
Citation: Niepostyn, S.J.; Daszczuk,

W.B. Entropy as a Measure of

Consistency in Software Architecture.

Entropy 2023, 25, 328. https://

doi.org/10.3390/e25020328

Academic Editor: Philip Broadbridge

Received: 28 November 2022

Revised: 31 January 2023

Accepted: 4 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Entropy as a Measure of Consistency in Software Architecture
Stanislaw Jerzy Niepostyn 1,* and Wiktor Bohdan Daszczuk 2

1 School of Computer Science & Technologies, University of Economics and Human Sciences in Warsaw,
01-043 Warsaw, Poland

2 Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland
* Correspondence: j.niepostyn@vizja.pl

Abstract: In building software architectures, the relations between elements in different diagrams
are often overlooked. The first stage of building IT systems is the use of ontology terminology, not
software terminology, in the requirements engineering process. Then, when constructing software
architecture, IT architects more or less consciously however introduce elements that represent the
same classifier on different diagrams with similar names. These connections are called consistency
rules and are usually not attached in any way in a modeling tool, and only a significant number of
them in the models increase the quality of the software architecture. It is mathematically proved
that the application of consistency rules increases the information content of software architecture.
Authors show that increasing readability and ordering of software architecture by means of consis-
tency rules have their mathematical rationale. In this article, we found proof of decreasing Shannon
entropy while applying consistency rules in the construction of software architecture of IT systems.
Therefore, it has been shown that marking selected elements in different diagrams with these same
names is, therefore, an implicit way to increase the information content of software architecture while
simultaneously improving its orderliness and readability. Moreover, this increase in the quality of the
software architecture can be measured by entropy, which allows for checking whether the number of
consistency rules is sufficient to compare different architectures, even of different sizes, thanks to
entropy normalization, and checking during the development of the software architecture, what is
the improvement in its orderliness and readability.

Keywords: software architecture; consistency rules; IT system design; entropy; consistency assessment

1. Introduction

Software architecture is a very important plan for building an IT system, in particular
for such systems as safety-critical and mission-critical systems. However, it is usually
believed that any gaps in the software architecture negatively affect the overall success of
the entire software development project. Moreover, there is no agreed definition of software
architecture to date. The structure of an IT project usually includes UML diagrams grouped
into models, which are usually presented in the form of software architecture views.

It is worth mentioning that before designing the software architecture, there should
always be a stage of eliciting requirements from the customer along with developing a
model of the domain included in the ontology. Typically, this step transforms the require-
ments and their constraints into a problem ontology and tries to discover contradictions
using ontology reasoning. The contradictions that have been found indicate ontological
inconsistencies. These ontological inconsistencies are resolved using logical rules, while
software architecture inconsistencies are resolved, for example, using database construction
rules in terms of the domain model. Thus, the formal semantic notion is unimportant for
software architecture but crucial for ontologies. In other words, solving the issues related
to software architecture inconsistencies that we describe in the article is usually considered
only after requirements are agreed upon using ontology technologies. Therefore, in the

Entropy 2023, 25, 328. https://doi.org/10.3390/e25020328 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020328
https://doi.org/10.3390/e25020328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7532-362X
https://doi.org/10.3390/e25020328
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020328?type=check_update&version=1

Entropy 2023, 25, 328 2 of 21

article, we omit the consideration of ontological inconsistencies, as they are beyond the
scope of the problem we are considering.

In other words, in our article, we described inconsistencies in the software architecture,
not inconsistencies in terms of the problem ontology coming from the domain model
that represents the requirements and the domain ontology that represents the domain
knowledge in a given IT project.

It has been found, since the dawn of software architecture, that the most critical gaps
are inconsistencies between diagrams from different views in complex IT projects. This
is the effect of grouping diagrams into views that are developed by various IT teams.
Thus, the definitions used in popular architecture description standards mostly specify that
“the consequence of using multiple views is the need to express and maintain consistency
between these views”—ISO/IEC 42010 [1]. Until today software architects have developed
a lot of standards such as the 4 + 1 architectural view model [2] constituting the base concept
in the Rational Unified Process [3], ISO/IEC 42010, and Model Driven Architecture [4] or
TOGAF [5], which all have some common properties: diagrams are part of specific models
(e.g., data model, domain model) while models are grouped into independent views. The
definitions of consistency are missing there as these standards do not directly specify
dependencies between diagrams or views. Thus, presently analysts and architects mainly
grapple with inconsistent architectures that restrict the progress of software development
and consume excessive resources, the use of which is often critical in the project often.
Currently, this is solved by accepting the existence of inconsistencies without trying to
manage them, by using only part of the architecture, or even abandoning its use, especially
in agile methodologies, which apparently eliminates inconsistencies in only part of the IT
project by moving the problem to another part, often generating additional costs.

In this article, the authors propose yet another inconsistency management solution.
The use of consistency rules in building subsequent diagrams of software architecture
solves the problem of inconsistency because instead of identifying inconsistencies, subse-
quent elements are constructed in the next diagrams that are consistent with the previously
proposed ones. Moreover, the use of such implicit consistency rules increases the infor-
mation content of software architecture while simultaneously improving its orderliness
and readability, the proof of which is the main contribution of the authors in this article.
It is also worth noting that this increase in the quality of the software architecture can be
measured by entropy, which allows us to check whether the number of consistency rules
is sufficient to compare different architectures, even of different sizes, thanks to entropy
normalization, and check, during the development of the software architecture, what is the
improvement in its orderliness and readability.

Software architecture models are based mostly on the UML language [6]. The seman-
tics of UML models is defined in a natural language; however, there are many attempts
to formalize its semantics. UML cannot provide a straightforward way of representing
a connector (association), and there is no specific construct for representing architectural
styles [7]. In UML, one cannot fully define the relationships between diagrams; therefore,
completeness and consistency of models composed of diagrams must be either ensured
manually [8] or expressed, e.g., in OCL [9].

Therefore, when building software architectures, one often neglects the rather bur-
densome activity of connecting elements from different diagrams with relationships, and
instead, common names for these different elements are repeatedly used to indicate some
relationship between them. Thus, when constructing software architecture, IT architects
more or less consciously introduce elements that refer to the same classifier on different
diagrams with elements with the same names. These connections of different elements
with the same names from two different diagrams are called consistency rules [10–14] and
are usually not attached in any way to a modeling tool, and only a significant number
of them in the models increase the quality of the software architecture. However, these
implicit consistency rules significantly facilitate the reading of such software architecture
by experienced IT architects. As a consequence, such consistency rules, often unnoticed by

Entropy 2023, 25, 328 3 of 21

many IT professionals, lead to an increase in the software architecture information content,
where these rules are usually seen by a few IT professionals and, at the same time, can help
avoid many errors.

Our experience shows that the application of consistency rules increases the read-
ability and information content of software architecture. However, how do we prove it
mathematically? To measure the information content and readability of any diagram, or
diagram layout, enriched with consistency rules, the formula for Shannon entropy, which
is one of the most important metrics in information theory, can be used. Entropy measures
the expected amount of information conveyed by identifying the outcome of a random
trial [15]. The entropy of a more complex system will be greater than that of a less complex
system. Thus, if the entropy of a diagram system without consistency rules turns out to be
lower than the entropy of the same system, but enriched with consistency rules, then we
will show that the application of consistency rules in a software architecture increases its
information content, but also orderliness this architecture by reducing uncertainty.

The use of consistency rules increases the orderliness of a software architecture design,
and the measure of this orderliness is the entropy associated with the occurrence of the same
names in a given software architecture design. In this article, proof of decreasing entropy
of the architecture model while applying consistency rules between various elements of
different diagrams in the construction of software architecture of IT systems was carried out.
This is the author’s main contribution. The uncertainty of software architecture construction
is thus reduced when introducing consistency rules, and therefore, the orderliness and
consistency of the entire software architecture increases.

Therefore, marking selected elements in different models using similar names is an
implicit way to increase the information content of the software architecture and, at the
same time, to improve its orderliness and readability. This explains the use of consistency
rules in the construction of software architecture in order to cut its design time, as compared
to designing without paying attention to consistency rules. The use of consistency rules also
has a significant impact on the need to verify the created software architecture. The software
architecture built in this way is immediately consistent, so it does not need to be verified
in this respect. Thus, sometimes the great costs associated with testing the consistency of
software architecture are omitted. With greater order and greater readability of the software
architecture, the software coding process becomes shorter, much less complicated, and
therefore less erogenous. It is also of great importance when testing software, as a faster
and more complete understanding of the system’s operation, has a large impact on the time
of testing as well as the number of defects found.

