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Abstract: Quantum linear system algorithms (QLSAs) have the potential to speed up algorithms
that rely on solving linear systems. Interior point methods (IPMs) yield a fundamental family of
polynomial-time algorithms for solving optimization problems. IPMs solve a Newton linear system at
each iteration to compute the search direction; thus, QLSAs can potentially speed up IPMs. Due to the
noise in contemporary quantum computers, quantum-assisted IPMs (QIPMs) only admit an inexact
solution to the Newton linear system. Typically, an inexact search direction leads to an infeasible
solution, so, to overcome this, we propose an inexact-feasible QIPM (IF-QIPM) for solving linearly
constrained quadratic optimization problems. We also apply the algorithm to `1-norm soft margin
support vector machine (SVM) problems, and demonstrate that our algorithm enjoys a speedup in
the dimension over existing approaches. This complexity bound is better than any existing classical
or quantum algorithm that produces a classical solution.

Keywords: quantum computing; interior point method; quadratic optimization

MSC: 90C20; 90C51; 81P68

1. Introduction

Linearly constrained quadratic optimization (LCQO) is defined as optimizing a convex
quadratic objective function over a set of linear constraints. Linear optimization is a
special case of LCQO that corresponds to the case where the objective function is linear.
LCQO has rich theory, algorithms, and applications. Many problems in machine learning
can be formulated as LCQO problems, including variants of least square problems and
variants of support vector machine training [1,2]. Some important optimization algorithms
also have LCQO subproblems, e.g., sequential quadratic programming [1].

The modern age of IPMs was launched by Karmarkar’s projective method for linear
optimization (LO). Since then, many variants of IPMs have also been applied to nonlinear
optimization problems, including LCQO problems [3,4]. Contemporary IPMs progress
towards the set of optimal solutions by moving within a neighbourhood of an analytic
curve known as the central path. IPMs can be categorized according to whether or not the
the sequence of iterates produced by the algorithm satisfies feasibility. Feasible IPMs are
initialized with a strictly feasible solution and maintain feasibility in each iteration, whereas
infeasible IPMs start from an infeasible interior solution and do not require feasibility to be
exactly satisfied at any point of the algorithm. For LCQO problems with n variables, feasible
IPMs can produce an ε-approximate solution using O(

√
n log(1/ε)) iterations, whereas

infeasible IPMs require O(n2 log(1/ε)) IPM iterations to converge to an ε-approximate
solution [5,6].

At each IPM iteration, a linear system needs to be solved to obtain the search direction,
called the Newton direction. This so-called Newton linear system is traditionally in the
form of the augmented system or the normal equation system. Classically, these linear
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systems can be solved exactly using Bunch–Parlett factorization if the matrices in the
systems are symmetric indefinite [7], or Cholesky factorization if the matrices are symmetric
positive definite. Solving the Newton linear systems using direct factorization approaches
requires the use ofO(n3) arithmetic operations, which suggests that feasible IPMs based on
factoring methods cannot exhibit complexity better than O(n3.5 log(1/ε)), whereas, with
the partial update, they achieveO(n3 log(1/ε)) arithmetic operation complexity. The linear
systems can also be solved inexactly using some inexact methods, e.g., Krylov subspace
methods, which may require fewer iterations if the desired accuracy of the solutions to the
linear systems is not high. However, inaccurately solving the Newton linear systems (i.e.,
the inaccuracy of the search directions) may result in the infeasibility of the sequence of
solutions generated by IPMs; therefore, they have only been used in infeasible IPMs.

The advent of quantum technology has led to the development of many quantum-
assisted algorithms for optimization and machine learning applications, such as linear
regression [8] and the support vector machine training problem [9]. Following the seminal
work on quantum algorithms for solving linear systems of equations [10], researchers have
been studying whether QLSAs could yield quantum speedups in classical optimization
algorithms. In particular, quantum IPMs (QIPMs) that utilize QLSAs to solve the Newton
linear system arising in each iteration have been proposed for LO problems [11,12] and
semidefinite optimization problems [13]. To maintain the feasibility of the iterates using
quantum subroutines, the authors of [13,14] introduce the so-called orthogonal subspace
system (OSS) for SDO and LO problems, and, in particular, demonstrate that a feasible
solution to the original Newton system can be recovered from an inexact solution to the
OSS. However, linearly constrained quadratic optimization problems, which are funda-
mental to both optimization and machine learning, have yet to be formally studied in the
quantum literature.

In this work, we generalize the OSS for LO problems in [14] to LCQO problems and
provide an efficient method for constructing the OSS using a quantum computer. Using the
OSS, we can obtain an inexact feasible IPM, solving for the search directions inexactly but
maintaining the feasibility of the iterates throughout the process of our IPM. The feasibility
of the iterates gives better IPM iteration complexity and the bottleneck becomes solving the
linear system, OSS. In particular, we show that a quantum implementation of our algorithm
with access to quantum RAM (QRAM) obtains an ε-approximate solution to a given LCQO
problem with worst-case complexity

Õn,ω̄, 1
ε

(√
n
(

n
(

ω̄2

ε
+ σmax(Q)

)
κVAQ + n2

))
,

where ω̄ = maxk ωk, σmax(Q) is the maximum singular value of the Hessian of the objective
function and κVAQ is the condition number of a matrix determined by initial data; see
Lemma 3. We also consider the application of `1-norm soft margin SVM problems, in which
case, an ε-approximate solution is obtained with complexity

Õm,n,ω̄, 1
ε

(
(m + n)1.5

(
ω̄2

ε
+ σmax(Q)

)
κVAQ + (m + n)2.5

)
.

Here, m is the number of features and n is the number of data points. ω̄, Q, and κVAQ
are defined similarly from the LCQO formulation of the SVM problem; see Section 4. The
dependence on dimension is better than any existing quantum or classical algorithm.

The rest of this paper is organized as follows: in Section 2, we introduce IPMs for
LCQO and the OSS system; in Section 3, we discuss how to use quantum algorithms to
find the Newton directions and analyze the complexity of our IF-QIPM; in Section 4, we
apply our IF-QIPM to the support vector machine problem. Discussions are provided in
Section 5, and some technical proofs are moved to the Appendixes A and B.



Entropy 2023, 25, 330 3 of 21

2. Preliminaries

In this section, we introduce notations before reviewing the theory of IPMs applied to
LCQO, and derive the OSS system for the class of problems.

