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Abstract: The reinforcement learning (RL) research area is very active, with an important number of
new contributions, especially considering the emergent field of deep RL (DRL). However, a number
of scientific and technical challenges still need to be resolved, among which we acknowledge the
ability to abstract actions or the difficulty to explore the environment in sparse-reward settings which can be
addressed by intrinsic motivation (IM). We propose to survey these research works through a new
taxonomy based on information theory: we computationally revisit the notions of surprise, novelty,
and skill-learning. This allows us to identify advantages and disadvantages of methods and exhibit
current outlooks of research. Our analysis suggests that novelty and surprise can assist the building
of a hierarchy of transferable skills which abstracts dynamics and makes the exploration process
more robust.

Keywords: intrinsic motivation; deep reinforcement learning; information theory; developmental
learning

1. Introduction

In reinforcement learning (RL), an agent learns by trial and error to maximize the
expected rewards gathered as a result of their actions performed in the environment [1].
Traditionally, an agent maximizes a reward defined according to the task to perform it: this
may be a score when the agent learns to solve a game, or a distance function when the agent
learns to reach a goal. The reward is then considered as extrinsic (or as feedback) because
the reward function is provided expertly, specifically for the task, and it is provided by
an external entity. With an extrinsic reward, many spectacular results have been obtained
on Atari games [2] with the deep q-network (DQN) [3] through the integration of deep
learning to RL, leading to deep reinforcement learning (DRL).

However, despite the recent improvements of DRL approaches, they turn out to be
unsuccessful most of the time when the rewards are scattered in the environment, as the
agent is then unable to learn the desired behavior for the targeted task [4]. Moreover,
the behaviors learned by the agent are rarely reusable, both within the same task and
across many different tasks [4]. It is difficult for an agent to generalize the learned skills to
make high-level decisions in the environment. Such a non-generalizable skill, for example,
could be to go to the door using primitive actions consisting of moving in the four cardinal
directions, or even to move forward, controlling different joints of a humanoid robot, such as
in the robotic simulator MuJoCo [5].

On the other hand, unlike RL, developmental learning [6–8] is based on the idea that
babies (or, more broadly, organisms) acquire new skills while spontaneously exploring their
environment [9,10]. This is commonly called an intrinsic motivation (IM), which can be
derived from an intrinsic reward. This kind of motivation allows one to autonomously gain
new knowledge and skills, which then makes the learning process of new tasks easier [11].
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For several years now, IM has been widely used in RL, fostered by important results and
the emergence of deep learning. This paradigm offers a greater learning flexibility, through
the use of a more general reward function, allowing the confrontation of the issues raised
above when only an extrinsic reward is used. Typically, IM improves the agent’s ability to
explore its environment, to incrementally learn skills independently of its main task, and
to choose an adequate skill to be improved.

In this paper, we study and group together methods through a novel taxonomy based
on information theoretic objectives. This way, we revisit the notions of surprise, novelty,
and skill-learning, and show that they can encompass numerous works. Each class of the
taxonomy is characterized by a computational objective that fits its eventual psychological
definition. This allows us to relate to/situate a large body of works and to highlight
important directions of research. To sum up, this paper investigates the use of IM in the
framework of DRL and considers the following aspects:

• The role of IM in addressing the challenges of DRL.
• Classifying current heterogeneous works through a few information theoretic objectives.
• Exhibiting the advantages of each class of methods.
• Important outlooks of IM in RL within and across each category.

Related works

The overall literature on IM is huge [10]; we only consider its application to DRL and
IMs related to information theory. Therefore, our study of IMs is not meant to be exhaustive.
Intrinsic motivation currently attracts a lot of attention, and several works have made a
restricted study of the approaches. Refs. [12] and [13], respectively, focus on the different
aspects of skill-learning and exploration; Ref. [14] studies intrinsic motivation through
the lens of psychology, biology, and robotics; Ref. [15] reviews hierarchical reinforcement
learning as a whole, including extrinsic and intrinsic motivations; Ref. [16] experimentally
compares different goal selection mechanisms. In contrast with these approaches, we
study a large variety of objectives, all based on intrinsic motivation, through the lens of
information theory. We assume that our work is in line with the work of [17], which
postulates that organisms are guided by the desire to compress the information they receive.
However, by reviewing the more recent advances in the domain, we formalize the idea of
compression with the tools from information theory.

Some intrinsic motivations have been proposed based on the framework of information
theory, but they do not fit the scope of this survey, as we decided to focus on single-agent
exploration and skill-learning in reinforcement learning. For example, empowerment incites
an agent to be in states from which it can reliably reach a large number of other states [18,19].
However, we are not aware of a successful use in complex DRL environments with respect to
exploration. Some other approaches consider the synchronization of several agents [20–23];
are biased towards finding bottlenecks [24]; and model humans’ behaviors [25].

Structure of the paper

This paper is organized as follows. As a first step, we discuss RL, define intrinsic
motivation and explain how it fits the RL framework (Section 2). Then, we highlight the
main current challenges of RL and identify the need for an additional outcome (Section 3).
Thereafter, we briefly explain our classification (Section 4), namely surprise, novelty, and
skill learning, and we detail how current works fit it (respectively, Section 5, Section 6, and
Section 7). Finally, we highlight some important outlooks of the domain (Section 8).

2. Definitions and Background

In this section, we will review the background of the RL field, explain the concept of
IM, and describe how to integrate IM in the RL framework through goal-parameterized
RL, hierarchical RL, and information theory. We sum up the notations used in the paper in
Abbreviations.
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2.1. Markov Decision Process

In RL, the problem is often modeled as the Markov decision process (MDP). The goal
of a Markov decision process (MDP) is to maximize the expectation of cumulative rewards
received through a sequence of interactions [26]. It is defined by S, the set of possible
states; A, the set of possible actions; T, the transition function, T : S× A× S→ p(s′|s, a);
R, the reward function, R : S× A× S → R; d0 : S → R, the initial distribution of states.
An agent starts in a state s0, given by d0. At each time step t, the agent is in a state st and
performs an action at, then it waits for feedback from the environment, composed of a state
st+1 sampled from the transition function T, and a reward rt given by the reward function
R. The agent repeats this interaction loop until the end of an episode. In reinforcement
learning, the goal can be to maximize the expected discounted reward, defined by ∑∞

t=0 γtrt
where γ ∈ [0, 1] is the discount factor. When the agent does not access the whole state,
the MDP can be extended to a partially observable Markov decision process (POMDP) [27].
In comparison with a MDP, it adds a set of possible observations O which defines what
the agent can perceive and an observation function Ω : S ×O → R which defines the
probability of observing o ∈ O when the agent is in the state s, i.e., Ω(s, o) = p(o|s).

A reinforcement learning algorithm aims to associate actions a to states s through a
policy π. This policy induces a t-steps state distribution that can be recursively defined as:

dπ
t (S) =

∫
S

dπ
t−1(st−1)

∫
A

p(st|st−1, a)π(a|st−1)da dst−1 (1)

with dπ
0 (S) = d0. The goal of the agent is then to find the optimal policy π∗ maximizing

the reward:

π∗ = arg max
π

E s0∼d0(S)
at∼π(·|st)

st+1∼p(·|st ,at)

[
∞

∑
t=0

γtR(st, at, st+1)

]
(2)

where x ∼ p(·) is equivalent to x ∼ p(x).

2.2. Definition of Intrinsic Motivation

Simply stated, intrinsic motivation is about doing something for its inherent satis-
faction, rather than to obtain positive feedback from the environment [28]. In contrast,
extrinsic motivation assumes there exists an expert or need that supervises the learning
process.

According to [29], evolution provides a general intrinsic motivation (IM) function that
maximizes a fitness function based on the survival of an individual. Curiosity, for instance,
does not immediately produce selective advantages, but enables the acquisition of skills
providing, by themselves, some selective advantages. More widely, the use of intrinsic
motivation allows an agent to obtain intelligent behaviors which may later serve goals
more efficiently than standard reinforcement [11,30,31]. Typically, a student doing his
mathematical homework because they think it is interesting is intrinsically motivated,
whereas their classmate doing it to get a good grade is extrinsically motivated [28]. In this
example, the intrinsically motivated student may be more successful in math than the
other one.

More rigorously, Ref. [32] explain that an activity is intrinsically motivating for an
autonomous entity if its interest depends primarily on the collation or comparison of information
from different stimuli, independently of their semantics. In contrast, an extrinsic reward results
from an unknown environment static function which does not depend on the previous
experience of the agent on the considered environment. The main point is that the agent
must not have any a priori semantic knowledge of the observations it receives. Here, the
term stimuli does not refer to sensory inputs, but more generally to the output of a system
which may be internal or external to the independent entity, thereby including homeostatic
body variables (temperature, hunger, thirst, attraction to sexual activities, etc.) [30].
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Now that we clarified the notion of intrinsic motivation, we study how to integrate
intrinsic motivation in the RL framework. An extensive overview of IM can be found
in [10].

2.3. A Model of Rl with Intrinsic Rewards

Reinforcement learning usually uses extrinsic rewards [1]. However, Refs. [29,33]
reformulated the RL framework to incorporate IM (Figure 1). We can differentiate rewards,
which are events in the environment, and reward signals, which are internal stimulis to
the agent. Thus, what is named reward in the RL community is in fact a reward signal.
Inside the reward signal category, there is a distinction between primary reward signals and
secondary reward signals. The secondary reward signal is a local reward signal computed
through expected future rewards and is related to the value function, whereas the primary
reward signal is the standard reward signal received from the MDP.

External Environment

Internal Environment

Critic

RL Agent

Reward
signals

StatesDecisions

Actions Sensations

Entity

Figure 1. Model of RL integrating IM, taken from [29]. The environment is factored into an internal
and external environment, with all rewards coming from the former.

In addition, rather than considering the MDP environment as the environment in
which the agent achieves its task, it suggests that the MDP environment can be formed of
two parts: the external part, which corresponds to the potential task and the environment
of the agent, and the internal part, which computes the MDP states and the secondary
reward signal using potential previous interactions. Consequently, we can consider an
intrinsic reward as a reward signal received from the MDP environment. The MDP state is
no more the external state, but an internal state of the agent. However, from now, we will
follow the terminology of RL and the term reward will refer to the primary reward signal.