It is worth noting that in our article, we exaggerated the issue of showing consistency
rules, which, as we showed earlier, are combinations of elements with similar names. In
real projects, these consistency rules are actually hidden from the “untrained eye”. For
example, an activity named “2. Register a proposal” could be the same for “a trained eye”
as a use case named “UC3.1. Save proposal to registry”. To the untrained eye, such a
consistency rule may go unnoticed. Moreover, there is currently no software architecture
modeling tool that can automatically detect that these elements could be connected by
the consistency rule and therefore be the same element but observed from two different
perspectives. Thus, the discovery of the rules of consistency, which perhaps has something
to do with the discovery of knowledge, has great potential but seems to be all too often
overlooked due to the typical objection as being obvious. Therefore, in order not to compete
with the assessment of the similarity of element names, we will assume in our article that
these names must be identical if they are to be identified in the consistency rules.

The term “entropy” is used in thermodynamics, probability theory, information theory,
or the theory of dynamic systems. However, as Thims [16] pointed out, Shannon’s equation
regarding information theory has no relation to similar equations used in thermodynam-

Entropy 2023, 25, 328 4 of 21

ics or statistical mechanics. In the further part of the work, the term “entropy” will be
understood in the meaning assigned to it by Shannon in accordance with the formula:

Entropy = −
n1

∑
i=1

(Pi log2 Pi) (1)

where n1 is the total number of all elements, and Pi are the probabilities of occurrence of a
set i of possible elements.

The expressions in the Formula (1) and the following equations in this article come
from the well-known equations called “Halstead complexity measures” [17]. These expres-
sions are used in articles dealing with software metrics and even software architecture. The
basic metrics of the software are: n1 is the number of distinct operators; n2 is the number
of separate operands; N1 is the total number of occurrences of each operator; N2 is the
total number of occurrences of the operands. Formula (1), on the other hand, concerns
the entropy associated with the occurrence of operators n1 in the scope of the number N1,
which is the total number of all operators. In our article, we used the formulas published
by Harrison [18] and Bansiya [19]. Such identical formulas were used by Harrison, and he
defined his AICC metric using the variable η1, instead of the number of operators n1, to
denote not the number of operators but “the number of occurrences of the i-th operator
in the source text”. In contrast, Bansiya in its formula also used Formula (1) in its original
form, but in its formula, it used the variables n1 and N1 referring to the operators of the
same name.

The formulas in this paper thus retain the convention of Halstead’s software metrics
and also take into account the original form of the Harrison and Bansiya formulas. Since
our article is about Computer Science, and in particular software architecture, in which we
use the formulas of Halstead, Harrison, and Bansiya, it seems good practice to continue the
notations described in this area of research.

Entropy may be perceived as a measure of uncertainty associated with discrete dis-
tribution with appropriate probabilities. In research on UML diagrams, it is assumed
that the probability distribution of a given UML element is the quotient of the number of
occurrences of a given UML element to the number of occurrences of all UML elements
in a UML diagram. For example, the probability distribution for one class and for one
attribute is identical and amounts to 0.5 for a UML diagram consisting of only one class
(one occurrence) and one attribute (one occurrence).

For a UML diagram composed of only one class, entropy would be equal to 0 because
the probability distribution for this one class would be equal to 1.0 (certain event). Hence, a
UML diagram with only one class does not contain any information about the structure of
a given system. Only introducing another class and linking both of them with a relation or
describing this one class with attributes would bring some information to the IT architect.
This is the nature of entropy, as it shows a variety of diagram elements. Entropy also
indicates the complexity of such a diagram. The more diverse the elements, the greater
the entropy, and thus also the information content of a given diagram. Thus, a diagram
consisting of only one type of element does not present any information.

The concept of entropy has been extensively used as a measure of information content.
Entropy is also used in areas such as granulation monotonicity in information systems [20],
map evaluation [21], information encoding [22], sustainability transportation system struc-
ture [23], and decision systems [24].

Using the software complexity metrics with entropy, it can be proved that for the
same diagram’s configuration, the decrease in entropy occurs due to the increase in the
number of consistency rules (links) between the elements of these diagrams. Relationships
between individual elements of diagrams should be interpreted as displaying the existence
of consistency rules between elements. These rules do not introduce additional elements to
the diagram configuration (relationships between elements of diagrams) but are expressed
in practice through similar names of the elements being linked.

Entropy 2023, 25, 328 5 of 21

The paper is organized as follows: in Section 2, the related works on consistency
rules and their classifications are summarized. Section 3 describes the software complexity
metrics AICC and CDE, which are key equations in the proof. The use of the equations
described above in UML diagrams is described in Sections 4 and 5, the main proof is
performed, which is the contribution of the paper. Section 6 describes an experiment
performed in an industrial IT project, and Section 7 concludes the paper. Extensive excerpts
from the consistency rules from another article are included in Appendix A.

2. Related Work
2.1. Consistency

To assert that something is consistent, we have to declare what it is consistent with.
Software models describe the system from different points of view, at different levels of
abstraction and granularity, in different notations. They may represent the viewpoints and
goals of different stakeholders. However, this leads to problems in identifying and han-
dling inconsistencies between such perspectives. Inconsistencies reveal design problems.
Obviously, the earlier the problems are detected in the system design lifecycle, the lower
the cost of fixing them. The research on consistency models was started by Finkelstein [25].
Finkelstein stated that inconsistency is not necessarily a bad thing, and this problem is
not necessarily performed by eradicating inconsistencies but rather by supplying logical
rules specifying how we should act on them. Then, in 2001, Zismann and Spanoudakis [26]
described inconsistency as a state in which two or more overlapping elements of different
software models make assertions about the aspects of the system they describe which are
not jointly satisfiable.

A more specific definition of inconsistency was given in 2000 by Nuseibeh et al. [14]
as: “any situation in which a set of descriptions does not obey some relationship that
should hold between them. The relationship between descriptions can be expressed as a
consistency rule against which the descriptions can be checked”.

The definition of inconsistencies in the models was provided by Spanoudakis and
Zisman, indicating that the ultimate goal of management consistency is to maintain consis-
tency during the design of the system. However, often researchers, including Straeten [27],
indicate that this is not realistic in a real project, where several architects work in parallel.

Another definition of inconsistency proposed by Jurack et al. [28] also concerned the
correctness of constructing the UML activity diagram. Jurack believed that the consistency
of an activity diagram was preserved when all rule sequences in such a diagram were
applicable. The applicability conditions for such rule sequences were given previously by
Lambers et al. [29].

Finally, an original definition of diagram layout consistency was proposed in [13]. In
the example of the so-called conjugated graphs, they defined (in formal logic) the consis-
tency of the diagram’s configuration as a set of two conditions: the names of corresponding
elements in two different graphs must match; the relationship and direction between ele-
ments of a given diagram must be reflected between corresponding elements in another
diagram. In other words, Fryz and Kotulski found that the diagram’s configuration is
consistent as long as the transformations between the diagrams take into account the
connections and direction of the elements that have been transformed between them.

In the area of research on inconsistencies, an important place is also taken by the
proposition of Berardi et al. [30], which is usually understood as the consistency of UML
classes, in which UML classes are considered consistent only if it is possible to create an
instance on their basis with all constraints, or multiples designed for these classes.

It is worth noting that despite many proposals for the definition and classification of
inconsistencies in the last dozen or so years, it turns out that the definition of Spanoudakis
and Zisman has become the best-known and most often quoted. Moreover, this definition,
as one of the few, has been described in formal language. Most of the other definitions of
inconsistency were described in informal language.

Entropy 2023, 25, 328 6 of 21

Among these many proposals for the definition and classification of inconsistencies,
it is worth noting that in 2002–2003 two conferences were held in Poland on the issues
of consistency of models using the UML standard [31,32]. At these conferences, it was
proposed to divide the inconsistencies that violate the consistency of UML models into
such types as inter-model consistency or intra-model consistency. Inter-model consistency
is defined as meeting the appropriate constraints for the model but also maintaining the
appropriate rules of compliance with the modeling language used. The definition of
inconsistency was most often described in informal language, supported by meta-models,
while the inconsistency detection algorithms were proposed in pseudo-code.

The next types of inconsistencies were proposed by Engels et al. [33]. He defined
evolution consistency. Such inconsistency occurred between different versions of the same
model. Regardless of these types of consistency, Engels also defined syntactic consistency
and semantic consistency. The semantic consistency of the model consists of the compli-
ance with the semantic rules described by a given UML meta-model, while the syntactic
consistency consists of the compliance of the diagram with the rules of creating diagrams
described by the UML standard. Horizontal consistency of software models has been de-
fined as the possibility of implementing such models into an executable form. On the other
hand, vertical consistency has been described as the consistency between a given model and
its transformation at the next level of abstraction, with the last level being the implemented
piece of software or the entire software. It is worth noting the vertical consistency here,
which could allow the construction of architecture from abstract to implementable models.

