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Abstract: A Schrödinger bridge is a stochastic process connecting two given probability distribu-
tions over time. It has been recently applied as an approach for generative data modelling. The
computational training of such bridges requires the repeated estimation of the drift function for a
time-reversed stochastic process using samples generated by the corresponding forward process. We
introduce a modified score- function-based method for computing such reverse drifts, which can be
efficiently implemented by a feed-forward neural network. We applied our approach to artificial
datasets with increasing complexity. Finally, we evaluated its performance on genetic data, where
Schrödinger bridges can be used to model the time evolution of single-cell RNA measurements.

Keywords: Schrödinger bridge problem; score estimation; reverse-time stochastic processes

1. Introduction

Recently, there has been an increasing interest in the application of continuous-time
stochastic processes as generative data models, e.g., the so-called diffusion models have
recently achieved state-of-the-art performance in generating data with unmatched fidelity
and granularity [1–4]. This approach to generative modelling proceeds by incrementally
adding noise to the original data until they are indistinguishable from samples drawn
from a prior distribution, which one selects such that it is easy to sample from, e.g., the
Gaussian distribution. One then is required to learn the denoising procedure, whereby
one is able to recover from the prior the original data distributions. The authors in [1]
showed that one can model the noising procedure as a stochastic process in terms of a
stochastic differential equation (SDE), whose drift function is defined such that the desired
prior becomes the marginal distribution of the process at the end time. If one defines the
noise-injecting process as the forward process, an equivalent SDE, which runs backward in
time from the prior to the data, can be used as the denoiser to generate data samples. This
approach can be made computationally tractable because the drift of the backward process
at each time is given explicitly in terms of the score function, which equals the gradient
of the logarithm of the marginal density of the forward process. Hence, if in the forward
process, one uses simple Gaussian transition probabilities (related to Ornstein–Uhlenbeck
processes), the required scores can be estimated from exact samples and be represented by
neural networks as function approximators.

A more general version of generative models is based on the so-called Schrödinger
bridges. Here, one tries to construct a stochastic process that has two given distributions
as marginals at the initial and end times. In addition, the process has to stay close (in a
probabilistic sense) to a reference process. While this scenario can obviously be applied to a
Gaussian prior and a data distribution, it allows for more general applications, where, e.g.,
one tries to interpolate between two different arbitrary data distributions.
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Schrödinger bridges were introduced by E. Schrödinger in 1931 [5,6] as the most-likely
temporal evolution of the probability density for diffusing particles between given initial
and end distributions. Recent reviews of the theoretical foundations, formulations as a
stochastic control problem, and relations to optimal transport theory can be found, e.g.,
in [7,8]. Connections to particle-based filtering and smoothing problems occurring in the
field of data assimilation were reviewed in [9].

In contrast to the previously mentioned diffusion models, the solution of Schrödinger
bridge problems is computationally more demanding. Feasible methods are usually based
on the so-called Iterative Proportional Fitting (IPF) algorithm [10] (also known as the
Sinkhorn algorithm), which can be understood from the formulation of the bridges as
entropically regularised optimal transport problems.

IPF solves the bridge problem by creating a convergent sequence of simpler forward
and backward processes, known as half-bridges. For those sub-problems, only one of the
two distributions at the boundaries of the time interval is kept fixed (alternating between
initial and end-points). Recent algorithms differ in the way these half-bridge problems
are solved. The authors of [11] presented a method that is based on sequential Monte
Carlo techniques for efficiently sampling processes in both directions. References [12,13]
are, to our knowledge, the first papers to discuss Schrödinger bridges as generative data
models from a machine learning perspective. The construction of the half-bridges of
the IPF algorithm is formulated in terms of an estimation for the drift functions of the
corresponding SDE. A drift functions is learned from samples created by the half-bridge of
the previous iteration using either a Gaussian process regression approach or by training a
deep neural network.

The estimation of the required (backward) drift functions from samples of the forward
processes (and vice versa) is less simple compared to the case of diffusion models. The exact
representation of reverse drifts in terms of score functions could in principle be applied
to the Schrödinger problem by a sample-based estimation of score functions using the so-
called score matching method [14]. However, this approach was deemed as computationally
too demanding [12] because it would represent the drift at a given iteration as a sum of
scores obtained in the previous steps. Using neural networks as function approximators for
score functions would require the storage of an increasing number of neural networks, two
per iteration. References [12,13], in contrast, used methodologies that explicitly rely on the
Euler–Maruyama (EM) discretisation of the SDE. Reference [12] derived an approximation
for score functions that allows for an estimation of the reverse drift as a regression problem
involving the states at neighbouring discrete times. In a similar way, the approach [13] uses
likelihood approximation based on EM for drift estimation. In principle, both estimators
depend on the temporal discretisation, which adds another approximation to the solution
of the Schrödinger bridge problem.

In this paper, we developed a novel score-based approach to solving the half-bridge
problems for Schrödinger bridges within the IPF algorithm. It relies on the exact represen-
tation of the drift for the backward process in terms of forward drift and a score function.
We developed a variational formulation, which generalises the original score matching
approach and which does not rely on the EM discretisation. It is based on a cost functional
with a minimiser that agrees with the reverse drift. A sample-based empirical approxima-
tion of the cost functional can be minimised using a neural-network-based representation
of the drift function. This requires the storage of only a single neural network during the
algorithm. We evaluated the quality of our method on two synthetic datasets, as well as
on a single-cell RNA sequencing benchmark problem and, for the latter case, showing an
improvement upon previous methods by a significant margin.

2. Materials and Methods

In the following subsections, we review the definition of the Schrödinger bridge
problem. We discuss how it can be solved by the Iterative Proportional Fitting (IPF) method,
which relies on estimating drift functions for time-reversed stochastic processes. We
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show how this estimation can be performed using a modified score matching estimator.
Finally, we discuss the practical implementation of the estimator using a feed-forward
neural network.

