (h) of Figure 5 and are similar to that of Experiment 2 (e).
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Figure 5. Errors against increasing z. y-axis: MHamm. Panel (a): Experiment 2 (a); Panel (b):
Experiment 2 (b); Panel (c): Experiment 2 (c); Panel (d): Experiment 2 (d); Panel (e): Experiment 2 (e);
Panel (f): Experiment 2 (f); Panel (g): Experiment 2 (g); Panel (h): Experiment 2 (h).

Experiment 3 (a): Connectivity across communities. Set nr = 200, nc = 300,
n0 = 80, z = 5, ρ = 1. Set

P =

[
1 β− 1

β− 1 1

]
.

and let β range in {1, 1.2, 1.4, . . . , 4}. Decreasing |β− 2| increases the hardness of detecting
such directed networks. Note that P(A(i, j) = 1) = Ω(i, j) = θr(i)Πr(i, :)PΠ′c(j, :) gives
maxi,jΩ(i, j) = θr,maxPmax should be no larger than 1. Since Pmax may be larger than one
in this experiment, after obtaining θr, we need to update θr as θr/Pmax. The results are
displayed in Panel (a) of Figure 6, and they support the arguments given after Corollary 1
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such that DiMSC performs better when |β− 2| increases and vice versa. Meanwhile, our
DiMSC outperforms its competitors in this experiment.
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Figure 6. Errors against increasing β. y-axis: MHamm. Panel (a): Experiment 3 (a); Panel (b):
Experiment 3 (b); Panel (c): Experiment 3 (c); Panel (d): Experiment 3 (d); Panel (e): Experiment 3 (e);
Panel (f): Experiment 3 (f); Panel (g): Experiment 3 (g); Panel (h): Experiment 3 (h).

Experiment 3 (b): Connectivity across communities. All parameters are set
the same as Experiment 3 (a) except that we set

P =

[
0.8 β− 1

β− 1 0.9

]
.

The results are displayed in Panel (b) of Figure 6, and we see that DiMSC performs better
when |β− 2| increases even for the case that P has non-unit diagonals.Meanwhile, our
DiMSC performs better than its competitors here.

Experiment 3 (c): Connectivity across communities. Set nr = 600, nc = 900,
n0 = 150, z = 5, ρ = 1. Set

P =

 1 β− 1 β− 1
β− 1 1 β− 1
β− 1 β− 1 1

.

and let β range in {1, 1.2, 1.4, . . . , 4}. The results are displayed in Panel (c) of Figure 6 and
can be analyzed similarly to Experiment 3 (a).

Experiment 3 (d): Connectivity across communities. All parameters are set
the same as Experiment 3(c) except that we set

P =

 0.8 β− 1 β− 1
β− 1 0.9 β− 1
β− 1 β− 1 1

.

The results are displayed in Panel (d) of Figure 6 and can be analyzed similarly to Experi-
ment 3 (b).

Experiment 3 (e): Connectivity across communities. All parameters are set
the same as Experiment 3(a) except that we let Πr and Πc be the same as that of Experiment
2 (e) (so there are no pure nodes in both row and column communities.). Panel (e) of
Figure 6 shows the results, and we see that DiMSC enjoys better performance when
|β− 2| increases even in the case that there are no pure nodes for both row and column
communities. Meanwhile, all methods have competitive performances for this experiment,
and the possible reason that DiMSC’s competitors enjoy better performances here than in
Experiment 3 (a) is analyzed in Experiment 2 (e).
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Experiment 3 (f): Connectivity across communities. All parameters are set
the same as Experiment 3 (b) except that we set Πr and Πc the same as Experiment 2 (e). The
results are displayed in Panel (f) of Figure 6 and can be analyzed similarly to Experiment 3 (e).

Experiment 3 (g): Connectivity across communities. All parameters are set
the same as Experiment 3 (c) except that we let Πr and Πc be the same as that of Experiment
2 (g) (so there are no pure nodes). Panel (g) of Figure 6 shows the results, and the analysis
is similar to that of Experiment 3 (b).

Experiment 3 (h): Connectivity across communities. All parameters are set
the same as Experiment 3 (d) except that we set Πr and Πc the same as Experiment 2 (g).
Panel (h) of Figure 6 shows the results, and the analysis is similar to that of Experiment 3 (b).

Experiment 4 (a): Sparsity. Set nr = 200, nc = 300, n0 = 80, z = 5, and P as P1.
Let ρ range in {0.2, 0.3, . . . , 1}. A larger ρ indicates a denser network. Panel (a) in Figure 7
displays the simulation results of this experiment. We see that DiMSC performs better as
the simulated directed network becomes denser, and DiMSC significantly outperforms its
competitors in this experiment.

Experiment 4 (b): Sparsity. All parameters are set the same as Experiment 4 (a)
except that P is set as P2. Panel (b) of Figure 7 shows the results, and the analysis is similar
to that of Experiment 2 (b).

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

M
H

a
m

m

DiMSC

DI-SIM

DiPCA

DSCORE

(a)

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

M
H

a
m

m

(b)

0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

0.25

0.3

0.35

M
H

a
m

m

(c)

0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

0.25

0.3

0.35

M
H

a
m

m

(d)

0.2 0.4 0.6 0.8 1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

M
H

a
m

m

(e)

0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

0.25

0.3

M
H

a
m

m

(f)

0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
H

a
m

m

(g)

0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
H

a
m

m

(h)

Figure 7. Errors against increasing ρ. y-axis: MHamm: Panel (a): Experiment 4 (a); Panel (b):
Experiment 4 (b); Panel (c): Experiment 4 (c); Panel (d): Experiment 4 (d); Panel (e): Experiment 4 (e);
Panel (f): Experiment 4 (f); Panel(g): Experiment 4 (g); Panel (h): Experiment 4 (h).

Experiment 4 (c): Sparsity. Set nr = 600, nc = 900, n0 = 150, z = 5, and P as P3.
Let ρ range in {0.2, 0.3, . . . , 1}. Panel (c) of Figure 7 shows the results, and the analysis is
similar to that of Experiment 4 (a).

Experiment 4 (d): Sparsity. All parameters are set the same as Experiment 4 (c)
except that P is set as P4. Panel (d) of Figure 7 displays the results, and the analysis is
similar to that of Experiment 4 (b).

Experiment 4 (e): Sparsity. All parameters are set the same as Experiment 4 (a)
except that we let Πr and Πc be the same as that of Experiment 2 (e). Panel (e) of Figure 7
shows the results, and we see that DiMSC’s error rates decrease for a denser directed net-
work even when all nodes are mixed. Meanwhile, all methods enjoy similar performances
in this experiment.

Experiment 4 (f): Sparsity. All parameters are set the same as Experiment 4 (b)
except that we set Πr and Πc the same as Experiment 2(e). Panel (f) of Figure 7 shows the
results, and the analysis is similar to that of Experiment 4 (e).
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Experiment 4 (g): Sparsity. All parameters are set the same as Experiment 4 (c)
except that we let Πr and Πc be the same as that of Experiment 2 (g). Panel (g) of Figure 7
shows the results, and the analysis is similar to that of Experiment 4 (e).

Experiment 4 (h): Sparsity. All parameters are set the same as Experiment 4 (d)
except that we set Πr and Πc the same as Experiment 2(g). Panel (h) of Figure 7 shows the
results, and the analysis is similar to that of Experiment 4 (e).

Experiment 5 (a): Phase transition. Under DiDCMM(n, K, Πr, Πc, αin, αout),
set K = 2, n = nr = nc = 300. Let each row community have 100 pure nodes, each col-
umn community have 120 pure nodes, and all mixed nodes have membership (1/2, 1/2).
Since max(pin, pout) = max(αin, αout)

log(n)
n ≤ 1, αin and αout should be set in (0, n

log(n) ].
We let αin and αout be in the range of {2.5, 5, 7.5, . . . , 50}. Panel (a) of Figure 8 displays
the results. We see that DiMSC performs satisfactorily when αin and αout satisfy Equa-
tion (14), and this means that DiMSC achieves the threshold provided in Equation (14)
under DiDCMM(n, K, Πr, Πc, αin, αout).

Experiment 5 (b): Phase transition. Under DiDCMM(n, K, Πr, Πc, αin, αout),
set K = 3, n = nr = nc = 300. Let each row community have 60 pure nodes, each column
community have 80 pure nodes, and all mixed nodes have membership (1/3, 1/3, 1/3).
We also let αin and αout be in the range of {2.5, 5, 7.5, . . . , 50}. Panel (b) of Figure 8 displays
the results, and the analysis is similar to that of Experiment 5 (a).
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Figure 8. Phase transition for DiMSC: darker pixels represent lower error rates. The red lines
represent |αin−αout|√

max(αin,αout)
= 1. Panel (a): Experiment 5 (a); Panel (b): Experiment 5 (b).

For Experiments 1–5, we can conclude that DiMSC outperforms its competitors, and
this supports our analysis in Remark 6 because DiMSC is designed to estimate mixed
memberships, while its competitors are designed for community partition of pure nodes.

Experiment 6: Network size. Under SBM(n, pin, pout), let αin = 2 and αout = 0.0001.
On the one hand, we have

√
αin −

√
αout =

√
2− 0.01 <

√
2, i.e., αin and αout locates in

the impossible region of exact recovery introduced in [50]. On the other hand, we have
αin−αout√

αin
> 1, i.e., αin and αout satisfy Equation (14) for DiMSC’s consistent estimation. Let n

range in {1000, 2000, 3000, . . . , 15000}. For each n in this experiment, we report the averaged
error rate and running time of DiMSC over 10 independent repetitions. The results are
shown in Figure 9. From Panel (a) of Figure 9, we see that DiMSC enjoys satisfactory
performance with a small error rate for this experiment. Panels (b) of Figure 9 says that
DiMSC processes computer-generated networks of up to 15,000 nodes within hundreds
of seconds.
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Figure 9. Numerical results for Experiment 6. Panel (a): MHamm; Panel (b): running time.

Remark 7. For visuality, we provide some examples of different types of directed networks generated
under DiDCMM in this remark. Let θr(i) = 0.9 + i2

9n2
r

for 1 ≤ i ≤ nr. Let each row community
has nr,0 pure nodes, and each column community has nc,0 pure nodes. Let all mixed nodes have
membership (1/K, . . . , 1/K). For the setting of P, we set it as

Pa =

[
0.9 0.05
0.1 0.95

]
or Pb =

[
0.1 0.95
0.9 0.05

]
or Pc =

[
12 1
0 12

]
log(nr)

nr
or Pd =

[
0 12

12 1

]
log(nr)

nr
or

Pe =

12 1 0
0 12 0
1 0 12

 log(nr)

nr
or Pf =

 1 0 12
12 0 0
0 12 1

 log(nr)

nr
,

where K = 2 when P is Pa, Pb, Pc or Pd, and K = 3 when P is Pe or Pf . Meanwhile, we can generate
different types of directed networks under DiDCMM by considering the above six different settings
of P, where these different types are also considered in Experiments 1–6, and we mainly provide
the visuality for these directed networks with different structures provided in different P for this
remark. Note that we allow P to have non-unit diagonals here because Condition (I1) is mainly for
our theoretical buildings, and results for previous experiments show that DiMSC performs stable
even when P has non-unit diagonals. We consider below eight settings.

Model Setup 1: Set nr = 16, nr,0 = 6, nc = 16, nc,0 = 7, and P as Pa. For this setup, a
directed network with 16 row nodes and 16 column nodes is generated from DiDCMM. Figure 10
shows a directed network N generated under Model Setup 1, where we also report DiMSC’s error
rate. Figure 10 says that there are more directed edges sent from row nodes 1–6 to column nodes 1–7
than from row nodes 7–12 to column nodes 1–7 for Pa. With given adjacency matrix A and known
memberships Πr and Πc for this setup, readers can apply our DiMSC directly to A given in Panel
(a) of Figure 10 to check the effectiveness of DiMSC.

Model Setup 2: All settings are the same as Model Setup 1 except that we let P be Pb. The
directed network N and its adjacency matrix are shown in Figure 11. We see that there are more
directed edges sent from row nodes 1–6 to column nodes 10–16 than from row nodes 7–12 to column
nodes 10–16 for Pb, which means that directed network generated using Pb and directed network
from Pa has different structures.

Model Setup 3: Set nr = 32, nr,0 = 14, nc = 28, nc,0 = 12, and P as Pa. For this setup, a
bipartite network with 32 row nodes and 28 column nodes are generated from DiDCMM. Figure 12
shows this bipartite network and its adjacency matrix.