In 2005, Mens [34] proposed to divide inconsistencies into three dimensions based on
research into class, sequence, and state diagrams. The first dimension includes inconsisten-
cies related to horizontal, vertical, and evolutionary consistency. Vertical consistency is an
agreement between diagrams at different levels of abstraction, horizontal consistency is
an agreement of diagrams on the same level of abstraction, and evolutionary consistency
is an agreement between different versions of the same diagram. The second dimension
of inconsistency was defined as syntactic consistency and semantic consistency. Semantic
consistency is in compliance with the semantic rules (in natural language) defined by the
UML standard, and syntactic consistency is in compliance with the specification of its
meta-model. The third and last dimension of inconsistency describes the inconsistencies
resulting from the inheritance hierarchy defined in object-oriented languages and consists
of observational consistency (a subclass object should always behave like a superclass
object) and invocation consistency (a subclass object can be used wherever it is required
object of this class).

Subsequent proposals for the classification or interpretation of inconsistencies did not
have a significant impact on the further development of research on inconsistencies. In the
area of research on inconsistency, the focus of further development of inconsistency was
the marking, specification, and application of the rules of consistency in UML diagrams.

2.2. Consistency Rules in UML Diagrams

UML diagram consistency rules do not have a clear and unambiguous definition so
far. Most often, the definitions of consistency rules are closely related to the definition of
consistency. The accepted conception of consistency rules is the relationship between ele-
ments of various UML diagrams that meet a specific consistency definition and, as a result,
are considered consistent. In general, consistency rules are transformations (mappings)
between elements of different models. Because relationships between diagrams require
additional diagrams regardless of the modeling language, separate UML diagrams must be
created to visualize consistency rules.

One of the first implementations of the rules of consistency between diagrams was
proposed in 2000 by Egyed [35]. These rules were called constraints or transformations by
Egyed, while he used the term “consistency rules” to denote a certain type of constraint
between elements of different diagrams. However, for the purposes of this dissertation,
many of the links proposed by Egyed have been interpreted as consistency rules. Egyed’s

Entropy 2023, 25, 328 7 of 21

rules applied to class, state, object, and sequence diagrams but did not determine specific
transformations leading to the generation of executable code or the construction of diagrams
from abstract to implementable. Other consistency rules, but between sequence diagrams
and state machines, were developed in 2006 by Shuzhen et al. [36]. Ha et al. [37], however,
proposed the rules of consistency between nine UML diagrams without indicating specific
elements of these diagrams. These suggestions were only used to improve the quality of
the constructed models. Hausmann’s proposal [38] was to use consistency rules to verify
the consistency of activity diagrams visualizing use cases. Sapna et al. [39] proposed the
implementation of consistency rules between use case, activity, sequence, class, and state
machine diagrams in the form of SQL expressions. The rules of consistency postulated by
Chanda et al. [40] were to be implemented through context-free grammar using Lex and
YACC programs. These rules are applied to the diagram of use cases, classes, and activities.
Only Ibrahim et al. [41], Shinkawa [42], and Kang et al. [43] proposed consistency rules
that could be used to generate consistent UML diagrams. Ibrahim et al. [44] proposed rules
of consistency between the use case diagram and the activity diagram and then between
the sequence diagram. Kang et al. indicated the rules of consistency between the sequence
diagram and the activity diagram. Shinkawa, on the other hand, assumed that consistency
between specific diagrams was too complex to study or manage, so he proposed a method
to generate consistent UML models from the use case model. It was proposed, on the basis
of the “use-case driven” method, to create an activity model from the description of use
cases. In turn, objects are extracted from this model by formulating an object diagram
and then a state machine diagram consistent with the previously created class diagram.
Moreover, a sequence diagram is obtained from the activity model through appropriate
transformations. In order to obtain consistent diagrams, Shinkawa decided to map the
scenarios of individual use cases to the corresponding models in CPN (Colored Petri Net)
notation, and then from such a model, a CPN activity model is created, on the basis of
which activity diagrams, classes, state machines and sequence. In the above method, the
main assumption was that the UML diagrams obtained from the CPN activity model are
consistent because the CPN activity model is also consistent.

At the end of this summary, it is worth mentioning that many studies on inconsis-
tencies, along with the area of application of consistency rules [34,36,39], have come to
interesting proposals for defining and applying individual properties of various UML
models in the field of software development. In addition, recent publications in this area,
Torre et al. [10,45], seem to aim to develop a full list of UML diagram consistency rules
according to the new proposals for their classification after Allaki et al. [46]. Thus, in 2016
Torre et al. [10] showed 116 UML consistency rules gathered from different authors, and in
2019 Niepostyn [12] published 87 original UML consistency rules.

After these publications, it seems that the next step should be methods and algorithms
enabling the easy and clear implementation of consistency rules in software architecture.

It is worth adding that many authors try to describe the consistency of software
architecture, but to the best of our knowledge, no one has tried to measure and thus
compare the software architecture of IT systems.

3. AICC and CDE Software Complexity Metrics

Before we move on to describe the proof of the decrease in entropy when applying
consistency rules, we would like to present the entropy measures that will be used later in
the article in our proof.

One of the first metrics based on estimating the information content (entropy) of the
software data structure was the AICC [18] (Average Information Content Classification)
and the CDE [19] (Class Design Entropy) metrics, which calculated the complexity of
the software code, the first referring to structural languages (in particular PL/I) and the
other object-oriented languages. It is worth noting that the AICC and CDE metrics have
been proposed for estimating the source codes (measuring complexity). The proposed

Entropy 2023, 25, 328 8 of 21

mathematical formulas of these metrics were used in their later applications to assess,
among others, UML diagrams.

The Average Information Content Classification metrics (AICC) described the com-
plexity of the software based on the concept of entropy and was proposed to estimate the
complexity of the source code. The AICC metrics include the following parameters: N1 is
the total number of (non-unique) symbols of the language used in the code, and fi, where
1 ≤ i ≤ η1, is the number of occurrences of the i-th language symbol appearing in the
source code. The formula for calculating the AICC metrics is given below.

AICC = −∑η1
i=1

fi

N1
log2

fi

N1
(2)

The interpretation of this metric is that a program with a higher value of a metric
should be less complex (complex) than a program with a lower value of this metric. The
AICC values are not additive, nor is the comparison of its values for two different modules
not meaningful, but already these values for the same module could indicate the justification
for using, for example, some complex software libraries. For large systems, the AICC metric
can take values between 1.7 and 5.1. In AICC-based diagrams describing UML diagrams,
the elements from which a given diagram can be built are used as language symbols,
whereas η1 means the number of groups of elements of the same type.

The Class Design Entropy metrics, such as the AICC metrics, have also been proposed
for estimating the source code. An identical formula was proposed for calculating the
value of this metric as for the AICC metric, where instead of all language symbols, only the
names of identifiers appearing in the tested part of the software (class definitions) such as
class name, variable, constant, class, and symbols characteristic for a given language are
included. On the other hand, symbols characteristic of a given language, such as keywords
or operators, are omitted. The proposed CDE metrics include the following parameters:
N1 is the total number of occurrences of identifiers (non-unique) used in the definition
of the tested class, and f̂i, where 1 ≤ i ≤ n1 is the number of occurrences of the i-th
identifier in the definition of this class, n1 is the number of group identifiers with the same
name (unique identifier names) of the class definition being examined. The formula for
calculating the CDE metrics, which is identical to (2), is given below, but the symbols used
have different meanings.

CDE = −∑n1
i=1

f̂i
N1

log2
f̂i

N1
(3)

In the diagrams based on the above formula, describing UML diagrams, the name of
the UML element of the analyzed diagram is usually taken as software code identifiers,
whereas n1 means the number of groups of UML elements having similar names.

The AICC and CDE metrics have been used in the present article to demonstrate
that the application of consistency rules, understood as linking elements of identical
interpretation in any independent diagram, results in a decrease in its entropy, i.e., an
increase in the information content of the model and an increase in its orderliness.