2.1. Stochastic Differential Equations

We considered the dynamics of a D-dimensional state variable {Xt : 0 ≤ t ≤ 1}
in continuous time t, which is defined by a stochastic differential equation (SDE) [15] of
the form:

dXt =
Ð⇀µ (Xt, t)dt + σdWt (1)

Here, dXt is the change of Xt during an infinitesimal time interval dt. Ð⇀µ (Xt, t) is the drift
function, i.e., the deterministic part of the driving force. We introduce the harpoons to
indicate the direction of integration, as we will later on introduce reverse-time stochastic
processes. σdWt denotes the diffusion part, which describes a stochastic, white noise force
term defined by the infinitesimal change of a Wiener process Wt, where the diffusion
strength is set by the constant scalar σ. The formal definition of the drift is given by the
(conditional) expected infinitesimal change of Xt by

Ð⇀µ (x, t) = lim
h→0

1
h
E[Xt+h − Xt|Xt = x] (2)

2.2. Schrödinger Bridge Problem

We here give a short, informal introduction to the Schrödinger bridge problem. A more
detailed and rigorous discussion can, e.g., be found in [8]. The Schrödinger bridge problem
consists of constructing an SDE (with fixed given diffusion σ) such that the probability
densities of the corresponding state variables Xt=0 and Xt=1 at initial and final times
(which, for simplicity, we take to be t = 0 and t = 1) coincide with given densities π0(x)
and π1(x). In order to make the problem unique, one imposes the additional constraint that
the probability measure P over the corresponding paths of the stochastic process should
be close to a given reference measure Q0. The latter is itself defined by a drift function
Ð⇀µ Q0(Xt, t) and (for simplicity) a given initial density π0(x).

If we define D(π0, π1) to be the set of probability measures over paths {Xt : 0 ≤ t ≤ 1}
with fixed marginal densities π0, π1, the measure P∗ over paths of the SDE that solves the
Schrödinger bridge is defined by the solution of the minimisation problem:

P∗ = arg inf
P∈D(π0,π1)

KL[ P || Q0 ]. (3)

The explicit expression of the KL-divergence between two different path measures P and
Q (with the same σ) induced by two SDEs with drift functionsÐ⇀µ P(x, t) and Ð⇀µ Q(x, t) and
initial densities πP

0 (x) and πQ
0 (x) (for Xt=0) is given by

KL[ P || Q ] = KL
[

πP
0

∣∣∣∣∣∣ πQ
0

]
+

1
2σ2

∫ 1

0
EP

[(
Ð⇀µ P(Xt, t)−Ð⇀µ Q(Xt, t)

)2
]

dt (4)

where

KL
[

πP
0

∣∣∣∣∣∣ πQ
0

]
=
∫

πP
0 (x) ln

(
πP

0 (x)

πQ
0 (x)

)
dx (5)

denotes the usual KL-divergence between probability densities in RD. Hence, the
Schrödinger bridge problem can be understood as a problem of optimal stochastic control,
where one has to find a drift function Ð⇀µ P∗(x, t) as a state and time-dependent control
variable that steers the stochastic dynamical system (1) in such a way that the marginal
density of the state variable evolving from a given initial density reaches a predefined end
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density. In addition, control variables are quadratically penalised by the KL-divergence (4)
to stay close on average to the drift of the reference systemÐ⇀µ Q(x, t).

2.3. Iterative Proportional Fitting in Schrödinger Bridges

A popular methodology to solve the Schrödinger bridge problem is via Iterative
Proportional Fitting (IPF) [16,17], which solves the problem iteratively, where in each
iteration step i, two so-called half-bridge problems have to be solved. These half-bridges are
defined by the recurrent optimisation problems:

P∗i = arg inf
P∈D(·,π1)

KL
[
P
∣∣∣∣ Q∗i−1

]
(6)

Q∗i = arg inf
Q∈D(π0,·)

KL[ Q || P∗i ] (7)

for i = 1, 2, . . . with an initial measure defined by the reference process, i.e., Q∗0 = Q0
for i = 1. In the first half-bridge, one minimises the KL-divergence with only the end
condition π1 fixed, whereas for the second half-bridge, only the initial condition π0 is fixed.
As i → ∞, the sequences P∗i and Q∗i converge to the solution of the Schrödinger bridge
problem. For a proof, see [18]. In Figure 1, we provide a visual intuition of IPF applied to
the Schrödinger bridge problem.

Figure 1. Visualization of the convergence of a one dimensional Schrödinger bridge problem via
an Iterative Proportional Fitting style optimization. Subplot 1) shows the initial forward P∗0 and
backward Q∗0 in red and blue. In the first half-bridge in subplot 2), P∗0 is held fixed and Q∗0 is obtained
by optimizing equation (7). Consequently, corresponding to equation (6), P1 is fitted on a constant
Q∗0 in subplot 3). This procedure is repeated until both Q∗i and P∗i converge according to some
predetermined criterion as indicated by subplot 4).

To solve a half-bridge problem, one can use the fact that a given SDE with drift function
Ð⇀µ (x, t) can also be solved backwards in time, where the resulting backward process is also
represented by an SDE. We define the reversed time as τ

.
= 1− t and the backward SDE as

dZτ = ↼Ðµ (Zτ , τ)dτ + σdWτ (8)

with a backward drift function that is given by the conditional expectation:

↼Ðµ (z, 1− t) = lim
h→0

1
h
E[Xt−h − Xt|Xt = z] (9)

in terms of the forward process Xt. It can be shown that the statistics of the ensemble of
paths {Z1−t : 0 ≤ t ≤ 1} coincides with that of the forward process {Xt : 0 ≤ t ≤ 1}
when the initialisation Zτ=0 is drawn at random from the density state variable Xt=1. The
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KL-divergence between path measures can also be expressed in terms of the backward
processes and drifts as

KL[ P || Q ] = KL
[

πP
1

∣∣∣∣∣∣ πQ
1

]
+

1
2σ2

∫ 1

0
EP

[(
↼Ðµ P(Zτ , τ)−↼Ðµ Q(Zτ , τ)

)2
]

dτ (10)

Equations (4) and (10) show that, for given initial or final densities, respectively, the
KL-divergences are minimised by matching the drift functions of the processes (the KL-
divergences between initial/end marginal densities equal zero). Hence, if we assume that
the mapping:

Ð⇀µ (·, t)↔ ↼Ðµ (·, τ) (11)

is known explicitly, the solution of the half-bridges becomes simple. The minimiser
P∗i of the KL-divergence in Equation (6) corresponds to an SDE that has the backward
drift corresponding to the forward SDE given by the process Q∗i−1, but is started with the
density Zτ=0 ∼ π1 in backward time. The same construction holds for Q∗i in Equation
(7). This is given by a new SDE with a forward drift, which corresponds to the backward
drift of P∗i and is started from π0(x) in forward time. Hence, the IPF algorithm reduces the
Schrödinger bridge problem to the computation of backward and forward drift functions
from the corresponding forward and backward processes.