Model Setup 4: All settings are the same as Model Setup 3 except that we let P be Pb.
Figure 13 displays the results, and we see that the bipartite network from Pb also has a different
structure compared with the one generated from using Pa under DiDCMM.

Model Setup 5: Set nr = 100, nr,0 = 48, nc = 100, nc,0 = 45, and P as Pc. Figure 14 shows
the row and column communities for a directed network generated from Setup 5 under DiDCMM,
where we plot the directed network directly.

Model Setup 6: All settings are the same as Model Setup 5 except that we let P be Pd.
Figure 15 shows a directed network obtained from this setup, and we see that the structure of the
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directed network from Pd in Figure 15 differs a lot from that of the directed network from Pc shown
in Figure 14.

Model Setup 7: Set nr = 100, nr,0 = 30, nc = 100, nc,0 = 32, and P as Pe. Figure 16 shows
a directed network generated from this setup.

Model Setup 8: All settings are the same as Model Setup 7 except that we let P be Pf .
Figure 17 displays a directed network generated from this setup, and we see that directed networks
from Pf and Pe have different structures by comparing Figures 16 and 17.

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row 8

row 9

row 10

row 11

row 12

row 13

row 14

row 15

row 16

c
o
l 
1

c
o
l 
2

c
o
l 
3

c
o
l 
4

c
o
l 
5

c
o
l 
6

c
o
l 
7

c
o
l 
8

c
o
l 
9

c
o
l 
1
0

c
o
l 
1
1

c
o
l 
1
2

c
o
l 
1
3

c
o
l 
1
4

c
o
l 
1
5

c
o
l 
1
6

(a)

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row 8

row 9

row 10

row 11

row 12

row 13

row 14

row 15

row 16

col 1

col 2

col 3

col 4

col 5

col 6

col 7

col 8

col 9

col 10

col 11

col 12

col 13

col 14

col 15

col 16

(b)

Figure 10. Illustration for a directed network under Model Setup 1. Panel (a): adjacency matrix of N ,
where black square denotes 1; Panel (b): directed network N , where red (blue) points indicate row
(column) nodes. The error rate MHamm defined in Equation (16) of our DiSMC algorithm for this
directed network N is 0.0377.
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Figure 11. Illustration for a directed network under Model Setup 2. Panel (a): adjacency matrix A;
Panel (b): directed network N . MHamm of DiMSC for this directed network N is 0.0424.
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Figure 12. Illustration for a bipartite network under Model Setup 3. Panel (a): adjacency matrix A;
Panel (b): bipartite network N . MHamm of DiMSC for this bipartite network N is 0.0313.
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Figure 13. Illustration for a bipartite network under Model Setup 4. Panel (a): adjacency matrix A;
Panel (b): bipartite network N . MHamm of DiMSC for this bipartite network N is 0.0320.

(a) (b)

Figure 14. Illustration for a directed network under Model Setup 5. Panels (a,b) show the row and
column communities, respectively. In these two panels, dots in the same color are pure nodes in
the same communities, and a square indicates mixed nodes. MHamm of DiMSC for this directed
network N is 0.0181.

(a) (b)

Figure 15. Illustration for a directed network under Model Setup 6. Panels (a,b) show the row and
column communities, respectively. MHamm of DiMSC for this directed network N is 0.0185.
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(a) (b)

Figure 16. Illustration for a directed network under Model Setup 7. Panels (a,b) show the row and
column communities, respectively. MHamm of DiMSC for this directed network N is 0.0266.

(a) (b)

Figure 17. Illustration for a directed network under Model Setup 8. Panels (a,b) show the row and
column communities, respectively. MHamm of DiMSC for this directed network N is 0.0279.

6. Application to Real-World Directed Networks

For the empirical directed networks considered here, row nodes are always the same
as column nodes, so we let nr = nc = n. For Π̂r, we call node i highly mixed node if
0.8 ≥ max1≤k≤KΠ̂r(i, k), similar for Π̂c. A highly mixed node tells us whether a node has

mixed memberships and belongs to multiple communities. Let τr =
|i:0.8≥max1≤k≤KΠ̂r(i,k)|

n
be the proportion of highly mixed nodes among all nodes to measure the mixability
of all row communities. Define τc similar to τr. Let ˆ̀r be a vector such that ˆ̀r(i) =
argmax1≤k≤KΠ̂r(i, k) for 1 ≤ i ≤ n, where we use ˆ̀r(i) to denote the home base row
community of node i. Define ˆ̀c similar to ˆ̀r. To measure the asymmetric structure of a
directed network, we use

Hammrc =
minP∈SP ‖Π̂cP − Π̂r‖1

n
,

where a large Hammrc means that the structure of row clusters differs a lot from that of
column clusters. For 1 ≤ i ≤ n, let dr(i) = ∑n

j=1 A(i, j) be the number of edges sent by node
i, dc(i) = ∑n

j=1 A(j, i) be the number of edges received by node i, where dr(i) (and dc(i))
is the out degree (in degree) of node i. Since there are many nodes with zero in degree or
out degree for real-world directed network, we need the below pre-processing: for any
directed network N , we let Am be its adjacency matrix for any positive integer m such that
Am is connected, and every node has at least m in degree and m out degree in Am.
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We apply DiMSC to the following real-world directed networks to discover their
mixability, asymmetries, and directional communities.

Political blogs: This is a directed network of hyperlinks between weblogs on US
politics [68]. In this data, node means a blog, and edge means a hyperlink. This data can
be downloaded from http://www-personal.umich.edu/~mejn/netdata/ (accessed on 28
August 2022). It is well-known that there are two parties, “liberal” and “conservative”,
so K = 2 for this data. The are 1490 nodes in the original data. After pre-processing,
A1 ∈ {0, 1}813×813, A3 ∈ {0, 1}495×495, A6 ∈ {0, 1}285×285, A9 ∈ {0, 1}158×158, where we
focus on the cases when m = 1, 3, 6, 9 for this data here. Meanwhile, we use political blogs
Am to denote this network when its adjacency matrix is Am, where every node has a degree
at least m. Similar notations hold for other real-world directed networks used in this paper.

Wikipedia links (gan): This directed network consists of the Wikilinks of Wikipedia
in the Gan Chinese language (gan). In this data, node means an article, and the directed
edge is a Wikilink [69]. This data can be downloaded from http://konect.cc/networks/
wikipedia_link_gan (accessed on 28 August 2022). There are 9189 nodes in the original data.
After pre-processing, A1 ∈ {0, 1}6012×6012, A30 ∈ {0, 1}820×820, A60 ∈ {0, 1}559×569, A90 ∈
{0, 1}240×240, where we study the cases m = 1, 30, 60, 90 for this data. The leading 20 singu-
lar values of A1, A30, A60, A90 shown in Panels (e)–(h) of Figure 18 suggest K = 2 for these
four adjacency matrices, where [30] also uses eigengap to estimate K.

Wikipedia links (nah): This network consists of the Wikilinks of the Nāhuatl language
(nah) [69] and can be downloaded from http://konect.cc/networks/wikipedia_link_nah/
(accessed on 28 August 2022). The original data has 10285 nodes. After pre-processing,
A1 ∈ {0, 1}6924×6924, A20 ∈ {0, 1}1057×1057, A30 ∈ {0, 1}486×486, A40 ∈ {0, 1}136×136. Panel
(i) of Figure 18 suggests K = 4 for A1, and Panels (j)–(l) of Figure 18 suggest K = 2
for A20, A30, and A40. Note that it only takes around 4 seconds for DiMSC to estimate
memberships of Wikipedia links (nah) A1.
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Figure 18. Leading 20 singular values of real-world directed networks used in this paper. Panel (a):
political blogs A1; Panel (b): political blogs A3; Panel (c): political blogs A6; Panel (d): political blogs
A9; Panel (e): Wikipedia links (gan) A1; Panel (f): Wikipedia links (gan) A30; Panel (g): Wikipedia
links (gan) A60; Panel (h): Wikipedia links (gan) A90; Panel (i): Wikipedia links (nah) A1; Panel (j):
Wikipedia links (nah) A20; Panel (k): Wikipedia links (nah) A30; Panel (l): Wikipedia links (nah) A40.

http://www-personal.umich.edu/~mejn/netdata/
http://konect.cc/networks/wikipedia_link_gan
http://konect.cc/networks/wikipedia_link_gan
http://konect.cc/networks/wikipedia_link_nah/
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The proportions of highly mixed nodes and Hammrc when applying DiMSC on the
above real-world directed networks are reported in Table 1. For the political blogs network,
small τr, τc, and Hammrc indicate that there are only a few highly mixed nodes, and the
structure of row communities is similar to that of column communities, i.e., there is a slight
asymmetry for this data. For Wikipedia links (gan) A1 and Wikipedia links (nah) A1, they
have a large proposition of highly mixed nodes in both row and column communities, and
the row communities differ a lot from column communities, suggesting heavy asymmetric
structure between row and column communities for these two data. For Wikipedia links
(gan) A30, A60, and Wikipedia links (nah) A20, we see that the proportion of highly mixed
nodes for row (column) communities is small (large), and there is a slight asymmetric for
these data. For Wikipedia links (gan) A90 and Wikipedia links (nah) A30, A40, there is no
highly mixed node, and the structure of row clusters is similar to that of column clusters.
For visualization, we plot the row and column communities as well as highly mixed nodes
by applying DiMSC to some of these directed networks in Figures 19 and 20.

Table 1. τr, τc, and Hammrc obtained from DiMSC for real-world directed networks used in this paper.

Data τr τc Hammrc

Political blogs A1 0.0455 0.1353 0.0893
Political blogs A3 0.0481 0.1570 0.0705
Political blogs A6 0.0386 0.1368 0.0662
Political blogs A9 0.0443 0.1772 0.0771

Wikipedia links (gan) A1 0.1505 0.6051 0.3528
Wikipedia links (gan) A30 0.0817 0.1902 0.0547
Wikipedia links (gan) A60 0.0054 0.1145 0.0664
Wikipedia links (gan) A90 0 0 0.0203

Wikipedia links (nah) A1 0.2718 0.3521 0.2065
Wikipedia links (nah) A20 0.0937 0.1722 0.0488
Wikipedia links (nah) A30 0 0 0.0046
Wikipedia links (nah) A40 0 0 0

(a) (b)

Figure 19. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 19. Row and column communities detected by DiMSC for political blogs. Colors indicate
clusters, and a green square indicates highly mixed nodes, where the row and column communities
are obtained from ˆ̀r and ˆ̀c, respectively. Panel (a): political blogs A1; Panel (b): political blogs A1;
Panel (c): political blogs A3; Panel (d): political blogs A3; Panel (e): political blogs A6; Panel (f):
political blogs A6; Panel (g): political blogs A9; Panel (h): political blogs A9.
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(a) (b)

(c) (d)

Figure 20. Row and column communities detected by DiMSC for Wikipedia links (gan) A90 and
Wikipedia links (nah) A40. Colors indicate clusters, where the row and column communities are
obtained from ˆ̀r and ˆ̀c, respectively. Panel (a): Wikipedia links (gan) A90; Panel (b): Wikipedia links
(gan) A90; Panel (c): Wikipedia links (nah) A40; Panel (d): Wikipedia links (nah) A40.