4. Preliminaries

In this section, we will show the application of the above-described formulas to UML
diagrams. Figure 1 shows two configurations with two UML diagrams. On the left is a
configuration with independent diagrams, and on the right is a configuration with related
diagrams. The configuration shown on the left has four occurrences of independent UML
elements (two occurrences of UML Activity elements named “a” and “c”, one occurrence
of UML UseCase element named “d” and one occurrence of UML ControlFlow element
without a name—an arrow connecting UML elements “a” and “c”). Thus, according to
(2), parameter N1 is the number of all occurrences of UML elements (4 UML elements),
parameter η1 is the number of all types of elements in the diagram (3 types of elements: UML
Activity, UML UseCase, UML ControlFlow), and the number of occurrences of individual

Entropy 2023, 25, 328 9 of 21

UML elements are as follows: fUML Activity = 2 (2 elements of UML Activity); fUML UseCase =
1 (1 element of UML UseCase); fUML ControlFlow = 1 (1 element of UML ControlFlow).

Entropy 2023, 25, x FOR PEER REVIEW 9 of 23

4. Preliminaries
In this section, we will show the application of the above-described formulas to UML

diagrams. Figure 1 shows two configurations with two UML diagrams. On the left is a
configuration with independent diagrams, and on the right is a configuration with related
diagrams. The configuration shown on the left has four occurrences of independent UML
elements (two occurrences of UML Activity elements named “a” and “c”, one occurrence
of UML UseCase element named “d” and one occurrence of UML ControlFlow element
without a name—an arrow connecting UML elements “a” and “c”). Thus, according to
(2), parameter N1 is the number of all occurrences of UML elements (4 UML elements),
parameter 𝜂𝜂1 is the number of all types of elements in the diagram (3 types of elements:
UML Activity, UML UseCase, UML ControlFlow), and the number of occurrences of
individual UML elements are as follows: 𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2 (2 elements of UML Activity);
𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 1 (1 element of UML UseCase); 𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1 (1 element of UML
ControlFlow).

Figure 1. Configuration with two UML diagrams with a minimum number of element.

On the other hand, the configuration shown on the right has two independent
elements (UML Activity element named “a” and unnamed UML ControlFlow connection)
and one dependent element (element named “c” appearing as UML Activity element in
the top diagram and the same element occurring as UML UseCase in the bottom diagram).
The connection drawn with a dashed line and named “link” is not part of the
configuration but indicates the consistency rule. Thus, according to (3), parameter N1
means the number of all UML elements (4 non-unique identifiers, i.e., all UML elements),
parameter 𝜂𝜂1 is the number of all elements on the diagram having different names (3
unique identifiers: “a”, “c”, and an unnamed identifier). Moreover, the number of
occurrences of individual UML elements with different names is as follows: 𝑓𝑓𝑎𝑎 = 1 (1
UML element with the identifier “a”); 𝑓𝑓𝑐𝑐 = 2 (2 UML elements with identifier “c”);
𝑓𝑓𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 1 (1 UML element with id unnamed).

It is worth noting that unrelated UML elements occur only once in a diagram system,
whereas UML elements related in a given configuration occur many times in the form of
various UML elements (e.g., the UML element named “c” occurs once as part of the UML
Activity, and for the second time as UML UseCase element).

Thus, to calculate the entropy for the left unrelated system shown in Figure 1, we use
the entropy formula (2) AICC = −∑ 𝑓𝑓𝑖𝑖

𝑁𝑁1
𝜂𝜂1
𝑖𝑖=1 log2

𝑓𝑓𝑖𝑖
𝑁𝑁1

 − (1/4)log(1/4) {element „a”} −
(1/4)log(1/4) {element unnamed} − (1/4)log(1/4) {element ”c”} = −(1/4)log(1/4){element ”d”}
= −(4*1/4)log(1/4) ≈0.6, because “N1 is the total number of (non-unique) symbols of the
language used in the code (there are 4 symbols), and 𝑓𝑓𝑖𝑖, where 1 ≤ 𝑖𝑖 ≤ 𝜂𝜂1, is the number
of occurrences of the i-th language symbol appearing in the source code (each element has
the value 1 for 𝑓𝑓𝑖𝑖)”.

Whereas for the system with consistency rules, we use the entropy formula (3) CDE
= ∑ 𝑓̂𝑓𝑖𝑖

𝑁𝑁1
𝑛𝑛1
𝑖𝑖=1 log2

𝑓̂𝑓𝑖𝑖
𝑁𝑁1

= −(1/4)log(1/4) {element ”a”} − (1/4)log(1/4) {element unnamed} −
(1/4)log(2/4) {element ”c” in UML Activity Diagram} − (1/4)log(2/4) {element ”c” in UML

Figure 1. Configuration with two UML diagrams with a minimum number of element.

On the other hand, the configuration shown on the right has two independent elements
(UML Activity element named “a” and unnamed UML ControlFlow connection) and one
dependent element (element named “c” appearing as UML Activity element in the top
diagram and the same element occurring as UML UseCase in the bottom diagram). The
connection drawn with a dashed line and named “link” is not part of the configuration but
indicates the consistency rule. Thus, according to (3), parameter N1 means the number of
all UML elements (4 non-unique identifiers, i.e., all UML elements), parameter η1 is the
number of all elements on the diagram having different names (3 unique identifiers: “a”,
“c”, and an unnamed identifier). Moreover, the number of occurrences of individual UML
elements with different names is as follows: f̂a = 1 (1 UML element with the identifier
“a”); f̂c = 2 (2 UML elements with identifier “c”); f̂unnamed = 1 (1 UML element with id
unnamed).

It is worth noting that unrelated UML elements occur only once in a diagram system,
whereas UML elements related in a given configuration occur many times in the form of
various UML elements (e.g., the UML element named “c” occurs once as part of the UML
Activity, and for the second time as UML UseCase element).

Thus, to calculate the entropy for the left unrelated system shown in Figure 1, we
use the entropy formula (2) AICC = −∑

η1
i=1

fi
N1

log2
fi

N1
− (1/4)log(1/4) {element „a”} −

(1/4)log(1/4) {element unnamed} − (1/4)log(1/4) {element ”c”} = −(1/4)log(1/4){element
”d”} = −(4*1/4)log(1/4) ≈0.6, because “N1 is the total number of (non-unique) symbols of
the language used in the code (there are 4 symbols), and fi, where 1 ≤ i ≤ η1, is the number
of occurrences of the i-th language symbol appearing in the source code (each element has
the value 1 for fi)”.

Whereas for the system with consistency rules, we use the entropy formula (3) CDE

= ∑n1
i=1

f̂i
N1

log2
f̂i

N1
=−(1/4)log(1/4) {element ”a”} − (1/4)log(1/4) {element unnamed} −

(1/4)log(2/4) {element ”c” in UML Activity Diagram}− (1/4)log(2/4) {element ”c” in UML
USE Case Diagram} = −(2*×1/4)log(1/4) − (2/4)log(2/4) = −(1/2)(log(1/4) − log(2/4)) =
log2 ≈ 0.3, because “N1 is the total number of occurrences of identifiers (non-unique) used
in the definition of the tested class (there are 4 occurrences of identifiers), and f̂i , where
1 ≤ i ≤ n1 is the number of occurrences of the i-th identifier in the definition of this class,
n1 is the number of groups identifiers with the same name (unique identifier names) of the
class definition being examined (two elements have a value of 1 for f̂i, and two elements,
which are instances of the same element, have a value 2 for f̂i)”.

5. Proof of the Decrease in Entropy When Applying Consistency Rules

Below is proof of the decrease in entropy when linking UML elements of different
diagrams using identical names, i.e., it will be proved that Eindep > Edep, where Eindep is
the entropy of the configuration of independent diagrams, and Edep is the entropy of the
configuration of dependent diagrams using consistency rules. The formula for the AICC

Entropy 2023, 25, 328 10 of 21

metrics described in (2) will be used, as well as the formula for the CDE metrics given
in (3).

Assuming that the entropy Eindep for an unrelated configuration results from the
formula for AICC and is given by the formula:

Eindep = AICC = −∑η1
i=1

fi

N
log2

fi

N
, N ∈ N+, fi ∈ N+. (4)

where the symbol N denotes the number of all elements of the configuration of independent
(unrelated) diagrams, and the symbol η1 denotes the number of occurrences of elements of
type i, and fi is the number of occurrences of elements of the i-th of the type i = 0, 1, 2 . . .
for independent diagrams.