2.1. Notation

Vectors are typically represented by lower-case letters. We write 0n when referring
to the n-dimensional all-zeros vector, and the n-dimensional all-ones vector is denoted by
en. When the dimension is obvious from the context, we may write 0 or e, respectively.
Matrices are typically represented with upper-case letters. The identity of dimension n
is denoted by In×n, and 0n×m represents the n × m-dimensional all-zero matrix, again,
dropping these subscripts when the dimension is obvious from the context. For a general
n×m-dimensional matrix H, we write Hi· to refer to its ith row, and, similarly, denote the
jth column by H·j. For the (i, j)th element of H, we write Hij or Hi,j.

For real-valued functions f1, f2, and f3, we write

f1 = O( f2)

if there exists a positive number k4 such that f1 ≤ k4 f2. We write

f1 = Õ f3( f2)

if there exists a positive number k5 such that f1 ≤ k5 f2 × poly log( f3).

2.2. IPMs for LCQO

In this work, LCQO is defined as follows.

Definition 1 (LCQO Problem). For vectors b ∈ Rm, c ∈ Rn, and matrices A ∈ Rm×n and
Q ∈ Rn×n with rank(A) = m ≤ n and Q symmetric positive semidefinite, we define the primal
and dual LCQO problems as:

(P)
min cTx +

1
2

xTQx,

s.t. Ax = b,

x ≥ 0,

(D)

max bTy− 1
2

xTQx,

s.t. ATy + s−Qx = c,

s ≥ 0,

(1)

where x ∈ Rn is the vector of primal variables, and y ∈ Rm, s ∈ Rn are vectors of the dual variables.
Problem (P) is called the primal problem and (D) is called the dual problem.

Since A is of full row-rank, A does not contain any null rows, and we further make
the following assumption on matrix A.

Assumption 1. Matrix A has no all-zero columns.

Remark 1. Suppose that A has zero columns. Without a loss of generality, assume that the nth
column is all-zero. Introducing a new variable xn+1, we can rewrite the problem as

min
[

c
0

]T[ x
xn+1

]
+

1
2

[
x

xn+1

]T[ Q 0n×1
01×n 0

][
x

xn+1

]
,

s.t.
[

A·1 · · · A·(n−1) 0m×1 0m×1
0 · · · 0 1 −1

][
x

xn+1

]
=

[
b
0

]
,

x ≥ 0, xn+1 ≥ 0.

The new LCQO problem is equivalent to the original one, and contains fewer all-zero columns.
Iterating this procedure to eliminate each of the all-zero columns, we obtain a new LCQO problem
satisfying Assumption 1 with no more than 2n−m variables and n constraints in the worst case.
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Assumption 2. There exists a solution (x, y, s) ∈ Rn ×Rm ×Rn such that

Ax = b, x > 0, ATy + s−Qx = c, and s > 0.

The set of primal–dual feasible solutions is defined as

PD :=
{
(x, y, s) ∈ Rn ×Rm ×Rn : Ax = b, ATy + s−Qx = c, (x, s) ≥ 0

}
and, similarly, the set of interior feasible primal–dual solutions is given by

PD0 :=
{
(x, y, s) ∈ Rn ×Rm ×Rn : Ax = b, ATy + s−Qx = c, (x, s) > 0

}
.

By strong duality, the set of optimal solutions can be characterized as

PD∗ := {(x, y, s) ∈ PD : xs = 0},

where xs denotes the Hadamard, i.e., component-wise product of x and s. Let ε > 0; then,
the set of ε-approximate solutions to Problem (1) can be defined as

PDε :=
{
(x, y, s) ∈ PD : xTs ≤ nε

}
. (2)

Let X and S be diagonal matrices of x and s, respectively. Under Assumption 2, for all
µ > 0, the perturbed system of optimality conditions

Ax = b,

ATy + s−Qx = c,

XSe = µe,

(x, s) ≥ 0

(3)

has a unique solution (x(µ), y(µ), s(µ)), and this set of solutions gives rise to the primal–
dual central path

CP :=
{
(x, y, s) ∈ PD0|xisi = µ for i ∈ {1, . . . , n}; for µ > 0

}
.

IPMs apply Newton’s method to solve system (3). At each iteration of infeasible
IPMs, a candidate solution to the primal–dual LCQO pair in (1) is updated by solving the
following linear system to find the Newton direction: A 0 0

−Q AT I
S 0 X

∆x
∆y
∆s

 =

rp
rd
rc

, (4)

where
rp = b− Ax

rd = c− ATy− s

rc = σµe− XSe,

are residuals, and σ ∈ (0, 1) is the barrier reduction parameter. If rp = 0 and rd = 0, then
the solution (x, y, s) exactly satisfies primal–dual feasibility. We can also define residuals
in different ways as we will show later. Once the Newton direction is found, one can
move along the direction but has to stay in a neighbourhood of the central path, which is
defined as

N2(θ) :=
{
(x, y, s) ∈ PD0|‖XSe− µe‖2 ≤ θµ

}
, (5)

where θ ∈ (0, 1).
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Until relatively recently, inexact solution approaches to solve the Newton linear sys-
tem (4) had only been utilized in inexact infeasible IPMs (II-IPMs). For LCQO problems,
ref. [6] proposes an II-IPM using an iterative method to solve the Newton systems and
obtains a worst-case iteration complexity O(n2 log( 1

ε )). On the other hand, feasible IPMs
for LCQO problems enjoy O(

√
n log( 1

ε )) iteration complexity [15–17]. In [5], the author
provides a general inexact feasible IPM for LCQO problems but does not discuss how
the sequence of iterates could be guaranteed to maintain primal–dual feasibility exactly
when using inexact linear system solvers. This is a vital consideration, as the feasible
neighborhood of the central path as outlined in (5) is a subset of the primal–dual feasible
set; if primal and dual feasibility are not satisfied exactly at any point in the algorithm, the
iterates leave this neighborhood and the method fails. Our work fills this gap by using a
method inspired by the QIPMs of [13,14].

2.3. Orthogonal Subspaces System

Assume that (x, y, s) ∈ PD0. To maintain the feasibility of the primal and dual
variables, the first two linear equations in system (4) need to be solved with rp = 0 and
rd = 0 exactly, which can be guaranteed if ∆x lies in the null space of A, denoted as
Null(A), and ∆s = Q∆x− AT∆y. Accordingly, we can rewrite system (4) by representing
∆x as a linear combination of basis elements of Null(A). To achieve this, we partition A as
A =

[
AB AN

]
, where AB is a basis of A. Then, we construct the following matrix:

V =

[
A−1

B AN
−I

]
.