The explicit relation between forward and backward drifts was published first [19] and
discussed in [20,21] and is given by

↼Ðµ (x, τ) = −Ð⇀µ (x, 1− τ) + σ2∇x lnÐ⇀p 1−τ(x) (12)
Ð⇀µ (x, t) = −↼Ðµ (x, 1− t) + σ2∇x ln↼Ðp 1−t(x). (13)

Keeping in mind the relationship between the forward time index t and reverse time
index τ = 1− t, Ð⇀p 1−τ(x) is the marginal density of the state variable Xt. Likewise, the
density ↼Ðp 1−t(x) corresponds to the marginal density of the backward state variable Zτ

evaluated for x. The superimposed harpoons indicate the flow of time with Ð⇀µ being the
drift of the forward process and↼Ðµ being the corresponding drift of the backward process.
For the interested reader, we provide a derivation of the reverse-time drift resulting in the
relationship above in Appendix A.

Figure 2 exemplifies visually how the reverse drift can be obtained from the respective
forward drift and the score of the probability distribution over paths induced by the
forward SDE. It is only possible in rare cases to compute this density analytically by solving
the Fokker–Planck equation. Luckily, there is a numerical method score matching [14] that
allows for a direct estimation of the gradient of log-densities in (12) from an ensemble of
simulated data. This technique is well established in the field of machine learning.

This approach has been previously suggested in the literature, but deemed to be
impractical [12] for a solution of the Schrödinger problem. The direct implementation of
score matching to (13) in the IPF iterations would create considerable algorithmic problems.
Every full iteration of the IPF algorithm would add a score term to the previous reverse
drift, which in later iterations would itself be a sum of previous drifts and the score over
the previous probability of paths that scales with each IPF iteration i.
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Figure 2. Visualization of the construction of the reverse process. The subplot 1) exemplifies three
trajectories generated by solving the forward stochastic differential equation dxt. The path measure
P induces a probability distributionÐ⇀p t(x) from which the score is estimated in subplot 2). Finally
subplot 3) shows three possible trajectories of the reverse process starting from π1 and finishing in
π0. A simpler visualization of the score can be found in subplot A), which serves as a figurative
illustration of the behaviour of the score −∂x log p(x) on a simple one dimensional distribution.

If one represents both the score estimator and the current (e.g., the forward) drift by
a nonlinear function approximation such as a neural network, the updated (backward)
drift (12) becomes the sum of two neural networks, which is not easily represented as a
single one. Hence, during the iterations, one would have to store the entire sequence of
past drift functions in order to compute the present one. This would make the algorithm
extremely complicated and slow, as we would have to keep in memory 2i score matching
neural networks of the i’th IPF iteration. This would also mean that, for a single drift
evaluation in the i’th IPF iteration, we would have to evaluate the 2i − 1 and 2i neural
networks for a single drift evaluation at the i’th IPF iteration. For this reason, the score
matching approach has not been applied to the Schrödinger bridge problem.

Alternative approaches to computing the drift functions are based on the Euler–
Maruyama (EM) [15] temporal discretisation of forward and backward SDEs. From its
conditional Gaussian transition densities, one can obtain a likelihood function for the drift
function evaluated at the discrete time points. Using samples obtained from a forward
process, one can estimate the corresponding backward drift using a maximum likelihood
or Bayesian approach. This method was applied to the generation of half-bridges by [13],
where Gaussian processes were used as a prior distribution over functions. Reference [12]
developed a different method that used the conditional Gaussian transition densities of the
EM discretisation to approximate the score function. This expression can then be converted
into an approximation (which becomes exact in the limit when time interval used for
discretisation goes to zero) for the drift function. Both approaches could be viewed as
methods for approximating the backward drift (9) using a small time interval h and by
computing the conditional expectations within a regression framework. This approach
needs strong regularisation, as denoted in [12], which required running averages of the
entire function approximators to guard against fatal training divergences as the drifts were
trained on local estimates dependent on the interval h, as in Equation (2).

In summary, previous approaches in [12,13] approximated the drifts with the expected
infinitesimal change defined in Equation (2) in order to yield a locally tractable reverse
drift, thus omitting the influence of the score necessary for the analytical reverse process.
In this work, we propose to include a surrogate form of the score term in the reverse drift
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such that the respective reverse drifts are trained to approximate the complete reverse drift
and not just its localised estimates. We will show in the following that the representation of
the drifts (12) and (13) can be directly estimated in a straightforward way by a modification
of the score matching approach.

2.4. Score Matching with a Reference Function

To simplify the notation, we denote by µ(xt, t) : RD × [0, 1] → RD one of the two
drift functions and a corresponding marginal density pt(x) induced by the SDE with drift
µ(xt, t) and a scaled Wiener process with constant diffusion σ. Following [22], we define
the following cost functional of the smooth vectorial function φ(x, t) : RD × [0, 1]→ RD:

L[φ, µ] =
∫ 1

0
dt
∫

dxpt(x)
{

φ(x, t)Tφ(x, t) + 2µ(x, t)Tφ(xt, t) + 2σ2Tr
[
Jφ(x, t)

]}
(14)

where Tr[J f (x)] is the trace of the Jacobian of a function f (x) : RD → RD. With respect to
the Schrödinger bridge problem, µ(x, t) would be the drift of the reference process and
φ(x, t) would represent its reverse-time process. We purposefully withheld the harpoons
denoting the flow of time earlier, as each half-bridge in Equations (6) and (7) alternates its
reference and reverse drift. This score matching with a reference function does not require
access to the true score, but instead, uses a surrogate function that is constructed from
readily available numerical quantities. By straightforward integration by parts, we can
show (see Appendix B) that

φ∗(x, t) .
= arg min

φ
L[φ, µ](x, t) = −µ(x, t) + σ2∇x log pt(x). (15)

Hence, a comparison with Equations (12) and (13) shows that the minimiser of the
functional, for a given forward or backward drift, provides the corresponding reverse
drift. For a practical computation of the cost function, the integrals over time and over the
unknown density in (14) are approximated by numerically generating NX independent
trajectories of the process sampled at Nt regular time points tj.

Hence, we approximated the cost function by its sample-based estimator:

L̂[φ, µ] =
Nt

∑
j=1

Nx

∑
i=1

{
φ(x(i)tj

, tj)
Tφ(x(i)tj

, tj) + 2µ(x(i)tj
, tj)

Tφ(x(i)tj
, tj) + 2σ2Tr

[
Jφ(x(i)tj

, tj)
]}

(16)

For a finite sample size, the empirical cost function must be regularised by controlling
the complexity of the functions φ(·, ·). In contrast to [22], we modelled φ(x, t) : RD×[0,1] →
RD by a single nonlinear parametric function, which is given by a multilayer neural network
(rather working with time slices using a distinctive function of x for each). In such a way,
we implicitly incorporated the smoothness of the drift in both space x and time t. The
construction of the reverse drift and the use of function approximators is exemplified in
Figure 3.

