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Abstract: Hellinger information as a local characteristic of parametric distribution families was first
introduced in 2011. It is related to the much older concept of the Hellinger distance between two points
in a parametric set. Under certain regularity conditions, the local behavior of the Hellinger distance
is closely connected to Fisher information and the geometry of Riemann manifolds. Nonregular
distributions (non-differentiable distribution densities, undefined Fisher information or denisities
with support depending on the parameter), including uniform, require using analogues or extensions
of Fisher information. Hellinger information may serve to construct information inequalities of the
Cramer–Rao type, extending the lower bounds of the Bayes risk to the nonregular case. A construction
of non-informative priors based on Hellinger information was also suggested by the author in 2011.
Hellinger priors extend the Jeffreys rule to nonregular cases. For many examples, they are identical
or close to the reference priors or probability matching priors. Most of the paper was dedicated to
the one-dimensional case, but the matrix definition of Hellinger information was also introduced
for higher dimensions. Conditions of existence and the nonnegative definite property of Hellinger
information matrix were not discussed. Hellinger information for the vector parameter was applied
by Yin et al. to problems of optimal experimental design. A special class of parametric problems was
considered, requiring the directional definition of Hellinger information, but not a full construction of
Hellinger information matrix. In the present paper, a general definition, the existence and nonnegative
definite property of Hellinger information matrix is considered for nonregular settings.

Keywords: Hellinger information; Hellinger priors; Bayes risk

1. Introduction

Information geometry plays an important role in parametrical statistical analysis.
Fisher information is the most common information measure that is instrumental in the
construction of lower bounds for quadratic risk (information inequalities of Cramer–Rao
type), optimal experimental designs (E-optimality) and noninformative priors in Bayesian
analysis (Jeffreys prior). These applications of Fisher information require certain regularity
conditions on the distributions of the parametric family, which include the existence and
integrability of the partial derivatives of the distribution density function with respect
to the components of vector parameter and independence of the density support on the
parameter. If these regularity conditions are not satisfied, Cramer–Rao lower bounds might
be violated, and Jeffreys prior might not be defined.

There exist a number of ways to define information quantities (for the scalar parameter
case) and matrices (for the vector parameter case) in the nonregular cases when Fisher
information might not exist. One of such suggestions is the Wasserstein information
matrix [1], which has been recently applied to the construction of objective priors [2]. The
Wasserstein matrix does not require the differentiablity of the distribution density function,
but it cannot be extended to the case of discontinuous densities. This latter case requires a
more general definition of information.

Our approach is based on analyzing the local behavior of parametric sets using finite
differences of pdf values at two adjacent points instead of derivatives at a point, which al-
lows us to include differentiable densities as a special case but also to treat non-differentiable
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densities including jumps and other types of nonregular behavior (for classification of non-
regularities, see [3]). A logical approach is to use (in lieu of Fisher information) the Hellinger
information closely related to the definition of Hellinger distance between adjacent points
of the parametric set.

Hellinger information for the case of scalar parameter was first defined in [4] and sug-
gested for the construction of noninformative Hellinger priors. Section 2 is dedicated to the
revision of this definition and the relationship of Hellinger information to the information
inequalities for the scalar parameter proven in [5,6]. It contains some examples of noninfor-
mative Hellinger priors comparing the priors obtained in [4] with more recent results.

Lin et al. [7] extended the definition of Hellinger information to a special multipa-
rameter case, where all components of a parameter expose the same type of nonregularity.
This is effective in the resolution of some optimization problems in experimental design.
However, the most interesting patterns of local behavior of Hellinger distance bringing
about differences in the behavior of matrix lower bounds of the quadratic risk and multidi-
mensional noninformative priors are observed when the parametric distribution family has
different orders of nonregularity [3] for different components of the vector parameter. Thus,
the main challenge in the construction of a Hellinger information matrix in the general
case consists in the necessity to consider different magnitudes of increments in different
directions of the vector parametric space.

A general definition of the Hellinger information matrix was attempted in [6] as
related to information inequalities and in [4] as related to noninformative priors. Important
questions were left out, such as the conditions of Hellinger information matrix being
positive definite and the existence of non-trivial matrix lower bounds for the quadratic
risk in case of the vector parameter. These questions are addressed in Section 3 of the
paper. The main results are formulated, and several new examples are considered. General
conclusions and possible future directions of study are discussed in Section 4.