Matrix V has a full column rank and satisfies AV = 0, i.e., the columns of V span the
null space of A. Let ∆x = Vλ, where λ ∈ Rn−m is the unknown coefficient vector used to
determine ∆x. Subsequently, we can rewrite system (4) by substituting ∆x and ∆s in the
third equation as

SVλ + X
(

QVλ− AT∆y
)
= rc ⇔

[
SV + XQV −XAT] · [ λ

∆y

]
= rc. (6)

A similar system was proposed and called “Orthogonal Subspaces System” (OSS)
in [13,14], and we use the same name in this work. The matrix in the OSS system (6) is of
size n× n, and it is nonsingular. Even if the OSS system is solved inexactly, primal and
dual feasibility are preserved by computing ∆x = Vλ and ∆s = QVλ− AT∆y. Thus, we
can conclude that any inexactness will only impact the third equation of (4), i.e., rp = 0 and
rd = 0. This property of the OSS system is very convenient when analyzing the proposed
inexact IPM, and allows us to obtain the best known iteration complexity for IPMs.

3. Inexact Feasible IPM with QLSAs

In this section, we propose our IF-QIPM for LCQO problems. We begin with the
IF-IPM structure introduced by [5] and describe how to quantize it into an IF-QIPM. Then,
we analyze the construction of the OSS system and conclude by analyzing the overall
complexity of our IF-QIPM.

3.1. IF-IPM for LCQO

In [5], the author studies a general conceptual form IF-IPM for QCLO problems by
assuming the feasibility of the primal and dual iterates, which induces the following system: A 0 0

−Q AT I
S 0 X

∆x
∆y
∆s

 =

 0
0
rc

, (7)

where rc = σµe − XSe, with σ ∈ (0, 1) being the reduction factor of the central path
parameter µ, i.e., µnew = σµ. When system (7) is solved with rc = σµe− XSe inexactly
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yielding an error r, if ‖r‖2 ≤ δ‖rc‖2 for some δ ∈ (0, 1), the inexact IPM converges to
an ε-approximate solution to Problem (1) in at most O(

√
n log(1/ε)) iterations. As we

mentioned earlier, it is not specified in [5] how to preserve primal and dual feasibility when
system (7) is solved inexactly. Thus, it is presently not clear whether one could recover the
convergence conditions described in [5] using inexact approaches, which are reliant on the
assumption of primal–dual feasibility (see, e.g., system (7)).

Now, we present a general procedure of how to solve system (7) inexactly, while the
inexactness error occurs only in the third equation of system (7). Let (λ, ∆y) be an inexact
solution for system (6) and r be the error at this solution, i.e.,

[
SV + XQV −XAT] · [ λ

∆y

]
= rc + r.

The corresponding Newton step

∆x = Vλ

∆s = Q∆x− AT∆y

satisfies  A 0 0
−Q AT I

S 0 X

 ·
∆x

∆y
∆s

 =

 0
0

rc + r

.

Recall that once (λ, ∆y) is determined, then (∆x, ∆s) is also (uniquely) determined.
An interesting property is that, if (λ, ∆y) and (∆x, ∆y, ∆s) can be deduced from each other,
then the OSS system and system (7) yield the same error term r. Hence, the convergence
conditions built upon system (7) can be directly examined using the residual rc and error r
of the OSS system. Let εOSS be the target accuracy of the OSS system (6), i.e.,

‖(λ− λ∗, ∆y− ∆y∗)‖2 ≤ εOSS,

where (λ∗, ∆y∗) is the accurate solution. According to [5], in order to guarantee that the
IF-IPM converges, we must have

‖r‖2 =

∥∥∥∥[SV + XQV −XAT] · [ λ
∆y

]
− rc

∥∥∥∥
2

≤
∥∥[SV + XQV −XAT]∥∥

2εOSS

≤ δ‖rc‖2,

where δ ∈ (0, 1) is a constant parameter. Therefore, to ensure the convergence of the IF-IPM,
it suffices to set

εOSS ≤ δ
‖rc‖2∥∥[SV + XQV −XAT]∥∥

2

.

The IF-IPM is presented in full detail in Algorithm 1. In each iteration, we build and
solve system (6) classically. We solve system (6) to the accuracy just introduced above
and then compute the feasible Newton step from the inexact solution and take a full
Newton step.
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Algorithm 1 Short-step IF-IPM

1: Choose ε > 0, δ ∈ (0, 1), θ ∈ (0, 1), β ∈ (0, 1) and σ = (1− β√
n ).

2: k← 0
3: Choose initial feasible interior solution (x0, y0, s0) ∈ N (θ)
4: while (xk, yk, sk) /∈ PDε do

5: µk ← (xk)Tsk

n
6: εk

OSS ← δ‖rk
c‖2/

∥∥[SkV + XkQVk −Xk AT
]∥∥

2
7: (λk, ∆yk)← solve system (6) with accuracy εk

OSS
8: ∆xk = Vλk and ∆sk = −AT∆yk

9: (xk+1, yk+1, sk+1)← (xk, yk, sk) + (∆xk, ∆yk, ∆sk)
10: k← k + 1
11: end while
12: return (xk, yk, sk)

In the quantum-assisted IF-IPM, or IF-QIPM, we propose accelerating Step 7 using
quantum subroutines. In the next sections, we investigate how to use quantum algorithms
to build and solve the OSS system and obtain the Newton direction.

3.2. IF-QIPM for LCQO

The pseudocode of our IF-QIPM is presented in Algorithm 2. At each iteration of
the IF-QIPM, we construct and solve system (6) and compute the Newton direction using
quantum algorithms. To obtain an εOSS-approximate solution of system (6), we first block
encode system (8); see Appendix A. Then, we use quantum algorithms to solve for an
εQLSA-approximate solution of system (8). This solution is normalized but we can rescale
it to obtain an εOSS-approximate solution of system (6). Details are discussed later in
this section.

Algorithm 2 Short-step IF-QIPM

1: Choose ε > 0, δ ∈ (0, 1), θ ∈ (0, θ0), β ∈ (0, 1) and σ = (1− β√
n ).

