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Abstract: This study proposes a decomposed broad learning model to improve the forecasting ac-
curacy for tourism arrivals on Hainan Island in China. With decomposed broad learning, we pre-
dicted monthly tourist arrivals from 12 countries to Hainan Island. We compared the actual tourist 
arrivals to Hainan from the US with the predicted tourist arrivals using three models (FEWT-BL: 
fuzzy entropy empirical wavelet transform-based broad learning; BL: broad Learning; BPNN: back 
propagation neural network). The results indicated that US foreigners had the most arrivals in 12 
countries, and FEWT-BL had the best performance in forecasting tourism arrivals. In conclusion, we 
establish a unique model for accurate tourism forecasting that can facilitate decision-making in tour-
ism management, especially at turning points in time. 

Keywords: tourism arrivals; tourism forecasting; fuzzy entropy; empirical wavelet transform;  
broad learning  
 

1. Introduction 
Hainan Island is connected with the “Pan-Pearl River Delta”, Hong Kong, Macao, 

and Taiwan in the north, southeast Asian countries to the south, and Vietnam to the west 
(The People’s Government of Hainan Province [TPGoHP], 2012). Hainan Island was ap-
proved to set up the China (Hainan) Pilot Free Trade Zone by the Chinese government in 
2018 which covers the whole island of Hainan. The overall plan of Hainan Province re-
quires that the development of tourism, modern service industry, and high-tech indus-
tries take the lead, and the industrial layout of Hainan Island should be scientifically ar-
ranged. Therefore, it is very important to develop tourism on Hainan Island. Additionally, 
Hainan Island desires the establishment of an international tourism consumption center 
that can become an important engine of global economic growth. The international tour-
ism consumption center shows much consumption, including a consumption environ-
ment and a world-class tourist attractions tourism complex, with a distribution center for 
both tourists in the locality and those abroad [1]. Artificial intelligence is widely employed 
in the development of high-quality tourism products and the growth of the tourism in-
dustry [2]. Accurate forecasting of tourist demand is imperative for academia and the 
tourism industries. In particular, accurate tourism arrival forecasting in Hainan Island can 
guide the administrative department in formulating policy. How to improve the forecast-
ing performance when building the Hainan international tourism consumption center ef-
ficiently remains a challenge. Many studies [3,4] have declared that online search engine 
data could improve the tourism demands of forecasting performance. Zhang et al. [5] 
used an approach involving decomposition combined with prediction to experiment on a 
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sample of tourists, mainly from Hong Kong. The modified method tapped into the good 
performance of the variational model decomposition in visitor prediction. Li et al. [6] de-
veloped a deep learning (DL) model with temporal feature learning capabilities for tour-
ism volume data prediction by combining dimensionality reduction techniques; this pro-
duced a performance better than that of methods against which it was compared. Existing 
studies [4,7–9] have primarily established numerous techniques to improve the forecast-
ing accuracy for tourism demand. Accuracy in tourism forecasting is critical for enabling 
administrative management to make appropriate decisions. In recent decades, decompo-
sition ideas [10] have achieved better performance in the field of time series prediction. 
The signal decomposition methods represented by EWT [11] can fully exploit the sub-
modular variables in the signal, thus providing a better pre-processing method for deep 
learning as a predictor for prediction. However, DL models require a large number of 
parameters and deep network structures, which invariably increase the computational 
complexity of the models [12]. Therefore, a new research idea has been to try to develop 
models that can achieve comparability with DL models without deep network structures 
[13,14].  

At present, the development of the tourism business in Hainan, whether considered 
in proportion or considered in total, is relatively poor. Hainan urgently needs to break 
into the tourism business and build an international hub for tourism with high standards. 
Thus, we investigated a methodological approach by fusing decomposition and low-com-
plexity DL networks and the broad learning (BL) system [15] for Hainan Island tourist 
forecasting. We combined artificial intelligence (AI) and tourism arrivals data for Hainan 
Island to analyze the Hainan Island arrivals of different foreign countries and provide 
more accurate forecasting for tourism. 