2. Hellinger Information for Scalar Parameter

In this section, we address the case of probability measures parametrized by a single
parameter. We provide necessary definitions of information measures along with the
discussion of their properties, including the new definition of Hellinger information. Then,
we consider the applications of Hellinger information to the information inequalities
of the Cramér–Frechet–Rao type, the construction of objective priors, and problems of
optimal design.

Definition (2) is modified from [8]. Inequality (5) was obtained in [5]. Examples in
Section 2.3 are modified from [4].

2.1. Definitions

A family of probability measures {Pθ , θ ∈ Θ ⊂ R} is defined on a measurable space
(X,B) so that all the measures from the family are absolutely continuous with respect
to some σ-finite measure λ on B. The square of the Hellinger distance between any two
parameter values can be defined in terms of densities p(x; θ) = dPθ

dλ as

h2(θ1, θ2) =
∫
X

(√
p(x; θ1)−

√
p(x; θ2)

)2
λ(dx). (1)

This definition of the Hellinger distance (also known as Hellinger–Bhattacharyya
distance) in its modern form was given in [9]. We use this definition to construct a new
information measure. If for almost all θ from Θ (with regard to measure λ) there exists an
α ∈ (0, 2] (index of regularity) such that

lim
ε→0

h2/α(θ, θ + ε)

|ε|2 = J(θ), (2)
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we define Hellinger information at a point θ as J(θ). The index of regularity is related
to the local behavior of the density p(x; θ). Using the classification of [3], 1 < α < 2
corresponds to singularities of the first and the second type, α = 1 to densities with jumps,
and 0 < α < 1 to singularities of the third type.

Notice that in the regular situations classified in [3] (p(x; θ) is twice continuously
differentiable with respect to θ for almost all x ∈ X with respect to λ, the density support
{x : p(x; θ) > 0} does not depend on parameter θ, Fisher information

I(θ) = Eθ

( d
dθ

log p(x; θ)
)2

=
∫
X

( d
dθ

p(x; θ)
)2

/p(x; θ)λ(dx) (3)

is continuous, strictly positive and finite for almost all θ from Θ), it is true that α =
2, J(θ) = 1

4 I(θ). Under the regularity conditions above, the score function d
dθ log p(x; θ)

has mean zero and Fisher information as variance. This helps to establish the connection
of Fisher information to the limiting distribution of maximum likelihood estimators, its
additivity with respect to i.i.d. sample observations, and its role in the lower bounds of risk
(information inequalities).

Wasserstein information [1] can be defined for the scalar parameter through the c.d.f.
F(x; θ) =

∫ x
−∞ p(x; θ)dθ as

W(θ) =
∫
X

( d
dθ

F(x; θ)/p(x; θ)
)2

λ(dx),

which does not require differentiablity of the density function p(x; θ). That opens new
possibilities for the construction of an objective prior in the case of non-differentiable
densities, see [2].

However, we are interested in even less regular situations (including uniform den-
sities with support depending on parameter) for which neither Fisher information I(θ)
nor Wasserstein information W(θ) can be helpful, while Hellinger information J(θ) may
function as their substitute.

2.2. Information Inequalities

We define the quadratic Bayes risk for an estimator θ∗ = θ∗(X(n)) constructed by an
independent identically distributed sample X(n) = (X1, . . . , Xn) of size n from the model

considered above with p(x(n); θ) =
dP(n)

θ
dλn and prior π(θ) as

R(θ∗) =
∫
Xn

∫
Θ

(
θ∗(x(n))− θ

)2
p(x(n); θ)π(θ)λn(dx)dθ.