Figure 1 summarizes the framework: the critic is in the internal part of the agent, it
computes the intrinsic reward and deals with the credit assignment. The agent can merge in-
trinsic rewards and extrinsic rewards in its internal part. The main approach to integrate an
intrinsic reward into a RL framework is to compute the reward of the agent r as a weighted
sum of an intrinsic reward rint and an extrinsic reward rext: r = αrint + βrext [34,35]. The
state includes sensations and any form of internal context; in this section, we refer to this
state as a contextual state. The decision can be a high-level decision decomposed by the
internal environment into low-level actions.

This conceptual model incorporates intrinsic motivations into the formalism of MDP.
Now, we will review how this model is instantiated in practice. Indeed, it is possible to
extend RL to incorporate the three new components that are intrinsic rewards, high-level
decisions, and contextual states. We study them separately in the following sections.
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2.4. Intrinsic Rewards and Information Theory

Throughout our definition of intrinsic motivation, one can notice that the notion of
information comes up a lot. Quantifying information often proves useful to generating
intrinsic rewards. In this section, we provide the basics about information theory and
explain how to combine intrinsic and extrinsic rewards.

The Shannon entropy quantifies the mean necessary information to determine the
value of a random variable, or the disorder of a random variable. Let X be a random
variable with a compact domain and a law of density p(X) satisfying the normalization
and positivity requirements, we define its entropy by:

H(X) = −
∫

X
p(x) log p(x)dx. (3)

The entropy is maximal when X follows a uniform distribution, and minimal when p(X) is
equal to zero everywhere except in one value, which is a Dirac distribution. We can also
define the entropy conditioned on a random variable S. It quantifies the mean necessary
information to find X knowing the value of another random variable S:

H(X|S) = −
∫

S
p(s)

∫
X

p(x|s) log p(x|s)dxds. (4)

The mutual information allows quantifying the information contained in a random variable
X about another random variable Y, or the decrease of disorder brought by a random
variable Y on a random variable X. The mutual information is defined by:

I(X; Y) = H(X)− H(X|Y). (5)

We can notice that the mutual information between two independent variables is zero (since
H(X|Y) = H(X)). The conditional mutual information allows quantifying the information
contained in a random variable about another random variable, knowing the value of a
third one. It can be written in various ways:

I(X; Y|S) = H(X|S)− H(X|Y, S) = H(Y|S)− H(Y|X, S) (6a)

= DKL

[
p(X, Y|S)||p(X|S)p(Y|S)

]
(6b)

We can see with Equation (6a) that the mutual information characterizes the decrease in
entropy on X brought by Y (or inversely). Equation (6b) defines the conditional mutual
information as the Kullback–Leibler divergence [36], called DKL(·||·), between distribution
P(Y, X|S) and the same distribution if Y and X were independent variables (the case where
H(Y|X, S) = H(Y|S)).

For further information on these notions, the interested reader can refer to [36].
Sections 5–7 illustrate how one can use information theory to reward an agent.

2.5. Decisions and Hierarchical RL

Hierarchical reinforcement learning (HRL) architectures are adequate candidates to
model the decision hierarchy of an agent [37–39]. Initially, the hierarchical architectures
have been introduced to make a long-term credit assignment easier [38,39]. This problem
refers to the fact that rewards can occur with a temporal delay and will weakly affect all
temporally distant states that have preceded them, although these states may be important
for obtaining that reward. This problem also concerns determining which action is decisive
for obtaining the reward, among all actions of the sequence. In contrast, if an agent can take
advantage of temporally-extended actions, a large sequence of low-level actions become a
short sequence of time-extended decisions that make the propagation of rewards easier.

Ref. [38] introduced the feudal hierarchy called feudal reinforcement learning. In this
framework, a manager selects the goals that workers will try to achieve by selecting low-
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level actions. Once the worker has completed the goal, the manager can select another goal,
so that the interactions keep going. The manager rewards the RL-based worker to guide
its learning process; we formalize this with intrinsic motivation in the next section. This
goal-setting mechanism can be extended to create managers of managers so that an agent
can recursively define increasingly abstract decisions as the hierarchy of RL algorithms
increases. Relatively to Figure 1, the internal environment of a RL module becomes the
lower level module.

In the next section, we take a closer look at how to learn the policies that learn to
achieve goals using intrinsic motivation. In particular, we will define goals, skills, and
explain how to build a contextual state.

2.6. Goal-Parameterized Rl

Usually, RL agents solve only one task and are not suited to learning multiple tasks.
Thus, an agent is unable to generalize across different variants of a task. For instance,
if an agent learns to grasp a circular object, it will not be able to grasp a square object.
In the developmental model described in Section 2.3, the decisions can be hierarchically
organized into several levels, where an upper-level makes a decision (or sets goals) that a
lower-level has to satisfy. This raises the questions of 1: how a DRL algorithm can make
its policy dependent on the goal set by its upper-level decision module and 2: how to
compute the intrinsic reward using the goal. These issues rise up a new formalism based
on developmental machine learning [12].

In this formalism, a goal is defined by the pair (g, RG) where G ⊂ Rd, RG is a goal-
conditioned reward function, and g ∈ G is the d-dimensional goal embedding. This
contrasts with the notion of task, which is related to an extrinsic reward function assigned
by an expert to the agent. With such embedding, one can generalize DRL to multi-goal
learning with the universal value function approximator (UVFA) [40]. UVFA integrates,
by concatenating, the goal embedding g with the state of the agent to create a contextual
state c = (g, s). Depending on the semantic meaning of a skill, we can further enhance the
contextual states with other actions or states executed after starting executing the skill (see
Section 7).

We can now define the skill associated with each goal as the goal-conditioned policy
πg(a|s) = π(a|g, s). This skill may be learned or unlearned according to the expected
intrinsic rewards it creates. It implies that, if the goal space is well-constructed (often as
a ground-state space, for example, RG = S), the agent can generalize its neural network
policy across the goal space, i.e., the corresponding skills of two close goals are similar.
For example, let us consider an agent moving in a closed maze where every position
in the maze can be a goal. We can set G = S and set the intrinsic reward function to
be the Euclidean distance between the goal and the current state of the agent, RG : S×
G → R, (s, g) → ||s − g||2. Broadly speaking, the ability of a goal-conditioned policy
to generalize and adapt to different situations (irrelevant objects or light intensity) [41]
depends on how g and RG are built. Another alternative that does not benefit from such
generalization can be to use expert goal-conditioned policies with independent learning
parameters [41,42].

This formalism completes the production of the architectures described in Section 2.3.

3. Challenges of DRL

In this section, we detail two main challenges of current DRL methods that are partially
addressed by IMs.

3.1. Sparse Rewards

Classic RL algorithms operate in environments where the rewards are dense, i.e., the
agent receives a reward after almost every completed action. In this kind of environment,
naive exploration policies such as ε-greedy [1] or the addition of a Gaussian noise on the
action [43] are effective. More elaborated methods can also be used to promote exploration,
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such as Boltzmann exploration [3,44] or an exploration in the parameter space [45–47].
In environments with sparse rewards, the agent receives a reward signal only after it
executes a large sequence of specific actions. The game Montezuma’s revenge [2] is a bench-
mark illustrating a typical sparse reward function. In this game, an agent has to move
between different rooms while picking up objects (it can be keys to open doors, torches, etc.).
The agent receives a reward only when it finds objects or when it reaches the exit of the
room. Such environments with sparse rewards are almost impossible to solve with the
above-mentioned undirected exploration policies [48] since the agent does not have local
indications on the way to improve its policy. Thus, the agent never finds rewards and
cannot learn a good policy with respect to the task [3]. Figure 2 illustrates the issue in a
simple environment.

Starting position Objective Trajectory

(a) Standard exploration strategy (b) Ideal exploration strategy

Figure 2. Example of a very simple sparse reward environment, explored by two different strategies.
The agent, represented by a circle, strives to reach the star. The reward function is one when the agent
reaches the star, and zero otherwise. (a) The agent explores with standard methods such as ε-greedy;
as a result, it stays in its surrounded area because of the temporal inconsistency of its behavior. (b) We
imagine an ideal exploration strategy where the agent covers the whole state space to discover where
rewards are located. The fundamental difference between the two policies is the volume of the state
space explored for a given time.

Rather than working on an exploration policy, it is common to shape an intermediary
dense-reward function that adds to the reward associated to the task in order to make the
learning process easier for the agent [49]. However, the building of a reward function often
reveals several unexpected errors [50,51] and, most of the time, requires expert knowledge.
For example, it may be difficult to shape a local reward for navigation tasks. Indeed, one has
to be able to compute the shortest path between the agent and its goal, which is the same
as solving the navigation problem. On the other hand, the automation of the shaping of the
local reward (without calling on an expert) requires excessive computational resources [52].
We will see in Sections 5–7 how IM is a valuable method to encourage exploration when
rewards are sparse.

3.2. Temporal Abstraction of Actions

As discussed in Section 2.5, skills, through hierarchical RL, can be a key element to
speed up the learning process since the number of decisions to take is significantly reduced
when skills are used. In particular, they make the credit assignment easier. Skills can be
manually defined, but it requires some extra expert knowledge [39]. To avoid providing
hand-made skills, several works proposed learning them with extrinsic rewards [53,54].
However, if an agent rather learns skills in a bottom-up way, i.e., with intrinsic rewards
rather than extrinsic rewards, learned skills become independent of possible tasks. This
way, skills can be reused across several tasks to improve transfer learning [42,55] and an
agent can learn skills even though it does not access rewards, improving exploration when
rewards are sparse [56]. Let us illustrate both advantages.

Figure 3 illustrates the benefit in terms of exploration when an agent hierarchically
uses skills. The yellow agent can use the previously learned skill Go to the far right to reach
the rewarding star, while the blue agent can only use low-level cardinal movements. The
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problem of exploration becomes trivial for the agent using skills, since one exploratory
action can lead to the reward. In contrast, it requires an entire sequence of specific low-level
actions for the other agent to find the reward. A thorough analysis of this aspect can be
found in [57].

Agent that uses skills

Agent that uses primitive actions

Primitive action


Skill : Go to the far right

Objective

Figure 3. Example of two policies in a simple environment, one uses skills (yellow), the other one
only uses primitive actions (blue). Agents have to reach the star.