On the other hand, entropy Edep for the same related configuration results from the
formula for CDE and is given by the following formula:

Edep = CDE = −∑η2
i=1

f̂i
N

log2
f̂i
N

, N ∈ N+, f̂i ∈ N+ (5)

The symbol N denotes the number of all configuration elements of related diagrams,
and the symbol η2 represents the number of occurrences of elements with the given name
i, and f̂i the number of occurrences of the i-th element with the given name i = 0, 1, 2 . . .
For the configuration of independent diagrams, there is equality: f1 = f2 = · · · = fη1 = 1.
By inequalities 0 ≤ id ≤ η2 let us indicate the number of elements (in the configuration of
related diagrams) such that f̂k = 1 for related diagrams. Without loss of generality, we can
assume that (the dependent layout elements from 1 to id occur only once):

f̂1 = f̂2 = · · · = f̂id = 1 (6)

In addition, equality is satisfied (the number of elements in both layouts is equal):

∑η1
i=1 fi = ∑η2

i=1 f̂i = N (7)

and inequality η1 > η2. Thus, if we substitute Formulas (4) and (5), respectively, in the
main equation Eindep > Edep, then:

Eindep − Edep = − ∑η1
i=1

fi
N log2

fi
N + ∑η2

i=1
f̂i
N log2

f̂i
N =

−∑id
i=1

fi
N log2

fi
N −∑

η1
j=id+1

f j
N log2

f j
N + ∑id

i=1
f̂i
N log2

f̂i
N + ∑

η2
j=id+1

f̂ j
N log2

f̂ j
N =

−∑id
i=1

1
N log2

1
N −∑η1

i=id+1
1
N log2

1
N + ∑id

i=1
1
N log2

1
N + ∑η2

j=id+1
f̂j
N log2

f̂j
N =

−∑
η1
i=id+1

1
N log2

1
N + ∑

η2
j=id+1

f̂j
N log2

f̂ j
N

(8)

Equations (6) and (7) show that:

∑η2
j=id+1 f̂j = η1 − id (9)

Then:

−
η1

∑
i=id+1

1
N log2

1
N = − 1

N log2
1
N

η1

∑
i=id+1

1 = − 1
N log2

1
N (η1 − id) = − 1

N log2
1
N

η2

∑
j=id+1

f̂ j

= −∑
η2
j=id+1

f̂ j
N log2

1
N

(10)

Thus, Equation (8), reduced to a common upper limit, can be written

as : ∑η2
j=id+1

(
f̂j

N
log2

f̂j

N
−

f̂j

N
log2

1
N

)
∑η2

j=id+1

f̂ j

N

(
log2

f̂ j

N
− log2

1
N

)
(11)

Entropy 2023, 25, 328 11 of 21

Because ∀j ∈ {id + 1, . . . , η2} then the inequality f̂ j > 1 occurs and from monotonicity
of the function log2 x we obtain:

∑η2
j=id+1

f̂j

N

(
log2

f̂j

N
− log2

1
N

)
> 0 (12)

What ends the proof that Eindep > Edep.

6. An Example of the Application of Consistency Rules

This section introduces the same piece of design that was modeled without applying
consistency rules and then shows what a software architecture design should look like if
consistency rules have been applied.

Figure 2 shows a fragment of a project implemented by the Ministry of the Interior
in 2014 in all state administration offices as the System of State Registers [47], which is an
organizational and technical solution used to keep public registers, such as: PESEL Register
(Universal Electronic System for Registration of the Population); Register of Identity Cards
(Polish identity card); Civil Registry (civil status and marital status); System of State
Decorations (Orders, decorations, and medals of Poland); Central Register of Objections
(organ and/or tissue retrieval). The project did not apply the consistency rules, while the
audit carried out by the author of this article in 2014 showed significant shortcomings of
the system, which resulted in postponing its deployment for half a year in order to improve
its design.

Due to the large deficiencies in the software architecture of this project, the authors de-
cided to place all diagrams from this project in the proprietary software architecture model,
called e-CMDA, divided into four views: context, business, system, and development. The
original project documentation was not presented in this way, and the individual diagrams
were not in any way arranged. In the e-CMDA software architecture concept, each view
contains two layers with corresponding diagrams. In the absence of diagrams from the
above-mentioned project, the authors inserted an inscription with the appropriate text
included in the project documentation instead of the UML model or with the text “X” when
there was no information about a similar artifact in the project. The presented software
architecture is the authors’ personal contribution to the improvement of the original soft-
ware architecture presented in the design documentation, and the placement of individual
diagrams in an orderly manner indicates an additional advantage of the entropy concept in
the software architecture presented by the authors.

In Figure 2, to improve the readability of the models, we have also placed comments
next to selected elements of individual UML diagrams so as to better use the definition
of the consistency rule, which states that it is a combination of elements with the same
names from different diagrams. It is worth noting that the very fact of arranging the
diagrams from the most abstract (Context Diagram) to the most technical (Component
Diagram) introduces a large ordering of the software architecture, compared to the software
architecture consisting of randomly shown diagrams in the design documentation, as is
often the case in many IT projects.

The contents of the diagrams are too small to be readable, but we show the general de-
sign just to enumerate the diagrams that are subject to the application of consistency rules.

Comparing the number of elements from the improved diagram in Figure 2 with the
number of elements from the diagram with the consistency rules in Figure 3, it turns out
that the number of these elements in these figures is equal. The evidence carried out in
this article shows that by taking into account the elements with the same names that they
are one and the same element, and thus reducing the number of different elements on
the software architecture model, we simultaneously reduce entropy, and thus increase the
readability of the software architecture and its orderliness.

Entropy 2023, 25, 328 12 of 21Entropy 2023, 25, x FOR PEER REVIEW 12 of 23

Figure 2. System of State Registers—UML design.

In Figure 2, to improve the readability of the models, we have also placed comments
next to selected elements of individual UML diagrams so as to better use the definition of
the consistency rule, which states that it is a combination of elements with the same names

Figure 2. System of State Registers—UML design.

Entropy 2023, 25, 328 13 of 21Entropy 2023, 25, x FOR PEER REVIEW 14 of 23

Figure 3. System of State Registers—consistency rules version.

Figure 3. System of State Registers—consistency rules version.

And in fact, by reducing the number of different elements, the software architecture
becomes more readable, and the ordering of these elements increases because it is known
which elements are based on which. Thus, by applying the consistency rules, we simul-

Entropy 2023, 25, 328 14 of 21

taneously reduce the entropy of the software architecture, which entails the fact that the
software architecture becomes more readable and understandable, and we see order and a
rational explanation of the location of individual diagrams and their elements in the entire
software architecture.

To better support the examples cited, the entropy of the software architecture parts
shown in Figures 2 and 3 was measured for the following diagrams: context diagram,
business use case diagram, process decomposition diagram, business use case realization
diagram, system use case diagram, business class diagram, system use case realization
diagram, internal system use case diagram, sequence diagram, and component diagram.
The entropy in Figure 2 for software architecture without consistency rules applied is
3.758, while the entropy in Figure 3 for software architecture using consistency rules is
−3.699—Table 1. In both figures, the selected diagrams include 176 elements. For software
architecture without consistency rules, 21 element groups were identified, and for software
architecture with consistency rules, 54 element groups were identified. Thus, the described
example of two identical software architectures supports the proven thesis.

Table 1. Information about industrial IT projects.

Name System of State Registers PKWD Single Window

Implementation period 2012–2015 2018–2019
Software architecture design period 2 years 0.5 year
Number of people involved in the

software architecture design 8 1

Number of elements 176 5010
Number of consistency rules 0 (95) 427

Entropy without consistency rules 3.758 3.514
Entropy with consistency rules 3.699 3.092

The software architecture shown in Figure 3 seems more obvious and rational. It can
be deduced from this architecture how the next diagrams should be developed during
the software implementation. It is worth adding that in many IT projects, component
diagrams are created at the beginning of their implementation, which shows a more
technical approach to the possibility of building the designed IT system. The software
architecture model shown above shows that the component diagram should be one of the
last diagrams created in an IT project because it should be created after designing business
processes, operation of screens, and showing the relationships of the designed system with
individual components of the entire system. It is also worth noting that the presented
software architecture model indicates the most necessary UML diagrams and their order
of construction. Often, in many IT projects, diagrams are created that do not contribute
too much to the project development of the entire software architecture and can even
cause many inconsistencies and ambiguities in other diagrams. Therefore, the proposed
method of building software architecture indicates the most necessary diagrams and their
arrangement, which, combined with the use of consistency rules, locates the e-CMDA
method in the group of methods for fast, consistent, and complete software architecture
design. The demonstrated evidence of entropy reduction indicates further benefits of using
the e-CMDA method.

Table 1 shows some information about two industrial IT projects. The first of these
projects, System of State Registers, was implemented for three years with rather poor
software architecture, and no consistency rules were applied. The data relate only to
selected fragments of the software architecture, while the entropy with consistency rules
was calculated for a hypothetical case in which the consistency rules would be applied in
the project as stated in the above software architecture models. The second system, PKWD
SingleWindow [48], was implemented for the Ministry of Finance—National Revenue
Administration, with the participation of the author as a software architecture designer
using consistency rules. The architecture design was completed at the beginning of 2019,

Entropy 2023, 25, 328 15 of 21

and the entire system was made available to the business on 30 April 2022. The table above
shows that the application of consistency rules has significantly accelerated the software
architecture design period and significantly reduced the size of the analytical team, while
in the second case, the number of software architecture elements and their detail was much
greater than in the first project.