The purpose of this study was to forecast the tourism arrivals of different foreign 
countries with an artificial intelligence (AI) model. The main aim was to compare and 
analyze the feasibility and effectiveness of this model developed based on decomposition 
and a non-deep deep learning (BL) framework. Experiments were conducted with a fu-
sion-entropy EWT approach with the advantage of a typical neural network approach 
(BPNN) and BL approach for comparison. The main conclusion was that US foreigners 
had the most arrivals in 12 countries, and the FEWT-BL model performed the best in fore-
casting the tourist arrivals to Hainan from 12 countries. This should be helpful in identi-
fying future directions of research on tourism arrival forecasting. Hence, this study pro-
vides advanced insights for researchers conducting future studies using AI models to 
forecast tourism demand. 

2. Methodology 
A total of 2592 observation data on Hainan Island arrivals were collected between 

January 2002 and December 2019 from the government’s official website. We compared 
the actual tourist arrivals from the US to Hainan with the predicted tourist arrivals using 
three models (FEWT-BL: fuzzy entropy empirical wavelet transform-based broad learn-
ing; BL: broad learning; BPNN: back propagation neural network). Broad learning fore-
casting models were implemented to predict the tourist arrivals to Hainan. The raw data 
were normalized and screened before analysis. Then, we applied an empirical wavelet 
transform (EWT) method to decompose the normalized tourist arrivals data. FEWT-BL is 
an improved performance method of EWT. This method aims to obtain R-square (R2), the 
root means square error (RMSE), individual intrinsic mode functions (IMFs), and mean 
absolute percentage error (MAPE). FEWT-BL was developed through the following steps. 

2.1. Empirical Wavelet Transform 
Jerome Gilles [11] first introduced EWT, which is defined as a set of bandpass filters 

that are selected through the spectral characteristics signal. To determine the frequency 
ranges of the bandpass filters, the Fourier spectrum signal is segmented. From the litera-
ture [16], a finite number of intrinsic modes for a time series can be effectively identified 
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and extracted by the EWT. The EWT depends on robust pre-processing for peak detection 
and shows spectrum segmentation and establishes a related wavelet filter bank. The EWT 
algorithm steps include the signal extending, the Fourier transform executing, the bound-
aries extracting, the filter bank building and the sub-bands extracting. 

The EWT computation can be shown as following [17]: 
(1) The Fourier spectrum of the original precipitation series is segmented into N con-

tinuous segments. The limits are defined as nω , where 0 =0ω  and =0nω , respectively. 

Each segment is defined as [ ]1,n n nω ω−Λ = . For each nω , a transition phase nT  with the 

width 2 nτ  is utilized. The range γ can be shown as: 

+1

+1

min n n
n

n n
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ω ω
 −<  +   

(1)

(2) A series of empirical wavelets based on the Littlewood–Paley and Meyer’s wave-

lets is established. For 0n∀ >  , the empirical scaling function and empirical wavelets can 
be shown by Equations (2) and (3), respectively: 
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The function β (x) is defined as: 

( ) ( )4 2 335 84 70 20x x x x xβ = − + −   
(4)

The inner products with the empirical scaling function achieved the approximation 

coefficients ( )0,fW tε

 as follows: 

( ) ( ) ( )1 10, ,fW t f f t dε φ τ φ τ τ= = −〈 〉   
(5)

The inner products with the empirical wavelets achieved the detailed coefficients 
( ),fW n tε

 as follows: 

( ) ( ) ( ), ,f n nW n t f f t dε ψ τ ψ τ τ= = −〈 〉
 

(6)

(3) The reconstruction series and empirical modes are shown as follows: 

( ) ( ) ( ) ( ) ( )1
1

0, ,
N

f f n
n
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(7)
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( ) ( ) ( )0 1,fx t W k t tε φ∗=  (8)

( ) ( ) ( ),k f kx t W k t tε φ∗=  (9)