2: k← 0
3: Choose initial feasible interior solution (x0, y0, s0) ∈ N (θ)
4: while (xk, yk, sk) /∈ PDε do

5: µk ← (xk)Tsk

n

6: εk
OSS ← δ‖rk

c‖2/
(√

2
∥∥[SkV + XkQVk −Xk AT

]∥∥
2

)
7: (λk, ∆yk)← solve system (6) with accuracy εk

OSS quantumly
8: ∆xk = Vλk and ∆sk = −AT∆yk

9: (xk+1, yk+1, sk+1)← (xk, yk, sk) + (∆xk, ∆yk, ∆sk)
10: k← k + 1
11: end while
12: return (xk, yk, sk)

Here, θ0 < 1 and its value will be discussed later. First, we introduce some notations
to simplify the OSS system. In the kth iteration of Algorithm 2, let

Mk =
[
SkV + XkQV −Xk AT], zk =

[
λk

∆yk

]
.

Then, the OSS system can be rewritten as

Mkzk = rk
c .
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As discussed in [14], to solve the OSS system (6) using quantum algorithms, we can
first rewrite it as the normalized Hermitian OSS system

1√
2
∥∥Mk

∥∥
F

[
0 Mk

(Mk)T 0

]
·
[

0
zk

]
=

1√
2
∥∥Mk

∥∥
F

.
[

rk
c

0

]
. (8)

To use the QLSAs mentioned earlier, we need to turn the linear system (8) into a
quantum linear system using the block encoding introduced in [18]. To this end, we first
decompose the coefficient matrix in linear system (8) as

1√
2
∥∥Mk

∥∥
F

[
0 Mk

(Mk)T 0

]
=

1√
2
∥∥Mk

∥∥
F

[
0 0

(Mk)T 0

]
+

1√
2
∥∥Mk

∥∥
F

[
0 Mk

0 0

]
, (9)

where

[
0 0

(Mk)T 0

]
=

 0n×n 0n×n 0n×n
0(n−m)×n VT 0(n−m)×n

0m×n 0m×n −A

×
0n×n 0n×n

Sk 0n×n
0n×n 0n×n

+

0n×n 0n×n 0n×n
0n×n Q 0n×n
0n×n 0n×n In×n

0n×n 0n×n
Xk 0n×n
Xk 0n×n

.

(10)

To compute matrix V, we need to find a basis matrix AB of matrix A and we need to
compute the inverse matrix A−1

B . Both steps are nontrivial and can be expensive. However,
we can reformulate the LCQO problem as follows:

min cTx +
1
2

xTQx

s.t.
[

I 0 A
0 I −A

] x′

x′′

x

 =

[
b
−b

]
x ≥ 0, x′ ≥ 0, x′′ ≥ 0.

In this case, we have an obvious basis

AB =

[
I 0
0 I

]
and matrix V can be constructed efficiently

V =

[
A−1

B AN
−I

]
=

[I 0
0 I

][
A
−A

]
−I

 =

 A
−A
−I

.

Since matrix A has no all-zero rows, matrix V has no all-zero rows either. This property
of the reformulation is useful in the analysis of the proposed IF-QIPM but we do not want
to build the complexity analysis on the reformulated problem. Thus, without a loss of
generality we may make the following assumption.

Assumption 3. Matrix A is of the form A =
[
I AN

]
.

To simplify the analysis, we further assume that the input data are integers.

Assumption 4. The input data of Problem (1) are integers.

Based on the two assumptions above, we have the following lemma.
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Lemma 1. Matrix V equals

V =

[
AN
−I

]
and

min
i=1,...,n

{‖Vi·‖2
2} = min{1, min

i=1,...,m
‖(AN)i·‖2

2} = 1,

where Vi· and (AN)i· are the ith row of V and AN , respectively.

Now, we are ready to give θ0 in our definition of the central path neighborhood; see (5).
We set

θ0 = min
{

1
3
√

n
,

1
4‖QVVT‖F + 1

}
. (11)

We also define ωk as the maximum of the values of primal variables and dual slack
variables in the kth iteration.

Definition 2. Let (xk, yk, sk) be a candidate solution for Problem (1); then,

ωk = max
i∈{1,...,n}

{xk
i , sk

i }.

As is standard in the literature on quantum algorithms, in this work, we assume access
to quantum random access memory (QRAM). Then, Step 7 of Algorithm 2 consists of three
parts: (1). use block encoding to build system (8); (2). use QLSAs to solve system (8); (3).
use quantum tomography algorithms (QTAs) to extract the classical solution. We use the
block-encoding methods introduced in [18] to block-encode linear system (8).

Proposition 1. In the kth iteration of Algorithm 2, using the block-encoding methods introduced
in [18] and the decomposition described in Equations (9) and (10), a

(√
‖V‖2

F + ‖A‖2
F

√
2ωk

‖Mk‖F
(
√

2‖Q‖F +
√

2 + 1), O(poly log(n)),
εQLSA

κ3
Mk

)

-block-encoding of the matrix in system (8) can be implemented efficiently and the complexity will be
dominated by the complexity of the QLSA step. Here, εQLSA is the accuracy required for the QLSA
step and κMk is the condition number of matrix Mk.

Proof. See Appendix A for proof.

Provided access to QRAM, the complexity associated with block encoding the OSS
system coefficient matrix and preparing a quantum state encoding the right hand side
amounts to polylogarithmic overhead. The cost of these steps is therefore negligible when
compared with the complexity contributed by QLSAs and QTAs, so we ignore it here. To
bound the total complexity contributed by QLSAs and QTAs, we first need to analyze the
accuracy of QLSA characterized by εQLSA, the accuracy of QTA characterized by εQTA, and
their relationship.