7. Discussion and Conclusions

In this paper, we propose a novel directed degree corrected mixed membership (DiD-
CMM) model. DiDCMM models a directed network with mixed memberships for row
nodes with degree heterogeneities and column nodes without degree heterogeneities. DiD-
CMM is identifiable when the two well-used Conditions (I1) and (I2) hold. It should be
mentioned that a model modeling a directed network with mixed memberships for both
row and column nodes with degree heterogeneities is unidentifiable unless considering
some nontrivial conditions. To fit the model, we propose a provably consistent spectral
algorithm called DiMSC to infer community memberships for both row and column nodes
in a directed network generated by DiDCMM. DiMSC is designed based on the SVD of the
adjacency matrix, where we apply the SP algorithm to hunt for the corners in the simplex
structure and the SVM-cone algorithm to hunt for the corners in the cone structure. The
theoretical results of DiMSC show that it consistently recovers memberships of both row
nodes and column nodes under mild conditions. Meanwhile, when DiDCMM degenerates
to MMSB, our theoretical results match that of Theorem 2.2 [24] when their DCMM de-
generates to MMSB under mild conditions. Experiments conducted on synthetic directed
networks generated from DiDCMM verify the effectiveness and the stability of Conditions
(I1) and (I2) of DiMSC. Results for real-world directed networks show that DiMSC reveals
highly mixed nodes and asymmetries in the structure of row and column communities. The
model DiDCMM and the algorithm DiMSC developed in this paper are useful to discover
asymmetry for a directed network with mixed memberships. DiDCMM can also generate
an artificially directed network with mixed memberships as a benchmark directed network
for research purposes. We wish that DiDCMM and DiMSC can be widely applied in social
network analysis.
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The proposed model DiDCMM and the algorithm DiMSC can be extended in many
ways. Similar to [24,57], we may obtain an ideal simplex from U using the idea of the
entry-wise ratio proposed in [8]. Meanwhile, DiMSC is designed based on the SVD of
the adjacency matrix, and similar to [5,7,11,30], we may design spectral algorithms based
on the regularized Laplacian matrix under DiDCMM. Extending DiDCMM from an un-
weighted directed network to a weighted directed network with an application of the
distribution-free idea introduced in [62] is one of our future research directions. The SVD
step of DiMSC can be accelerated by the random projection and random sampling ideas in-
troduced in [70] to process large-scale directed networks. Instead of simply using eigengap
to find K, in our future work, it is worth focusing on estimating the number of communities
in a directed network generated under ScBM (and DCScBM) [30] and DiDCMM. Ref. [46]
proposes an algorithm to uncover boundary nodes that spread information between com-
munities in undirected social networks. It is an interesting topic to extend works in [46] to
directed networks generated from ScBM, DCScBM, and DiDCMM. We leave them for our
future work.
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Abbreviations
The following abbreviations are used in this manuscript:

SBM Stochastic Blockmodel
DCSBM Degree Corrected Stochastic Blockmodel
MMSB Mixed Membership Stochastic Blockmodel
DCMM Degree Corrected Mixed Membership model
OCCAM Overlapping Continuous Community Assignment model
ScBM Stochastic co-Blockmodel
DC-ScBM Degree Corrected Stochastic co-Blockmodel
DiMMSB Directed Mixed Membership Stochastic Blockmodel
DiDCMM Directed Degree Corrected Mixed Membership model
SP Successive projection algorithm
SVD Singular value decomposition
DiMSC Directed Mixed Simplex & Cone algorithm

Appendix A. Proof for Identifiability

Appendix A.1. Proof of Proposition 1

Proof. Let Ω = UΛV′ be the compact singular value decomposition of Ω. Lemma 1 gives
V = ΠcBc ≡ ΠcV(Ic, :). Since Ω = Ω̃, V also equals to Π̃cV(Ic, :), which gives that
Πc = Π̃c.

Since Ω(Ir, Ic) = Θr(Ir, Ir)Πr(Ir, :)PΠ′c(Ic, :) = Θr(Ir, Ir)P = U(Ir, :)ΛV′(Ic, :) by
Condition (I2), we have Θr(Ir, Ir)P = U(Ir, :)ΛV′(Ic, :), which gives that Θr(Ir, Ir) =
diag(U(Ir, :)ΛV′(Ic, :)). From this step, we see that if P’s diagonal entries are not ones,
we cannot obtain Θr(Ir, Ir) = diag(U(Ir, :)ΛV′(Ic, :)) which leads to a consequence that
Θr(Ir, Ir) does not equal to Θ̃r(Ir, Ir); hence Condition (I1) is necessary by Condition
(I1). Since Ω = Ω̃, we also have Θ̃r(Ir, Ir) = diag(U(Ir, :)ΛV′(Ic, :)), which gives that
Θr(Ir, Ir) = Θ̃r(Ir, Ir). Since Θ̃r(Ir, Ir)P̃ also equals to U(Ir, :)ΛV′(Ic, :), we have P = P̃.

Lemma 1 gives that U = ΘrΠrBr, where Br = Θ−1
r (Ir, Ir)U(Ir, :). Since Ω = Ω̃, we

also have U = Θ̃rΠ̃r B̃r. Since B̃r = Θ̃−1
r (Ir, Ir)U(Ir, :) = Θ−1

r (Ir, Ir)U(Ir, :), we have
B̃r = Br. Since U = ΘrΠrBr = Θ̃rΠ̃r B̃r = Θ̃rΠ̃rBr, we have ΘrΠr = Θ̃rΠ̃r. Since each row
of Πr or Π̃r is a PMF, Θr = Θ̃r, Πr = Π̃r, and the claim follows.
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Appendix B. Ideal Simplex, Ideal Cone

Appendix B.1. Proof of Lemma 1

Proof. First, we consider U and V. Since Ω = UΛV′, we have U = ΩVΛ−1 since V′V =
IK. Recall that Ω = ΘrΠrPΠ′c, we have U = ΘrΠrPΠ′cVΛ−1 = ΘrΠrBr, where we set
Br = PΠ′cVΛ−1 and sure it is unique. Since U(Ir, :) = Θr(Ir, Ir)Πr(Ir, :)Br = Θr(Ir, Ir)Br,
we have Br = Θ−1

r (Ir, Ir)U(Ir, :).
Similarly, since Ω = UΛV′, we have V′ = Λ−1U′Ω since U′U = IK, hence V =

Ω′UΛ−1. Recall that Ω = ΘrΠrPΠ′c, we have V = (ΘrΠrPΠ′c)′UΛ−1 = ΠcP′Π′rΘrUΛ−1 =
ΠcBc, where we set Bc = P′Π′rΘrUΛ−1 and sure it is unique. Since V(Ic, :) = Πc(Ic, :
)Bc = Bc, we have Bc = V(Ic, :). Meanwhile, for 1 ≤ j ≤ nc, we have V(j, :) = e′jΠcBc =

Πc(j, :)Bc. Hence, we have V(j, :) = V( j̄, :) as long as Πc(j, :) = Πc( j̄, :).
Now, we show the ideal cone structure that appears in U∗. For convenience, set

M = ΠrBr, hence U = ΘrΠrBr gives U = Θr M. Hence, we have U(i, :) = e′iU =

Θr(i, i)M(i, :). Therefore, U∗(i, :) = U(i,:)
‖U(i,:)‖F

= M(i,:)
‖M(i,:)‖F

, combine it with the fact that

Br = Θ−1
r (Ir, Ir)U(Ir, :), we have

U∗ =


1

‖M(1,:)‖F
1

‖M(2,:)‖F
. . .

1
‖M(nr ,:)‖F

ΠrBr

=


Πr(1, :)/‖M(1, :)‖F
Πr(2, :)/‖M(2, :)‖F

...
Πr(nr, :)/‖M(nr, :)‖F

Θ−1
r (Ir, Ir)N−1

U (Ir, Ir)U∗(Ir, :).

Therefore, we have

Y =


Πr(1, :)/‖M(1, :)‖F
Πr(2, :)/‖M(2, :)‖F

...
Πr(nr, :)/‖M(nr, :)‖F

Θ−1
r (Ir, Ir)N−1

U (Ir, Ir) = NMΠrΘ−1
r (Ir, Ir)N−1

U (Ir, Ir),

where NM is a diagonal matrix with NM(i, i) = 1
‖M(i,:)‖F

for 1 ≤ i ≤ nr. All entries of Y are
nonnegative, and since we assume that each community has at least one pure node, no row
of Y is 0.

Then, we prove that U∗(i, :) = U∗(ī, :) when Πr(i, :) = Πr(ī, :). For 1 ≤ i ≤ nr,
we have

U∗(i, :) = e′iU∗ =
1

‖M(i, :)‖F
e′i M =

1
‖Πr(i, :)Br‖F

Πr(i, :)Br,

and the claim follows immediately.

Appendix B.2. Proof of Lemma 2

Proof. Since I = U′U = B′rΠ′rΘ2
r ΠrBr = U′(Ir, :)Θ−1

r (Ir, Ir)Π′rΘ2
r ΠrΘ−1(Ir, Ir)U(Ir, :)

and rank(U(Ir, :)) = K (i.e., the inverse of U(Ir, :) exists), we have (U(Ir, :)U′(Ir, :))−1 =
Θ−1

r (Ir, Ir)Π′rΘ2
r ΠrΘ−1

r (Ir, Ir). Since U∗(Ir, :) = NU(Ir, Ir)U(Ir, :), we have

(U∗(Ir, :)U′∗(Ir, :))−1 = N−1
U (Ir, Ir)Θ−1(Ir, Ir)Π′rΘ2

r ΠrΘ−1
r (Ir, Ir)N−1

U (Ir, Ir).
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Since all entries of N−1
U (Ir, Ir), Πr, Θr and nonnegative and N, Θr are diagonal matrices,

we see that all entries of (U∗(Ir, :)U′∗(Ir, :))−1 are nonnegative, and its diagonal entries are
strictly positive, hence we have (U∗(Ir, :)U′∗(Ir, :))−11 > 0.

Appendix B.3. Proof of Theorem 1

Proof. For column nodes, Remark A1 guarantees that SP algorithm returns Ic when the
input is V with K column communities, hence ideal DiMSC recovers Πc exactly. For row
nodes, Remark A2 guarantees that SVM-cone algorithm returns Ir when the input is
U∗ with K row communities, hence ideal DiMSC recovers Πr exactly, and this theorem
follows.

Appendix C. Equivalence Algorithm

In this subsection, we design one algorithm DiMSC-equivalence which returns the
same estimations as DiMSC. Set U2 = UU′ ∈ Rnr×nr , Û2 = ÛÛ′ ∈ Rnr×nr , V2 = VV′ ∈
Rnc×nc , V̂2 = V̂V̂′ ∈ Rnc×nc . Set U∗,2 ∈ Rnr×nr as U∗,2(i, :) = U2(i,:)

‖U2(i,:)‖F
for 1 ≤ i ≤ nr. Û∗,2

is defined similarly. The next lemma guarantees that V2 enjoys IS structure, and U∗,2 enjoys
IC structure.

Lemma A1. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), we have V2 = ΠcV2(Ic, :), and U∗,2 =
YU∗,2(Ir, :).

Proof. By Lemma 1, we know that V = ΠcV(Ic, :), which gives that V2 = VV′ =
ΠcV(Ic, :)V′ = Πc(VV′)(Ic, :) = ΠcV2(Ic, :). For U, since U = ΘrΠrΘ−1

r (Ir, Ir)U(Ir, :)
by Lemma 1, we have U2 = UU′ = ΘrΠrΘ−1

r (Ir, Ir)U(Ir, :)U′ = ΘrΠrΘ−1
r (Ir, Ir)(UU′)

(Ir, :) = ΘrΠrΘ−1
r (Ir, Ir)U2(Ir, :). Set M2 = ΠrΘ−1

r (Ir, Ir)U2(Ir, :), we have U2 =
Θr M2. Then, follow similar proof as Lemma 1, we have U∗,2 = Y2U∗,2(Ir, :), where
Y2 = NM2 ΠrΘ−1

r (Ir, Ir)N−1
U2

(Ir, Ir), and NM2 , NU2 are nr × nr diagonal matrices whose i-
th diagonal entries are 1

‖M2(i,:)‖F
, 1
‖U2(i,:)‖F

, respectively. Since ‖U2(i, :)‖F = ‖U(i, :)U′‖F =

‖U(i, :)‖F, we have NU2 = NU . Since ‖M2(i, :)|F = ‖ΠrΘ−1
r (Ir, Ir)U2(Ir, :)‖F

= ‖ΠrΘ−1
r (Ir, Ir)U(Ir, :)U′‖F = ‖M(i, :)‖F, we have NM2 = NM. Hence, Y2 ≡ Y and the

claim follows.

Since U∗,2(Ir, :) ∈ RK×nr and V2(Ic, :) ∈ RK×nc , U∗,2(Ir, :) and V2(Ic, :) are singular
matrix with rank K by Condition (I1), while the inverses of U∗,2(Ir, :)U′∗,2(Ir, :) and V2(Ic, :
)V′2(Ic, :) exist. Therefore, Lemma A1 gives that

Y = U∗,2U′∗,2(Ir, :)(U∗,2(Ir, :)U′∗,2(Ir, :))−1, Πc = V2V′2(Ic, :)(V2(Ic, :)V′2(Ic, :))−1.

Since U∗,2 = NUU2 and Y = NMΠrΘ−1
r (, Ir, Ir)N−1

U (Ir, Ir), we see that Y∗ also equals to
U2U′∗,2(Ir, :)(U∗,2(Ir, :)U′∗,2(Ir, :))−1 by basic algebra.

Based on the above analysis, we are now ready to give the ideal DiMSC-equivalence.
Input Ω. Output: Πr and Πc.