7. Conclusions

The above evidence shows that for the configuration of diagrams with consistency
rules, created by assigning identical names to diagram elements, the entropy value of
the system decreases compared to the configuration with the same number of elements
but without consistency rules. Thus, the introduction of consistency rules (links between
elements by assigning similar names to some elements) reduces the uncertainty of infor-
mation and consequently increases the orderliness and consistency of the whole model.
Typically, this method of building software architecture is performed by experienced IT
architects. In this article, therefore, a rationale for the practices of experienced IT architects
was presented. The use of consistency rules also has a significant impact on the need
to verify the created software architecture. The software architecture built in this way is
immediately consistent, so it does not need to be verified in this respect. Thus, sometimes
the great costs associated with testing the consistency of software architecture are omitted.
With greater order and greater readability of the software architecture, the software coding
process becomes shorter, much less complicated, and therefore less erogenous. It is also of
great importance when testing software, as a faster and more complete understanding of
the system’s operation, has a large impact on the time of testing as well as the number of
defects found.

A very important conclusion implied from our proof is the fact that when developing
software architecture, consistently apply the rules of consistency in such a way that in
subsequent details of the project, in which there are more and more elements, the entropy
should be measured each time and care should be taken to ensure that to keep this en-
tropy down all the time. The use of consistency rules supports this direction of software
architecture development, as each added consistency rule reduces the entropy of the entire
software architecture. Thus, when new elements appear in the next iteration of software
architecture development, measuring its entropy allows assessing whether the introduction
of new elements goes with a sufficient number of introduced consistency rules. So it allows
assessing whether the detailed software architecture is no less consistent than its more
abstract version.

Ultimately, the following advantages can be formulated, which can be achieved by
consciously applying the consistency rules in constructing software architecture:

• Consistency rules affect faster, optimal, and reliable development of software architec-
ture because they are certain patterns that are easy to implement

• Consistency rules can very quickly verify deficiencies in the software architecture
• There is no need to verify the consistency of the software architecture constructed in

accordance with the consistency rules
• Greater readability and more explicit rationale for building software architecture

shortens the time of its interpretation and therefore reduces the time of coding and
testing IT systems

• Consistency rules should be included in software architecture projects (e.g., in model-
ing tools) to remove ambiguities.

Author Contributions: Conceptualization, S.J.N. and W.B.D.; methodology, S.J.N. and W.B.D.; proof,
S.J.N.; writing—review and editing, W.B.D. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Entropy 2023, 25, 328 16 of 21

Data Availability Statement: The availability of this data is not restricted. The data was obtained on
the basis of the authors’ models developed for the needs of the audit of the IT system commissioned
by the Polish government, co-financed by the European Union from the European Regional Develop-
ment Fund (ERDF) under the Operational Program: Innovative Economy 2007–2013 Priority Axis 7-
Information Society-development of electronic administration. The report, after its adoption, became
public information: https://www.gov.pl/web/cyfrizator/materialy-dokumentujace-sposob-wykonow
ania-przed-coi-umowy-z-ministrem-spraw-wewnetrznych-dot.-construction-of-the-state-register-syst
em-srp-#:~:text=Report%20of%20execution%20contract%20no.%20674/DEP/4.8/2014 (accessed on
6 February 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The consistency rules presented in this article were proposed in the paper presenting
the e-CMDA method [12]. That method allows building a complete and consistent software
architecture of IT systems. The e-CMDA method consists of the e-CMDA algorithm, a set of
consistency rules presented in Table A3, and the FBS metric (entropy measurement) related
to the functional, behavioral and structural dimensions of the software architecture—[49].

Table A1 shows abbreviations of most UML diagrams used in the e-CMDA method,
and Table A2 shows abbreviations of most UML diagram elements. By combining the
abbreviation of the UML diagram with the abbreviation of its element and then the ab-
breviation of another diagram with the abbreviation of its element, we obtained a list of
consistency rules used in the e-CMDA method, which we have shown in Table A3.

Table A1. Practical UML diagrams [12].

Symbol Name Abbreviation

A Business Use Case Realization Diagram ACT
B Business Use Case Diagram UC
C Business Class Diagram CLASS
D Deployment Diagram DEP
I Interaction Diagram SD
J System Class Diagram CLASS

M Component Diagram CMP
N Communication Diagram SD
O Object Diagram -
P Package Diagram PKG
Q Internal Use Case Realization Diagram SD
R Process Decomposition Diagram ACT
S Business State Machine Diagram STM
T System State Machine Diagram STM
U System Use Case Diagram UC
X Context Diagram ACT
Y Internal Use Case Diagram UC
Z System Use Case Realization Diagram ACT

Table A2. UML elements [12].

Symbol UML Element Diagram

a Actor UC
b Attribute CLASS
c Class CLASS
d Pseudostate STM
e AcceptEventAction ACT
f CombinedFragment SD

https://www.gov.pl/web/cyfrizator/materialy-dokumentujace-sposob-wykonowania-przed-coi-umowy-z-ministrem-spraw-wewnetrznych-dot.- construction-of-the-state-register-system-srp-#:~:text=Report%20of%20execution%20contract%20no.%20674/DEP/4.8/2014
https://www.gov.pl/web/cyfrizator/materialy-dokumentujace-sposob-wykonowania-przed-coi-umowy-z-ministrem-spraw-wewnetrznych-dot.- construction-of-the-state-register-system-srp-#:~:text=Report%20of%20execution%20contract%20no.%20674/DEP/4.8/2014
https://www.gov.pl/web/cyfrizator/materialy-dokumentujace-sposob-wykonowania-przed-coi-umowy-z-ministrem-spraw-wewnetrznych-dot.- construction-of-the-state-register-system-srp-#:~:text=Report%20of%20execution%20contract%20no.%20674/DEP/4.8/2014

Entropy 2023, 25, 328 17 of 21

Table A2. Cont.

Symbol UML Element Diagram

h Operation CLASS
i Instance ACT

iSTATE inState_objectNode ACT
l Lifeline SD

m Message SD
n ControlNode ACT
o Execution SD

pH Horizontal Partition ACT
pV Vertical Partition ACT
q Component CMP, DEP
r Region STM
s StateInvariant SD
t Transition STM
u UseCase UC
v Activity, Action ACT
w Node DEP
y Interface CMP, DEP
z Association CLASS

z«cl» DirectedRelationship between classes CLASS
z«cmp» Association between components CMP, DEP

z«control» ControlFlow ACT
z«data» ObjectFlow ACT
z«dep» Dependency CMP, DEP
z«func» Association between UseCase and Actor UC
z«link» CommunicationPath DEP

z«uc» DirectedRelationship between UseCases
and Actors UC

Table A3. List of consistency rules derived from the e-CMDA method [12].

No. Symbol of the Consistency Rule Description

R1.1 XeRi«information» generating process “information” instances from events
R1.2 Xev«process»Rv«subprocess» generating sub processes from events and the main process

R1.3 Xi«product»Ri«subproduct» generating “sub product” instances from context
“product” instances

R1.4 Xi«rules»v«process»Rv«subprocess» generating sub processes from “rules” instances and the
main process

R1.5 Xv«process»i«product»Rv«subprocess» generating sub processes from the main process and
“product” instances

R1.6 Xz«control»Rz«data» generating process object flows from control flows
R1.7 Xz«data»Rz«data» generating process object flows from context object flows

R1.8 XiSTATERiSTATE generating process inState_objectNodes from context
inState_objectNodes

R1.9 XeBu generating business use cases from events
R1.10 XeBa generating business actors from events
R1.11 Xi«product»Ba generating business actors from context “product” instances

R1.12 Xi«rules»v«process»Bu generating business use cases from “rules” instances and
the main process

R1.13 Xei«rules»v«process»Bu«scenarios» generating business use cases scenarios from events, “rules”
instances and the main process

R1.14 Xi«rules»v«process»Ba generating business actors from “rules” instances and the
main process

R1.15 Xz«control»Bz«func» generating business use case associations from context
control flows

Entropy 2023, 25, 328 18 of 21

Table A3. Cont.