Skills learned with intrinsic rewards are not specific to a task. Assuming an agent
is required to solve several tasks in a similar environment, i.e., a single MDP with a
changing extrinsic reward function, an agent can execute its discovered skills to solve all
tasks. Typically, in Figure 3, if both agents learned to reach the star, and we move the star
somewhere else in the environment, the yellow agent would still be able to execute Go to
the far right, and executing this skill may make the agent closer to the new star. In contrast,
the blue agent would have to learn a whole new policy. In Section 7, we provide insights
on how an agent can discover skills in a bottom-up way.

4. Classification of Methods

In order to tackle the problem of exploration, an agent may want to identify and return
to rarely visited states or unexpected states, which can be quantified with current intrinsic
motivations. We will particularly focus on two objectives that address the challenge
of exploring with sparse rewards, each with different properties: maximizing novelty
and surprise. Surprise and novelty are specific notions that have often been used in an
interchanged way, and we are not aware of a currently unanimous definition of novelty [58].
The third notion we study, skill-learning, focuses on the issue of skill abstraction. In practice,
surprise and novelty are currently maximized as flat intrinsic motivations, i.e., without
using hierarchical decisions. This mostly helps to improve exploration when rewards are
sparse. In contrast, skill-learning allows the definition of time-extended hierarchical skills
that enjoy all the benefits argued in Section 3.2.

Table 1 sums up our taxonomy, based on information theory, which reflects the high-
level studied concepts of novelty, surprise, and skill-learning. In practice, we mostly take
advantage of the mutual information to provide a quantity for our conceptual objectives.
These objectives are compatible with each other and may be used simultaneously, as argued
in Section 8.3. Within each category of objectives, we additionally highlight several ways to
maximize each objective and provide details about the underlying methods of the literature.
We sum up surprise, novelty, and skill-learning methods, respectively, in Tables 2–4.

While a full benchmark of the studied methods on several environments is beyond
the scope of the survey, we provide some performance metrics to give a evidence about
how each method compares to the others. In Tables 2 and 3, we compare some methods
according to their performance on the sparse reward environment Montezuma’s revenge
when available, as 1: it is a sparse-reward benchmark widely used to assess the ability of
the method to explore; 2: unlike most IMs, a standard DQN achieves a score of near 0 in
this environment [3]; 3: the Montezuma’s revenge score directly reflects the number of rooms
visited by the agent; 4: the score correlates with human behaviors [59]. In Table 4, we also
compare skill-learning methods from Sections 7.2 and 7.3 according to their performance on
the widely used hierarchical task of the ant maze, and question whether they need a hand-
made goal space (x, y) or an implicit curriculum of objectives. For methods in Section 7.1,
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we did not find a representative or widely used evaluation protocol/environment among
the published works.

Table 1. Summary of our taxonomy of intrinsic motivations in DRL. The function u outputs a part
of the trajectories T . Z and G are internal random variables denoting state representations and
self-assigned goals, respectively. Please refer to the corresponding sections for more details about
methods and notations. The reward function aims to represent the one used in the category.

Surprise: I(S′; ΦT |h, S, A), Section 5

Formalism Prediction error Learning progress Information gain
over forward model

Sections Section 5.3 Section 5.2 Section 5.4

Rewards ||s′ − ŝ′||22 ∆||s′ − ŝ′||22 DKL(p(Φ|h, s, a, s′)||p(Φ|h))
Advantage Simplicity Stochasticity robustness Stochasticity robustness

Novelty: I(S; Z), Section 6

Formalism Information gain Parametric density K-nearest neighbors
over density model

Sections Section 6.1 Section 6.2 Section 6.3

Rewards 1√
N̂(s′)

− log ρ(s′) log(1 + 1
K ∑K

0 || f (s′)− nnk( f (Sb), f (s′))||2)

Advantage Good exploration Good exploration Best exploration

Skill-learning: I(G; u(T )), Section 7

Formalism Fixed goal distribution Goal-state Proposing diverse goals
achievement

Sections Section 7.1 Section 7.2 Section 7.3

Rewards log p(g|s′) −||sg − s′||22 (1 + αskew) log p(sg)

Advantage Simple goal sampling High-granularity skills More diverse skills

5. Surprise

In this section, we study methods that maximize surprise. Firstly, we formalize the
notions of surprise, then we will study three approaches for computing intrinsic rewards
based on these notions.

5.1. Surprise Maximization

In this section, we assume the agent learns a forward model of the environment
(Sections 5.4 and 5.2) parameterized by φ ∈ Φ. A forward model computes the next-
state distribution conditioned on a tuple state-action p(S′|S, A, φ). Typically, this is the
parameters of a neural network. Trying to approximate the true model, the agent maintains
an approximate distribution p(Φ|h) of models, where ht = h refers to the ordered history of
interactions ((s0, a0, s1), (s1, a1, s2), . . . , (st−1, at−1, st)). h simulates a dataset of interactions
fed with the policy, and we use it to clarify the role of the dataset. It induces that the agent
has a prior expectation about the model parameters’ distribution p(Φ) and this model can
be updated using the Bayes rule:

p(φ|h, s, a, s′) =
p(φ|h) p(s′|h, s, a, φ)

p(s′|h, s, a)
. (7)
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Surprise usually quantifies the mismatch between an expectation and the true ex-
perience of an agent [58,60]. Here, we instead propose a more general formalism which,
as argued in the next sections, accounts for several intrinsic motivations. We assume that
there is a distribution of true models p(ΦT) that underpins the transition function of the
environment T. In contrast with Φ, this is a property of the environment. One can see this
distribution is a Dirac distribution if only one model exists, or as a categorical distribution
of several forward models. We consider an agent that maximizes the expected information
gain over the true models as:

IG(h, A, S′, S, ΦT) = I(S′; ΦT |h, A, S) = H(ΦT |h, A, S)− H(ΦT |h, A, S, S′) (8a)

= E(s,a)∼p(·|h), φT∼p(·)
s′∼p(·|s,a,φT)

log p(s′|s, a, h, φT)− log p(s′|s, a, h) (8b)

Maximizing Equation (8b) amounts to looking for states that inform about the true models’
distribution. We can see that the left-hand side of Equation (8b) incites the agent to
target inherently deterministic areas, i.e., given the true forward model, the agent would
know exactly where it ends up. Conversely, the right-hand term pushes the agent to
move in stochastic areas according to its current knowledge. Overall, to improve this
objective, an agent has to reach areas that are more deterministic than what it thinks they
are. In practice, this objective is not directly optimizable since the agent does not access
the true forward model. In this perspective, we propose that surprise results from an
agent-centric approximation of Equation (8b) based on an internal model.

In the following, we will study three objectives: the prediction error, the expected
information gain over the forward model, and the expected information gain over the
density models.

5.2. Prediction Error

To avoid the need for the true forward model, the agent can omit the left-hand term of
Equation (8b) by assuming the true forward model is modeled as a deterministic forward
model. In this case, we can write:

I(S′; ΦT |h, A, S) ∝ E(s,a)∼p(·|h),φT∼p(·)
s′∼p(·|s,a,φT)

− log p(s′|s, a, h) (9a)

= E(s,a)∼p(·|h), φT∼p(·)
s′∼p(·|s,a,φT)

− log ∑
φ∈Φ

p(s′|h, s, a, φ)p(φ|h) (9b)

≥ E φT∼p(·), (s,a)∼p(·|h)
s′∼p(·|s,a,φT),φ∼p(·|h)

− log p(s′|h, s, a, φ) (9c)

where we applied the Jensen inequality in Equation (9c) and φT∼p(·) is fixed. One can
model p(s′|h, s, a, φ) with a unit-variance Gaussian distribution in order to obtain a simple
and tractable loss. Empirical results suggest this distribution works well even with high-
dimensional inputs [61]. This way, we have:

E (s,a)∼p(·|h), φT∼p(·)
s′∼p(·|s,a,φT), φ∼p(·|h)

− log p(s′|φ, h, a, s)

≈ E(s,a)∼p(·|h), s′∼p(·|s,a,φT)
φ∼p(·|h), φT∼p(·)

− log
1

(2π)d/2 e−0.5(s′−ŝ′)T(s′−ŝ′) (10a)

∝ E(s,a)∼p(·|h), s′∼p(·|s,a,φT)
φ∼p(·|h), φT∼p(·)

||s′ − ŝ′||22 + Const (10b)

where
ŝ′ = arg max

s′′∈S
p(s′′|h, a, s, φ) (11)
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represents the mean prediction and φ parameterizes a deterministic forward model. Fol-
lowing the objective, we can extract a generic intrinsic reward as:

R(s, a, s′) = || f (s′)− f (ŝ′)||22 (12)

where f is a generic function (e.g., identity or a learned one) encoding the state space
into a feature space. Equation (12) amounts to rewarding the predictor error of φ in the
representation f . In the following, we will see that learning a relevant function f is the
main challenge.

The first natural idea to test is whether a function f is required. Ref. [62] learns the
forward model from the ground-state space and observes that it is inefficient when the
state space is large. In fact, the Euclidean distance is meaningless in such high-dimensional
state space. In contrast, they raise that random features extracted from a random neural
network can be very competitive with other state-of-the-art methods. However, they poorly
generalize to environment changes. Another model, the dynamic auto-encoder (dynamic-
AE) [63], selects f to be an auto-encoder [64], but it only slightly improves the results over
the Boltzmann exploration on some standard Atari games. Other works also consider a
dynamic-aware representation [65]. These methods are unable to handle the local stochas-
ticity of the environment [62]. For example, it turns out that adding random noise in a 3D
environment attracts the agent; it passively watches the noise since it is unable to predict
the next observation. This problem is also called the white-noise problem [66,67]. This
problem emerges by considering only the right-hand term of Equation (8b), making the
agent assume that environments are deterministic. Therefore, exploration with prediction
error breaks down when this assumption is no longer true.