2.2. Fuzzy Entropy 
Entropy is a parameter in statistical thermodynamics that measures the degree of 

chaos in a system to represent the state of matter [18,19]. The concepts of information en-
tropy, sample entropy, and approximate entropy have been successively proposed. Fuzzy 
entropy is much more efficient and it can improve the sample entropy algorithm that is 
proposed in the literature [20]. The fuzzy entropy algorithm selects the exponential func-
tion as the fuzzy function to measure the similarity between two variables and has supe-
rior signal measurement properties compared to approximate entropy and sample en-
tropy. They include relative consistency, noise resistance, and better continuity  [21]. 
Therefore, this study combined fuzzy entropy with the EWT technique to extract signal 
features, and then construct feature vectors. First, the sequences are defined as follows: 𝑋(𝑖) = 𝑥(𝑖), 𝑥(𝑖 + 1), … 𝑥(𝑖 + 𝑚 − 1) − 𝑥 (𝑖), 𝑥(𝑖) = 1𝑚 𝑥(𝑖 + 𝑘) 
where 𝑥 (𝑖) stands for m consecutive 𝑥(𝑖). 𝑑  is defined as the distance between 𝑋(𝑖) and 𝑋(𝑗), and 𝑑  is the maximum ab-
solute value of the difference between the two corresponding elements; that is: d = max∈( , ) |u(i + k) − u (i) − (u(j + k) − u (j)|  

where I, j = 1, 2, …, N − m, i ≠ j. 
The fuzzy similarity is defined by the fuzzy function; that is: D = e ( / )  

where n and r represent the gradient and width of the boundary, respectively. 
Similarly, the function ϕ is defined as: φ( , ) = 1N − m ( 1N − m − 1 D, ) 

Then, 1 is added to the dimension and is turned into m+1; the above steps are repeated to 
obtain φ( , ) . 

The fuzzy entropy (Fuzzy En) of the signal sequence is: FuzzyEn(m, n, r) = lnφ( , ) − φ( , )  

In fuzzy entropy, r represents the width of the fuzzy function boundary; too large an r 
will result in the loss of much statistical information, and too small an r results in a failure 
to estimate the statistical properties as well and increases sensitivity to the resulting noise. 
Normally, r is taken to be between 0.1 and 0.25 SD(x) (where SD(x) is the standard devia-
tion of the series). For the choice of n, which determines the gradient of the similarity 
tolerance bound, the larger the n, the larger the gradient. n plays a weighting role in the 
calculation of similarity between fuzzy entropy vectors. To capture as much detailed in-
formation as possible, one is generally advised to use smaller integer values. Thus, this 
study selected m = 2, r = 0.15 × SD, and n = 2. 

2.3. Broad Learning System 
The broad learning system (BLS) broadly extends the network [22]. Considering the 

general supervised learning task, the training data set is given as 
∧

{ }N D N C(X,Y ) | X ,Y× ×∈ ∈  
from C classes, where each row in X and Y denotes the data point xi = (xi1, xi2, …, xiD) and 
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target vector yi = (yi1, yi2, …, yiC), respectively [23]. In BLS, a random mapping generation 
with n nodes can be defined as follows: 

( )i i ei ei wZ = f XW + , i = 1,2,...,Nβ  (10)

where the weights Wet and the bias term eiβ  are randomly determined with the proper 

dimensions. The whole feature nodes can be defined as [ ]n
1 nZ Z ,...,Z≡ , and the mth group 

of enhancement nodes can be computed as: 

( )n n
hm hmZ Z W +bξ≡  (11)

where ξ  is a nonlinear activation function, and the outputs of the enhancement layer 

can be denoted by [ ]m
1 2 mH H ,H ,...,H . 