Let us consider an integral version of the classical Cramér–Frechet–Rao inequality, which
under certain regularity conditions leads to the following asymptotic lower bound for the
Bayes risk in terms of Fisher information:

inf
θ∗

R(θ∗) ≥ n−1
∫

Θ
I−1(θ)π(θ)dθ + O(n−2). (4)

This lower bound, which can be proven to be tight, was first obtained by [10], also
in [11,12] under slightly different regularity assumptions. This bound can be extended to
the nonregular case, when Fisher information may not exist. One of these extensions is
Hellinger information inequality, providing an asymptotic lower bound

inf
θ∗

R(θ∗) ≥ n−2/αC(α)
∫

Θ
J−1(θ)π(θ)dθ + O(n−2/α) (5)

obtained in [6] under the assumptions of Hellinger information J(θ) being strictly positive,
almost surely continuous, bounded on any compact subset of Θ, and satisfying condition
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∫
Θ J−1(θ)π(θ)dθ < ∞, where Θ is an open subset of real numbers and the constant C(α) is

related to technical details of the proof and is not necessarily tight.
The key identity establishing the role of J(θ) in the case of i.i.d. samples x(n) =

(x1, . . . , xn)

h2
n(θ1, θ2) =

∫
X

(√
p(x(n); θ1)−

√
p(x(n); θ2)

)2
λn(dx) = 2

[
1−

(
1− 1

2
h2(θ1, θ2)

)n]
(6)

easily follows from the definition and independence of {Xi}. Similar to the additivity of
Fisher information, it allows for a transition from a single observation to a sample.

2.3. Hellinger Priors

The three most popular ways to obtain a non-informative prior might be as follows:

• The Jeffreys rule π(θ) ∝
√

I(θ) [13],
• Probability matching priors [14,15],
• Reference priors [16,17].

For many regular parameter families, probability matching and reference priors both
satisfy the Jeffreys rule. However, it is not necessary in case of multi-parametric families
and the loss of regularity. Let us focus on the nonregular case, when Fisher information
may not be defined. Most comprehensive results on reference priors in the nonregular case
were obtained in [18].

Define Hellinger prior for the parametric set as in [4,8]:

πH(θ) ∝
√

J(θ). (7)

Hellinger priors will often coincide with well-known priors obtained by the ap-
proaches described above. However, there are some distinctions. A special role might
be played by Hellinger priors in nonregular cases. We provide two simple examples of
densities with support depending on the parameter.

Example 1. Uniform X ∼ Unif(θ−1, θ), θ ∈ (1, ∞).

α = 1, πH(θ) ∝ J(θ) =
θ2 + 1

θ(θ2 − 1)
.

The same prior can be constructed as the probability matching prior g or the reference prior [18].

Example 2. Uniform X ∼ Unif(θ, θ2), θ ∈ (1, ∞).

α = 1, πH(θ) ∝ J(θ) =
2θ + 1

θ(θ − 1)
. (8)

This prior is different from the reference prior obtained in [18] by rather technical
calculations, maximizing the Kullback–Leibler divergence from the prior to the posterior:

πR1(θ) ∝
2θ − 1

θ(θ − 1)
exp

{
ψ
( 2θ

2θ − 1

)}
, (9)

where ψ(z) = d
dz log Γ(z), z > 0 is the polygamma function order 1. Tri Minh Le [19] used

a similar approach, maximizing Hellinger distance between the prior and the posterior,
and obtained

πR2(θ) ∝
(2θ + 1)2(2θ − 1)5

θ3(θ − 1)
[
20
√

π(2θ − 1)2 − 2(2θ + 1)2
]2 . (10)
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All three priors in (8), (9), and (10) have distinct functional forms. However, they are very
close after appropriate re-normalization on the entire domain, which can be demonstrated
graphically and numerically. See Figure 1 and the following comment.

Figure 1. Three priors for Example 2: πH(θ), πR1(θ), πR2(θ).

For instance, the ratio πH(θ)/πR2(θ) monotonically increases for θ from 1 to ∞ so that
0.996 < πH(θ)/πR2(θ) < 1.083.

2.4. Optimal Design

A polynomial model of the experimental design may be presented as in [20],

yi =
q

∑
k=0

θkxk
i + εi, i = 1, . . . , n,

where xi are scalars, θ is the unknown vector parameter of interest, and errors εi are
non-negative i.i.d variables with density p0(y; α) ∼ αc(α)yα−1 (e.g., Weibull or Gamma).
The space of balanced designs is defined as

Ξ = {ξ = (wi, xi), i = 1, . . . , n :
n

∑
i=1

wixi = 0, xi ∈ [−A, A]},

and there exist several definitions of optimal design. Lin et al. [7] suggest using criterion

ξopt = arg max
ξ

Jξ(θ), Jξ(θ) = inf
u

Jξ(θ, u)

where Jξ(θ, u) is Hellinger information in the direction u ∈ Rq+1, defined as

lim
ε→0

h(θ, θ + εu)
|ε|α = Jξ(θ, u), (11)

which is similar to the definition given in Section 1, but notice the difference with (2) in the
treatment of powers: εα versus ε2 in the denominator. Notice also that index of regularity α
is assumed to be the same for all components of the vector parameter.