In each iteration, we use a QLSA to solve the block-encoded version of system (8)
and obtain an εQLSA-approximate solution. Then, we use a QTA to extract an εQTA-
approximate solution from the quantum machine. In the context of QLSAs and QTAs, if z̃
is an ε-approximate solution of z, then z̃ satisfies∥∥∥∥ z̃

‖z̃‖2
− z
‖z‖2

∥∥∥∥
2
≤ ε

Observe that this definition of accuracy differs from the concept of ε-approximate
solutions defined in (2).
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Similar to [12,13], the QLSA we use is proposed by [19] and the QTA we use is
proposed by [20]. Following the argument in Section 2 in [12], we can establish the
relationship among εQLSA, εQTA, and εk

OSS as

εQLSA = εQTA =
1
2
·
√

2‖Mk‖F

‖rk
c‖2

εk
OSS, (12)

where εk
OSS is defined as the `2 norm of the residual when solving system (8) inexactly in

the kth iteration. This coefficient is also used to rescale the solution. According to [12], we
rescale the normalized solution obtained from QLSA and QTA by

‖rk
c‖2√

2‖Mk‖F

to obtain the εk
OSS-approximate solution for system (6). Here, we did not add superscript

to εQLSA and εQTA, and the reason shall be revealed later. Let[
0̃k

z̃k

]
be an inexact solution for system (8) in the kth iteration. Then, the norm of residual of
system (8), which is εk

OSS, and the norm of residual of system (6), which is ‖Mk z̃k − rk
c‖2,

satisfies

εk
OSS =

∥∥∥∥∥ 1√
2‖Mk‖F

[
0 Mk

(Mk)T 0

][
0̃k

z̃k

]
− 1√

2‖Mk‖F

[
rk

c
0

]∥∥∥∥∥
2

=

∥∥∥∥∥ 1√
2‖Mk‖F

[
Mk z̃k

(Mk)T 0̃k

]
− 1√

2‖Mk‖F

[
rk

c
0

]∥∥∥∥∥
2

≥
∥∥∥∥∥ 1√

2‖Mk‖F
Mk z̃k − 1√

2‖Mk‖F
rk

c

∥∥∥∥∥
2

≥ 1√
2‖Mk‖F

‖Mk z̃k − rk
c‖2.

Recall that the error arising from the OSS system (6) is the same as the error in the full
Newton system (7); then, we can directly use the convergence condition in [5], i.e.,

‖Mk z̃k − rk
c‖2 ≤ δ‖rk

c‖2.

We can require
‖Mk z̃k − rk

c‖2 ≤
√

2‖Mk‖Fεk
OSS ≤ δ‖rk

c‖2

and it follows that

εk
OSS ≤

δ‖rk
c‖2√

2
∥∥Mk

∥∥
F

.

Then, choosing

εk
OSS =

δ‖rk
c‖2√

2
∥∥Mk

∥∥
F

and εQLSA = εQTA =
‖Mk‖Fεk

OSS√
2‖rk

c‖2
=

δ

2
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ensures the convergence of the IF-QIPM. The complexities for each step are also available
now. Using the QLSA from [19] and QTA from [20], we have the complexity for QLSA
and QTA:

TQLSA = Õn,ω̄, 1
ε

(
κMk

ωk

‖Mk‖F

)
,

TQTA = Õn

(
n

εQTA
TQLSA

)
= Õn,ω̄, 1

ε

(
nκMk

ωk

‖Mk‖F

)
.

Since we have εQTA =
δ

2
and δ ∈ (0, 1) is a constant parameter, we omit εQTA in the

Big-O notation. Note that the complexity of the block-encoding procedure is dominated by
that of QLSA and QTA and thus we ignore the complexity contributed by block encoding.
In Step 8, the complexity contributed by computing Newton step from OSS solution is
O(n2). The total complexity for the kth iteration of IF-QIPM will be

O
(

TQTA + n2
)
= Õn,ω̄, 1

ε

(
nωkκMk

‖Mk‖F
+ n2

)
. (13)

3.2.1. Bound for ωk/‖Mk‖F

In this section, all of the quantities that we consider are from the kth iteration. For
simplicity, we omit the superscript k in this section unless we need it. Using the property of
trace, we have

‖M‖2
F = tr(MT M)

= tr
(
(SV + XQV)(SV + XQV)T + XAT AX

)
= tr

(
(SV + XQV)(SV + XQV)T

)
+ tr

(
XAT AX

)
= tr

(
SVVTS

)
+ tr

(
XQVVTS

)
+ tr

(
SVVTQX

)
+ tr

(
XQVVTQX

)
+ tr

(
XAT AX

)
.

For the non-symmetric term, due to the cyclic invariant property of trace, we have

tr
(

XQVVTS
)
= tr

(
SXQVVT

)
.

Recalling the central path neighborhood that we defined in (5), we define a matrix E
such that

E =
1

µθ
(XS− µI). (14)

It is obvious that E is a diagonal matrix and satisfies

‖Ee‖2 < 1,

which leads to

| tr(E)| ≤ ‖Ee‖1 ≤
√

n‖E‖F =
√

n‖Ee‖2 <
√

n and I − E � 0 and I + E � 0.

With this, we can have

tr
(

XQVVTS
)
= tr

(
SXQVVT

)
= tr

(
(θµE + µI)QVVT

)
= tr

(
θµEQVVT

)
+ tr

(
µQVVT

)
.
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For the second term, we know that Q and VTQV are both positive semidefinite. Thus,
we can have

tr
(

QVVT
)
= tr

(
VTQV

)
≥ 0

because of the cyclic invariant property of trace. According to the Cauchy–Schwarz in-
equality, we have

tr
(

EQVVT
)2
≤ ‖E‖2

F‖QVVT‖2
F.

Thus, we have
tr
(

EQVVT
)
≥ −‖QVVT‖F.

Thus, we have

tr
(

XQVVTS
)
= tr

(
θµEQVVT

)
+ tr

(
µQVVT

)
≥ µ

(
tr
(

QVVT
)
− θ‖QVVT‖F

)
≥ −θµ‖QVVT‖F

≥ −µ

4
,

where the last inequality holds due to condition (11). Thus, we can bound ‖M‖F by

‖M‖2
F = tr

(
SVVTS

)
+ tr

(
XQVVTS

)
+ tr

(
SVVTQX

)
+ tr

(
XQVVTQX

)
+ tr

(
XAT AX

)
≥ tr

(
SVVTS

)
+ tr

(
XQVVTQX

)
+ tr

(
XAT AX

)
− µ

2
.

Since XQVVTQX � 0, we have

‖M‖2
F ≥ tr

(
SVVTS

)
+ tr

(
XAT AX

)
− µ

2
.

Since X and S are both positive diagonal matrices, we have

‖M‖2
F ≥ tr

(
SVVTS

)
+ tr

(
XAT AX

)
− µ

2

= ∑
i

s2
i (VVT)ii + ∑

i
x2

i (AT A)ii −
µ

2

≥ ω2 − µ

2
.