2.5. Numerical Considerations and Implementation Details

The trace of the Jacobian requires the evaluation of the derivative of a single output
with respect to the single input in the same dimension d, independent of all other outputs
and inputs. Since we evaluated a single drift jointly for all dimensions D, this makes the
computation of the analytical Jacobian expensive for higher dimensions, as we have to
perform D independent backward passes to compute each entry in the Jacobian matrix.
The number of gradient computations required for the Jacobian in a vector-valued function
thus scales quadratically with the number of dimensions.
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Figure 3. Visualisation of the construction of the backward stochastic process parameterised by
the backward SDE with drift↼Ðµ (x, τ). The red gradient represents the marginal distributionÐ⇀p t(x)
induced by the forward SDE with driftÐ⇀µ (x, t) and marked in the colour red. We employed neural
networks to learn both the forward and backward drift, as it allows for a single function approximator
per process for the entire input domain as neural networks are inherently able to model vector-
valued data.

For data with few dimensions, computing the diagonal terms of the Jacobian can be
performed via batched the backpropagation of one-hot output gradients. This approach
falters computationally and memorywise when we consider data in higher dimensions.
For higher-dimensional data, we opted for the trace estimation trick of Hutchinson with
samples from an i.i.d. Rademacher distribution in RD, namely

Tr
[

Jφ(xt, t)
]
= Ez∼p(z)

[
zT∇x

[
φ(xt, t)Tz

]]
. (17)

An elaboration on the trace estimation trick can be found in Appendix C.1. The
main idea of the stochastic approximation of the trace is that we are only interested in
the diagonal elements of the Jacobian. The Hutchinson trace estimation trick proceeds by
computing the derivative with respect to the input of the inner product of the prediction
φ(xt, t and a random variable z. The same random variable is then applied a second
time in an inner product to obtain an approximation of the scalar quantity of the trace of
the Jacobian. The advantage of the trace estimation trick is that only a single additional
derivative evaluation on the inner product φ(xt, t)Tz is required, which scales linearly with
the number of samples of z.
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Taking the gradients of the loss with respect to the parameters requires a second
derivative such that a function approximator trained on the reverse drift has to be twice-
differentiable. Enforcing this property in neural networks requires us to use at least
twice-differentiable evaluations of the prediction with respect to the spatial input xt, which
necessitates twice-differentiable activation functions such as the hyperbolic tangent or Gelu
activation functions [23].

If the function approximator is only once differentiable as with the use of rectified
linear unit activation functions [24], we can employ Stein’s lemma to estimate the trace
of the Jacobian. For this estimator, following [25,26], we define an isotropic Gaussian
perturbation distribution z ∼ N (xt, σ2

z I) with xt, z ∈ RD around each data point xt ∈ RD

and average the gradients in the z-neighbourhood of the data point:

Tr[Jφ(xt, t)] = lim
σz↓0

Ep(z)

[
φ(xt + z, t)T z

σ2
z

]
(18)

The derivation of Stein’s lemma can be followed up in Appendix C.2, and its application to
the trace estimation therefrom is detailed in Appendix C.3. For a practical implementation,
we approximated the Stein estimator using a sufficiently small σz by drawing only a single
random vector z(i)j for each trajectory i and each time point j. The perturbed φ function
values can be computed along side the unperturbed values in a single forward pass through
the neural network.

3. Results

We evaluated our proposed method on artificially generated datasets with varying
dimensions and with and without dependencies between the dimensions at the two tar-
get marginals. The first set of experiments were performed on the construction of the
Schrödinger bridge between Gaussian mixture models with which we could explore the
behaviour with a changing set of dimensions. The second collection of experiments fo-
cused on manifold learning in which implicit distributions were learned to be generated
from a standard normal distribution. Finally, we employed our proposed framework on
the generation of intermediary distributions of embryoid single-cell RNA as a real-world
application.

3.1. Experimental Setup

For all our experiments, we used a deep neural network, taking both the spatial input
xt and the time t as distinct inputs. We fixed the size of the fully connected layers in the
hidden layers of the deep neural networks to an integer multiple of the spatial dimension
D. As a rule of thumb, we used 10D neurons in the hidden layers and scaled the depth of
the deep neural network with max(2, D/5).

We used LayerNorm [27] before the spatial features of the hidden layers so as to not
destroy the time embeddings. LayerNorm normalises the representation of each sample
to a standard normal distribution and has empirically been shown to numerically aid
the gradient computation. Thus, we used blocks of the shape xi+1 = xi + Tanh(Linear(
LayerNorm(xi), Embedding(t))). We used the Adam optimiser [28] and cosine anneal-
ing [29], training each half-bridge for 1000 steps and annealing the learning rate from 10−3

to 10−5. We drew Nx = 128 trajectories per bridge and stored them in a buffer of 512 sample
trajectories, discarding old trajectories as needed to maintain the fixed buffer size. We
constructed the Schrödinger bridge by running 10 IPF iterations.

The simulations of the SDE were performed using the Euler–Maruyama [15] approx-
imation with a step size dt with Nt, and we found Nt = 100 and dt = 0.01 to be robust
values working well for our experiments. Our choice of the diffusion σ was motivated
by the idea that the samples of the half-bridge process at the first IPF iteration should
sufficiently cover the marginal distribution, increasing the possibility that this distribution
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is “hit” with at least some sampled trajectories. As the diffusion parameter is yet another
hyperparameter, we chose the diffusion according to σ = 1/Nt ·dt.

The drifts of both processes, forward and backward, received as input the spatial
information x and the time t. We normalised the time index t ∈ [0, Nt · dt] to t ∈ {0, 1} as
the time index remained fixed over the course of the entire training of the bridge.

The question remains how the reference process Q∗0 should be chosen for our appli-
cations. The authors in [12] used an Ornstein–Uhlenbeck (OU) process [30] for Q∗0 . Its
marginal distributions can be computed analytically and do not require solving an SDE nu-
merically, which saves time and computational resources during the very first half-bridge.
This choice of a Gaussian reference process could be also motivated from the fact that, for
larger times t, the marginal of the process converges to a stationary Gaussian density that
could approximately match Gaussian targets used for a denoising-style data generating
application of Schrödinger bridges.