Overall, the formula of the broad learning model can be deduced as follows: 

[ | ] [ | ]n m
1 2 n 1 2 mY Z ,Z ,...,Z H ,H ,...,H W Z H W AW

∧

= = =  
(12)

where [ ]n mZA ,H= , and W is the output weight connection of feature nodes and en-
hancement nodes to the output layer. W could be obtained by minimizing the objective: 

2 2
BLSarg min =|| || + || ||

W
Y - AW WλΓ

 (13)

where the first term denotes the training errors, and the second term is a regularization 
term and λ  is a regularization parameter to balance the influence of error terms and the 
model complexity. According to a simple derivative operation on W, we can obtain: 

T 1 T( + )W A A I A Yλ −=  (14)

The BLS output weight W is always obtained as the matrix 
T( + )A A Iλ . 

This work combined the role of fuzzy entropy in signal decomposition. First, the cor-
responding components were obtained by the EWT decomposition of tourism data. Then, 
the energy value of each component was calculated using fuzzy entropy, and the infor-
mation entropy of each component was calculated by taking the percentage of each com-
ponent in the total amount as the probability density function to obtain updated estimates. 
Finally, the BL model was used for prediction. 

3. Results and Discussion 
3.1. Model Performance Evaluation 

Two error measure indexes were utilized in the forecasting experiments to assess the 
prediction performance among the involved models. The indexes were the mean absolute 
percentage error (MAPE), and the root means square error (RMSE). 

The indexes were shown as: 

1

( ) ( )1MAPE= 100%
N ( )

N
p o

i o

q i q i
q i=

−
×

 
(15)

2

1

1RMSE= ( ( ) ( ))
N

N

p o
i

q i q i
=

−
 

(16)
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3.2. Results of Decomposition 
We collected data on tourist arrivals to Hainan province from 12 countries, as shown 

in the legend of Figure 1 to study the predictive ability and improved the accuracy of 
tourism arrivals forecasting. Figure 1 shows the number of tourists from different coun-
tries/regions traveling to Hainan province by month, where the number of US foreign 
arrivals is the highest. All data information was collected from the Hainan Province Tour-
ism Board. The abbreviations AU, US, CA, RU, CH, IT, DE, FR, GB, MY, KR, and JP are 
used to represent the 12 counties. 

 
Figure 1. The number of foreign tourists received by tourist hotels in Hainan province (by coun-
try/region). Note: AU: Australia, US: United States of America, CA: Canada, RU: Russia, CH: Swit-
zerland, IT: Italy, DE: Germany, FR: France, GB: Great Britain, MY: Malaysia, KR: Korea, JP: Japan. 

We applied the empirical wavelet transforms (EWT) to decompose the original data 
set into individual components. The intrinsic mode function (IMF) is the modulated func-
tion which is amplitude-frequency. Five IMFs and one residual item were analyzed by 
MATLAB. The results declared various representations of each tourist arrivals compo-
nent, as shown in Figure 2. First, from the perspective of component semantic interpreta-
tion, the main difference between these components is the frequency of occurrence. All 
the components of the tourist arrivals data set present distinct frequencies. IMF 5 has the 
highest frequency, whereas IMF 1 has the lowest. The more frequent the IMF, inevitably, 
the greater the amounts of information and noise. The individual tourist arrivals compo-
nents show the cycles, trends, and seasonal patterns. Similarly, IMF 1 and IMF 2 could be 
thought of as secondary cycles of data, during which there are other distinct peaks and 
valleys. IMF 4 is thought of as modest fluctuations, which contain less information. On 
the contrary, the residual is of certainty long-term behavior, which can suggest the trend 
of the tourism market in the long-term. Huang et al. [24] also believed that the residual 
component could determine long-term behavior.  

As indicated in Figure 3, we used the average period formula to calculate the average 
period IMF 3 displayed in all the tourist arrivals data, which was about 12 months. There-
fore, IMF 3 was thought of as the main tourist arrivals cycle, which declared the main 
valleys and peaks. 
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Figure 2. Components of US tourists received by tourist hotels in Hainan province. The components 
were decomposed and preprocessed by EWT. The five components from top to bottom are IMF 1 to 
IMF 5. IMF, intrinsic mode function; EWT, empirical wavelet transforms. 