3. Hellinger Information Matrix for Vector Parameter

In this section, we concentrate on the multivariate parameter case allowing for dif-
ferent degrees of regularity for different components of the vector parameter. We define
the Hellinger information matrix, determine our understanding of matrix information
inequalities, formulate main results establishing lower bounds for the Bayes risk in terms
of Hellinger information matrix, and provide examples of Hellinger priors illustrating the
conditions of Theorems 1 and 2.
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Proofs of the main results use the approach developed in [5]; Example 3 was previously
mentioned in [8].

3.1. Definitions

Extending definitions of Section 1 to the vector case Θ ⊂ Rm, m = 1, 2, . . . , we first
introduce, as in [6], the Hellinger distance matrix H with elements

Hij(θ, U) =
∫
X

(√
p(x; θ)−

√
p(x; θ + ui)

)(√
p(x; θ)−

√
p(x; θ + uj)

)
λ(dx) (12)

where increments ui are columns of an m×m matrix U. Define also vectors α = (α1, . . . , αm)′

(index of regularity with components 0 < αi ≤ 2 ) and δ = (δ1, . . . , δm)′ with components
δi = ε2/αi , ∆ = Diag(δ) such that for all i = 1, . . . , m there exist finite non-degenerate limits

0 < lim
ε→0
|ε|−2H2/αi

ii (θ, ∆) < ∞

Then, the Hellinger information matrix will be defined by its components

Jij(θ) = lim
ε→0
|ε|−2H

1/αi+1/αj
ij (θ, ∆). (13)

Notice that components of the vector index of regularity α can be different, and there-
fore, components of the vector of increments δ can have different orders of magnitude with
respect to ε. As a result, while the elements of matrix H(θ, ∆) may expose different local
behavior depending on the components of α, the elements of matrix J(θ) are all finite.

3.2. Information Inequalities

Define the matrix of Bayes risk for an i.i.d. sample x(n) = (x1, . . . , xn) with p(x(n); θ) =
dP(n)

θ
dλn as

R(θ∗) =
∫
X(n)

∫
Θ

(
θ∗
(

x(n)
)
− θ
)(

θ∗
(

x(n)
)
− θ
)′

p(x(n); θ)π(θ)λn(dx)dθ (14)

and matrix ordering A(n) � B(n) as asymptotic positive semi-definite property

inf
|v|=1

m

∑
i=1

m

∑
j=1

(A(n)− B(n))ijvivj ≥ −δn, lim
n→∞

δn||A(n)− B(n)||−1 = 0, δn > 0. (15)

Let also

E
(

g(X(n), θ)
)
=
∫
X(n)

∫
Θ

g(x(n), θ)p(x(n); θ)π(θ)λn(dx)dθ

denote the expectation over (X(n), Θ). The following results formulate conditions under
which the lower bounds for risk (14) in the sense of (15) are obtained in terms of Hellinger
information and the index of regularity.

3.3. Main Results

Theorem 1. Let α = (2, . . . , 2, αm)′ , αm ∈ [1, 2),

Jij(θ) = Iij(θ), i, j = 1, . . . , m− 1; Jim = 0, Jmm 6= 0.


0

I(θ) . . .
0

0 . . . 0 Jmm(θ)


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Then, if EI−1(θ) < ∞, EJ−1
mm(θ) < ∞, it is true that

1. J(θ) > 0
2. infθ∗ R(θ∗) � C1(αm)Diag

(
n−2/αm

)
EJ−1(θ)

Theorem 2. Let α1 = · · · = αm = 1,

Jij(θ) = 0, i 6= j; Jii 6= 0.


J11(θ) 0 . . . 0

0 J22(θ) 0 . . .
. . . 0 . . . 0
0 . . . 0 Jmm(θ)


Then, if EJ−1

ii (θ) < ∞, it is true that

1. J(θ) > 0
2. infθ∗ R(θ∗) � C2n−2EJ−1(θ)

Proofs of Theorems 1 and 2 are technically similar to the proof of the main results of [5],
although the definition of Hellinger information was not explicitly provided in that paper.