To tackle exploration with local stochasticity, the intrinsic curiosity module (ICM) [66]
learns a state representation function f end to end with an inverse model, i.e., a model which
predicts the action between two states. Thus, the function f is constrained to represent
things that can be controlled by the agent during the next transitions. The prediction
error does not incorporate the white noise does not depend on actions, so it will not be
represented in the feature state space. Building a similar action space, exploration with mutual
information (EMI) [68] significantly outperforms previous works on Atari, but at the cost of
several complex layers. EMI transfers the complexity of learning a forward model into the
learning of states and actions representation through the maximization of I([S, A]; S′) and
I([S, S′]; A). Then, the forward model φ is constrained to be a simple linear model in the
representation space. Furthermore, EMI introduces a model error which offloads the linear
model when a transition remains strongly non-linear (such as a screen change). However,
it is currently unclear whether ICM and EMI keep in their representation what depends on
their long-term control. For instance, in a partially observable environment [27], an agent
may perceive the consequences of its actions several steps later. In addition, they remain
sensitive to stochasticity when it is produced by an action [62,69].

5.3. Learning Progress

Another way to tackle local stochasticity can be to maximize the improvement of
prediction error, or learning progress, of a forward model [70–74] or local forwards mod-
els [75,76] One can see this as approximating the left-hand side of Equation (8b) with:

log p(s′|s, a, h, φT)− log p(s′|s, a, h) ≈ log p(s′|s, a, h′)− log p(s′|s, a, h) (13)

≈ ∆|| f (s′)− f (ŝ′)||22 (14)

where h′ concatenates h with an arbitrary number of additional interactions and where
we derive Equation (14) similarly to Equation (12). As h′ becomes large enough and the
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agent updates its forward model, its forward model converges to the true transition model.
Formally, if one stochastic forward model can describe the transitions, we can write:

lim
|h′ |→inf

p(s′|s, a, h′) = lim
|h′ |→inf

∑
Φ

p(s′|s, a, h′, φ)p(φ|h′)

= p(s′|s, a, h′, φT) (15)

In practice, one cannot wait to discover a long sequence of new interactions and the reward
can be dependent on a small set of interactions and the efficiency of the gradient update of
the forward model. It makes it hard to compute a tractable reward of learning progress
in complex environments. We refer to [16] for a study of learning progress measures.
However, the theoretical connection with the true expected information gain may indeed
explain the robustness of learning progress to stochasticity [16].

5.4. Information Gain over Forward Model

By assuming p(s′|s, a, h, φT) ≈ p(s′|s, a, φ, h), we can approximate the expected infor-
mation gain over true models by the expected information gain [77,78]:

IG(h, A, S′, S, ΦT) = I(S′; ΦT |h, A, S) = E (s,a)∼p(·|h)
s′∼p(·|s,a,h,φT)

DKL(p(ΦT |h, s, a, s′)||p(ΦT |h)) (16a)

≈ E (s,a)∼π
s′∼p(·|s,a,h,φT)

DKL(p(Φ|h, s, a, s′)||p(Φ|h)). (16b)

In Equation (16b), the agents acts and uses the new states to update its own model. The am-
plitude of the update defines the reward

R(s, a, s′) = DKL(p(Φ|h, s, a, s′)||p(Φ|h)). (17)

This way, an agent executes actions that provide information about the dynamics of the
environment. This allows, on one side, pushing the agent towards areas it does not
know, and on the other side, prevents attraction towards stochastic areas. Indeed, if the
area is deterministic, environment transitions are predictable and the uncertainty about
its dynamics can decrease. Conversely, if transitions are stochastic, the agent turns out
to be unable to predict transitions and does not reduce uncertainty. The exploration
strategy VIME [79] computes this intrinsic reward by modeling p(φ|h) with Bayesian
neural networks [80]. The interest of Bayesian approaches is to be able to measure the
uncertainty of the learned model [81]. This way, assuming a fully factorized Gaussian
distribution over model parameters, the KL-divergence has a simple analytic form [16,79],
making it easy to compute. However, the interest of the proposed algorithm is shown only
on simple environments and the reward can be computationally expensive to compute.
Ref. [82] proposes a similar method (AKL) with comparable results, using deterministic
neural networks, which are simpler and quicker to apply. The weak performance of both
models is probably due to the difficulty of retrieving the uncertainty reduction by rigorously
following the mathematical formalism of information gain.

The expected information gain can also be written as

I(S′; Φ|h, A, S) = H(S′|h, A, S)− H(S′|h, A, S, Φ)

= −E (s,a)∼p(·|h),
s′∼p(·|h,a,s,φT)

log p(s′|h, a, s) +Eφ∼p(·|h,a,s,s′), (s,a)∼p(·|h)
s′∼p(·|s,a,h,φT)

log p(s′|h, a, s, φ) (18a)

= E φ∼p(·|h,a,s,s′),
(s,a)∼p(·|h)s′∼p(·|s,a,h,φT)

− log ∑
φ∈Φ

p(s′|h, a, s, φ)p(φ|h) + log p(s′|h, a, s, φ). (18b)

Using similar equations as in Equation (18b), in JDRX [83], authors show that one can max-
imize the information gain by computing the Jensen–Shannon or Jensen–Rényi divergence
between distributions of the next states induced by several forward models. The more
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the different models are trained on a state-action tuple, the more they will converge to
the expected distribution of the next states. Intuitively, the reward represents how much
the different transition models disagree on the next-state distribution. Other works also
maximize a similar form of disagreement [84–86] by looking at the variance of predictions
among several learned transition models. While these models handle the white-noise prob-
lem, the main intrinsic issue is computational, since it requires multiple forward models
to train.

5.5. Conclusions

We detailed three ways to maximize on the expected information gain over a true
model of the environment. Each one induces a specific form of surprise. In practice,
the expected information gain over a forward model and the learning progress approximate
the expected information gain over the true model well. Therefore, it appears that they
intuitively and experimentally allow us to explore inherently stochastic environments,
but are hard to implement. Models based on prediction error are considerably simpler, but
are biased towards inherently stochastic areas. In Table 2, we observe that methods based
on prediction error achieve an overall low score on Montezuma’s revenge. Prediction error
with LWM [65] achieves good performance, presumably because the learned representation
is more appropriate. One should be cautious about the low results of the dynamic-AE [63]
because of the very low number of timesteps. Most methods based on learning progress and
information gain over the forward model have not been tested on Montezuma’s revenge,
preventing us from directly comparing them to others.

Table 2. Comparison between different ways to maximize surprise. Computational cost refers
to highly expensive models added to standard RL algorithm. We also report the mean score on
Montezuma’s revenge (score) and the number of timesteps executed to achieve this score (steps). We
gathered results from the original paper and other papers. Our table does not pretend to be an
exhaustive comparison of methods, but tries to give an intuition based on their relative advantages.

Method Computational Cost Montezuma’s Revenge
Score Steps

Best score [87] Imitation learning 58,175 200 k

Best IM score [88] Inverse model, RND 16,800 3500 M

Prediction error

Prediction error with pixels [62] Forward model ∼160 200 M

Dynamic-AE [63] Forward model, autoencoder 0 5 M

Prediction error with random features [62] Forward model,
Random encoder ∼250 100 M

Prediction error with VAE features [62] Forward model, VAE ∼450 100 M

Prediction error with ICM features [62] Forward model,
Inverse model ∼160 100 M

Results from [68] 161 50 M

EMI [68] Large architecture
Error model 387 50 M

Prediction error with LWM [65] Whitened contrastive loss
Forward model 2276 50 M
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Table 2. Cont.

Method Computational Cost Montezuma’s Revenge
Score Steps

Learning progress

Learning progress [70–74] Two forward errors n/a n/a

Local learning progress [75,76] Several Forward models n/a n/a

Information gain over forward model

VIME [79] Bayesian forward model n/a n/a

AKL [82] Stochastic forward model n/a n/a

Ensemble with random features [84] Forward models,
random encoder n/a n/a

Ensemble with observations [85] Forward models n/a n/a

Emsemble with PlaNet [86] Forward models, PlaNet n/a n/a

JDRX [83] 3 Stochastic Forward models n/a n/a

n/a: not available, we did not find the information. RND: Use RND [35]. PlaNet: Use PlaNet [89]. VAE: Use a
variational autoencoder [61].

6. Novelty Maximization

Novelty quantifies how much a stimuli contrasts with a previous set of experiences [58,90].
More formally, Ref. [58] defends that an observation is novel when a representation of it is not
found in memory, or, more realistically, when it is not “close enough” to any representation found
in memory. Previous experiences may be collected in a bounded memory or distilled in a
learned representation.

Several works propose to formalize novelty-seeking as looking for low-density states [91],
or, similarly (cf. Section 6.3), states that are different from others [92,93]. In our case, this
would result in maximizing the entropy of a state distribution. This distribution can be
the t-steps state distribution (cf. Equation (1)) H(dπ

t (S)) or the entropy of the stationary
state-visitation distribution over a horizon T

H(dπ
0:T(S)) = H(

1
T

T

∑
t=1

dπ
t (S)). (19)

In practice, these distributions can be approximated with a buffer. This formalization
is not perfect and does not fit several intuitions about novelty [58]. Ref. [58] criticizes
such a definition by stressing that very distinct and memorable events may have low
probabilities of occurring, while not being novel (e.g., a wedding). They suggest that
novelty may rather relate to the acquisition of a representation of the incoming sensory
data. Following this definition, we propose to formalize novelty-seeking behaviors as those
that actively maximize the mutual information between states and their representation,
I(S; Z) = H(S)− H(S|Z), where Z is a low-dimensional space (|Z| ≤ |S|). This objective
is commonly known as the infomax principle [94–97]; in our case, it amounts to actively
learning a representation of the environment. Most works focus on actively maximizing the
entropy of state distribution while a representation-learning function minimizes H(S|Z).
Furthermore, if one assumes that Z = S, the infomax principle collapses to the previously
mentioned entropy maximization H(S).