 
Figure 3. The predictive performance of four models for the actual tourist arrivals to Hainan from 
the US country. 

3.3. Analysis of Forecasting Results 
After the decomposition of the Hainan province tourist arrivals data, the decom-

posed components were predicted, respectively, and this comprehensive prediction was 
then combined to achieve the result. In our experiment, all data sets were grouped into 
the training set and prediction set, with the first 13 years of data from 18 years as the 
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training set and the last 5 years of data as the prediction set. Additionally, a rolling method 
was used, and the step size was set to 1. 

For example, Figure 4 depicts the reception of inbound tourists by cities and counties 
in Hainan province; Sanya city has the optimal reception condition with foreigners from 
various countries. Therefore, the optimal reception condition of Sanya city can stimulate 
its tourism economy and promote its international development. Figure 4 shows the pre-
dictive ability of the FEWT-BL method compared to the non-decomposed method and 
back propagation neural network (BPNN) for tourist arrivals to Hainan, using tourists 
from the US as an example. We can see from Figure 4 that the yellow line indicates the 
true data, and the red, green, and blue lines represent the results of the three compared 
methods. It is easy to identify that the red line (FEWT-BL) is closer to the yellow line 
(TRUE) than the green (BL) and the blue line (BPNN), which means that the proposed 
FEWT-BL method obtained the best performance compared to the other methods. These 
peak turning points show the direct change in Hainan Island tourist arrivals. For example, 
from May 2018 to September 2018 and from September 2018 to January 2019, Hainan Is-
land tourist arrivals from the United States (US) showed a downturn and uptrend, includ-
ing the valley and peak point. From May 2019 to September 2019, tourist arrivals from the 
US experienced a downtrend, including the turning point. Therefore, Hainan administra-
tors should pay attention to the fluctuations in the tourism market and make prompt de-
cisions to ensure stable and upward growth in the tourism industry. Based on this fore-
casting result, our study can support decision-making for policy administration in tour-
ism, especially at turning points in time. 

 
Figure 4. The reception of inbound tourists by cities and counties in Hainan province. Note: The 
area of the circle represents the reception of inbound tourists; different color pieces in the circle 
represent the various countries of foreigners. 

More detailed results with all the predicted performances for 12 countries are shown 
in Table 1. Evaluation metrics (RMSE and MAPE) were utilized to assess the performance 
of the benchmark methods. Compared with the BL and BPNN methods, the proposed 
method—the EWT-based BL algorithm—almost obtained the lowest RMSE and MAPE. 
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The R2 is depicted the agreement extent between forecasting and training tourist data. The 
FEWT-BL method is much more preferable than the BL without EWT technology in terms 
of R2. The results indicate that the proposed FEWT-BL method was favorable for predict-
ing tourism arrivals compared with other BL and BPNN methods. As indicated in Table 
1, the FEWT-BL forecasting accuracy for the tourist arrivals from Italy was higher (R2 = 
0.96) than that of the BL (R2 = 0.93) and BPNN (R2 = 0.88) models. Alternatively, the FEWT-
BL forecasting accuracy for the tourist arrivals from the United States performed better 
(R2 = 0.94) compared to the BL (R2 = 0.91) and BPNN (R2 = 0.89) models. The DM test was 
used to examine whether there was a significant difference between the predictive accu-
racy of the two models. The results of the DM test in Table 2 showed that, among the three 
prediction models, FEWT-BL outperformed the remaining two. In summary, the results 
indicate that the FEWT-BL method can help to reduce forecasting errors with original of-
ficial government data. Particularly, the FEWT-BL model can accurately achieve predic-
tive ability for tourist arrivals. 

Table 1. Forecasting performance of the models for tourist arrivals to Hainan from 12 countries. 