As we mentioned in the very beginning of this section, at each iteration, ω is indeed
ωk, but the superscript is ignored here. Now, we aim to find a bound for µ so we can further
bound ‖M‖2

F. Since ω is the upper bound for the magnitude of the primal and dual slack
variables, we have

ω2 ≥ xisi.

Recall the definition of matrix E; see (14). Thus, we have

ω2 ≥ xisi = µ + θµEii ≥ µ− θµ = (1− θ)µ.

Thus,

‖M‖2
F ≥ ω2 − µ

2
≥ ω2 − 1

2
ω2

1− θ
≥ ω2 − 1

2
ω2

1− 1/3
=

ω2

4
,
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where the last inequality follows from the bound for θ; see (11). Thus, we have

ω

‖M‖F
≤ 2 = O(1).

3.2.2. Bound for κMk

Similar to the previous section, we ignore the superscript k unless we need it. We
will start with a general result and then work on the matrix Mk. The following lemma is
a well-known result regarding condition numbers of matrices and can be proven using
Courant–Fischer–Weyl min-max principle [21].

Lemma 2. For any full row rank matrix P ∈ Rm×n and symmetric positive definite matrix
D ∈ Rn×n, their condition number satisfies

κ(PDPT) ≤ κ(D)κ(PPT).

Next, we analyze the matrix in the OSS system (8). Specifically, we focus on MT M
since we are interested in the spectral property of the OSS system (8). Using the matrix E
defined in (14), we have the following decomposition:

MT M =

[
VT(S + XQ)T(S + XQ)V −VT(S + XQ)TXAT

−AX(S + XQ)V AX2 AT

]
=

[
VT(S + XQ)T(S + XQ)V −VTµ(θE)AT −VTQTX2 AT

−Aµ(θE)V − AX2QV AX2 AT

]
=

[
VT 0
0 A

][
(S + XQ)T(S + XQ) −µθE−QX2

−µθE− X2Q X2

][
VT 0
0 A

]T

.

The second equality holds because

−VTSXAT −VTQTX2 AT = −VTµ(I + θE)AT −VTQTX2 AT

= −VTµ(θE)AT −VTQX2 AT ,

as AV = 0 and Q is symmetric. Then, plugging (14) into the first diagonal block of the
decomposition we obtained earlier, we have

MT M =

[
VT 0
0 A

]([
S2 + 2µQ + µθ(EQ + QE) + QX2Q −µθE−QX2

−µθE− X2Q X2

])[
VT 0
0 A

]T

=

[
VT 0
0 A

]([
S2 + 2µQ + µθ(EQ + QE) −µθE

−µθE 0

]
+

[
QX2Q −QX2

−X2Q X2

])[
VT 0
0 A

]T

=

[
VT 0
0 A

]([
I −Q
0 I

][
S2 + 2µQ −µθE
−µθE 0

][
I 0
−Q I

])[
VT 0
0 A

]T

+

[
VT 0
0 A

]([
I −Q
0 I

][
0 0
0 X2

][
I 0
−Q I

])[
VT 0
0 A

]T

=

[
VT 0
0 A

][
I −Q
0 I

][
S2 + 2µQ −µθE
−µθE X2

][
I 0
−Q I

][
VT 0
0 A

]T

.

The first two matrices are nonsingular, so we can apply the Lemma 2, and thus we
only need to study the middle matrix. Denote the middle matrix by Ψ. Observe that Ψ
is almost the same as its counterpart in [14]. Subsequently, we have the following result
regarding the spectral property of Mk.
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Lemma 3. When (x, y, s) ∈ N (θ) and θ ∈
(

0, min
{

1
3
√

n , 1
4‖QVVT‖F+1

})
, the condition num-

ber of matrix Mk satisfies

κMk = O
(
(ωk)2 + µkσmax(Q)

µk κVAQ

)
,

where κVAQ is the condition number of the matrix
[

VT 0
0 A

][
I −Q
0 I

]
.

Proof. The proof is in Appendix B.

Putting all of these together, we have the complexity for our IF-QIPM for LCQO
problems.

Theorem 1. The IF-QIPM for LCQO problems stops with the final duality gap less than ε in at
most O

(√
n log(1/ε)

)
IPM iterations and, in each IPM iteration, the Newton direction can be

obtained with complexity Õn,ω̄, 1
ε

(
n
(

ω̄2

ε + σmax(Q)
)

κVAQ + n2
)

, where ω̄ = maxk ωk.

Proof. The complexity bound for the IPM iterations comes from the result in [5]. According
to (13), the complexity for obtaining the Newton direction is

Õn,ω̄, 1
ε

(
nωkκMk

‖Mk‖F
+ n2

)
.

Combining this with the result in Sec. 3.2.1, the bound in Lemma 3, and µk ≥ ε, we
have

Õn,ω̄, 1
ε

(
nωkκMk

‖Mk‖F
+ n2

)
= Õn,ω̄, 1

ε

(
n
(

ω̄2

ε
+ σmax(Q)

)
κVAQ + n2

)
.

4. Application in Support Vector Machine Problems

In this section, we discuss how to use our IF-QIPM to solve SVM problems. We show
that our algorithm can solve `1-norm soft margin SVM problems faster than any existing
classical or quantum algorithms with respect to dimension.

The ordinary SVM problem works on a linearly separable dataset, in which the data
points have binary labels. The ordinary SVM aims to find a hyperplane correctly separating
the data points with a maximum margin. However, in practice, the data points are not
necessarily linearly separable. To allow for mislabelling, the concept of a soft margin
SVM was introduced in [22]. Let {(φi, ζi) ∈ Rm × {−1,+1}|i = 1, . . . , n} be the set of
data points, Φ be a matrix with the ith column being φi, and Z be a diagonal matrix with
the ith diagonal element being ζi. The SVM problem with an l1-norm soft margin can be
formulated as below.

min
(ξ,w,t)∈Rn×Rm×R

1
2
‖w‖2

2 + C‖ξ‖1

s.t. ζi(〈w, φi〉+ t) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n.

(15)

Here, (w, t) determines a hyperplane and C is a penalty parameter. In [9], the authors
rewrote the SVM problem as a second-order conic optimization (SOCO) problem and used
the quantum algorithm that they proposed to solve the resulting SOCO problem. They
claim the complexity of their algorithm has O(n2) dependence on the dimension, which
is better than any classical algorithm. However, the algorithm in [9] is invalid. Their
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algorithm is an inexact infeasible-QIPM (II-QIPM), while they used the IPM complexity for
the feasible-QIPM, which ignores at least O(n1.5) dependence on n. They also missed the
symmetrization of the Newton step, which is necessary for SOCO problems and makes
their Newton step invalid.