There are several ways to maximize the state-entropy; we separate them based on how
they maximize the entropy. We found three kind of methods: expected information gain
over a density model, variational inference, and k-nearest neighbors methods.
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6.1. Information Gain over Density Model

In Section 5, we discussed the maximization of the expected information gain over
the true forward model. In practice, one can also maximize the expected information gain
over a uniform density model over states ρU . A uniform density model is not given to the
agent, but it is possible to make the same approximation as in Section 5.4. We assume the
agent tries to learn a density model ρ ∈ P that approximates the current marginal density
distribution of states p(s′). Then, it can compute the expected information gain over a
density model ρ [98]:

IG(h, S, A, S′, PU) ≈ E (s,a)∼p(·|h),
s′∼p(·|s,a,h,φT)

DKL(p(ρ|h, s′)||p(ρ|h)). (20)

To the best of our knowledge, no work directly optimizes this objective, but it has been
shown that this information gain is a lower bound than the squared inverse pseudo-count
objective [98], which derives from count-based objectives. In the following, we will review
count and pseudo-count objectives. To efficiently explore its environment, an agent can
count the number of times it visits a state and returns to rarely visited states. Such methods
are said to be count-based [99]. As the agent visits a state, the intrinsic reward associated
with this state decreases. It can be formalized with R(s, a, s′) = 1√

N(s′)
, where N(s) is

the number of times that the state s has been visited. Although this method is efficient
and tractable with a discrete state space, it hardly scales when states are numerous or
continuous, since an agent never really returns to the same state. A first solution proposed
by [100], called TRPO-AE-hash, is to hash the latent space of an auto-encoder fed with
states. However, these results are only slightly better than those obtained with a classic
exploration policy. Another line of work proposes to adapt counting to high-dimensional
state spaces via pseudo-counts [98]. Essentially, pseudo-counts allow the generalization of the
count from a state towards neighborhood states using a learned density model ρ. This is
defined as:

N̂(s′) =
p(s′|ρ)(1− p(s′|ρ′))

p(s′|ρ′)− p(s′|ρ) (21)

where ρ′(s) computes the density of s after having learned on s. In fact, ref. [98] show
that, under some assumptions, pseudo-counts increase linearly with the true counts. In this
category, DDQN-PC [98] and DQN-pixelCNN [101] compute φ using, respectively, a context-
tree switching model (CTS) [102] and a pixel-CNN density model [103]. Although the
algorithms based on density models work on environments with sparse rewards, they add
an important complexity layer [101]. One can preserve the quality of observed exploration
while decreasing the computational complexity of the pseudo-count by computing it in a
learned latent space [104].

There exist several other well-performing tractable exploration methods, such as RND [35],
DQN+SR [105], RIDE [106], and BeBold [107]. These papers argue that the reward they
propose more or less relates to a visitation count estimation.

6.2. Variational Inference

Several methods propose to estimate ρ(s) using variational inference [108–111] based
on autoencoder architectures. In this setting, we can use the VAE loss, approximated
either as Equation (22b) [110,112] or Equation (22c) [111], assuming z is a compressed
latent variable, p(z) a prior distribution [61], and qdecoder a neural network that ends with a
diagonal Gaussian.

log ρ(s′) ≥ Eŝ′∼qdecoder(·|z)
− log qdecoder(ŝ′|z) + DKL(qencoder(z|s)||p(z)) (22a)

≈ − log qdecoder(s′|z) + DKL(qencoder(z|s′)||p(z)) (22b)

≈ log
1
N

N

∑
i=1

p(z)
qencoder(z|s′)

qdecoder(s′|z) (22c)
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Equation (22c) is more expensive to compute than Equation (22b) since it requires decoding
several samples, but presumably exhibits less variance. Basically, this estimation allows
rewarding an agent [108,110,113] according to:

R(s, a, s′) = − log ρ(s′).

Ref. [110] maximizes Equation (22c) by learning new skills that target these novel states
(see also Section 7). Using Equation (22b), ref. [112] approximates Equation (22b) with
the ELBO as used by the VAE. This is similar to MaxRenyi [108], which uses the Rény
entropy, a more general version of the Shannon entropy, to give more importance to very
low-density states. Ref. [109] propose conditioning the state density estimation with policy
parameters in order to directly back-propagate the gradient of state-entropy into policy
parameters. Although MaxRenyi achieves good scores on Montezuma’s revenge with pure
exploration, maximizing the ground-state entropy may not be adequate, since two closed
ground states are not necessarily neighbors in the true environment [114]. Following this
observation, GEM [115] rather maximizes the entropy of the estimated density of the states
considering the dynamic-aware proximity of states, H(Z). However, they do not actively
consider H(Z|S).

6.3. K-Nearest Neighbors Approximation of Entropy

Several works propose approximating the entropy of a distribution using samples and
their k-nearest neighbors [116,117]. In fact, such an objective has already been referred to
as a novelty [93]. Assuming nnk(Sb, si) is a function that outputs the k-th closest state to si
in Sb, this approximation can be written as:

H(S) ∝
1
|Sb| ∑

si∈Sb

log ||si − nnk(Sb, si)||2 + χ(|Sb|) + Const (23)

where χ(Sb) is the digamma function. This approximation assumes the uniformity of states
in the ball centered on a sampled state with radius ||si− nnk(Sb, si)||2 [118], but its full form
is unbiased with many samples [116]. Intuitively, it means that the entropy is proportional
to the average distance between states and their neighbors. Figure 4 shows how density
estimation relates to k-nearest neighbors distance. We clearly see that low-density states
tend to be more distant from their nearest neighbors. Few methods [119] provably relate to
such estimations, but several approaches take advantage of the distance between state and
neighbors to generate intrinsic rewards, making them related to such entropy maximization.
For instance, APT [120] proposes new intrinsic rewards based on the k-nearest neighbors
estimation of entropy:

R(s, at, s′) = log(1 +
1
K

K

∑
0
|| f (s′)− nnk( f (Sb), f (s′))||2) (24)

where f is a representation function learned with a contrasting loss based on data aug-
mentation [121] and K denotes the number of k-nn estimations. By looking for distant
state embeddings during an unsupervised pre-training phase, they manage to considerably
speed up task-learning in the DeepMind Control Suite. The representation f can also derive
from a random encoder [122], an inverse model [123], or a contrastive loss that ensures
the Euclidean proximity between consecutive states [124,125]. Alternatively, GoCu [126]
achieve state-of-the-art results on Montezuma’s revenge by learning a representation with
a VAE, and reward the agent based on how distant, in term of timesteps, a state is from a
set of k other states.
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Visited states

Distance between a
state and its 4-th
closest neighbor

Figure 4. Illustration of the correlation between density and the fourth-nearest neighbor distance.

The contrasting learning loss of the representation can be directly used as a reward [127–129].
The agent plays a minimax game. A module learns a representation function with a contrastive
loss, which often explicitly estimates the distance of representations with each other [130]. Then,
the agent actively challenges the representation by looking for states with a large loss.

Instead of relying on Euclidean distance, one can try to learn a similarity function.
EX2 [131] teaches a discriminator to differentiate states from each other: when the discrimi-
nator does not manage to differentiate the current states of those in the buffer, it means that
the agent has not visited this state enough, and it will be rewarded. States are sampled from
a buffer, implying the necessity to have a large buffer. To avoid this, some methods distill
recent states in a prior distribution of latent variables [132,133]. The intrinsic reward for a
state is then the KL-divergence between a fixed diagonal Gaussian prior and the posterior
of the distribution of latent variables. In this case, common latent states fit the prior, while
novel latent states diverge from the prior.

K-nearest neighbors intrinsic rewards have also been employed to improve intra-
episode novelty [134]. It contrasts with standard exploration, since the agent looks for
novel states in the current episode: typically, it can try to reach all states after every reset.
This setting is possible when the policy depends on all its previous interactions, which is
often the case when an agent evolves in a POMDP, since the agent has to be able to predict
its value function even though varies widely during episodes. This way, ECO [135] and
never give up [88] use an episodic memory and learn to reach states that have not been
visited during the current episode. Similarly, SDD [136] maximizes the distances between a
state and a fixed number of previous states, for example, of close states.

6.4. Conclusions

In this section, we reviewed works that maximize novelty to improve exploration
with flat policies. We formalized novelty as actively discovering a representation accord-
ing to the infomax principle, even though most works only maximize the entropy of
states/representations of states. Methods based on information gain over density models
or variational inference often need a complex neural network to approximate ρ(s). This
differs from k-nearest neighbors methods, which only need to compare states with each
other and which is often simpler.

In Table 3, we can see that these methods better explore this environment than
prediction error-based methods (see Table 2), when using intra-episode novelty mech-
anisms in particular [88]. This strengthens the hypothesis that novelty maximization better
correlates with task rewards than information gain over forward models [59]. While in-
formation gain over density models performs well overall in this environment, several
methods based on K-nearest neighbors approximations of entropy manage to outperform
them. Among the best methods, RND [35] is a simple baseline that achieves important
asymptotic performance.
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Table 3. Comparison between different ways to maximize novelty. Computational cost refers to
highly expensive models added to the standard RL algorithm. We also report the mean score on
Montezuma’s revenge (Score) and the number of timesteps executed to achieve this score (Steps). We
gathered results from the original paper and from other papers. Our table does not pretend to be an
exhaustive comparison of methods but tries to give an intuition on their relative advantages.

Method Computational Cost Montezuma’s Revenge
Score Steps

Best score [87] Imitation learning 58,175 200 k

Best IM score [88] Inverse model, RN [35] 16,800 3500 M

Information gain over density model

TRPO-AE-hash [100] SimHash, AE 75 50 M

DDQN-PC [98] CTS [102] 3459 100 M 1

DQN-PixelCNN [101] PixelCNN [103] 1671 100 M 1

φ-EB [104] Density model 2745 100 M 1

DQN+SR [105] Successor features 1778 20 MForward model

RND [35]
Random encoder

8152 490 M
[105] 524 100 M 1

[68] 377 50 M

RIDE [106] Forward and inverse models n/a n/aPseudo-count

BeBold [107] Hash table ∼10,000 2000 M 1,2

Direct entropy maximization

MOBE [112], StateEnt [109] VAE n/a n/a

Renyi entropy [108] VAE, planning 8100 200 M

GEM [115] Contrastive loss n/a n/a

SMM [110] VAE, Discriminator n/a n/a

K-nearest neighbors entropy

EX2 [131] Discriminator n/a n/a
[68] 0 50 M

CB [132] IB ∼ 1700 n/a

VSIMR [133] VAE n/a n/a

ECO [135] Siamese architecture n/a n/a
[126] 8032 100 M

DAIM [123] DDP [137] n/a n/a

APT [120] Contrastive loss 0.2 250 M

SDD [136] Forward model n/a n/a

RE3 [122] Random encoders ensemble 100 5 M

Proto-RL [124], Novelty [125] Contrastive loss n/a n/a

NGU [88] Inverse model, RND [35] 16,800 3500 M 1
several policies

CRL [127], CuRe [128] Contrastive loss n/a n/a

BYOL-explore [129] BYOL [138] 13, 518 3 M

DeepCS [134] RAM-based grid 3500 160 M

GoCu [126] VAE, predictor 10,958 100 M

n/a: not available, we did not find the information. IB: Use information bottleneck (IB) method [139]. VAE: Use a
variational autoencoder [61]. 1 Only provide the number of frames in the paper, we assume they do not use frame
skip. 2 Result with one single seed.
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Some works manage to learn a representation that matches the inherent structure
of the environment [124]. This suggests that it is, most of the time, enough to learn a
good representation. For instance, refs. [115,124] compute a reward based on a learned
representation, but perhaps a bad representation tends to be located in low-density areas.
It results that active representation entropy maximization correlates with state-conditional
entropy minimization. We are not aware of methods that actively and explicitly maximize
I(Z; S) in RL.