In our implementations, we did not want to make any specific assumptions on the
end marginals. Hence, a choice of a zero initial drift µ(x, t) ≡ 0 (reducing Q∗0 to a simple
Wiener process) seemed more natural. However, practical considerations suggested a
slightly different approach, in which Q∗0 corresponds to a a drift function represented by a
neural network that has (untrained) small random weights, which serve as useful initial
conditions for the subsequent training [31,32]. We observed experimentally that for the first
half-bridge Q∗0 , the Wiener process dominates the characteristics of the sampled trajectories.

For our applications, the marginal densities at the initial and end times Ð⇀p 0 and Ð⇀p 1,
which are generated by the bridge models, as well as the desired targets π0 and π1 are
represented by random samples, rather than by analytical expressions. In order to evaluate
the quality of the converged bridge, we computed the Wasserstein-1 distances W1(

Ð⇀p 1, π1)
and W1(π0,↼Ðp 0). The Wasserstein-1 distance [33] between two probability measures µ and
ν is defined as

W1(µ, ν) = inf
γ∈D(µ,ν)

E[||x− y||] (19)

where D(µ, ν) is the set of all couplings of µ and ν. These can be straightforwardly evalu-
ated on empirical distributions, which are given by samples. For the underlying optimal
transport problem and its efficient solution via linear programming in its dual representa-
tion, see, e.g., [17]. The Wasserstein-1 distance is also known as the Earth Movers’ Distance
(EMD) in computer science.

3.2. Multimodal Parametric Distributions

We modelled the marginal distribution π0(x) as a Gaussian distribution with a diago-
nal covariance matrix. The opposite marginal distribution π1(x) was a Gaussian mixture
model with two modes with a uniform prior over the GMM component centres. The mean
values of all Gaussian distributions, uni-modal in π0(x), as well as bi-modal in π1(x), were
sampled uniformly from U (−2.5, 2.5), and a standard deviation of 1.0 was used through-
out. The visualisation of the inferred Schrödinger bridge highlights the learning of the
time-dependent drift and the ability to model bifurcations in the case of bi-modal GMMs,
as seen in Figure 4.

The dataset was created as the more tractable experiment in comparison to subsequent
datasets. The use of GMM’s allows for the analytical evaluation of the probability of
the generated data at the marginal distributions. Furthermore, the modes of the GMM
could be handcrafted, which turned out to be important to validate numerous design
choices of the drift approximators. The authors deemed it equally important to visually
verify the generated trajectories, ensuring that the drift approximators were able to model,
for example, bifurcations and how they dealt with changing hyperparameters such as
increased diffusion.
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Figure 4. Visualisation of a solved Schrödinger bridge in R4 in which each dimension is plotted
independently. The sampled trajectories and drift of the forward process and its initial condition π0

are shown in red, whereas the backward process is shown in blue.

Estimating the score in regions with little probability mass is a difficult problem, as an
insufficient amount of samples may be drawn from that region to accurately model the score.
This was explored in detail in [1,34] and was one of the inspirations to the perturbation
protocol in diffusion models. Diffusion models have the advantage of computing an
analytical score at any point in space and time through their analytical perturbation kernels
defined in the forward process.

The Schrödinger bridge problem offers none of these luxuries, as no reference pro-
cess is available that yields analytical scores. Thus, we require sufficient data even in
low-probability regions to enable us to estimate the necessary score. We found in our
experiments that the hyperparameter with the single largest influence was the number of
trajectories that were sampled from the path measures. We can thus see in Figure 5 that
increasing the number of trajectories decreases the Wasserstein-1 distance with respect to
the marginal distributions π0(x) and π1(x) as the score estimation becomes more precise,
as even low-probability regions of the stochastic processes, on which the score is estimated,
are sampled adequately.
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Figure 5. A comparison of the Wasserstein-1 distance on the number of sample trajectories sampled
per IPF iteration for the multi-modal distribution problem in Section 3.2. The Wasserstein-1 distances
W1(
Ð⇀p 1, π1) and W1(π0,↼Ðp 0) were averaged and show an overall decrease relative to the number of

trajectories sampled from the stochastic processes.

We chose the multi-modal dataset as a test dataset to compare Hutchinson’s trace
estimator with the trace estimation via Stein’s lemma. The result can be seen in Figure 6,
in which we evaluated the Wasserstein-1 distance over a fixed set of dimensions. We
observed that the Wasserstein-1 distance increases linearly with the number of dimensions
for a fixed number of samples, and it was interesting to observe that the Schrödinger
bridges with different trace estimators behaved very similar in terms of performance. We
compared Stein’s trace estimator as detailed above and in Appendix C.3 with varying
perturbation scales with Hutchinson’s trace estimation and the ground truth Wasserstein
distance between the marginal distributions π0(x) and π1(x). In theory, Hutchinson’s trace
estimation can also be applied with a normal distribution sampling the random projection
vectors, yet Rademacher’s distribution has the lowest estimator variance. Stein’s trace
estimation can only be performed with the normal distribution, as it relies on integration by
parts and the special derivative of the normal distribution. This led us to hypothesise that
the inherently higher variance of the normal distribution in Stein’s trace estimator leads to
worse performance. However, we aim at examining this in future work.

3.3. Manifold Datasets

For the second dataset, we trained the forward and backward drifts on the generated
manifold data via the Sklearn machine learning package [35]. The manifolds used were
“make_swiss_roll”, “make_s_curve”, and “make_moons” from the sklearn.dataset code
base, which were concatenated to create a higher-dimensional manifold. This increased the
complexity of the manifold, setting it apart form earlier manifold modelling approaches,
as in [12].

We trained the stochastic processes to predict multiple manifolds at once by modelling
them jointly with a single fully connected neural network. For π0(x), we chose a standard
normal multivariate distribution π0(x) = N (0, I), while π1(x) was the implicit distribution
generated by samples on the manifold. Whereas the previous Gaussian mixture models
were statistically independent in each dimension, the manifolds explicitly modelled the
statistical correlation between different dimensions. A visualisation of the Schrödinger
bridge between the two distributions can be seen in Figure 7.