No. Symbol of the Consistency Rule Description

R1.16 Xv«data»Bu«data» generating data part of activities from data part of business
use cases

R1.17 Xv«process»i«product»Bu generating business use cases from the main process and
“product” instances

R1.18 Xz«data»Bz«func» generating business use case associations from data flows
R2.1 BaApH generating horizontal partitions from business actors

R2.2 Bu«data»Ai generating business instances from data part of business
use cases

R2.3 Bu«data»Av«data» generating data part of activities from data part of business
use cases

R2.4 Bu«states»AiSTATE generating business inState_objectNodes from a part of
business use case state

R2.5 Bu«scenarios»An«start»(v+|i+)+n«stop» generating business use cases realization diagram from
business use case scenarios

R2.6 Bz«func»ApHv
mapping business activities to horizontal partitions from

business use case associations

R2.7 Bu«data»Az«data» generating business data flows from a part of business use
case data

R2.8 Ri«information»ApV generating business vertical partitions from process
“information” instances

R2.9 Ri«information»ApH generating business horizontal partitions from process
“information” instances

R2.10 Ri«subproduct»ApV generating business vertical partitions from process
“subproduct” instances

R2.11 RiSTATEAiSTATE generating business inState_objectNodes from process
inState_objectNodes

R2.12 Rz«data»Az«data» generating business data flows from process data flows

R2.13 Ri«information»Ai generating business instances from process
“information” instances

R2.14 RiAi generating business instances from process instances
R2.15 ApHUa generating system actors from business horizontal partitions
R2.16 AvUu generating system use cases from business activities

R2.17 ApHvUz«func»
generating system use case associations from business

activities in horizontal partitions
R2.18 AiCc generating business classes from business instances

R2.19 Az«data»Cz generating business class associations from business
data flows

R2.20 AvCch generating business class operations from business activities

R2.21 Av«data»Ccb generating business class attributes from a part of business
activity data

R2.22 AiCcb generating business class attributes from slots of
business instances

R2.23 AiSTATESs
generating business states from business

inState_objectNodes
R2.24 Az«data»St generating business transitions from business data flows
R2.25 AiSr generating business regions from business instances
R2.26 AvSt generating business transitions from business activities
R3.1 UaZpV generating system vertical partitions from system actors

R3.2 Uu«data»Zi generating system instances from a part of system use
case data

R3.3 Uu«data»Zv«data» generating a part of system activities data from a part of
system use case data

R3.4 Uu«states»ZiSTATE generating system inState_objectNodes from a part of
system use case state

Entropy 2023, 25, 328 19 of 21

Table A3. Cont.

No. Symbol of the Consistency Rule Description

R3.5 Uu«scenarios»Zn«start»?(v+|i+)+n«stop»? generating system use cases realization diagram from
system use case scenarios

R3.6 Uz«func»ZpVv
mapping system activities to vertical partitions from system

use case associations

R3.7 Uu«data»Zz«data» generating system data flows from a part of system use
case data

R3.8 CzZz«data» generating system data flows from business
class associations

R3.9 CcZi generating system instances from business classes
R3.10 CchZv generating system activities from business class operations

R3.11 CcbZv«data» generating a part of system activity data from business
class attributes

R3.12 SsZiSTATE generating system inState_objectNodes from business states
R3.13 SrZi generating system instances from business regions
R3.14 StZz«data» generating system data flows from business transitions
R3.15 ZpVYa generating internal actors from system vertical partitions
R3.16 ZvYu generating internal use cases from system activities

R3.17 ZpVvYz«func»
generating internal use case associations from system

activities in vertical partitions
R3.18 ZiJc generating system classes from system instances
R3.19 Zz«data»Jz generating system class associations from system data flows
R3.20 ZvJch generating system class operations from system activities

R3.21 Zv«data»Jcb generating system class attributes from a part of system
activity data

R3.22 ZiSTATETs generating system states from system inState_objectNodes
R3.23 Zz«data»Tt generating system transitions from system data flows
R3.24 ZiTr generating system regions from system instances
R3.25 ZvTt generating system transitions from system activities
R4.1 YaQl generating lifelines from internal actors
R4.2 YuQl generating lifelines from internal use cases

R4.3 Yu«data»Qm«parameter» generating message parameters from a part of internal use
case data

R4.4 Yu«states»Qs generating sequence states from a part of internal use
case states

R4.5 Yu«states»Qo generating sequence occurrences from a part of internal use
case states

R4.6 Yu«scenarios»Qm generating messages from internal use case scenarios
R4.7 Yz«func»Qm generating messages from internal use case associations
R4.8 JcQl generating lifelines from system classes
R4.9 JchQm generating messages from system class operations

R4.10 JcbQm«parameter» generating message parameters from system class attributes
R4.11 JzQm«self» generating self-messages from system class associations
R4.12 TsQo generating sequence occurrences from system states
R4.13 TtQo generating sequence occurrences from system transitions
R4.14 TrQl generating lifelines from system regions
R4.15 QlMq generating components from lifelines
R4.16 QmMy generating interfaces from messages
R4.17 Qm«parameter»My«data» generating interface parameters from messages parameters
R4.18 QoMy«control» generating interface behaviour from sequence occurrences

References
1. ISO/IEC/IEEE 42010:2011; Systems and Software Engineering—Architecture Description. International Organization for Stan-

dardization: Geneva, Switzerland, 2011.
2. Kruchten, P. Architectural Blueprints—The “4 + 1” View Model of Software Architecture; IEEE Software; Philippe Kruchten Rational

Software Corp.: Vancouver, BC, Canada, 1995; Volume 12, pp. 42–50.
3. Kruchten, P. The Rational Unified Process: An Introduction; Addison-Wesley: Boston, MA, USA, 2000.

Entropy 2023, 25, 328 20 of 21

4. Object Management Group. Model Driven Architecture (MDA), MDA Guide rev. 2.0, OMG Document ormsc/2014-06-01.
Available online: http://www.omg.org/mda/specs.htm (accessed on 28 September 2022).

5. The Open Group. TOGAF Version 9 Enterprise Edition: An Introduction; White Paper; Andrew Josey: San Franciso, CA, USA, 2009.
6. Unified Modeling Language. Object Management Group. Available online: http://www.omg.org (accessed on 30 June 2021).
7. Ivers, J.; Clements, P.; Garlan, D.; Nord, R.; Schmerl, B.; Silva, J.R.O. Documenting Component and Connector Views with UML 2.0;

Carnegie Mellon; Software Engineering Institute: Pittsburgh, PA, USA, 2004.
8. Niz, D. Diagrams and Languages for Model-Based Software Engineering of Embedded Systems: UML and AADL. SEI-CMU.

2011. Available online: http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=29255 (accessed on 28 September 2022).
9. Hnatkowska, B.; Huzar, Z.; Magott, J. Consistency Checking in UML models. In Proceedings of the 4th International Conference

on Information Systems, Shanghai, China, 4–7 December 2011.
10. Torre, D.; Labiche, Y.; Genero, M.; Elaasar, M. A Systematic Identification of Consistency Rules for UML Diagrams; Carleton University:

Ottawa, ON, Canada, 2015.
11. Xianhong, L. Identification and Check of Inconsistencies between UML Diagrams. In Proceedings of the 2013 Computer Sciences

and Applications (CSA) International Conference, Wuhan, China, 14–15 December 2013; pp. 487–490.
12. Niepostyn, S. Analysis and specification of consistency rules for UML diagrams. In Proceedings of the SPIE 11176, Photonics

Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga, Poland, 25 May–2
June 2019.

13. Fryz, L.; Kotulski, L. Assurance of System Consistency During Independent Creation of UML Diagrams. In Proceedings of the
2nd International Conference on Dependability of Computer Systems, Szklarska, Poland, 14–16 June 2007; pp. 51–58.

14. Nuseibeh, B.; Easterbrook, S.; Russo, A. Leveraging inconsistency in software development. IEEE Comput. 2000, 33, 24–29.
[CrossRef]

15. MacKay, D.J.; Mac Kay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge,
UK, 2003.

16. Thims, L. Thermodynamics 6= Information Theory: Science’s Greatest Sokal Affair. J. Hum. Thermodyn. 2012, 8, 1–120.
17. Halstead, M.H. Elements of Software Science; Elsevier North-Holland, Inc.: Amsterdam, The Netherland, 1977; ISBN 0-444-00205-7.
18. Harrison, W. An Entropy-Based Measure of Software Complexity. IEEE Trans. Softw. Eng. 1992, 18, 1025–1029. [CrossRef]
19. Bansiya, J.; Davis, C.; Etzkorn, L. An entropy-based complexity measure for object-oriented designs. Theory Pract. Object Syst.

1999, 5, 111–118. [CrossRef]
20. Liang, J.; Qian, Y. Information granules and entropy theory in information systems. Sci. China Ser. F Inf. Sci. 2008, 51, 1427–1444.