7. Skill Learning

In our everyday life, nobody has to think about having to move their arms’ muscles
to grasp an object. A command to take the object is just issued. This can be performed
because an acquired skill can be effortlessly reused.

Skill-learning denotes the ability of an agent to learn a representation of diverse skills.
We formalize skill-learning as maximizing the mutual information between the goal g ∈ G
and some of the rest of the contextual states u(τ) ∈ u(T ), denoted as I(G; u(T )), where
τ ∈ T is a trajectory and u a function that extracts a subpart of the trajectory (last state,
for example). The definition of u depends on the wanted semantic meaning of a skill. Let
s0 refer to the state at which the skill started and s a random state from the trajectory, we
highlight two settings based on the literature:

• u(T ) = S, the agent learns skills that target a particular state of the environment [140].
• u(T ) = T , the agent learns skills that follow a particular trajectory. This way, two

different skills can end in the same state if they cross different areas [141].

Most works maximize I(G; S); unless stated otherwise, we refer to this objective. In the
following, we will study the different ways to maximize I(G; S) which can be written under its
reversed form I(S; G) = H(G)− H(G|S) or forward form I(G; S) = H(S)− H(S|G) [142].
In particular, we emphasize that:

−H(G|S) = ∑
g∈G,s∈S

p(g, s) log p(g|s) (25a)

= Eg∼p(g)
s∼πg

log p(g|s) (25b)

where, to simplify, p(g) is the current distribution of goals (approximated with a buffer)
and s ∼ πg denotes the distribution of states that result from the policy that achieves g.
Note that p(g, s) = p(s|g)p(g).

In this section, we first focus on methods that assume they can learn all skills induced
by a given goal space/goal distribution, and which assign parts of trajectories to every
goal. The second set of methods directly derives the goal space from visited states, so that
there are two different challenges that we treat separately: the agent has to learn to reach
a selected goal, and it must maximize the diversity of goals it learns to reach. We make
this choice of decomposition because some contributions focus on only one part of the
objective function.

7.1. Fixing the Goal Distribution

The first approach assumes the goal space is arbitrarily provided, except for the
semantic meaning of a goal. In this setting, the agent samples goals uniformly from G,
ensuring that H(G) is maximal, and it progressively assigns all possible goals to a part
of the state space. To do this assignment, the agent maximizes the reward provided by
Equation (25b)

R(g, s, a, s′) = − log qω(g|s′) (26)

where qω(g|s′) represents a learned discriminator (often a neural network) that approxi-
mates p(g|s′).

At first, we focus on a discrete number of skills, where p(g) represents a uniform cate-
gorical distribution. Figure 5 sums up the learning process with two discrete skills. 1: Skills
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and discriminator qω are randomly initialized; 2: the discriminator tries to differentiate
the skills with states s from its trajectories, in order to approximate p(g|s); 3: skills are
rewarded with Euqation (26) in order to make them go in the area assigned to it by the dis-
criminator; 4: finally, skills are clearly distinguishable and target different parts of the state
space. SNN4HRL [143] and DIAYN [140] implement this procedure by approximating g
with, respectively, a partition-based normalized count and a neural network. VALOR [144]
also uses a neural network, but discriminates discrete trajectories. In this setting, the agent
executes one skill per episode.

trajectories

trajectories

decision
boundary

starting position of
the agent

(a) (b) (c) (d)

Figure 5. Illustration of the implicit learning steps of algorithms that use a fixed goal distribution.
(a) Skills are not learnt yet. The discriminator randomly assigns partitions of the state space to
goals. (b) The discriminator tries unsuccessfully to distinguish the skills. (c) Each skill learns to go
in the area assigned to it by the discriminator. (d) Skills locally spread out by maximizing action
entropy [145]. The discriminator successfully partitions the areas visited by each skill.

HIDIO [146] sequentially executes skills, yet it is not clear how they manage to avoid
forgetting previously learned skills. Maximizing I(G; S|S0) like VIC [147] or I(G; S0|S)
with R-VIC [148] makes it hard to use a uniform (for instance) H(G|S0), because every skill
may not be executable everywhere in the state space. Therefore, they also maximize the
entropy term with another reward bonus, similar to log p(g|s0). They learn discriminant
skills, but still struggle to combine them on complex benchmarks [148]. Keeping p(g)
uniform, DADS [149] maximizes the forward form of mutual information I(S; G|S0) =
H(S|S0)−H(S|G, S0) by approximating p(s|s0) and p(s|s0, g). This method makes possible
to plan over skills, and can combine several locomotion skills. However, this requires
several conditional probability density estimations on the ground state space, which may
scale badly to higher-dimensional environments.

These methods tend to stay close to their starting point [142] and do not learn skills
that cover the whole state space. In fact, it is easier for the discriminator to overfit over a
small area than to make a policy go to a novel area, this results in a lot of policies that target
a restricted part of the state space [150]. Accessing the whole set of true possible states
and deriving the set of goals by encoding states can considerably improve the coverage of
skills [142].

Heterogeneous methods address the problem of overfitting of the discriminator.
The naive way can be to regularize the learning process of the discriminator. ELSIM [42]
takes advantages of L2 regularization and progressively expands the goal space G to cover
larger areas of the state space, and [150] proposes to use spectral normalization [151].
More consistent dynamic-aware methods may further improve regularization; however, it
remains hard to scale the methods to many skills which are necessary to scale to a large en-
vironment. In the above-mentioned methods, the number of skills greatly increases [42,144]
and the discrete skill embedding does not provide information about the proximity of skills.
Therefore, learning a continuous embedding may be more efficient.

The prior uniform distribution p(g) is far more difficult to set in a continuous embed-
ding. One can introduce the continuous DIAYN [146,150] with a prior p(G) = N (0d, I),
where d is the number of dimensions, or the continuous DADS with a uniform distribution
over [−1; 1] [149], yet it remains unclear how the skills could adapt to complex environ-
ments, where the prior does not globally fit the inherent structure of the environment (e.g.,
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a disc-shaped environment). VISR [152] seems to, at least partially, overcome this issue
with a long unsupervised training phase and successor features. They uniformly sample
goals on the unit-sphere and compute the reward as a dot product between unit-normed
goal vectors and successor features log qω(g|s) = φsuccessor(s)T g.

7.2. Achieving a State Goal

In this section, we review how current methods maximize the goal-achievement part
of the objective of the agent, −H(Sg|S), where Sg refers to the goal-relative embedding of
states. We temporally set aside H(Sg) and we will come back to this in the next subsection,
Section 7.3, mainly because the two issues are tackled separately in the literature. Obviously,
maximizing −H(Sg|S) can be written as:

−H(Sg|S) = ∑
Sg ,S

p(sg, s) log p(sg|s) = Esg∼p(s)
s∼πg

log p(sg|s) (27)

where, to simplify, p(s) is the current distribution of states (approximated with a buffer)
and s ∼ πg denotes the distribution of states that results from the policy that achieves
g. If log p(sg|s′) is modeled as an unparameterized Gaussian with a unit-diagonal co-
variance matrix, we have log p(sg|s′) ∝ −||sg − s′||22 + Const so that we can reward an
agent according to:

R(sg, s, a, s′) = −||sg − s′||22. (28)

This means that if the goal is a state, the agent must minimize the distance between its
state and the goal state. To achieve this, it can take advantage of a goal-conditioned policy
πsg(s).

This way, hierarchical actor–critic (HAC) [153] directly uses the state space as a goal
space to learn three levels of options (the options from the second level are selected to fulfill
the chosen option from the third level). A reward is given when the distance between states
and goals (the same distance as in Equation (28)) is below a threshold. Similar reward
functions can be found in [154,155]. Related to these works, HIRO [156] uses as a goal the
difference between the initial state and the state at the end of the option f (T ) = S f − S0.

This approach is relatively simple, and does not require extra neural networks. How-
ever, there are two problems with using the state space in the reward function. Firstly,
a distance (such as L2) makes little sense in a very large space, such as images composed
of pixels. Secondly, it is difficult to make a manager’s policy learn on a too-large action
space. Typically, an algorithm with images as goals can imply an action space of 84× 84× 3
dimensions for a goal-selection policy (in the case of an image with standard shape). Such a
wide space is currently intractable, so these algorithms can only work on low-dimensional
state spaces.

To tackle this issue, an agent can learn the low-dimensional embedding of space φe

and maximize the reward of Equation (29) using a goal-conditioned policy π f (sg)(s):

R(sg, s, a, s′) = −|| f (sg)− f (s′)||22. (29)

Similarly to Equation (28), this amounts to maximize −H( f (Sg)| f (S)). RIG [157]
proposes to build the feature space independently with a variational auto-encoder (VAE);
however, this approach can be very sensitive to distractors (i.e., useless features for the
task or goal, inside states) and does not allow correctly weighting features. Similar ap-
proaches also encode part of trajectories [141,158] for similar mutual information objectives.
SFA-GWR-HRL [159] uses unsupervised methods such as the algorithms of slow features
analysis [160] and growing when required [161] to build a topological map. A hierarchical
agent then uses nodes of the map, representing positions in the world, as a goal space.
However, the authors do not compare their contribution to previous approaches.