• Obtain U, Λ, V, U∗,2, V2 from Ω.
• Run SP algorithm on V2 with K column communities to obtain V2(Ic, :). Run SVM-

cone algorithm on U∗,2 with K row communities to obtain Ir.
• Set J∗ = diag(U∗(Ir, :)ΛV′(Ic, :)), Y∗ = U2U′∗,2(Ir, :)(U∗,2(Ir, :)U′∗,2(Ir, :))−1, Zr =

Y∗ J∗ and Zc = V2V′2(Ic, :)(V2(Ic, :)V′2(Ic, :))−1.

• Recover Πr and Πc by setting Πr(i, :) = Zr(i,:)
‖Zr(i,:)‖1

for 1 ≤ i ≤ nr, and Πc(j, :) = Zc(j,:)
‖Zc(j,:)‖1

for 1 ≤ j ≤ nc.

For the real case, set Û2 = ÛÛ′, V̂2 = V̂V̂′, Û∗,2 = NÛÛ2. We now extend the ideal case to
the real one given by Algorithm A1.
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Algorithm A1 DiMSC-equivalence

Require: The adjacency matrix A ∈ Rnr×nc of a directed network, the number of row
communities (column communities) K.

Ensure: The estimated nr × K row membership matrix Π̂r,2 and the estimated nc × K
column membership matrix Π̂c,2.

1: Obtain Ã = ÛΛ̂V̂′, the top-K-dimensional SVD of A. Compute Û∗, Û2, V̂2, Û∗,2.
2: Apply SP algorithm on the rows of V̂2 assuming there are K column communities to

obtain Îc,2, the index set returned by SP algorithm.
3: Apply SVM-cone algorithm on the rows of Û∗,2 with K row communities to obtain
Îr,2, the index set returned by SVM-cone algorithm.

4: Set Ĵ∗,2 = diag(Û∗( Îr,2, :)Λ̂V̂′(Îc,2, :)), Ŷ∗,2 = Û2Û′∗,2(Îr,2, :)(Û∗,2(Îr,2, :)Û′∗,2(Îr,2, :
))−1, Ẑr,2 = Ŷ∗,2 Ĵ∗,2 and Ẑc,2 = V̂2V̂′2(Îc,2, :)(V̂2(Îc,2, :)V̂′2(Îc,2, :))−1. Then, set
Ẑr,2 = max(0, Ẑr,2) and Ẑc,2 = max(0, Ẑc,2).

5: Estimate Πr(i, :) by Π̂r,2(i, :) = Ẑr,2(i, :)/‖Ẑr,2(i, :)‖1, 1 ≤ i ≤ nr and estimate Πc(j, :)
by Π̂c,2(j, :) = Ẑc,2(j, :)/‖Ẑc,2(j, :)‖1, 1 ≤ j ≤ nc.

Lemma A2. (Equivalence). For the empirical case, we have Îr,2 ≡ Îr, Îc,2 ≡ Îc, Û∗,2(Îr,2, :
)Û′∗,2(Îr,2, :) ≡ Û∗(Îr, :)Û′∗(Îr, :), Ŷ∗,2 ≡ Ŷ∗, Ĵ∗,2 ≡ Ĵ∗, Ẑr,2 ≡ Ẑr, Ẑc,2 ≡ Ẑc, Π̂r,2 ≡ Π̂r and
Π̂c,2 ≡ Π̂c.

Proof. For column nodes, Lemma 3.2 [27] gives Îc = Îc,2 (i.e., SP algorithm will re-
turn the same indices on both V̂ and V̂2.), which gives that V̂2V̂′2(Îc,2, :) = V̂2V̂′2(Îc, :
) = V̂V̂′((V̂V̂′)(Îc, :))′ = V̂V̂′(V̂(Îc, :)V̂′)′ = V̂V̂′V̂V̂′(Îc, :) = V̂V̂′(Îc, :), and V̂2(Îc,2, :
)V̂′2(Îc,2, :) = V̂2(Îc, :)V̂′2(Îc, :) = V̂(Îc, :)V̂′(V̂(Îc, :)V̂′)′ = V̂(Îc, :)V̂′(Îc, :). Therefore, we
have Ẑc,2 = Ẑc, Π̂c,2 = Π̂c.

For row nodes, Lemma G.1 [26] guarantees that Îr = Îr,2 (i.e., SVM-cone algorithm
will return the same indices on both Û∗ and Û∗,2.), so immediately we have Ĵ∗,2 = Ĵ∗. Since
Û∗,2(Îr,2, :) = Û∗,2(Îr, :) = NÛ(Îr, Îr)Û2(Îr, :) = NÛ(Îr, Îr)Û(Îr, :)Û′ = Û∗(Îr, :)Û′,
we have Û2Û′∗,2(Îr,2, :) = Û2Û′∗,2(Îr, :) = ÛÛ′ÛÛ′∗(Îr, :) = ÛÛ′∗(Îr, :) and (Û∗,2(Îr,2, :
)Û′∗,2(Îr,2, :))−1 = (Û∗,2(Îr, :)Û′∗,2(Îr, :))−1 = (Û∗(Îr, :)Û′∗(Îr, :))−1, which give that
Ŷ∗,2 = Ŷ∗, and the claim follows immediately.

Lemma A2 guarantees that the DiMSC and DiMSC-equivalence return same esti-
mations for both row and column nodes’s memberships. In this article, we introduce
the DiMSC-equivalence algorithm since it is helpful to build a theoretical framework for
DiMSC, see Remark A3 and A4 for detail.

Appendix D. Basic Properties of Ω

Lemma A3. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), we have

θr,min

θr,max
√

Kλ1(Π′rΠr)
≤ ‖U(i, :)‖F ≤

θr,max

θr,min
√

λK(Π′rΠr)
, 1 ≤ i ≤ nr,√

1
Kλ1(Π′cΠc)

≤ ‖V(j, :)‖F ≤
√

1
λK(Π′cΠc)

, 1 ≤ j ≤ nc.

Proof. Since I = U′U = U′(Ir, :)Θ−1
r (Ir, Ir)Π′rΘ2

r ΠrΘ−1(Ir, Ir)U(Ir, :), we have

((Θ−1
r (Ir, Ir)U(Ir, :))((Θ−1

r (Ir, Ir)U(Ir, :))′)−1 = Π′rΘ2
r Πr,

which gives that

maxk‖e′k(Θ
−1
r (Ir, Ir)U(Ir, :))‖2

F = maxke′k(Θ
−1
r (Ir, Ir)U(Ir, :))(Θ−1

r (Ir, Ir)U(Ir, :))′ek

≤ max‖x‖F=1x′(Θ−1
r (Ir, Ir)U(Ir, :))(Θ−1

r (Ir, Ir)U(Ir, :))′x
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= λ1((Θ−1
r (Ir, Ir)U(Ir, :))(Θ−1

r (Ir, Ir)U(Ir, :))′)

=
1

λK(Π′rΘ2
r Πr)

≤ 1
θ2

r,minλK(Π′rΠr)
.

Similarly, we have

mink‖e′k(Θ
−1
r (Ir, Ir)U(Ir, :))‖2

F ≥
1

λ1(Π′rΘ2
r Πr)

≥ 1
θ2

r,maxλ1(Π′rΠr)
.

Since U(i, :) = e′iU = e′iΘrΠrΘ−1
r (Ir, Ir)U(Ir, :) = θr(i)Πr(i, :)Θ−1

r (Ir, Ir)U(Ir, :) for
1 ≤ i ≤ nr, we have

‖U(i, :)‖F = ‖θr(i)Πr(i, :)Θ−1
r (Ir, Ir)U(Ir, :)‖F = θr(i)‖Πr(i, :)Θ−1

r (Ir, Ir)U(Ir, :)‖F

≤ θr(i)maxi‖Πr(i, :)‖Fmaxi‖e′i(Θ−1
r (Ir, Ir)U(Ir, :))‖F

≤ θr(i)maxi‖e′i(Θ−1
r (Ir, Ir)U(Ir, :))‖F ≤

θr,max

θr,min
√

λK(Π′rΠr)
.

Similarly, we have

‖U(i, :)‖F ≥ θr(i)mini‖Πr(i, :)‖Fmini‖e′i(Θ−1
r (Ir, Ir)U(Ir, :))‖F

≥ θr(i)mini‖e′i(Θ−1
r (Ir, Ir)U(Ir, :))‖F/

√
K ≥ θr,min

θr,max
√

Kλ1(Π′rΠr)
.

For ‖V(j, :)‖F, since V = ΠcBc, we have

minj‖e′jV‖2
F = minje′jVV′ej = minjΠc(j, :)BcB′cΠ′c(j, :)

= minj‖Πc(j, :)‖2
F

Πc(j, :)
‖Πc(j, :)‖F

BcB′c
Π′c(j, :)
‖Πc(j, :)‖F

≥ minj‖Πc(j, :)‖2
Fmin‖x‖F=1x′BcB′cx = minj‖Πc(j, :)‖2

FλK(BcB′c)

By Lemma A4
=

minj‖Πc(j, :)‖2
F

λ1(Π′cΠc)
≥ 1

Kλ1(Π′cΠc)
.

Meanwhile,

maxj‖e′jV‖2
F = maxj‖Πc(j, :)‖2

F
Πc(j, :)
‖Πc(j, :)‖F

BcB′c
Π′c(j, :)
‖Πc(j, :)‖F

≤ maxj‖Πc(j, :)‖2
Fmax‖x‖F=1x′BcB′cx = maxj‖Πc(j, :)‖2

FλK(BcB′c)

By Lemma A4
=

maxj‖Πc(j, :)‖2
F

λK(Π′cΠc)
≤ 1

λK(Π′cΠc)
.

Lemma A4. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), we have

θ2
r,minλK(Π′rΠr)

θ2
r,maxλ1(Π′rΠr)

≤ λK(U∗(Ir, :)U′∗(Ir, :)), λ1(U∗(Ir, :)U′∗(Ir, :)) ≤
θ2

r,maxKλ1(Π′rΠr)

θ2
r,minλK(Π′rΠr)

,

and λ1(BcB′c) =
1

λK(Π′cΠc)
, λK(BcB′c) =

1
λ1(Π′cΠc)

.

Proof. Recall that V = ΠcBc and V′V = I, we have I = B′cΠ′cΠcBc. As Bc is full rank, we
have Π′cΠc = (BcB′c)−1, which gives

λ1(BcB′c) =
1

λK(Π′cΠc)
, λK(BcB′c) =

1
λ1(Π′cΠc)

.
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By the proof of Lemma 2, we know that

(U∗(Ir, :)U′∗(Ir, :))−1 = N−1
U (Ir, Ir)Θ−1(Ir, Ir)Π′rΘ2

r ΠrΘ−1
r (Ir, Ir)N−1

U (Ir, Ir),

which gives that

U∗(Ir, :)U′∗(Ir, :) = NU(Ir, Ir)Θ(Ir, Ir)(Π′rΘ2
r Πr)

−1Θr(Ir, Ir)NU(Ir, Ir).

Then, we have

λ1(U∗(Ir, :)U′∗(Ir, :)) = λ1(NU(Ir, Ir)Θ(Ir, Ir)(Π′rΘ2
r Πr)

−1Θr(Ir, Ir)NU(Ir, Ir))

= λ1(N2
U(Ir, Ir)Θ2

r (Ir, Ir)(Π′rΘ2
r Πr)

−1) ≤ λ2
1(NU(Ir, Ir)Θr(Ir, Ir))λ1((Π′rΘ2

r Πr)
−1)

= λ2
1(NU(Ir, Ir)Θr(Ir, Ir))/λK(Π′rΘ2

r Πr) ≤ (maxi∈Ir θr(i)/‖U(i, :)‖F)
2/λK(Π′rΘ2

r Πr)

≤
θ2

r,maxKλ1(Π′rΠr)

λK(Π′rΘ2
r Πr)

≤
θ2

r,maxKλ1(Π′rΠr)

θ2
r,minλK(Π′rΠr)

.

Similarly, we have

λK(U∗(Ir, :)U′∗(Ir, :)) = λK(NU(Ir, Ir)Θ(Ir, Ir)(Π′rΘ2
r Πr)

−1Θr(Ir, Ir)NU(Ir, Ir))

= λK(N2
U(Ir, Ir)Θ2

r (Ir, Ir)(Π′rΘ2
r Πr)

−1) ≥ λ2
K(NU(Ir, Ir)Θr(Ir, Ir))λK((Π′rΘ2

r Πr)
−1)

= λ2
K(NU(Ir, Ir)Θr(Ir, Ir))/λ1(Π′rΘ2

r Πr) ≥ (mini∈Ir θr(i)/‖U(i, :)‖F)
2/λ1(Π′rΘ2

r Πr)

≥
θ2

r,minλK(Π′rΠr)

λ1(Π′rΘ2
r Πr)

≥
θ2

r,minλK(Π′rΠr)

θ2
r,maxλ1(Π′rΠr)

.