[CrossRef]
21. Bilgi, S.; Ipbuker, C.; Ucar, D.; Sahin, M. Map Entropy Analysis of Topographic Data Used in Disaster Information Systems. J.

Earthq. Eng. 2008, 12, 23–36. [CrossRef]
22. Cui, T.J.; Liu, S.; Li, L.L. Information entropy of coding metasurface. Light Sci. Appl. 2016, 5, e16172. [CrossRef] [PubMed]
23. Daszczuk, W.B. Measures of Structure and Operation of Automated Transit Networks. IEEE Trans. Intell. Transp. Syst. 2020, 21,

2966–2979. [CrossRef]
24. Xu, J.; Sun, L. Knowledge Entropy and Feature Selection in Incomplete Decision Systems. Appl. Math. Inf. Sci. 2013, 7, 829–837.

[CrossRef]
25. Finkelstein, A.; Gabbay, D.; Hunter, A.; Kramer, J.; Nuseibeh, B. Inconsistency Handling in Multi-Perspective Specifications; Transac-

tions on Software Engineering; IEEE Computer Society Press: Washington, DC, USA, 1994; pp. 569–578.
26. Spanoudakis, G.; Zisman, A. Inconsistency management in software engineering: Survey and open research issues. In Handbook

of Software Engineering and Knowledge Engineering; World Scientific Publishing Co.: Singapore, 2001; pp. 329–380.
27. Straeten, R. Inconsistency Management in Model-Driven Engineering: An Approach Using Description Logics. Ph.D. Dissertation,

Vrije Universiteit, Brussel, Belgium, 2005.
28. Jurack, S.; Lambers, L.; Mehner, K.; Taentzer, G. Sufficient Criteria for Consistent Behavior Modeling with Refined Activity

Diagrams, Model Driven Engineering Languages and Systems. Lect. Notes Comput. Sci. 2008, 5301, 341–355.
29. Lambers, L.; Ehrig, H.; Taentzer, G. Sufficient Criteria for Applicability and Non-Applicability of Rule Sequences. In Proceedings of

the International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT’08), Electronic Communications
of the EASST, Budapest, Hungary, 29–30 March 2008.

30. Berardi, D.; Cali, A.; Calvanese, D.; Di Giacomo, G. Reasoning on UML Class diagrams. Artif. Intell. J. 2005, 168, 70–118.
[CrossRef]

31. Kuzniarz, L.; Huzar, Z.; Reggio, G.; Sourrouille, J.L.; Staron, M. Workshop on “Consistency Problems in UML-Based Software
Development I“; UML 2002, Research Report 2002:06; Blekinge Institute of Technology: Karlskrona, Sweden, 2002.

32. Kuzniarz, L.; Huzar, Z.; Reggio, G.; Sourrouille, J.L.; Staron, M. Workshop on “Consistency Problems in UML-Based Software
Development II”; UML 2003, Research Report 2003:06; Blekinge Institute of Technology: Karlskrona, Sweden, 2003.

33. Engels, G.; Heckel, R.; Kuster, J.M.; Groenewegen, L. Consistent Interaction of Software Components. Proceedings of Sixth
International Conference on Integrated Design and Process Technology (IDPT 2002), Pasadena, CA, USA, 23–28 June 2002.

34. Mens, T. A Framework for Managing Consistency of Evolving UML Models. In Software Evolution with UML and XML; IGI Global:
Hershey, PA, USA, 2005.

http://www.omg.org/mda/specs.htm
http://www.omg.org
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=29255
http://doi.org/10.1109/2.839317
http://doi.org/10.1109/32.177371
http://doi.org/10.1002/(SICI)1096-9942(1999)5:2<111::AID-TAPO4>3.0.CO;2-0
http://doi.org/10.1007/s11432-008-0113-2
http://doi.org/10.1080/13632460802013438
http://doi.org/10.1038/lsa.2016.172
http://www.ncbi.nlm.nih.gov/pubmed/30167131
http://doi.org/10.1109/TITS.2019.2921913
http://doi.org/10.12785/amis/070255
http://doi.org/10.1016/j.artint.2005.05.003

Entropy 2023, 25, 328 21 of 21

35. Egyed, A.F. Heterogeneous View Integration and its Automation. Ph.D. Dissertation, University of Southern California, Los
Angeles, CA, USA, 2000.

36. Shuzhen, Y.; Shatz, S.M. Consistency Checking of UML Dynamic Models Based on Petri Net Techniques. In Proceedings of the
15th International Conference on Computing, Mexico City, Mexico, 21–24 November 2006; pp. 289–297.

37. Ha, I.; Kang, B. Cross Checking Rules to Improve Consistency between UML Static Diagram and Dynamic Diagram. In
Proceedings of the IDEAL 2008, LNCS, Daejeon, Republic of Korea, 2–5 November 2008; pp. 436–443.

38. Hausmann, J.; Heckel, R.; Taentzer, G. Detection of Conflicting Functional Requirements in a Use Case-Driven Approach. In
Proceedings of the 24th International Conference on Software Engineering, Orlando, FL, USA, 19–25 May 2002.

39. Sapna, P.G.; Mohanty, H. Ensuring Consistency in Relational Repository of UML Models. In Proceedings of the 10th International
Conference on Information Technology, Rourkela, India, 17–20 December 2007; pp. 217–222.

40. Chanda, J.; Kanjilal, A.; Sengupta, S.; Bhattacharya, S. Traceability of Requirements and Consistency Verification of UML UseCase,
Activity and Class diagram: A Formal Approach. In Proceedings of the International Conference on Methods and Models in
Computer Science, New Delhi, India, 14–15 December 2009; pp. 1–4.

41. Ibrahim, N.; Ibrahim, R.; Saringat, M.Z.; Mansor, D.; Herawan, T. Definition of Consistency Rules between UML Use Case and
Activity Diagram. In Ubiquitous Computing and Multimedia Applications. In Proceedings of the Communication of Computer
and Information Sciences, Daejeon, Republic of Korea, 13–15 April 2011.

42. Shinkawa, Y. Inter-Model Consistency in UML Based on CPN Formalism. In Proceedings of the 13th Asia Pacific Software
Engineering Conference, Bangalore, India, 6–8 December 2006; pp. 414–418.

43. Kang, S.; Kim, H.; Baik, J.; Choi, H.; Keum, C. Transformation rules for synthesis of UML activity diagram from scenario-based
specification. In Proceedings of the 34th Annual IEEE Computer Software and Applications Conference, Seoul, Republic of Korea,
19–23 July 2010; pp. 431–436.

44. Ibrahim, N.; Ibrahim, R.; Saringat, M.Z.; Mansor, D.; Herawan, T. Use case driven based rules in ensuring consistency of UML
model. AWERProcedia Inf. Technol. Comput. Sci. 2012, 1, 1485–1491.

45. Torre, D.; Labiche, Y.; Genero, M. UML consistency rules: A systematic mapping study. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014.

46. Allaki, D.; Dahchour, M.; En-Nouaary, A. A new taxonomy of inconsistencies in UML models with their detection methods for
better MDE. Int. J. Comput. Sci. Appl. 2015, 12, 48–65.

47. SRP—System Rejestrów Państwowych. Available online: http://archiwum.mc.gov.pl/konsultacje/program-zintegrowanejinfo
rmatyzacji-panstwa/srp-system-frejestrow-panstwowych (accessed on 28 September 2022).

48. PKWD-SINGLE WINDOW System. Available online: https://puesc.gov.pl/en/uslugi/uslugi-sieciowe-informacje-i-specyfikacje
/system-pkwd-single-window (accessed on 30 January 2023).

49. Niepostyn, S. Entropy-based Consistent Model Driven Architecture. In Proceedings of the SPIE 10031, Photonics Applications in
Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga, Poland, 29 May–6 June 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://archiwum.mc.gov.pl/konsultacje/program-zintegrowanejinformatyzacji-panstwa/srp-system-frejestrow-panstwowych
http://archiwum.mc.gov.pl/konsultacje/program-zintegrowanejinformatyzacji-panstwa/srp-system-frejestrow-panstwowych
https://puesc.gov.pl/en/uslugi/uslugi-sieciowe-informacje-i-specyfikacje/system-pkwd-single-window
https://puesc.gov.pl/en/uslugi/uslugi-sieciowe-informacje-i-specyfikacje/system-pkwd-single-window

	Introduction
	Related Work
	Consistency
	Consistency Rules in UML Diagrams

	AICC and CDE Software Complexity Metrics
	Preliminaries
	Proof of the Decrease in Entropy When Applying Consistency Rules
	An Example of the Application of Consistency Rules
	Conclusions
	Appendix A
	References