Aside from [9], some pure quantum algorithms for SVM problems are also proposed.
In [23], the authors propose a pure quantum algorithm for SVM problems. They claim the
complexity is O(κ3

effε
−3 log(mn)), where κeff is the condition number of a matrix involving

the kernel matrix and ε is the accuracy. In the worst case, κeff = O(m). Their complexity is
worse than ours regarding the dependence of dimension and accuracy. In addition, their
algorithm does not provide classical solutions. Namely, the solution is in the quantum
machine and we cannot read or use it in a classical computer. However, our algorithm
produces a classical solution.

To convert the problem into standard-form LCQO, we introduce (w+, w−) ∈ Rm
+×Rm

+,
(t+, t−) ∈ R+ × R+, and a slack variable ρ ∈ Rn

+. Then, we can obtain the following
formulation:

min
w+ ,w− ,t+ ,t− ,ξ,ρ

1
2
‖w+ − w−‖2

2 + C‖ξ‖1

s.t. ζi(〈w+ − w−, φi〉+ t+ − t−) + ξi − ρi = 1, i = 1, . . . , n

(ξ, w+, w−, t+, t−, ρ) ≥ 0.

This is a standard-form LCQO problem with non-negative variables (w+, w−, t+, t−, ξ,
ρ) ∈ Rm ×Rm ×R×R×Rn ×Rn and parameters

c =

02m+2
Cen
0n


Q =

 Im×m −Im×m 0m×(2+2n)
−Im×m Im×m 0m×(2+2n)

0(2+2n)×m 0(2+2n)×m 0(2+2n)×(2+2n)


A =

[
ZΦT −ZΦT Z −Z In×n −In×n

]
b = e.

Thus, we can use the proposed IF-QIPM for LCQO problems to solve the `1-norm soft
margin SVM problems and obtain an ε-approximate solution with complexity

Õm,n,ω̄, 1
ε

(
(m + n)1.5

(
ω̄2

ε
+ σmax(Q)

)
κVAQ + (m + n)2.5

)
.

This dependence on dimension is better than any existing quantum or classical algorithm.

5. Discussion

In this work, we present an IF-QIPM for LCQO problems by combining the IF-IPM
framework proposed in [5] and the OSS system introduced in [14]. Our algorithm has n1.5

dependence on n, which is better than any existing algorithms for LCQO problems. The
dependence on the accuracy is polynomial, which is worse than classic IPMs. Iterative
refinement techniques might help to improve the dependence on the accuracy but they are
beyond the discussion of this work.
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Appendix A. Block Encoding of the OSS System

In this section, we ignore the superscript k for simplicity. As described in Equation (9),
we first block encode each of the matrices involved in (10). We assume that V, A, S, and X
are given and are stored in a quantum accessible data structure (we ignore the complexity
to store the classical information into the quantum machine). For the first matrix

M1 =

 0n×n 0n×n 0n×n
0(n−m)×n VT 0(n−m)×n

0m×n 0m×n −A

,

a (√
‖V‖2

F + ‖A‖2
F,O(poly log(n)), ε1

)
-block-encoding of M1 can be implemented efficiently according to Lemma 50 from [18].

The second matrix

M2 =

0n×n 0n×n
S 0n×n

0n×n 0n×n


is both one-row-sparse and one-column-sparse. By the definition of ω, each element of
M2/ω has an absolute value of at most 1. According to Lemma 48 in [18], a

(1,O(poly log(n)), ε2)

-block-encoding of M2/ω can be implemented efficiently.
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The third matrix

M3 =

0n×n 0n×n 0n×n
0n×n Q 0n×n
0n×n 0n×n In×n


can be decomposed into

M3 =

0n×n 0n×n 0n×n
0n×n Q 0n×n
0n×n 0n×n 0n×n

+

0n×n 0n×n 0n×n
0n×n 0n×n 0n×n
0n×n 0n×n In×n

.

Then, we can block encode the two matrices first, and then apply a linear combination
to obtain M3. In fact, a

(‖Q‖F,O(poly log(n)), ε3)

-block-encoding of the left matrix can be implemented efficiently according to Lemma 50
from [18] and a

(1,O(poly log(n)), ε3)

-block-encoding of the right matrix can be implemented efficiently according to Lemma 48
in [18]. With the state-preparation cost of the linear combination coefficient vector (1, 1)
neglected, a

(‖Q‖F + 1,O(poly log(n)), (‖Q‖F + 1)ε3)

-block-encoding of M3 can be implemented efficiently according to Lemma 52 from [18].
The fourth matrix

M4 =

0n×n 0n×n
X 0n×n
X 0n×n


is one-row-sparse and two-columns-sparse. After being scaled by 1

ω , each element of M4/ω
has an absolute value of at most 1. According to Lemma 48 in [18], a(√

2,O(poly log(n)), ε4

)
-block-encoding of M4/ω can be implemented efficiently.

For the matrix multiplication M3M4/ω, a(√
2‖Q‖F +

√
2,O(poly log(n)), (‖Q‖F + 1)(

√
2ε3 + ε4)

)
-block-encoding can be implemented efficiently according to Lemma 53 from [18].

For the linear combination M2/ω + M3M4/ω, the cost for the state-preparation of the
coefficient vector (1, 1) is negligible and thus a(√

2‖Q‖F +
√

2 + 1,O(poly log(n)), (
√

2‖Q‖F +
√

2 + 1)(ε3 +
1√
2

ε4)

)
-block-encoding can be implemented efficiently according to Lemma 52 from [18].