Other approaches learn a state-embedding that captures the proximity of states with
contrasting losses. For instance, DISCERN [162] learns the representation function by
maximizing the mutual information between the last state representation and the state
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goal representation. Similarly to works in Section 7.1, the fluctuations around the objec-
tive allow bringing states around sg closer to it in the representation. LEXA [163] learns
to measure the similarity between two states by training a neural network to predict
the number of steps that separate two states. Then, the similarity between a goal and
the states can reward the goal-conditioned policy. More explicitly, the representation of
NOR [164] maximizes I( f (St+k); f (St), At:t+k) and the one of LESSON [165] maximizes
I( f (St+1); f (St)); LESSON and NOR target a change in the representation and manage to
navigate in a high-dimensional maze while learning the intrinsic Euclidean structure of the
mazes (cf. Table 4). Their skills can be reused in several environments with similar state
spaces. However, experiments are made in two-dimensional embedding spaces, and it
remains unclear how relevant goals may be as states change in an embedding space with
higher dimensions.The more the number of dimensions increases, the more difficult it will
be to distinguish possible skills from impossible skills in a state. In addition, LESSON and
NOR need dense extrinsic rewards to learn to select the skills to execute. Thus, they gener-
ate tasks with binary rewards at a location uniformly distributed in the environment, such
that the agent learns to achieve the tasks from the simplest to the hardest. This progressive
learning generates a curriculum, helping to achieve the hardest task.

7.3. Proposing Diverse State Goals

To make sure the agent maximizes the mutual information between its goals and
all visited states, it must sample a diverse set of goal-states. In other words, it has to
maximize H(Sg) but through goal selection, rather than with an intrinsic bonus as in
Section 6. Similarly to works on novelty (cf. Section 6), such entropy maximization along
with skill acquisition (cf. Section 7.2) tackles the exploration challenge, but without facing
catastrophic forgetting (cf. Section 8.1) since the agent does not forget its skills.

A naive approach would be to generate random values in the goal space, but this
brings a considerable problem: the set of achievable goals is often a very small subset of the
entire goal space. To tackle this, a first approach can be to explicitly learn to differentiate
these two sets of goals [166,167], using, for example, generative adversarial networks
(GAN) [166,168], which is ineffective in complex environments [111]. Other works obtain
good results on imagining new goals, but using a compoundable goal space, given [169] or
learned with a dataset, see [170]; results show it may be a strong candidate for object-based
representations. In contrast, in a more general case, an agent can simply set a previously
met state as a goal; in this way, it ensures that goals are reachable, since they have already
been achieved. In the rest of this section, we focus on this set of methods.

In RIG [157], the agent randomly samples states as goals from its buffer, but it does
not increase the diversity of states, and thus, the diversity of learned skills. [111] showed,
theoretically and empirically, that, by sampling goals following a more uniform distribution
over the support of visited states than the “achieved” distribution, the distribution of states
of the agent can converge to the uniform distribution. Intuitively, the agent just samples
low-density goals more often, as illustrated in Figure 6. There are several ways to increase
the importance of low-density goal-states that we introduce in the following.
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(a) (b) (c)

Unnormalized weight of a state
in the state-goal probability

distribution

Objective

Visited states

Figure 6. Illustration of the re-weighting process. (a) Probability of visited states to be selected
as goals before re-weighting; (b) Probability of visited states to be selected as goals after density
re-weighting; (c) Probability of visited states to be selected as goals after density/reward re-weighting.
This figure completes and simplifies the figure from [111].

DISCERN [162] proposes to sample the support of visited states uniformly with a
simple procedure. Every time the agent wants to add an observation to its buffer, it
randomly samples another observation from its buffer and only keeps the one that is the
furthest from all other states of the buffer. This way, it progressively builds a uniform
distribution of states inside its buffer. However, it uses the Euclidean distance to compare
images, which may not be relevant. Other approaches select the state that has the lower
density (OMEGA) [154] according to a kernel density estimation or use the rank of state-
densities [171] estimated with a variational Gaussian mixture model [172]. In contrast with
them, skew-fit [111] provides more flexibility on how uniform one wants its distribution
of states. Skew-fit extends RIG and learns a parameterized generative model qρ(S) ≈ p(S)
and skews the generative model (VAE) with the ratio:

qρ(s)αskew (30)

where αskew < 0 determines the speed of uniformization. This way it gives more impor-
tance to low-density states. The, n it weights all visited states according to the density
approximated by the generative model at the beginning of each epoch, which is made of a
predefined number of timesteps. Skew-fit manages to explore image-based environments
very efficiently. As highlighted in [114], this ratio applied to a discrete number of skills
amounts to reward a Boltzmann goal-selection policy with

R(sg) = (1 + αskew) log p(sg). (31)

With a different objective, GRIMGREP [173] partitions the VAE embedding of skew-fit with
a Gaussian mixture model [174] to estimate the learning progress of each partition and avoid
distractors. The density weighting can also operate in a learned embedding. HESS [175]
partitions the embedding space of LESSON and rewards it with a variant of a count-based
bonus (see Section 5). It improves exploration in a two-dimensional latent embedding,
but the size of partitions may not scale well if the agent considers more latent dimensions.
In contrast, DisTop [114] dynamically clusters a dynamic-aware embedding space using a
variant of growing when required [161]; they estimate the density of the state according
to how much its partition contains states, and skew the distribution of samples similarly
to skew-fit. HESS and DisTop demonstrate their ability to explore and navigate with an
ant inside a complex maze without extrinsic rewards. As shown in [114] (illustration in
Figure 6c), it is also possible to use extrinsic rewards to weight the distribution of sampled
state goals.
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7.4. Conclusions

We found two main ways to discover skills. The first one provides a goal space and
assigns goals to areas of the state space. There are empirical evidences emphasizing that
an actor struggles to learn and sequentially execute skills that target different areas of
the state space. The second method derives the goal space from the state space with a
representation learning method, and over-weights the sampling of low-density visited areas.
This set of works showed the ability to hierarchically navigate in simple environments
using moderately morphologically complex agents.

In Table 4, we can make two observations. 1: methods that do not propose diverse
goal-states require an implicit curriculum to learn the ant maze task [156,165] (curriculum
column); 2: contrasting representations seem crucial to avoid using a hand-defined goal
space such as the (x, y) coordinated (goal space column) [164,175]. For methods in “fixing
the goal distribution”, we did not find a representative and widely used evaluation proto-
col/environment among the published works. However, as an example, several qualitative
analyses emphasize the diversity of behaviors that can be learned by an ant [140,149].

Table 4. Summary of papers regarding learning skills through mutual information maximization.
We selected the ant maze environment to compare methods, since this is the most commonly used
environment. We did not find a common test setting allowing for a fair comparison of methods in
“Fixing the goal distribution”. The scale refers to the size of the used maze. Goal space refers to the
a priori state space used to compute goals, from the less complex to the more complex: (x, y); 75-
dimensional top-view of the maze (T-V); top-view + proprioceptive state (T-V + P). Curriculum refers
to whether the authors use different goal locations during training, creating an implicit curriculum
that makes learning to reach distant goals from the starting position easier. The score, unless stated
otherwise, refers to the success rate in reaching the furthest goal.

Fixing the goal distribution

SNN4HRL [143], DIAYN [140], VALOR [144]
HIDIO [146], R-VIC [148], VIC [147]
DADS [149], continuous DIAYN [150], ELSIM [42]
VISR [152]

Methods Scale Goal space Curriculum Score Steps

Achieving a state goal

HAC [153] n/a n/a n/a n/a n/a

HIRO [156] 4x (x, y) Yes ∼0.8 4 M

RIG [157] n/a n/a n/a n/a n/a

SeCTAR [141] n/a n/a n/a n/a n/a

IBOL [158] n/a n/a n/a n/a n/a

SFA-GWR-HRL [159] n/a n/a n/a n/a n/a

NOR [164] 4x T-V + P Yes ∼0.7 10 M
[165] 4x T-V + P Yes ∼0.4 4 M

LESSON [165] 4x T-V + P Yes ∼0.6 4 M

Proposing diverse state goals

Goal GAN [166] 1x (x, y) No Coverage 0.71% n/a
[111] n/a (1̃6x) (x, y) No All goals distance ∼7 7 M

FVC [167] n/a n/a n/a n/a n/a

Skew-fit [111] n/a (1̃6x) (x, y) No All goals distance ∼1.5 7 M
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Table 4. Cont.

DisTop [114] 4x T-V No ∼1 2 M

DISCERN [162] n/a n/a n/a n/a n/a

OMEGA [154] 4x (x, y) No ∼1 4.5 M

CDP [171] n/a n/a n/a n/a n/a
[111] n/a (1̃6x) (x, y) No All goals distance∼7.5 7 M

GRIMGREP [173] n/a n/a n/a n/a n/a

HESS [175] 4x T-V + P No success rate∼1 6 M

8. Outlooks of the Domain

In this section, we take a step back and thoroughly analyze the results of our overall
review. We first study the exploration process of flat intrinsic motivation in comparison
with hierarchical intrinsic motivations in Section 8.1; this will motivate our focus on the chal-
lenges induced by learning a deep hierarchy of skills in Section 8.2. Finally, in Section 8.3,
we discuss how flat and hierarchical intrinsic motivations could and should cohabit in
such a hierarchy.

8.1. Long-Term Exploration, Detachment and Derailment

The most challenging used benchmark in flat intrinsic motivations (surprise and
novelty) is Montezuma’s revenge, yet very sparse reward games such as Pitfall! are not
currently addressed and should be investigated. In Pitfall!, the first reward is reached
only after multiple rooms, and the game requires specific action sequences to go through
each room. State-of-the-art IM methods [101] complete the game with 0 mean rewards.
Contrastingly, imitation RL methods [87,176] are insensitive to such a specific reward,
and thus, exceed IM methods with a mean reward of 37,232 on Montezuma’s revenge and
54,912 on Pitfall!. Even though these methods use expert knowledge, this performance gap
exhibits their resilience to long-term rewards. This shows that flat IMs are still far from
solving the overall problem of exploration.

Furthermore, we want to emphasize that the challenge is harder when the intrinsic
reward itself is sparse [35]. Montezuma’s revenge it is about avoiding using a key too quickly,
in order to be able to use it later. In fact, it looks like there is an exploration issue in the
intrinsic reward function. Intrinsic reward can guide the exploration with the condition
that the agent finds this intrinsic reward. There may be two reasons causing the intrinsic
reward to be sparse:

1. The first comes from partial observability, with which most models are incompatible.
Typically, if an agent has to push a button and can only see the effect of this pushing
after a long sequence of actions, density models and predictive models may not
provide meaningful intrinsic rewards. There would be too large a distance between
the event “pushing a button” and the intrinsic reward.