Country 
FEWT-BL BL BPNN 

RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 
JP 16.86 4.45 0.93 27.04 6.44 0.86 30.06 12.58 0.84 
KR 7.56 2.68 0.95 14.54 3.67 0.92 17.41 4.46 0.9 
MY 20.87 11.05 0.91 30.3 12.68 0.87 34.88 14.24 0.81 
GB 7.6 10.96 0.95 11.7 12.02 0.92 18.07 14.24 0.89 
FR 10.42 1.4 0.94 15.54 1.37 0.89 16.7 1.99 0.88 
DE 17.18 1.14 0.92 27.07 1.23 0.86 29.44 1.48 0.85 
IT 6.54 0.71 0.96 9.3 1.41 0.93 15.57 1.6 0.88 

CH 17.75 0.62 0.92 30.43 1.8 0.85 33.69 2.33 0.82 
RU 10.6 1.16 0.93 18.1 2.27 0.9 12.48 2.11 0.91 
US 9.04 0.31 0.94 11.26 1.3 0.91 18.38 2.19 0.89 
CA 9.89 0.83 0.94 14.66 1.77 0.92 12.16 1.45 0.91 
AU 11.57 1.12 0.92 13.18 1.33 0.91 26.37 2.66 0.87 

Note: RMSE, root mean square error; MAPE, mean absolute percentage error; R2, R-square 

To present the results more visually, we used radar diagrams to show the perfor-
mance of the three methods, where the red, yellow, and green lines in Figure 5 represent 
the FEWT-BL, BL, and BPNN methods, respectively. The red line is completely contained 
in the innermost layer, which means that the FEWT-BL method, represented by the red 
line, achieves the best RMSE performance. The yellow line is mostly wrapped up in the 
green line, and only a small number, two points, intersect with the green line, meaning 
that the BL method called the BPNN model performed better in most cases. Many re-
searchers [25–28] have shown that the tourism perspective is emphasized ethnic minori-
ties Additionally, Han et al. [29] studied Halal tourism, including travel motivation and 
customer desire. Many researchers are seeking new technologies to manage tourism [30]. 
Our study indicates that US foreigners had the most arrivals in 12 countries, and the 
FEWT-BL performed the best in forecasting the tourist arrivals to Hainan from 12 coun-
tries. The results show that the FEWT-BL method has a much preferable predictive ability 
in forecasting turning points. Therefore, we developed an accurate FEWT-BL method to 
forecast tourist arrivals to Hainan from 12 countries. We recommend using this method 
in the future for forecasting tourism to achieve improved performance. 
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Table 2. DM test results for tourist arrivals to Hainan from the US. 

Models BPNN and BL FEWT-BL and BL FEWT-BL and BPNN 
DM value 1.4209 5.9589 4.0377 

p 0.1553 2.5394 × 10−9 5.3978 × 10−5 

 
Figure 5. Radar chart of RMSE values for tourist arrivals to Hainan from 12 countries for different 
methods. Note: RMSE: root mean square error, FEWT-BL: empirical wavelet transform-based broad 
learning, BL: broad learning, BPNN: back propagation neural network. 

4. Conclusions 
Two strengths of this study are worth highlighting: Firstly, the updated broad learn-

ing (FEWT-BL) approach can accurately forecast tourism arrivals and reception, which 
can facilitate decision-making in tourism management, especially at turning points in 
time. Secondly, this study illustrates how a proposed decomposed broad learning model 
can improve the forecasting accuracy for tourism arrivals on Hainan Island, which has 
rarely been used for tourist arrivals. Hence, this study provides advanced insights for re-
searchers seeking to conduct future studies using AI models to forecast tourism demand. 
Additionally, this method of forecasting through AI could be strongly recommended for 
applications in tourism. In this work, we focused on the prediction performance for tour-
ism data based on machine learning and lightweight deep neural networks. The compar-
isons included a comparison between the decomposed and the traditional shallow neural 
network, as well as a comparison with the non-decomposed model. Therefore, this man-
uscript highlights the role before and after the decomposition and the forecasting ability 
of the new network structure compared to the traditional network structure. In future 
work, we will continue to compare and analyze the model proposed in this paper and 
some classical time series prediction methods. 
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