3.4. Hellinger Priors

If J > 0, as in the conditions of Theorems 1 and 2, the vector Hellinger prior can be
defined as

πH(θ) ∝
√

det J(θ).

In the case of all components αi ≡ 2, Hellinger information reduces to the Fisher
information matrix, and our approach leads to the Jeffreys prior [12].

Example 3. Truncated Weibull distribution (see Theorem 1):

p(x; β, φ, τ) = βφβxβ−1 exp{−φβ(xβ − τβ)}, x ∈ [τ, ∞)

with two parameters of interest: regular pseudo-scale φ > 0 and nonregular threshold τ > 0.
Assume β > 2 fixed. See Figure 2.

Figure 2. Truncated Weibull p(x; 5, 0.1, 0); p(x; 5, 0.11, 0); p(x; 5, 0.1, 5).

Using notation θ = (φ, τ), obtain α1 = 2, α2 = 1, δ1 = ε, δ2 = ε2 and

H(θ, ∆) =
(

δ1φ−2 o(δ1δ2)
o(δ1δ2) δ2φ2βτ2β−2

)
.

After limit transition in δ,
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J(θ) =
(

φ−2 0
0 φ2βτ2β−2

)
.

Therefore, πH(θ) ∝ φβ−1τβ−1, which is also the reference prior for the vector parame-
ter [21].

Example 4. Circular beta distribution on a disc (see Theorem 1):

p(r, w; β1, β2, ρ) =
r

πρ2

( w
2π

)β1−1(
1− w

2π

)β1−1

with three parameters of interest: regular β1, β2 > 1 and nonregular radius ρ > 0. See Figure 3.

Figure 3. Truncated beta on a disc.

J(θ) =

 ψ(β1)− ψ(β1 + β2) −ψ(β1 + β2) 0
−ψ(β1 + β2) ψ(β1)− ψ(β1 + β2) 0

0 0 4ρ−2

,

where ψ(z) is the polygamma function of order 1.

Therefore,πH(θ) ∝ ρ−1
√

ψ(β1)ψ(β2)− ψ(β1 + β2)[ψ(β1) + ψ(β2)]

Example 5. Uniform on a rectangle (see Theorem 2): X ∼ Unif(θ, θ2), θ ∈ (1, ∞) with two
parameters of interest: regular pseudo-scale φ > 0 and nonregular threshold τ > 0.

Using notation θ = (θ1, θ2), obtain α1 = α2 = 1, δ = δ1 = δ2 = ε2 and

H(θ, ∆) =
(

δθ−2
1 δ2(θ1θ2)

−1

δ2(θ1θ2)
−1 δθ−2

2

)
.

After the limit transition,

J(θ) =
(

θ−2
1 0
0 θ−2

2

)
.

Therefore, πH(θ) ∝ θ−1
1 θ−1

2 , also the reference prior.

Example 6. Uniform with two moving boundaries X ∼ Unif(θ1, θ1 + θ2), θ2 ∈ (0, ∞) (neither
Theorem 1 nor Theorem 2 applies): using notation θ = (θ1, θ2), obtain α1 = α2 = 1, δ = δ1 =
δ2 = ε2 and
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H(θ, ∆) =
(

2δθ−2
2 δθ−2

2
δθ−2

2 δθ−2
2

)
.

After limit transition,

J(θ) =
(

2θ−2
2 θ−2

2
θ−2

2 θ−2
2

)
.

Therefore, πH(θ) ∝ θ−2
2 , also the reference prior.

4. Discussion

A Hellinger information matrix can be defined in a reasonable way to serve as a
substitute for the Fisher information matrix in multivariate nonregular cases. It can be used
as a technically simple tool for the elicitation of non-informative priors.

Properties of the Hellinger distance (symmetry, etc.) grant certain advantages vs
analogous constructions based on Kullback–Leibler divergence.

Some interesting nonregularities are not covered by the conditions of Theorems 1 and
2 (see Example 6). More general results related to a positive definite property of J(θ) would
be interesting.

It is tempting to obtain Hellinger priors as the solution of a particular optimization
problem (similar to the reference priors).
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