Lemma A5. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), we have

σK(Ω) ≥ θr,minσK(P)σK(Πr)σK(Πc), σ1(Ω) ≤ θr,maxσ1(P)σ1(Πr)σ1(Πc).

Proof. For σK(Ω), we have

σ2
K(Ω) = λK(ΩΩ′) = λK(ΘrΠrPΠ′cΠcP′Π′rΘr) = λK(Θ2

r ΠrPΠ′cΠcP′Π′r)

≥ θ2
r,minλK(Π′rΠrPΠ′cΠcP′) ≥ θ2

r,minλK(Π′rΠr)λK(PΠ′cΠcP′) = θ2
r,minλK(Π′rΠr)λK(Π′cΠcP′P)

≥ θ2
r,minλK(Π′rΠr)λK(Π′cΠc)λK(PP′) = θ2

r,minσ2
K(Πr)σ

2
K(Πc)σ

2
K(P),

where we have used the fact for any matrices X, Y, the nonzero eigenvalues of XY are
the same as the nonzero eigenvalues of YX. Following a similar analysis, the lemma
follows.

Lemma A6. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), when Assumption 1 holds, with probabil-
ity at least 1− o((nr + nc)−3), we have

‖A−Ω‖ = O(
√

Pmaxmax(‖θr‖1, θr,maxnc)log(nr + nc)).

Proof. Since the proof is similar to that of Lemma 7 [35], we omit most of the details. Let ei
be an nr × 1 vector, where ei(i) = 1 and 0 elsewhere, for row nodes 1 ≤ i ≤ nr, and ẽj be
an nc × 1 vector, where ẽj(j) = 1 and 0 elsewhere, for column nodes 1 ≤ j ≤ nc. Set W =

∑nr

i=1 ∑nc
j=1 W(i, j)ei ẽ′j, where W = A−Ω. Set W(i,j) = W(i, j)ei ẽ′j, for 1 ≤ i ≤ nr, 1 ≤ j ≤ nc.

Then, we have E(W(i,j)) = 0. For 1 ≤ i ≤ nr, 1 ≤ j ≤ nc, we have

‖W(i,j)‖ = ‖W(i, j)ei ẽ′j‖ = |A(i, j)−Ω(i, j)| ≤ 1.
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Next, we consider the variance parameter

σ2 := max(‖
nr

∑
i=1

nc

∑
j=1

E(W(i,j)(W(i,j))′)‖, ‖
nr

∑
i=1

nc

∑
j=1

E((W(i,j))′W(i,j))‖).

Since

E(W2(i, j)) = E((A(i, j)−Ω(i, j))2) = Var(A(i, j)),

where Var(A(i, j)) denotes the variance of the Bernoulli random variable A(i, j), we have

E(W2(i, j)) = Var(A(i, j)) = P(A(i, j) = 1)(1− P(A(i, j) = 1))

≤ P(A(i, j) = 1) = Ω(i, j) = e′iΘrΠrPΠ′c ẽj = θr(i)e′iΠrPΠ′c ẽj ≤ θr(i)Pmax.

Since eie′i is an nr × nr diagonal matrix with (i, i)-th entry being one and other entries being
zero, we have

‖
nr

∑
i=1

nc

∑
j=1

E(W(i,j)(W(i,j))′)‖ = ‖
nr

∑
i=1

nc

∑
j=1

E(W2(i, j))eie′i‖ = max
1≤i≤nr

|
nc

∑
j=1

E(W2(i, j))| ≤ θr,maxPmaxnc.

Similarly, we have ‖∑nr
i=1 ∑nc

j=1 E((W
(i,j))′W(i,j))‖ ≤ Pmax‖θr‖1, which gives that

σ2 = max(‖
nr

∑
i=1

nc

∑
j=1

E(W(i,j)(W(i,j))′)‖, ‖
nr

∑
i=1

nc

∑
j=1

E((W(i,j))′W(i,j))‖) ≤ Pmaxmax(‖θr‖1, θr,maxnc).

By the rectangular version of the Bernstein inequality [71], combining with
σ2 ≤ Pmaxmax(‖θr‖1, θr,maxnc), R = 1, d1 + d2 = nr + nc, set
t = α+1+

√
α2+20α+19

3

√
Pmaxmax(‖θr‖1, θr,maxnc)log(nr + nc) for any α > 0, we have

P(‖W‖ ≥ t) = P(‖
nr

∑
i=1

nc

∑
j=1

W(i,j)‖ ≥ t) ≤ (nr + nc)exp(− t2/2
σ2 + Rt

3
)

≤ (nr + nc)exp(− t2/2
Pmaxmax(‖θr‖1, θr,maxnc) + t/3

)

= (nr + nc)exp(−(α + 1)log(nr + nc) ·
1

18
(
√

α+19+
√

α+1)2 +
2
√

α+1√
α+19+

√
α+1

√
log(nr+nc)

Pmaxmax(‖θr‖1,θr,maxnc)

)

≤ (nr + nc)exp(−(α + 1)log(nr + nc)) =
1

(nr + nc)α
,

where we have used Assumption 1 in the last inequality. Set α = 3, and the claim follows.

Appendix E. Proof of Consistency for DiMSC

Similar to [24,26,27], for our DiMSC, the main theoretical results (i.e., Theorem 2) rely
on the row-wise singular vector deviation bounds for the singular eigenvectors of the
adjacency matrix.

Lemma A7. (Row-wise singular vector deviation) Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), when
Assumption 1 holds, suppose σK(Ω) ≥ C

√
θr,max(nr + nc)log(nr + nc), with probability at least

1− o((nr + nc)−3), we have

max(‖ÛÛ′ −UU′‖2→∞, ‖V̂V̂′ −VV′‖2→∞) = O(

√
Pmaxθr,maxKlog(nr + nc)

θr,minσK(P)σK(Πr)σK(Πc)
).

Proof. Let HÛ = Û′U, and HÛ = UHÛ
ΣHÛ

V′HÛ
be the SVD decomposition of HÛ with

UHÛ
, VHÛ

∈ Rnr×K, where UHÛ
and VHÛ

represent, respectively, the left and right sin-
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gular matrices of HÛ . Define sgn(HÛ) = UHÛ
V′HÛ

; sgn(HV̂) is defined similarly. Since

E(A(i, j)−Ω(i, j)) = 0, E[(A(i, j)−Ω(i, j))2] ≤ θr(i)Pmax ≤ θr,maxPmax by the proof of
Lemma A6, 1√

θr,maxPmaxmin(nr ,nc)/(µlog(nr+nc))
≤ O(1) holds by Assumption 1, where µ is the

incoherence parameter defined as µ = max( nr‖U‖2
2→∞

K , nc‖V‖2
2→∞

K ). By Theorem 4.4 [64], with
high probability, we have below row-wise singular vector deviation

max(‖Ûsgn(HÛ)−U‖2→∞, ‖V̂sgn(HV̂)−V‖2→∞)

≤ C

√
Pmaxθr,maxK(κ(Ω)

√
max(nr ,nc)µ
min(nr ,nc)

+
√

log(nr + nc))

σK(Ω)

≤ C
√

Pmaxθr,maxKlog(nr + nc)

σK(Ω)
, (A1)

provided that c1σK(Ω) ≥
√

θr,maxPmax(nr + nc)log(nr + nc) for some sufficiently small

constant c1, and here we set
√

max(nr ,nc)µ
min(nr ,nc)

= O(1) for convenience since this term has little

effect on the error bounds of DiMSC, especially for the case when nr
nc

= O(1).
Since U′U = I, Û′Û = I, we have ‖ÛÛ′ −UU′‖2→∞ ≤ 2‖U − Ûsgn(HÛ)‖2→∞ by

basic algebra. Now, we are ready to bound ‖ÛÛ′ −UU′‖2→∞:

‖ÛÛ′ −UU′‖2→∞ = max1≤i≤nr‖e
′
i(UU′ − ÛÛ′)‖F ≤ 2‖U − Ûsgn(HÛ)‖2→∞

≤ C
√

Pmaxθr,maxKlog(nr + nc)

σK(Ω)

By Lemma A5
≤ C

√
Pmaxθr,maxKlog(nr + nc)

θr,minσK(P)σK(Πr)σK(Πc)
.

The lemma holds by following similar proof for ‖V̂V̂′ −VV′‖2→∞.

When Θr = ρI, nr = nc, Πr = Πc = Π, Pmax = O(1), and DiCCMM degenerates

to MMSB, the bound in Lemma A7 is O(

√
Klog(n)

σK(P)
√

ρλK(Π′Π)
). if we further assume that

λK(Π′Π) = O( n
K ) and K = O(1), the bound is of order O( 1

σK(P)
1√
n

√
log(n)

ρn ). Set the Θ
in [24] as

√
ρI, their DCMM degenerates to MMSB, their assumptions are translated to

our λK(Π′Π) = O( n
K ), when K = O(1), the row-wise singular vector deviation bound in

the fourth bullet of Lemma 2.1 [24] is O( 1
σK(P)

1√
n

√
log(n)

ρn ), which is consistent with ours.

Meanwhile, if we further assume that σK(P) = O(1), the bound is of order 1√
n

√
log(n)

ρn .
The next lemma is the cornerstone to characterizing the behaviors of DiMSC.

Lemma A8. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), when conditions of Lemma A7 hold, there
exist two permutation matrices Pr,Pc ∈ RK×K such that with probability at least 1− o((nr +
nc)−3), we have

max1≤k≤K‖e′k(Û∗,2(Îr, :)−P ′rU∗,2(Ir, :))‖F = O(
K3θ11

r,maxvκ3(Π′rΠr)λ1.5
1 (Π′rΠr)

θ11
r,minπr,min

),

max1≤k≤K‖e′k(V̂2(Îc, :)−P ′cV2(Ic, :))‖F = O(vκ(Π′cΠc)).

Proof. First, we consider column nodes. The detail of the SP algorithm is in Algorithm A2.
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Algorithm A2 Successive Projection (SP) [54]

Require: Near-separable matrix Ysp = Ssp Msp + Zsp ∈ Rm×n
+ , where Ssp, Msp should

satisfy Assumption 1 [54], the number r of columns to be extracted.
Ensure: Set of indices K such that Y(K, :) ≈ S (up to permutation)

1: Compute Ûr ∈ Rnr×Kr and Ûc ∈ Rnc×Kr from the top-Kr-dimensional SVD of A.
2: Let R = Ysp,K = {}, k = 1.
3: While R 6= 0 and k ≤ r do
4: k∗ = argmaxk‖R(k, :)‖F.
5: uk = R(k∗, :).

6: R← (I − uku′k
‖uk‖2

F
)R.

7: K = K ∪ {k∗}.
8: k=k+1.
9: end while

Based on Algorithm A2, the following theorem is Theorem 1.1 in [54].

Theorem A1. Fix m ≥ r and n ≥ r. Consider a matrix Ysp = Ssp Msp + Zsp, where Ssp ∈ Rm×r

has a full column rank, Msp ∈ Rr×n is a nonnegative matrix such that the sum of each column is
at most 1, and Zsp = [Zsp,1, . . . , Zsp,n] ∈ Rm×n. Suppose Msp has a submatrix equal to Ir. Write

ε ≤ max1≤i≤n‖Zsp,i‖F. Suppose ε = O(
σmin(Ssp)√

rκ2(Ssp)
), where σmin(Ssp) and κ(Ssp) are the min-

imum singular value and condition number of Ssp, respectively. If we apply the SP algorithm
to columns of Ysp, then it outputs an index set K ⊂ {1, 2, . . . , n} such that |K| = r and
max1≤k≤rminj∈K‖Ssp(:, k) − Ysp(:, j)‖F = O(εκ2(Ssp)), where Ssp(:, k) is the k-th column
of Ssp.

Let m = K, r = K, n = nc, Ysp = V̂′2, Zsp = V̂′2 −V′2, Ssp = V′2(Ic, :), and Msp = Π′c. By
Condition (I2), Msp has an identity submatrix IK. By Lemma A7, we have

εc = max1≤j≤nc‖V̂2(j, :)−V2(j, :)‖F = ‖V̂2(j, :)−V2(j, :)‖2→∞ ≤ v.

By Theorem A1, there exists a permutation matrix Pc such that

max1≤k≤K‖e′k(V̂2(Îc, :)−P ′cV2(Ic, :))‖F = O(εcκ2(V2(Ic, :))
√

K) = O(vκ2(V2(Ic, :))).