Entropy 2023, 25, 316 13 of 26

1 5 10 15 20
Dimension

0.0

0.2

0.4

0.6

0.8

1.0

W
as

se
rs

te
in

-1
D

is
ta

n
ce

/
D

im
en

si
on

Stein, σε = 0.1

Stein, σε = 1.0

Hutchinson, Rademacher

W1(π0, π1)

W1(π
(1)
0 , π

(2)
0 )

W1(π
(1)
1 , π

(2)
1 )

Figure 6. A comparison of the gradient estimators on an increasing number of dimensions with the
average Wasserstein-1 distance per dimension between the true marginal and the predicted marginal
distributions of the forward and backward process. As baselines, the Wasserstein-1 distances between
the respective marginals is shown. One can see that the gradient estimators performed as well as the
Wasserstein-1 distances between samples drawn from the marginals denoted as W1(π0(x), π0(x))
and W1(π1(x), π1(x)). The Hutchinson trace estimator performed best while requiring a second
derivation. Interestingly, smaller sampling variances for the Gaussian distribution in the Stein
gradient estimator yielded better overall performance on matching the marginal distributions.

Figure 7. Visualisation of a constructed Schrödinger bridge for the manifold R6, which lies in R10. The
left-most column represents samples from the marginal distribution π0(x), which are transformed
into samples on the manifolds in the right-most column. The colour coding of each particle is
according to its proximity to the mean of the prior distribution π0(x) such that we can distinguish
which particles from π0(x) correspond to the particles on the manifold p(x1, 1).
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The use of a tractable probability distribution as one marginal distribution was inspired
by the purely generative task of diffusion models. The dataset is commonly used as a
visual benchmark of new generative models and allows evaluating the drift approximators’
ability to model nonlinear manifolds. A lack of this dataset is the absence of a tractable
data likelihood under the marginal distribution, as the manifold generation function is
modelled as an implicit distribution.

3.4. Embryoid Dataset

Single-cell RNA sequencing analyses the RNA of individual cells, destroying it un-
fortunately and making it inaccessible for further analysis. In a population of cells, we
can remove individual cells and analyse their RNA. As each cell is eliminated from the
population, we have to turn to a probabilistic method to simulate the development of the
RNA at the population level.

Therefore, it is of interest to develop a methodology that can simulate the full trajecto-
ries of RNA sequences over time, which would allow for predicting the outcomes of such
measurements on a single cell without actually having to perform them. As suggested
in [36], an interesting solution to this problem would be the construction of a stochastic
generative model for the possible measurements with the marginal distributions (for a
population of cells) of the actual measurements at the initial and end time as boundary
conditions. A visualisation of the application of the Schrödinger bridge to the RNA mea-
surement task is provided in Figure 8. If we represent this generative model by a diffusion
process, we naturally end up with the idea of applying Schrödinger bridges to this problem.

x
x

x

x

Figure 8. A visualisation of how the Schrödinger bridge is applied to the RNA measurements. The
RNA of different cells is measured at the discrete time steps t1, t2, and t3 and eliminated from the
population marked by the blue crosses and the end of each of the four trajectories. Given these
snapshots of the RNA distribution at discrete time steps, the task is now to construct a Schrödinger
bridge between the discrete time steps as indicated by the stochastic process with a fading colour.
The generative model can then be queried at any time step between t0 and t4.

We applied this approach to the embryoid dataset [37] for which single-cell RNA
measurements were taken at five different times t ∈ {0, 1, 2, 3, 4}. The ensemble of mea-
surements at each time index t consists of a varying number (2380, 4162, 3277, 3664, 3331)
of RNA measurement samples. We considered the problem of constructing a Schrödinger
bridge using only the first day and the very last day measurements. We then tried to infer
the hold-out intermediate marginal distributions of the RNA measurements with the help
of the constructed bridge. The samples drawn from the bridge were thus evaluated at the
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intermediate marginal distributions at t ∈ {1, 2, 3} using the Wasserstein-1 distance. In
addition, we also evaluated the Schrödinger bridge at the two end-points by computing
W1(
↼Ðp 0, π0) and W1(

Ð⇀p 1, π1).
We compared our method with two other generative model approaches: Trajecto-

ryNet [37] implements constrained normalising flows using neural networks. The paper
was also the first to propose this benchmark. IPML [13] presents an alternative method to
constructing a Schrödinger bridge in which the required drift functions are estimated from
the trajectories using Gaussian process regression without computing score functions, as
remarked upon in Section 2.3. Finally, we have also included a simpler method, which is
based on Optimal Transport (OT). It computes a linear transport map between samples of
the initial and end distributions. However, the comparison of this method with the others
is slightly unfair. While the OT approach allows for making predictions of the marginals at
intermediate time steps, it is not formulated as a generative model and, thus, could not be
used to make predictions for measurements on single cells.

The RNA sequencing data were generated from FACS-sorted embryoid bodies via
surface marker indication. The dataset was preprocessed with PHATE [36] to a dimen-
sionality of D = 5, as performed in the reference methods. An important feature of the
PHATE preprocessing is the reversibility of the dimensionality reduction. The preprocess-
ing pipeline can be accessed and replicated with the public PHATE code base provided
by the authors of [36]. Thus, it is possible to apply trajectory reconstructing algorithms in
the low-dimensional representation of the genetic data and project the resulting trajectory
back into the high-dimensional space. This is in contrast to commonly used dimensionality
reduction algorithms, which do not offer these advantages. We refer the reader to [36]
for an in-depth treatment of the algorithm. The experimental setup was kept identical for
IPFML and TrajectoryNet.

Table 1 compares the performance of our Schrödinger bridge method with the other
methods. Our method outperformed both Trajectorynet and the alternative Schrödinger
bridge method IPML and was also better than the OT approach in two out of three instances.
This corroborates the result from [13] that OT’s linear transport map is not a well-fitting
intermediate distribution for t = 4. Especially, the Wasserstein distance at the marginal
distributions of the backward process at t = 0 and the forward process t = 4 were
well modelled.

Table 1. Comparison of comparable methodologies on the embryoid dataset with the Wasserstein-1
distance The “Path” column denotes the average EMD of the intermediate time steps T ∈ {2, 3, 4},
whereas the “Full” column averages all time steps. The optimal transport linear transport map is only
defined for the intermediate time steps, as it requires the two marginal distributions at T ∈ {1, 5}.