For the matrix multiplication of M1(M2/ω + M3M4/ω), a(√
‖V‖2

F + ‖A‖2
F(
√

2‖Q‖F +
√

2 + 1),

O(poly log(n)),√
‖V‖2

F + ‖A‖2
F(
√

2‖Q‖F +
√

2 + 1)(ε3 +
1√
2

ε4) + (
√

2‖Q‖F +
√

2 + 1)ε1

)

-block-encoding can be implemented efficiently according to Lemma 53 from [18].
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Finally, considering that the complexity of the state-preparation of the vector

(
ω√

2‖M‖F
,

ω√
2‖M‖F

)

can be neglected, a

(√
‖V‖2

F + ‖A‖2
F

√
2ω

‖M‖F
(
√

2‖Q‖F +
√

2 + 1),

O(poly log(n)),√
‖V‖2

F + ‖A‖2
F

√
2ω

‖M‖F
(
√

2‖Q‖F +
√

2 + 1)2
(√
‖V‖2

F + ‖A‖2
F(ε3 +

1√
2

ε4) + ε1

))

-block-encoding of the coefficient matrix of system (8) can be implemented efficiently
according to Lemma 52 from [18]. We can choose

ε1 =
εQLSA

κ3
M

1
2K

ε2 =
ε1

2
√
‖V‖2

F + ‖A‖2
F

ε3 = ε2

ε4 =
√

2ε2,

where K depends on the initial data

K =
√

2
√
‖V‖2

F + ‖A‖2
F(
√

2‖Q‖F +
√

2 + 1)2.

Now, considering that the complexity for all of the block-encoding algorithms that we
have used so far has poly-logarithmic dependence on the dimension and accuracy, and
that, for i = 1, 2, 3, 4

O
(

poly log(
1
εi
)

)
= O(poly log(κM)),

the complexity for block encoding will be dominated by the complexity for QLSA because
QLSA has linear dependence on κM, we can ignore the complexity of block encoding.

Appendix B. Spectral Analysis for Matrix Ψ

In this section, we provide the spectral analysis for the matrix

Ψ =

[
S2 + 2µQ −µθE
−µθE X2

]
. (A1)

Just like in the previous section, for simplicity, we ignore the superscript k. We can
perform the following decomposition:[

S2 + 2µQ −µθE
−µθE X2

]
=

[
S2 −µθE
−µθE X2

]
+

[
2µQ 0

0 0

]
.
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Let us use the following notation:

Ψ1 =

[
S2 −µθE
−µθE X2

]
Ψ2 =

[
2µQ 0

0 0

]
.

It can be proven that Ψ1 is positive definite. The majority of the proof of this conclu-
sion comes from the paper [14]. For the reader’s convenience, we provide the complete
proof here.

Matrix Ψ1 is a block diagonal matrix, with all four blocks being diagonal matrices.
Thus, we can easily compute the eigenvalues using the characteristic polynomial

det(Ψ1 − qI) = det
((

X2 − qI
)(

S2 − qI
)
− θ2µ2E2

)
=

n

∏
i=1

((
x2

i − q
)(

s2
i − q

)
− θ2µ2E2

ii

)
.

Clearly, det(Ψ1 − qI) = 0 gives n quadratic equations and each quadratic equation
gives two eigenvalues. The two eigenvalues from the ith quadratic equation are

qi+ =
1
2

(
(x2

i + s2
i ) +

√
(x2

i + s2
i )

2 − 4x2
i s2

i + 4θ2µ2E2
ii

)

and

qi− =
1
2

(
(x2

i + s2
i )−

√
(x2

i + s2
i )

2 − 4x2
i s2

i + 4θ2µ2E2
ii

)
.

Recalling the definition of E in (14), we can write

qi− =
1
2

(
(x2

i + s2
i )−

√
(x2

i + s2
i )

2 − 4x2
i s2

i + 4(xisi − µ)2

)

=
1
2

(
(x2

i + s2
i )−

√
(x2

i + s2
i )

2 + 4(xisi − µ + xisi)(xisi − µ− xisi)

)

=
1
2

(
(x2

i + s2
i )−

√
(x2

i + s2
i )

2 − 4µ(2xisi − µ)

)

=
1
2

(
(x2

i + s2
i )−

√
(x2

i + s2
i )

2 − 4µ(2θµEii + µ)

)
.

One can verify that the square root always exists because

(x2
i + s2

i )
2 − 4µ(2xisi − µ) ≥ 4(xisi)

2 − 4µ(2xisi) + 4µ2

= 4(xisi − µ)2

≥ 0.
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With θ ∈
(

0, min
{

1
3
√

n , 1
4‖QVVT‖F+1

})
, we have

qi− ≥
1
2

(
(x2

i + s2
i )−

√
(x2

i + s2
i )

2 − 4µ(2θµEii + µ)

)

≥ 1
2

(
(x2

i + s2
i )−

√
(x2

i + s2
i )

2 − 4µ(−2µ
1

3
√

n
+ µ)

)

=
1
2

(
(x2

i + s2
i )−

√
(x2

i + s2
i )

2 − 4
3

µ2

)

=
1
2

4
3 µ2

(x2
i + s2

i ) +
√
(x2

i + s2
i )

2 − 4
3 µ2

≥ 1
2

4
3 µ2

(x2
i + s2

i ) +
√
(x2

i + s2
i )

2

=
µ2

3(x2
i + s2

i )

> 0.

This means that matrix Ψ1 is positive definite and its eigenvalues coincide with its
singular values because Ψ1 is also real and symmetric. Analogously, we have

qi+ =
1
2

(
(x2

i + s2
i ) +

√
(x2

i + s2
i )

2 − 4µ(2θµEii + µ)

)

≤ 1
2

(
(x2

i + s2
i ) + (x2

i + s2
i ) + 2µ

√
(2θEii + 1)

)

≤ 1
2

(
(x2

i + s2
i ) + (x2

i + s2
i ) + 2µ

√
2

)
= (x2

i + s2
i ) +

√
2µ.

Thus, the condition number of Ψ satisfies

κ(Ψ) ≤ σmax(Ψ1) + σmax(Ψ2)

σmin(Ψ1) + σmin(Ψ2)

=
maxi qi+ + σmax(Ψ2)

minj qj− + σmin(Ψ2)

≤
maxi{x2

i + s2
i }+

√
2µ + 2µσmax(Q)

minj
µ2

3(x2
i +s2

i )

=
3 maxi{x2

i + s2
i }
(

maxi{x2
i + s2

i }+
√

2µ + 2µσmax(Q)
)

µ2

≤
3ω2

(
ω2 +

√
2µ + 2µσmax(Q)

)
µ2 ,

where the last inequality comes from the definition of ω. Since ω2 ≥ xisi ≥ (1− θ)µ,
we have

κ(Ψ) = O
(

ω2(ω2 + µσmax(Q))

µ2

)
.
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Using Lemma 2, we can also bound the condition number of matrix M by

κM =
√

κ(MT M)

≤
√

κ(Ψ)κVAQ

= O
(
(ω2 + µσmax(Q))

µ
κVAQ

)
.
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