Since κ2(V2(Ic, :)) = κ(V2(Ic, :)V′2(Ic, :)) = κ(V(Ic, :)V′(Ic, :)) = κ(Π′cΠc), where the last
equality holds by Lemma A4, we have

max1≤k≤K‖e′k(V̂2(Îc, :)−P ′cV2(Ic, :))‖F = O(vκ(Π′cΠc)).

Remark A1. For the ideal case, let m = K, r = K, n = nc, Ysp = V′, Zsp = V′ −V′ ≡ 0, Ssp =
V′(Ic, :), and Msp = Π′c. Then, we have max1≤j≤nc‖V(j, :)− V(j, :)‖F = 0. By Theorem A1,
SP algorithm returns Ic when the input is V assuming there are K column communities.

Now, we consider row nodes. From Lemma 2, we see that U∗(Ir, :) satisfies Condition 1
in [26]. Meanwhile, since (U∗(Ir, :)U′∗(Ir, :))−11 > 0, we have (U∗(Ir, :)U′∗(Ir, :))−11 ≥ η1,
hence U∗(Ir, :) satisfies Condition 2 in [26]. Now, we give a lower bound for η to show that
η is strictly positive. By the proof of Lemma A4, we have

(U∗(Ir, :)U′∗(Ir, :))−1 = N−1
U (Ir, Ir)Θ−1(Ir, Ir)Π′rΘ2

r ΠrΘ−1
r (Ir, Ir)N−1

U (Ir, Ir)

≥
θ2

r,min

θ2
r,maxN2

U,max
Π′rΠr ≥

θ4
r,min

θ4
r,maxKλ1(Π′rΠr)

Π′rΠr,
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where we set NU,max = max1≤i≤nr NU(i, i), and we have used the facts that NU , Θr are

diagonal matrices, and NU,max ≤
θr,max
√

Kλ1(Π′rΠr)
θr,min

by Lemma A3. Then, we have

η = min1≤k≤K((U∗(Ir, :)U′∗(Ir, :))−11)(k) ≥
θ4

r,min

θ4
r,maxKλ1(Π′rΠr)

min1≤k≤Ke′kΠ′rΠr1

=
θ4

r,min

θ4
r,maxKλ1(Π′rΠr)

min1≤k≤Ke′kΠ′r1 =
θ4

r,minπr,min

θ4
r,maxKλ1(Π′rΠr)

,

i.e., η is strictly positive. Since U∗,2(Ir, :)U′∗,2(Ir, :) ≡ U∗(Ir, :)U′∗(Ir, :), we have U∗,2(Ir, :)
also satisfies Conditions 1 and 2 in [26]. The above analysis shows that we can directly
apply Lemma F.1 of [26] since the ideal DiMSC algorithm satisfies Conditions 1 and 2
in [26], therefore there exists a permutation matrix Pr ∈ RK×K such that

max1≤k≤K‖e′k(Û∗,2(Îr, :)−P ′rU∗,2(Ir, :))‖F = O(

√
Kζεr

λ1.5
K (U∗,2(Ir, :))U′∗,2(Ir, :)

),

where ζ ≤ 4K
ηλ1.5

K (U∗,2(Ir ,:)U′∗,2(Ir ,:))
= O( K

ηλ1.5
K (U∗(Ir ,:)U′∗(Ir ,:))

), and εr = max1≤i≤nr‖Û∗,2(i, :

)−U∗,2(i, :)‖. Next, we bound εr as below

‖Û∗,2(i, :)−U∗,2(i, :)‖F = ‖ Û2(i, :)‖U2(i, :)‖F −U2(i, :)‖Û2(i, :)‖F

‖Û2(i, :)‖F‖U2(i, :)‖F
‖F ≤

2‖Û2(i, :)−U2(i, :)‖F
‖U2(i, :)‖F

≤ 2‖Û2 −U2‖2→∞
‖U2(i, :)‖F

≤ 2v

‖U2(i, :)‖F
=

2v

‖(UU′)(i, :)‖F
=

2v

‖U(i, :)U′‖F
=

2v

‖U(i, :)‖F

≤ 2v
θr,max

√
Kλ1(Π′rΠr)

θr,min
,

where the last inequality holds by Lemma A3. Then, we have εr = O(v
θr,max
√

Kλ1(Π′rΠr)
θr,min

).
Finally, by Lemma A4, we have

max1≤k≤K‖e′k(Û∗,2(Îr, :)−P ′rU∗,2(Ir, :))‖F = O(
K3θ11

r,maxvκ3(Π′rΠr)λ1.5
1 (Π′rΠr)

θ11
r,minπr,min

).

Remark A2. For the ideal case, when setting U∗ as the input of the SVM-cone algorithm assuming
there are K row communities, since ‖U∗ −U∗‖2→∞ = 0, Lemma F.1; [26] guarantees that SVM-
cone algorithm returns Ir exactly. Meanwhile, another view to see that the SVM-cone algorithm
exactly obtains Ir when the input is U∗ (also U2,∗) is given in Appendix F, which focuses on
following the three steps of SVM-cone algorithm to show that it returns Ir with input U∗ (also
U∗,2), instead of simply applying Lemma F.1. [26].

Lemma A9. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), when conditions of Lemma A7 hold, with
probability at least 1− o((nr + nc)−3), we have

max1≤i≤nr‖e
′
i(Ẑr − ZrPr)‖F = O(

K5θ15
r,maxvκ4.5(Π′rΠr)κ(Πc)λ1.5

1 (Π′rΠr)

θ14
r,minπr,min

),

max1≤j≤nc‖e
′
j(Ẑc − ZcPc)‖F = O(vκ(Π′cΠc)

√
Kλ1(Π′cΠc)).

Proof. First, we consider column nodes. Recall that V(Ic, :) = Bc. For convenience, set
V̂(Îc, :) = B̂c, V2(Ic, :) = B2c, V̂2(Îc, :) = B̂2c. We bound ‖e′j(Ẑc − ZcPc)‖F when the input
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is V̂ in the SP algorithm. Recall that Zc = max(VV′(Ic, :)(V(Ic, :)V′(Ic, :))−1, 0) ≡ Πc, for
1 ≤ j ≤ nc, we have

‖e′j(Ẑc − ZcPc)‖F = ‖e′j(max(0, V̂B̂′c(B̂c B̂′c)
−1)−VB′c(BcB′c)

−1Pc)‖F

≤ ‖e′j(V̂B̂′c(B̂c B̂′c)
−1 −VB′c(BcB′c)

−1Pc)‖F

= ‖e′j(V̂ −V(V′V̂))B̂′c(B̂c B̂′c)
−1 + e′j(V(V′V̂)B̂′c(B̂c B̂′c)

−1 −V(V′V̂)(P ′c(BcB′c)(B′c)
−1(V′V̂))−1)‖F

≤ ‖e′j(V̂ −V(V′V̂))B̂′c(B̂c B̂′c)
−1‖F + ‖e′jV(V′V̂)(B̂′c(B̂c B̂′c)

−1 − (P ′c(BcB′c)(B′c)
−1(V′V̂))−1)‖F

≤ ‖e′j(V̂ −V(V′V̂))‖F‖B̂−1
c ‖F + ‖e′jV(V′V̂)(B̂′c(B̂c B̂′c)

−1 − (P ′c(BcB′c)(B′c)
−1(V′V̂))−1)‖F

≤
√

K‖e′j(V̂ −V(V′V̂))‖F/
√

λK(B̂c B̂′c) + ‖e′jV(V′V̂)(B̂−1
c − (P ′cBc(V′V̂))−1)‖F

=
√

K‖e′j(V̂V̂′ −VV′)V̂‖FO(
√

λ1(Π′cΠc)) + ‖e′jV(V′V̂)(B̂−1
c − (P ′cBc(V′V̂))−1)‖F

≤
√

K‖e′j(V̂V̂′ −VV′)‖FO(
√

λ1(Π′cΠc)) + ‖e′jV(V′V̂)(B̂−1
c − (P ′cBc(V′V̂))−1)‖F

≤
√

KvO(
√

λ1(Π′cΠc)) + ‖e′jV(V′V̂)(B̂−1
c − (P ′cBc(V′V̂))−1)‖F

= O(v
√

Kλ1(Π′cΠc)) + ‖e′jV(V′V̂)(B̂−1
c − (P ′cBc(V′V̂))−1)‖F,

where we have used similar idea in the proof of Lemma VII.3 in [27] such that apply
O( 1

λK(BcB′c)
) to estimate 1

λK(B̂c B̂′c)
, then by Lemma A4, we have 1

λK(B̂c B̂′c)
= O(λ1(Π′cΠc)).

Now,we aim to bound ‖e′jV(V′V̂)(B̂−1
c − (P ′cBc(V′V̂))−1)‖F. For convenience, set

Tc = V′V̂, Sc = P ′cBcTc. We have

‖e′jV(V′V̂)(B̂−1
c − (P ′cBc(V′V̂))−1)‖F = ‖e′jVTcS−1

c (Sc − B̂c)B̂−1
c ‖F

≤ ‖e′jVTcS−1
c (Sc − B̂c)‖F‖B̂−1

c ‖F ≤ ‖e′jVTcS−1
c (Sc − B̂c)‖F

√
K

|λK(B̂c)|

= ‖e′jVTcS−1
c (Sc − B̂c)‖F

√
K√

λK(B̂c B̂′c)
≤ ‖e′jVTcS−1

c (Sc − B̂c)‖FO(
√

Kλ1(Π′cΠc))

= ‖e′jVTcT−1
c B′c(BcB′c)

−1Pc(Sc − B̂c)‖FO(
√

Kλ1(Π′cΠc))

= ‖e′jVB′c(BcB′c)
−1Pc(Sc − B̂c)‖FO(

√
Kλ1(Π′cΠc))

= ‖e′jZcPc(Sc − B̂c)‖FO(
√

Kλ1(Π′cΠc))
By Zc=Πc

≤ max1≤k≤K‖e′k(Sc − B̂c)‖FO(
√

Kλ1(Π′cΠc))

= max1≤k≤K‖e′k(B̂c −P ′cBcV′V̂)‖FO(
√

Kλ1(Π′cΠc))

= max1≤k≤K‖e′k(B̂cV̂′ −P ′cBcV′)V̂‖FO(
√

Kλ1(Π′cΠc))

≤ max1≤k≤K‖e′k(B̂cV̂′ −P ′cBcV′)‖FO(
√

Kλ1(Π′cΠc))

= max1≤k≤K‖e′k(B̂2c −P ′cB2c)‖FO(
√

Kλ1(Π′cΠc)) (A2)

= O(vκ(Π′cΠc)
√

Kλ1(Π′cΠc)).

Remark A3. Equation (A2) supports our statement that building the theoretical framework of DiMSC
benefits a lot by introducing the DiMSC-equivalence algorithm since ‖B̂2c −P ′cB2c‖2→∞ is obtained from
DiMSC-equivalence (i.e., inputing V̂2 in the SP algorithm obtains ‖B̂2c −P ′cB2c‖2→∞).

Then, we have

‖e′j(Ẑc − ZcPc)‖F ≤ O(v
√

Kλ1(Π′cΠc)) + ‖e′jV(V′V̂)(B̂−1
c − (P ′cBc(V′V̂))−1)‖F

≤ O(v
√

Kλ1(Π′cΠc)) + O(vκ(Π′cΠc)
√

Kλ1(Π′cΠc)) = O(vκ(Π′cΠc)
√

Kλ1(Π′cΠc)).
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Next, we consider row nodes. For 1 ≤ i ≤ nr, since Zr = Y∗ J∗, Ẑr = Ŷ∗ Ĵ∗, we have

‖e′i(Ẑr − ZrPr)‖F = ‖e′i(max(0, Ŷ∗ Ĵ∗)−Y∗ J∗Pr)‖F ≤ ‖e′i(Ŷ∗ Ĵ∗ −Y∗ J∗Pr)‖F

= ‖e′i(Ŷ∗ −Y∗Pr) Ĵ∗ + e′iY∗Pr( Ĵ∗ −P ′r J∗Pr)‖F

≤ ‖e′i(Ŷ∗ −Y∗Pr)‖F‖ Ĵ∗‖F + ‖e′iY∗Pr‖F‖ Ĵ∗ −P ′r J∗Pr‖F

= ‖e′i(Ŷ∗ −Y∗Pr)‖F‖ Ĵ∗‖F + ‖e′iY∗‖F‖ Ĵ∗ −P ′r J∗Pr‖F.