Method ↓ t = 1 t = 2 t = 3 t = 4 t = 5 Path Full

TrajectoryNet 0.62 1.15 1.49 1.26 0.99 1.30 1.18
IPML EQ 0.38 1.19 1.44 1.04 0.48 1.22 1.02
IPML EXP 0.34 1.13 1.35 1.01 0.49 1.16 0.97
OT N/A 1.13 1.10 1.11 N/A 1.16 N/A
Reverse-SDE 0.23 1.16 1.00 0.64 0.28 0.93 0.66

4. Discussion and Conclusions

We presented a method for solving the Schrödinger bridge problem based on the
iterative proportional fitting algorithm. In contrast to the simpler diffusion models for
data generation, Schrödinger bridges can provide interpolations between two arbitrary
data distributions. Unfortunately, this advantage comes with the drawback that the score
functions that can be used to compute drift functions for the time-reversed process are not
analytically available. The novel aspect of our approach is the formulation of reverse-time
drift functions as solutions of a minimisation problem (an extension of the score matching
method) involving expectations over the forward process. This allows for an efficient
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training of neural networks representing the drift functions on simulated trajectories of the
corresponding stochastic differential equations.

To evaluate our approach, we conducted experiments on two synthetic datasets, which
allowed us to analyse its performance within a controlled environment. Finally, we applied
our method to a single-cell mRNA dataset in which a Schrödinger bridge was constructed
between intermediate measurements, where the initial and end distributions were both
non-Gaussian. On this dataset, we outperformed similar methodologies, also beating a
linear transportation map in two out of three instances.

Our variational approach of estimating drift functions in the IPF algorithm for solving
Schrödinger bridges could be extended in various ways:

• The variational formulation of our drift estimators is independent of the temporal
discretisation used for creating sample trajectories. It only depends on the marginal
distributions of the state variables. This fact opens up alternative possibilities for generat-
ing appropriate samples by forward and backward simulations, which could allow
for larger stepsizes. One might, e.g., consider weak approximation schemes [38] for
numerically simulating SDEs. A different alternative is the application of deterministic,
particle-based simulations [22], where the reduced variance of estimators might allow
keeping the number of trajectories small. Finally, exact sampling methods (see, e.g., [39]),
which entirely avoid temporal discretisation, would be interesting candidates.

• Reliably estimating the score-based drift functions in regions with small marginal prob-
ability densities remains a challenging problem, especially for higher dimensions. This
is evident in our synthetic experiments, as the number of trajectory samples remained
the most-important hyperparameter to ensure the convergence of the Schrödinger
bridge (see also [34] for similar observations). It would be interesting to see if prior
knowledge expressed by exact analytical results for asymptotic scaling of densities
could be implemented in the function approximators to improve on that problem.

• It is relatively straightforward to adapt the variational approach (see e.g., [22]), to-
gether with a corresponding change in the relations (12) and (13) to solve Schrödinger
bridge problems for more general types of stochastic differential equations. Interesting
cases could include SDEs with (fixed) state and time-dependent diffusion matrices,
as well as processes based on Langevin dynamics (i.e., systems of second-order SDEs),
well-known for modelling physical systems that are also used for Hamilton Monte
Carlo simulations.

• It would be interesting to investigate possible simplifications of our method for the
special case in which the drift of the reference process is the gradient of a potential
function. The relations (12) and (13) show that all half-bridges in the IPF algorithm
will inherit this property. One could then modify the variational formulation and learn
directly the potential, rather than the D components of its gradient individually. This
built-in symmetry might increase the accuracy of estimation, but the need for second
derivatives in the cost function could lead to an increase of the numerical complexity
of training a neural network.
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Appendix A. Reverse-Time Evolution of Probability Distributions

Both the Kolmogorov forward (KFE) and the Kolmogorov backward (KBE) [40] equa-
tions are partial differential equations that describe the evolution of a probability distribu-
tion forward and backward in time. The Kolmogorov forward equation is identical to the
Fokker–Planck equation and states

∂t p(xt) = −∂xt [µ(xt)p(xt)] +
1
2

∂2
xt

[
σ2(xt) p(xt)

]
. (A1)

The Kolmogorov backward equation for s ≥ t is defined as

−∂t p(xs|xt) = µ(xt) ∂xt p(xs|xt) +
1
2

σ2(xt) ∂2
xt p(xs|xt). (A2)

While a stochastic differential equation of the form of dXt = µ(Xt, t)dt + σ(Xt, t)dWt
induces a path measure p(xt, t), Reference [20] showed that there is an equivalent stochastic
differential equation inducing a path measure p(xτ , τ).

Applying the Bayes theorem allows us to factorise by conditioning: p(xs, xt) = p(xs|xt)p(xt)
with the time ordering t ≤ s. For deriving the reverse-time stochastic differential equation,
we start out by applying the negative time differential to the joint distribution of p(xs, xt):

−∂t p(xs, xt) = −∂t[p(xs|xt)p(xt)] (A3)

= −∂t p(xs|xt)︸ ︷︷ ︸
KBE

p(xt)− p(xs|xt) ∂t p(xt)︸ ︷︷ ︸
KFE

(A4)

into which we can substitute the Kolmogorov forward (KFE) and Kolmogorov back-
ward (KBE) equations:

− ∂t p(xs, xt) (A5)

=− ∂t p(xs|xt)p(xt)− p(xs|xt)∂t p(xt) (A6)

=

(
µ(xt) ∂xt p(xs|xt) +

1
2

σ2(xt) ∂2
xt p(xs|xt)

)
p(xt) (A7)

+ p(xs|xt)

(
∂xt [µ(xt)p(xt)]−

1
2

∂2
xt

[
σ2(xt) p(xt)

])
(A8)

The derivative occurring in the backward Kolmogorov equation is

∂xt p(xs|xt) = ∂xt

[
p(xs, xt)

p(xt)

]
(A9)

=
∂xt p(xs, xt)p(xt)− p(xs, xt)∂xt p(xt)

p2(xt)
(A10)

=
∂xt p(xs, xt)

p(xt)
− p(xs, xt)∂xt p(xt)

p2(xt)
(A11)

Next, we evaluate the derivative of the products in the forward Kolmogorov equation:

∂xt [µ(xt)p(xt)] = ∂xt µ(xt) p(xt) + µ(xt) ∂xt p(xt) (A12)

∂2
xt

[
σ2(xt) p(xt)

]
= ∂2

xt σ
2(xt) p(xt) + 2 ∂xt σ

2(xt) ∂xt p(xt) + σ2(xt) ∂2
xt p(xt). (A13)
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Substituting the derivatives of the probability distributions accordingly, we obtain

−∂t p(xs, xt) =− ∂t[p(xs|xt)p(xt)] (A14)

=− ∂t p(xs|xt)p(xt)− p(xs|xt)∂t p(xt) (A15)

=

(
µ(xt) ∂xt p(xs|xt) +

1
2

σ2(xt) ∂2
xt p(xs|xt)

)
p(xt) (A16)

+ p(xs|xt)