2. Figure 7 illustrates the second issue, called detachment [177,178]. This results from a
distant intrinsic reward coupled with catastrophic forgetting. Simply stated, the RL
agent can forget the presence of an intrinsic reward in a distant area: it is hard to
maintain the correct q-value that derives from a distant, currently unvisited, rewarding
area. This is emphasized in on-policy settings.
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Figure 7. Illustration of the detachment issue. Image extracted from [177]. Green color represents
intrinsically rewarding areas, white color represents no-reward areas, and purple areas are currently
being explored. (a) The agent has not explored the environment yet. (b) It discovers the rewarding
area at the left of its starting position and explores it. (c) It consumes close intrinsic rewards on the
left side, thus it prefers gathering the right-side intrinsic rewards. (d) Due to catastrophic forgetting,
it forgets how to reach the intrinsically rewarding area on the left.

Pursuing such distant intrinsic rewards may be even harder due to the possible
derailment issue [177,178]. Essentially, an agent may struggle to execute a long sequence of
specific actions needed to reach a distant rewarding area, because the local stochasticity
incites local dithering along the sequence. Detachment motivates the need for a hierarchical
exploration [178] and derailment motivates frontier-based exploration [179], which consists
of deterministically reaching the area to explore before starting exploration.

8.2. Deeper Hierarchy of Skills

Most works presented in Section 7 abstract actions on a restricted number of hierarchies
(generally one hierarchy). This is necessary for understanding the mechanism of abstraction,
but we want to argue that imposing deeper hierarchies could considerably enhance the
semantic comprehension of the environment of an agent. Organisms are often assumed
to deal with the composition of behaviors, which, in turn, serve as building blocks for
more complex behaviors [180]. This way, using a limited vocabulary of skills makes it
easier to avoid the curse of dimensionality associated with the redundancy of a whole set
of ground behaviors.

Our surveyed works [65,114,115,164,165] already propose to learn the representations
using the slowness principle [160] which assumes temporally close states should be simi-
larly represented. By configuring the time-extension of the representation, one may focus
on different semantic parts of the state space. This can be seen in Section 3.2; 1: the agent
can learn a very low level representation that provides skills that can manipulate torques
of a creature [114]; 2: skills can also orientate an agent in a maze by extracting (x, y) coor-
dinates from a complex state representation [175]. While they do not try to combine and
learn several representations at the same time, further works could consider separating
different parts of states (e.g., agent positions and object positions [181]) or learning these
representations at different time scales.

In a developmental process, multi-level hierarchical RL questions the ability of the
agent to learn all policies of the hierarchy simultaneously. This obviously relates to the
ability of organisms to continually learn throughout their lifetime, but in a more practical
way, it may allow focusing on the learning process of skills that are interesting for higher-
level skills. This focus avoids learning everything in the environment [114], which is hard
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and obviously not accomplished by biological organisms. For instance, most people cannot
do a somersault.

Considering a goal representation that changes over time introduces new issues for
the agent. In this case, the goal-conditioned policy may be perturbed by the changes of
inputs and may no longer be able to reach the goal [175]. Current methods consider 1:
developmental periods (unsupervised pre-training [182]); 2: to modify the representation
every k-steps epoch [111]; 3: to impose changes of the representation slowly [175]. Further
works may thoroughly investigate the relation and transitions between these methods,
since they can relate to the concept of critical periods [183,184]. Critical periods assume
that the brain is more plastic at some periods of development in order to acquire specific
knowledge. Despite this mechanism, the brain keeps learning slowly throughout the
lifetime. In the hierarchy of skills, the introduction of a new level may first result in a
quick/plastic learning process, followed by slower changes. Furthermore, the level of skill
acquisition may impact the bounds of critical periods [185,186], allowing introductions of
new levels at the right time.

8.3. The Role of Flat Intrinsic Motivations

In Section 8.1, we essentially criticized the limited role that flat intrinsic motivations
such as surprise or novelty can play in favor of exploration, and we hypothesized in
Section 8.2 that deeper hierarchies could make emerge an understanding of more complex
affordances. Then, what are the roles of surprise and novelty? We saw in Section 6 that
novelty-seeking behaviors allow learning a correct representation of the whole environment;
this can be a basis for learning diverse skills. While some methods consider a goal as a
state and manage to avoid using novelty bonuses [111], this is harder to do when skills
have a different semantic (such as a change in the state space). Ref. [164] provide a
meaningful example of this: the agent acts to simultaneously discover a representation
of the environment and achieve upper-level goals.We leave aside the interest of surprise
for learning a forward model that could be used for planning [89] and rather focus on the
learning process. Surprise amounts to looking for the learning progress of forward models
so that, in a hierarchy of skills, it quantifies whether skills can currently be better learned
or not. This links surprise to curriculum learning [187], i.e., can we find a natural order
to efficiently learn skills? For example, assuming an agent wants to learn to reach a state
goal in a maze, it would be smarter to learn to start learning skills that target goals close
to a starting position, and to progressively extend its goal selection while learning other
skills. Several strategies have been proposed to smartly hierarchically select goals [16,169].
Among them, the competence progress metric, which measures whether a skill is currently
being improved, seems highly efficient [41,169,188,189]. We think that competence progress
and the learning progress of a forward model over skills are two sides of the same coin.
In practice, when trying to predict the temporally extended consequences of a skill (rather
than the one of a ground action), the success of the prediction highly correlates with whether
the skill reliably reaches its goal, i.e., it is mastered. Similarly, a temporally-extended
prediction can improve only if the associated skill improves, assuming an uncontrolled
skill does not always go in the same wrong state.

To sum up, we propose that the role of surprise and novelty may actually be to support
the learning of skills. Novelty-seeking helps to learn the representation required by the skill-
learning module, and surprise speeds up the maximization of the skill-learning objective.
They may interact as a loop: first, the agent learns a new representation, then it evaluates
surprise to select which skill to improve and the skill-learning process starts. Considering
this, it would result in several surprises and novelties: an agent can experiment a novel
or surprise interaction for a level of decision, yet it does not mean other levels would be
surprised. This emphasizes the multidimensionality and relativity of the notions of surprise
and novelty [190]; only a part of the incoming stimuli may arouse the agent.
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9. Conclusions

In this survey, we have presented the current challenges faced by DRL, namely, 1:
learning with sparse rewards through exploration; 2: building a hierarchy of skills in order to
make easier credit assignment, exploration with sparse rewards, and transfer learning.

We identified several types of IM to tackle these issues which we classified into three
categories based on a maximized information theoretic objective, which are surprise, novelty,
and skill-learning. Surprise- and novelty-based intrinsic motivations implicitly improve flat
exploration, while skill-learning allows the creation of a hierarchy of reusable skills that
also improves exploration.

Surprise results from maximizing the mutual information between the true model
parameters and the next state of a transition, knowing its previous state, its previous action,
and the history of interactions. We have shown that it can be maximized through three sets
of works: prediction error, learning progress, and information gain over forward models.
In practice, we found that the determinism assumption underpinning prediction error
methods complicates their application. Good approximations of surprise are notably useful
to allow exploration in stochastic environments. The next challenges may be to make good
approximations of surprise tractable.

Novelty-seeking can be assimilated to learning a representation of the environment
through the maximization of mutual information between states and their representation.
The most important term to actively maximize appears to be the entropy of state or rep-
resentation, which can be approximated in three ways: 1: one can reward the expected
information gain over a density model; 2: one can reward according to the parametric
density of its next state, but it is complicated to estimate; 3: one can also reward an agent
according to the distance between a state and already-visited states, making the approach
tractable, in particular, when the agent learns a dynamic-aware representation. We found
these methods to achieve state-of-the-art performance on the hard exploration task of
Montezuma’s revenge. We expect future works to benefit from directly looking for good
representations rather than the uniformity of states.

Finally, using a skill-learning objective that amounts to maximizing the mutual infor-
mation between a goal and a set of trajectories of the corresponding skill, an agent can learn
hierarchies of temporally extended skills. Skills can be directly learned by attributing part
of a fixed goal space to areas, but it remains to be seen how well goals can be embedded
in a continuous way, and whether approaches may be robust when skills are sequentially
executed. The second approach derives the goals space from the state space, often through
a time-contrasting loss, and expands the skill set by targeting low-density areas. These
methods manage to explore an environment while being able to return to previously visited
areas. It remains to be demonstrated how one could create larger hierarchies of skills.

The three objectives are compatible, and we have discussed how they could interact
to provide a robust exploration with respect to the detachment issue, along with reusable
hierarchical skills, a quick and focused skill acquisition, and multi-semantic representations.
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Abbreviations
The following abbreviations are used in this manuscript:

Notations used in the paper.
∝ proportional to
x ∼ p(·) x ∼ p(x)
||x||2 Euclidian norm of x
t timestep
Const arbitrary constant
A set of possible actions
S set of possible states
a ∈ A action
s ∈ S state
s0 ∈ S first state of a trajectory
s f ∈ S final state of a trajectory
s′ ∈ S state following a tuple (s, a)
h history of interactions (s0, a0, s1, . . . )
ŝ predicted states
g ∈ G goal
sg ∈ S state used as a goal
Sb set of states contained in b
τ ∈ T trajectory
u(τ) function that extracts parts of the trajectory τ

R(s, a, s′) reward function
dπ

t (s) t-steps state distribution
dπ

0:T(S) stationary state-visitation distribution of π over a horizon T
1
T ∑T

t=1 dπ
t (S))

f representation function
z compressed latent variable, z = f (s)
ρ ∈ P density model
φ ∈ Φ forward model
φT ∈ ΦT true forward model
qω parameterized discriminator
π policy
πg policy conditioned on a goal g
nnk(S, s′) k-th closest state to s′ in S
DKL(p(x)||p′(x)) Kullback–Leibler divergence

Ex∼p(·) log p(x)
p′(x)

H(X) −
∫

X p(x) log p(x)
H(X|S) −

∫
S p(s)

∫
X p(x|s) log p(x|s)dxds

I(X; Y) H(X)− H(X|Y)
I(X; Y|S) H(X|S)− H(X|Y, S)
IG(h, A, S′, S, Φ) Information gain

I(S′; Φ|h, A, S)
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