Therefore, the bound of ‖e′i(Ẑr − ZrPr)‖F can be obtained as long as we bound
‖e′i(Ŷ∗ −Y∗Pr)‖F,
‖ Ĵ∗‖F, ‖e′iY∗‖F and ‖ Ĵ∗ −P ′r J∗Pr‖F. We bound the four terms as below:

• We bound ‖e′i(Ŷ∗−Y∗Pr)‖F first. Similar as bounding ‖e′j(Ẑc− ZcPc)‖, we set U∗(Ir, :

) = BR, Û∗(Îr, :) = B̂R, U∗,2(Ir, :) = B2R, Û∗,2(Îr, :) = B̂2R for convenience. We bound
‖e′i(Ŷ∗ − Y∗Pr)‖F when the input is Û∗ in the SVM-cone algorithm. For 1 ≤ i ≤ nr,
we have

‖e′i(Ŷ∗ −Y∗Pr)‖F = ‖e′i(ÛB̂′R(B̂R B̂′R)
−1 −UB′R(BRB′R)

−1Pr)‖F

= ‖e′i(Û −U(U′Û))B̂′R(B̂R B̂′R)
−1 + e′i(U(U′Û)B̂′R(B̂R B̂′R)

−1

−U(U′Û)(P ′r(BRB′R)(B′R)
−1(U′Û))−1)‖F

≤ ‖e′i(Û −U(U′Û))B̂′R(B̂R B̂′R)
−1‖F + ‖e′iU(U′Û)(B̂′R(B̂R B̂′R)

−1

− (P ′r(BRB′R)(B′R)
−1(U′Û))−1)‖F

≤ ‖e′i(Û −U(U′Û))‖F‖B̂−1
R ‖F + ‖e′iU(U′Û)(B̂′R(B̂R B̂′R)

−1 − (P ′r(BRB′R)(B′R)
−1(U′Û))−1)‖F

≤
√

K‖e′i(Û −U(U′Û))‖F/
√

λK(B̂R B̂′R) + ‖e
′
iU(U′Û)(B̂−1

R − (P ′r BR(U′Û))−1)‖F

(i)
=
√

K‖e′i(ÛÛ′ −UU′)Û‖FO(
θr,max

√
κ(Π′rΠr)

θr,min
) + ‖e′iU(U′Û)(B̂−1

R − (P ′r BR(U′Û))−1)‖F

≤
√

K‖e′i(ÛÛ′ −UU′)‖FO(
θr,max

√
κ(Π′rΠr)

θr,min
) + ‖e′iU(U′Û)(B̂−1

R − (P ′r BR(U′Û))−1)‖F

≤
√

KvO(
θr,max

√
κ(Π′rΠr)

θr,min
) + ‖e′iU(U′Û)(B̂−1

R − (P ′r BR(U′Û))−1)‖F

= O(v
θr,max

√
Kκ(Π′rΠr)

θr,min
) + ‖e′iU(U′Û)(B̂−1

R − (P ′r BR(U′Û))−1)‖F,

where we have used similar idea in the proof of Lemma VII.3 in [27] such that we
apply O( 1

λK(BRB′R)
) to estimate 1

λK(B̂R B̂′R)
, hence (i) holds by Lemma A4.

Now, we aim to bound ‖e′iU(U′Û)(B̂−1
R − (P ′rBR(U′Û))−1)‖F. For convenience, set

Tr = U′Û, Sr = P ′rBRTr. We have

‖e′iU(U′Û)(B̂−1
R − (P ′rBR(U′Û))−1)‖F = ‖e′iUTrS−1

r (Sr − B̂R)B̂−1
R ‖F

≤ ‖e′iUTrS−1
r (Sr − B̂R)‖F‖B̂−1

R ‖F ≤ ‖e′iUTrS−1
r (Sr − B̂R)‖F

√
K

|λK(B̂R)|

= ‖e′iUTrS−1
r (Sr − B̂R)‖F

√
K√

λK(B̂R B̂′R)
≤ ‖e′iUTrS−1

r (Sr − B̂R)‖FO(
θr,max

√
Kκ(Π′rΠr)

θr,min
)

= ‖e′iUTrT−1
r B′R(BRB′R)

−1Pr(Sr − B̂R)‖FO(
θr,max

√
Kκ(Π′rΠr)

θr,min
)

= ‖e′iUB′R(BRB′R)
−1Pr(Sr − B̂R)‖FO(

θr,max
√

Kκ(Π′rΠr)

θr,min
)

= ‖e′iY∗Pr(Sr − B̂R)‖FO(
θr,max

√
Kλ1(Π′rΠr)

θr,min
) ≤ ‖e′iY∗‖F‖Sr − B̂R‖FO(

θr,max
√

Kλ1(Π′rΠr)

θr,min
)
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By Equation(A4)
≤

θ2
r,max

√
Kλ1(Π′rΠr)

θ2
r,minλK(Π′rΠr)

max1≤k≤K‖e′k(Sr − B̂R)‖FO(
θr,maxK

√
κ(Π′rΠr)

θr,min
)

= max1≤k≤K‖e′k(B̂R −P ′rBRU′Û)‖FO(
θ3

r,maxK1.5κ(Π′rΠr)

θ3
r,min

√
λK(Π′rΠr)

)

= max1≤k≤K‖e′k(B̂RÛ′ −P ′rBRU′)Û‖FO(
θ3

r,maxK1.5κ(Π′rΠr)

θ3
r,min

√
λK(Π′rΠr)

)

≤ max1≤k≤K‖e′k(B̂RÛ′ −P ′rBRU′)‖FO(
θ3

r,maxK1.5κ(Π′rΠr)

θ3
r,min

√
λK(Π′rΠr)

)

= max1≤k≤K‖e′k(B̂2R −P ′rB2R)‖FO(
θ3

r,maxK1.5κ(Π′rΠr)

θ3
r,min

√
λK(Π′rΠr)

) (A3)

By Lemma A8
= O(

K4.5θ14
r,maxvκ4.5(Π′rΠr)λ1(Π′rΠr)

θ14
r,minπr,min

).

Remark A4. Similar as Equation (A2), Equation (A3) supports our statement that building
the theoretical framework of DiMSC benefits a lot by introducing the DiMSC-equivalence
algorithm since ‖B̂2R −P ′rB2R‖2→∞ is obtained from DiMSC-equivalence (i.e., inputing Û∗,2
in the SVM-cone algorithm obtains ‖B̂2R −P ′rB2R‖2→∞).

Then, we have

‖e′i(Ŷ∗ −Y∗Pr)‖F ≤ O(v
θr,max

√
Kκ(Π′rΠr)

θr,min
) + ‖e′iU(U′Û)(B̂−1

R − (P ′rBRU′Û))−1)‖F

≤ O(v
θr,max

√
Kκ(Π′rΠr)

θr,min
) + O(

K4.5θ14
r,maxvκ4.5(Π′rΠr)λ1(Π′rΠr)

θ14
r,minπr,min

)

= O(
K4.5θ14

r,maxvκ4.5(Π′rΠr)λ1(Π′rΠr)

θ14
r,minπr,min

).

• for ‖e′iY∗‖F, since Y∗ = UU−1
∗ (Ir, :), by Lemmas (A3) and (A4), we have

‖e′iY∗‖F ≤ ‖U(i, :)‖F‖U−1
∗ (Ir, :)‖F ≤

√
K‖U(i, :)‖F√

λK(U∗(Ir, :)U′∗(Ir, :))
≤

θ2
r,max

√
Kλ1(Π′rΠr)

θ2
r,minλK(Π′rΠr)

. (A4)

• for ‖ Ĵ∗‖F, recall that Ĵ∗ = diag(Û∗( Îr, :)Λ̂V̂′(Îc, :)), we have

‖ Ĵ∗‖ = max1≤k≤K Ĵ∗(k, k) = max1≤k≤Ke′kÛ∗( Îr, :)Λ̂V̂′(Îc, :)ek

= max1≤k≤K‖e′kÛ∗( Îr, :)Λ̂V̂′(Îc, :)ek‖
≤ max1≤k≤K‖e′kÛ∗( Îr, :)‖‖Λ̂‖‖V̂′(Îc, :)ek‖ ≤ max1≤k≤K‖e′kÛ∗( Îr, :)‖F‖Λ̂‖‖V̂′(Îc, :)ek‖
= max1≤k≤K‖A‖‖V̂′(Îc, :)ek‖ = max1≤k≤K‖A‖‖(e′kV̂(Îc, :))′‖ = max1≤k≤K‖A‖‖e′kV̂(Îc, :)‖
≤ max1≤k≤K‖A‖‖e′kV̂(Îc, :)‖F ≤ ‖A‖‖V̂‖2→∞ = ‖A‖‖V̂sgn(HV̂)−V + V‖2→∞

≤ ‖A‖(‖V̂sgn(HV̂)−V‖2→∞ + ‖V‖2→∞).

By Lemmas (A6) and (A5), ‖A‖ = ‖A−Ω + Ω‖ ≤ ‖A−Ω‖+ σ1(Ω) ≤ ‖A−Ω‖+
θr,maxσ1(P)σ1(Πr)σ1(Πc) = O(θr,maxσ1(Πr)σ1(Πc)). By Lemma (A5) and Equation (A1),

‖V̂sgn(HV̂)−V‖2→∞ ≤ C
√

θr,maxKlog(nr+nc)

θr,minσK(P)σK(Πr)σK(Πc)
. By Lemma A3, ‖V‖2→∞ ≤

√
1

λK(Π′cΠc)
,

which gives ‖V̂sgn(HV̂)− V‖2→∞ + ‖V‖2→∞ = O(
√

1
λK(Π′cΠc)

) (this can be seen as

simply using ‖V‖2→∞ to estimate ‖V̂‖2→∞ since
√

1
λK(Π′cΠc)

is the same order as
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√
θr,maxKlog(nr+nc)

θr,minσK(P)σK(Πr)σK(Πc)
). Then, we have ‖ Ĵ∗‖ = O(θr,maxσ1(Πr)κ(Πc)), which gives that

‖ Ĵ∗‖F = O(θr,max
√

Kσ1(Πr)κ(Πc)).
• for ‖ Ĵ∗ − P ′r J∗Pr‖F, since J∗ = NU(Ir, Ir)Θr(Ir, Ir), we have ‖J∗‖ ≤ NU,maxθr,max ≤

θ2
r,max
√

Kλ1(Π′rΠr)
θr,min

, which gives that ‖J∗‖F ≤
θ2

r,maxKσ1(Πr)
θr,min

. Thus, we have ‖ Ĵ∗−P ′r J∗Pr‖F =

O(
θ2

r,maxKσ1(Πr)
θr,min

).

Combining the above results, we have

‖e′i(Ẑr − ZrPr)‖F ≤ ‖e′i(Ŷ∗ −Y∗Pr)‖F‖ Ĵ∗‖F + ‖e′iY∗‖F‖ Ĵ∗ −P ′r J∗Pr‖F

= O(
K4.5θ14

r,maxvκ4.5(Π′rΠr)λ1(Π′rΠr)

θ14
r,minπr,min

)O(θr,max
√

Kσ1(Πr)κ(Πc))

+
θ2

r,max
√

Kλ1(Π′rΠr)

θ2
r,minλK(ΠrΠr)

O(
θ2

r,maxKσ1(Πr)

θr,min
) = O(

K5θ15
r,maxvκ4.5(Π′rΠr)κ(Πc)λ1.5

1 (Π′rΠr)

θ14
r,minπr,min

).

Appendix E.1. Proof of Theorem 2

Proof. We bound ‖e′j(Π̂c −ΠcPc)‖1 first. Recall that Zc = Πc, Πc(j, :) = Zc(j,:)
‖Zc(j,:)‖1

, Π̂c(i, :

) = Ẑc(j,:)
‖Ẑc(j,:)‖1

, for 1 ≤ j ≤ nc, since

‖e′j(Π̂c −ΠcPc)‖1 = ‖
e′jẐc

‖e′jẐc‖1
−

e′jZcPc

‖e′jZcPc‖1
‖1 = ‖

e′jẐc‖e′jZc‖1 − e′jZcPc‖e′jẐc‖1

‖e′jẐc‖1‖e′jZc‖1
‖1

= ‖
e′jẐc‖e′jZc‖1 − e′jẐc‖e′jẐc‖1 + e′jẐc‖e′jẐc‖1 − e′jZcP‖e′jẐc‖1

‖e′jẐc‖1‖e′jZc‖1
‖1

≤
‖e′jẐc‖e′jZc‖1 − e′jẐc‖e′jẐc‖1‖1 + ‖e′jẐc‖e′jẐc‖1 − e′jZcPc‖e′jẐc‖1‖1

‖e′jẐc‖1‖e′jZc‖1

=
|‖e′jZc‖1 − ‖e′jẐc‖1|+ ‖e′jẐc − e′jZcPc‖1

‖e′jZc‖1
≤

2‖e′j(Ẑc − ZcPc)‖1

‖e′jZc‖1

=
2‖e′j(Ẑc − ZcPc)‖1

‖e′jΠc‖1
= 2‖e′j(Ẑc − ZcPc)‖1 ≤ 2

√
K‖e′j(Ẑc − ZcPc)‖F,

by Lemma A9, we have

‖e′j(Π̂c −ΠcPc)‖1 = O(
√

K‖e′j(Ẑc − ZcPc)‖F) = O(vKκ(Π′cΠc)
√

λ1(Π′cΠc)).

For row nodes 1 ≤ i ≤ nr, recall that Zr = Y∗ J∗ ≡ N−1
U NMΠr, Ẑr = Ŷ∗ Ĵ∗, Πr(i, :) = Zr(i,:)

‖Zr(i,:)‖1

and Π̂r(i, :) = Ẑr(i,:)
‖Ẑr(i,:)‖1

, where NM and M are defined in the proof of Lemma 1 such that

U = Θr M ≡ ΘrΠrBr and NM(i, i) = 1
‖M(i,:)‖F

, similar as the proof for column nodes,
we have

‖e′i(Π̂r −ΠrPr)‖1 ≤
2‖e′i(Ẑr − ZrPr)‖1

‖e′iZr‖1
≤

2
√

K‖e′i(Ẑr − ZrPr)‖F

‖e′iZr‖1
.

Now, we provide a lower bound of ‖e′iZr‖1 as below

‖e′iZr‖1 = ‖e′i N−1
U NMΠr‖1 = ‖N−1

U (i, i)e′i NMΠr‖1 = N−1
U (i, i)‖NM(i, i)e′iΠr‖1 =

NM(i, i)
NU(i, i)
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= ‖U(i, :)‖F NM(i, i) = ‖U(i, :)‖F
1

‖M(i, :)‖F
= ‖U(i, :)‖F

1
‖e′i M‖F

= ‖U(i, :)‖F
1

‖e′iΘ
−1
r U‖F

= ‖U(i, :)‖F
1

‖Θ−1
r (i, i)e′iU‖F

= θr(i) ≥ θr,min.

Therefore, by Lemma A9, we have

‖e′i(Π̂r −ΠrPr)‖1 ≤
2
√

K‖e′i(Ẑr − ZrPr)‖F

‖e′iZr‖1
≤

2
√

K‖e′i(Ẑr − ZrPr)‖F

θr,min

= O(
K5.5θ15

r,maxvκ4.5(Π′rΠr)κ(Πc)λ1.5
1 (Π′rΠr)

θ15
r,minπr,min

).

Appendix E.2. Proof of Corollary 1

Proof. Under conditions of Corollary 1, we have

‖e′i(Π̂r −ΠrPr)‖1 = O(
K5.5θ15

r,maxvκ4.5(Π′rΠr)κ(Πc)λ1.5
1 (Π′rΠr)

θ15
r,minπr,min

) = O(
θ15

r,maxv
√

nr

θ15
r,min

),

‖e′j(Π̂c −ΠcPc)‖1 = O(vKκ(Π′cΠc)
√

λ1(Π′cΠc)) = O(v
√

nc).

Under conditions of Corollary 1, Lemma A7 gives v = O(

√
Pmaxθr,maxlog(nr+nc)

θr,minσK(P)
√

nrnc
), which

gives that

‖e′i(Π̂r −ΠrPr)‖1 = O(
θ15

r,maxv
√

nr

θ15
r,min

) = O(
θ15.5

r,max
√

Pmaxlog(nr + nc)

θ16
r,minσK(P)

√
nc

),

‖e′j(Π̂c −ΠcPc)‖1 = O(v
√

nc) = O(

√
Pmaxθr,maxlog(nr + nc)

θr,minσK(P)
√

nr
).

By basic algebra, this corollary follows.

Appendix F. SVM-Cone Algorithm

For readers’ convenience, we briefly introduce the SVM-cone algorithm given in [26]
and provide another view that the SVM-cone algorithm exactly recovers Πr when the input
is U∗ (or U∗,2). Let S be a matrix whose rows have unit l2 norm, and S can be written as
S = HSC, where H ∈ Rn×K with nonnegative entries, no row of H is 0, and SC ∈ RK×m

corresponding to K rows of S (i.e., there exists an index set I with K entries such that
SC = S(I , :)). Inferring H from S is called the ideal cone problem, i.e., Problem 1 in [26].
The ideal cone problem can be solved by applying one-class SVM to the rows of S, and the
K rows of SC are the support vectors found by one-class SVM:

maximize b s.t. w′S(i, :) ≥ b( for i = 1, 2, . . . , n) and ‖w‖F ≤ 1. (A5)

The solution (w, b) for the ideal cone problem when (SCS′C)
−11 > 0 is given by

w = b−1 · S′C
(SCS′C)

−11
1′(SCS′C)

−11
, b =

1√
1′(SCS′C)

−11
. (A6)

For the empirical case, let Ŝ ∈ Rn×m be a matrix where all rows have unit l2 norm, infer
H from Ŝ with given K is called the empirical cone problem, i.e., Problem 2 in [26]. For
the empirical cone problem, one-class SVM is applied to all rows of Ŝ to obtain w and b’s
estimations ŵ and b̂. Then, apply the K-means algorithm to rows of Ŝ that are close to the
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hyperplane into K clusters, and an estimation of the index set I can be obtained from the K
clusters provided. Algorithm A3 below is the SVM-cone algorithm provided in [26].

Algorithm A3 SVM-cone [26]

Require: Ŝ ∈ Rn×m with rows having unit l2 norm, number of corners K, estimated
distance corners from hyperplane γ.

Ensure: The near-corner index set Î .
1: Run one-class SVM on Ŝ(i, :) to obtain ŵ and b̂.
2: Run K-means algorithm to the set {Ŝ(i, :)|Ŝ(i, :)ŵ ≤ b̂ + γ} that are close to the hyper-

plane into K clusters.
3: Pick one point from each cluster to obtain the near-corner set Î .

As suggested in [26], we can start γ = 0 and incrementally increase it until K distinct
clusters are found.

Now, turn to our DiMSC algorithm, and focus on estimating Ir with given U∗, U∗,2,
and K. By Lemmas 1 and A1, we know that U∗ and U∗,2 enjoy the ideal cone structure,
and Lemma 2 guarantees that one-class SVM can be applied to rows of U∗ and U∗,2. Set

w1 = b−1
1 U′∗(Ir, :) (U∗(Ir ,:)U′∗(Ir ,:))−11

1′(U∗(Ir ,:)U′∗(Ir ,:))−1 , b1 = 1√
1′(U∗(Ir ,:)U′∗(Ir ,:))−11

, and w2 = b−1
2 U′∗,2(Ir, :

)
(U∗,2(Ir ,:)U′∗,2(Ir ,:))−11
1′(U∗,2(Ir ,:)U′∗,2(Ir ,:))−1 , b2 = 1√

1′(U∗,2(Ir ,:)U′∗,2(Ir ,:))−11
. Now that w1 and b1 are solutions of

the one-class SVM in Equation (A5) by setting S = U∗, and w2 and b2 are solutions of
the one-class SVM in Equation (A5) by setting S = U∗,2 . Lemma A11 says that if row
node i is a pure node, we have U∗(i, :)w1 = b1, and this suggests that in the SVM-cone
algorithm, if the input matrix is U∗, by setting γ = 0, we can find all pure row nodes,
i.e., the set {U∗(i, :)|U∗(i, :)w1 = b1} contains all rows of U∗ respective to pure row nodes
while including mixed row nodes. By Lemma 1, these pure row nodes belong to the K
distinct row communities such that if row nodes i, ī are in the same row community, then
we have U∗(i, :) = U∗(ī, :), and this is the reason that we need to apply the K-means
algorithm on the set obtained in Step 2 in the SVM-cone algorithm to obtain the K distinct
row communities, and this is also the reason that we said the SVM-cone algorithm returns
the index set I exactly when the input is U∗. These conclusions also hold when we set the
input in the SVM-cone algorithm as U∗,2.

Lemma A10. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), for 1 ≤ i ≤ nr, U∗(i, :) can be written
as U∗(i, :) = r1(i)Φ1(i, :)U∗(Ir, :), where r1(i) ≥ 1. Meanwhile, r1(i) = 1 and Φ1(i, :) = e′k
if i is a pure node such that Πr(i, k) = 1; r1(i) > 1 and Φ1(i, :) 6= e′k if Πr(i, k) < 1 for
1 ≤ k ≤ K. Similarly, U∗,2(i, :) can be written as U∗,2(i, :) = r2(i)Φ2(i, :)U∗,2(Ir, :), where
r2(i) ≥ 1. Meanwhile, r2(i) = 1 and Φ2(i, :) = e′k if Πr(i, k) = 1; r2(i) > 1 and Φ2(i, :) 6= e′k if
Πr(i, k) < 1 for 1 ≤ k ≤ K.

Proof. Since U∗ = YU∗(Ir, :) by Lemma 1, for 1 ≤ i ≤ nr, we have

U∗(i, :) = Y(i, :)U∗(Ir, :) = Y(i, :)1
Y(i, :)

Y(i, :)1
U∗(Ir, :) = r1(i)Φ1(i, :)U∗(Ir, :),

where we set r1(i) = Y(i, :)1, Φ1(i, :) = Y(i,:)
Y(i,:)1 , and 1 is a K× 1 vector with all entries being

ones.
By the proof of Lemma 1, Y(i, :) = Πr(i,:)

‖M(i,:)‖F
Θ−1

r (Ir, Ir)N−1
U (Ir, Ir), where M =

ΠrΘ−1
r (Ir, Ir)U(Ir, :). For convenience, set T = Θ−1

r (Ir, Ir), Q = N−1
U (Ir, Ir), and

R = U(Ir, :) (such setting of T, Q, R is only for used for notation convenience for the
proof of Lemma A10).

On the one hand, if row node i is pure such that Πr(i, k) = 1 for certain k among
{1, 2, . . . , K} (i.e., Πr(i, :) = ek if Πr(i, k) = 1), we have M(i, :) = Πr(i, :)Θ−1

r (Ir, Ir)U(Ir, :
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) = T(k, k)R(k, :), and Πr(i, :)TQ = T(k, k)Q(k, :), which give that Y(i, :) = T(k,k)Q(k,:)
‖T(k,k)R(k,:)‖F

=
Q(k,:)
‖R(k,:)‖F

. Recall that the k-th diagonal entry of N−1
U (Ir, Ir) is ‖[U(Ir, :)](k, :)‖F, i.e., Q(k, :

)1 = ‖R(k, :)‖F, which gives that r1(i) = Y(i, :)1 = 1 and Φ1(i, :) = e′k when Πr(i, k) = 1.
On the other hand, if i is a mixed node, since ‖M(i, :)‖F = ‖Πr(i, :)Θ−1

r (Ir, Ir)U(Ir, :
)‖F = ‖∑K

k=1 Πr(i, k)T(k, k)R(k, :)‖F < ∑K
k=1 Πr(i, k)T(k, k)‖R(k, :)‖F

= ∑K
k=1 Πr(i, k)T(k, k)Q(k, k), combine it with Πr(i, :)TQ1 = ∑K

k=1 Πr(i, k)T(k, k)Q(k, k),
so r1(i) = Y(i, :)1 = Πr(i,:)TQ1

‖M(i,:)‖F
> 1. The lemma follows by a similar analysis for U∗,2.

Lemma A11. Under DiDCMMnr ,nc(K, P, Πr, Πc, Θr), for 1 ≤ i ≤ nr, if row node i is a pure
node such that Πr(i, k) = 1 for certain k, we have

U∗(i, :)w1 = b1 and U∗,2(i, :)w2 = b2,

Meanwhile, if row node i is a mixed node, the above equalities do not hold.

Proof. For the claim that U∗(i, :)w1 = b1 holds when i is pure, by Lemma A10, when i
is a pure node such that Πr(i, k) = 1, U∗(i, :) can be written as U∗(i, :) = e′kU∗(Ir, :), so
U∗(i, :)w1 = b1 holds surely. When i is a mixed node, by Lemma A10, r1(i) > 1 and
Φ1(i, :) 6= ek for any k = 1, 2, . . . , K; hence U∗(i, :) 6= e′kU∗(Ir, :) if i is mixed, which gives
the result. Follow a similar analysis, we obtain the results associated with U∗,2, and the
lemma follows.
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