(
∂xt [µ(xt)p(xt)]−

1
2

∂2
xt

[
σ2(xt) p(xt)

])
(A17)

=µ(xt) ∂xt p(xs|xt) p(xt) +
1
2

σ2(xt) ∂2
xt p(xs|xt) p(xt) (A18)

+ p(xs|xt)∂xt µ(xt) p(xt) + p(xs|xt)µ(xt) ∂xt p(xt) (A19)

− 1
2

p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
(A20)

=µ(xt)

(
∂xt p(xs, xt)

�
��p(xt)

− p(xs, xt)∂xt p(xt)

p �2(xt)

)
��
�p(xt) (A21)

+ p(xs|xt)∂xt µ(xt) p(xt) + p(xs|xt)µ(xt) ∂xt p(xt) (A22)

+
1
2

σ2(xt) ∂2
xt p(xs|xt) p(xt)−

1
2

p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
(A23)

=µ(xt)

(
∂xt p(xs, xt)−

p(xs, xt)∂xt p(xt)

p(xt)

)
(A24)

+ p(xs|xt)∂xt µ(xt) p(xt) + p(xs|xt)µ(xt) ∂xt p(xt) (A25)

+
1
2

σ2(xt) ∂2
xt p(xs|xt) p(xt)−

1
2

p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
(A26)

=µ(xt)
(
∂xt p(xs, xt)−(((((

(((p(xs|xt)∂xt p(xt)
)

(A27)

+ p(xs, xt)∂xt µ(xt) +((((
(((

(((p(xs|xt)µ(xt) ∂xt p(xt) (A28)

+
1
2

σ2(xt) ∂2
xt p(xs|xt) p(xt)−

1
2

p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
(A29)

= µ(xt) ∂xt p(xs, xt) + p(xs, xt)∂xt µ(xt)︸ ︷︷ ︸
product rule

(A30)

+
1
2

σ2(xt) ∂2
xt p(xs|xt) p(xt)−

1
2

p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
(A31)

=∂xt [µ(xt) p(xs, xt)] (A32)

+
1
2

σ2(xt) ∂2
xt p(xs|xt) p(xt)︸ ︷︷ ︸
(1)

− 1
2

p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
︸ ︷︷ ︸

(2)

(A33)

In order to transform the partial differential equation above into a form from which
we can deduce an equivalent stochastic differential equation, we match the terms of the
second-order derivatives with the following identity:

1
2

∂2
xt

[
p(xs, xt)σ

2(xt)
]

(A34)

=
1
2

∂2
xt

[
p(xs|xt)p(xt)σ

2(xt)
]

(A35)

=
1
2

∂2
xt p(xs|xt)p(xt)σ

2(xt) + ∂xt

[
p(xt)σ

2(xt)
]
∂xt p(xs|xt) +

1
2

∂2
xt

[
p(xt)σ

2(xt)
]

p(xs|xt) (A36)

=
1
2

σ2(xt)∂
2
xt p(xs|xt)p(xt)︸ ︷︷ ︸
(A37.1)

+ ∂xt

[
p(xt)σ

2(xt)
]
∂xt p(xs|xt)︸ ︷︷ ︸

(A37.2)

+
1
2

p(xs|xt)∂
2
xt

[
p(xt)σ

2(xt)
]

︸ ︷︷ ︸
(A37.3)

(A37)
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by observing that the terms (1) and (2) occurring in both equations. We can see from the
expansion of the derivative above that we can combine the terms in our derivation if we
expand the “center term”. Furthermore, we can employ the identity − 1

2 X = −X + 1
2 X

to obtain

−∂t p(xs, xt) =∂xt [µ(xt) p(xs, xt)] (A38)

+
1
2

σ2(xt) ∂2
xt p(xs|xt) p(xt)−

1
2

p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
(A39)

=∂xt [µ(xt) p(xs, xt)] (A40)

+
1
2

σ2(xt) p(xt) ∂2
xt p(xs|xt)−

1
2

p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
︸ ︷︷ ︸

− 1
2 X=−X+ 1

2 X

(A41)

±∂xt p(xs|xt)∂xt

[
p(xt)σ

2(xt)
]

︸ ︷︷ ︸
complete the square

(A42)

=∂xt [µ(xt) p(xs, xt)] +

(A37.1)︷ ︸︸ ︷
1
2

σ2(xt) ∂2
xt p(xs|xt) p(xt) (A43)

−p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
+

(A37.2)︷ ︸︸ ︷
1
2

p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
︸ ︷︷ ︸

− 1
2 X=−X+ 1

2 X

(A44)

+

(A37.3)︷ ︸︸ ︷
∂xt p(xs|xt)∂xt

[
p(xt)σ

2(xt)
]
−∂xt p(xs|xt)∂xt

[
p(xt)σ

2(xt)
]

(A45)

=∂xt [µ(xt) p(xs, xt)] +

(A34)︷ ︸︸ ︷
1
2

∂2
xt

[
p(xs|xt)p(xt)σ

2(xt)
]

(A46)

−p(xs|xt)∂
2
xt

[
σ2(xt) p(xt)

]
− ∂xt p(xs|xt)∂xt

[
p(xt)σ

2(xt)
]

︸ ︷︷ ︸
−∂xt [p(xs |xt)∂xt [σ

2(xt) p(xt)]] (product rule)

(A47)

=∂xt [µ(xt) p(xs, xt)] +
1
2

∂2
xt

[
p(xs, xt)σ

2(xt)
]

(A48)

− ∂xt

[
p(xs|xt)∂xt

[
σ2(xt) p(xt)

]]
. (A49)

What remains to be done is to combine the joint probability and the conditional probability
in the first-order derivative terms to combine them:

−∂t p(xs, xt) =∂xt

[
µ(xt) p(xs, xt)− p(xs|xt)∂xt

[
σ2(xt) p(xt)

]]
(A50)

+
1
2

∂2
xt

[
p(xs, xt)σ

2(xt)
]

(A51)

=∂xt

[
p(xs, xt)

(
µ(xt)−

1
p(xt)

∂xt

[
σ2(xt) p(xt)

])]
(A52)

+
1
2

∂2
xt

[
p(xs, xt)σ

2(xt)
]

(A53)

=− ∂xt

[
p(xs, xt)

(
−µ(xt) +

1
p(xt)

∂xt

[
σ2(xt) p(xt)

])]
(A54)

+
1
2

∂2
xt

[
p(xs, xt)σ

2(xt)
]

(A55)
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the result of which is in the form of a Kolmogorov forward equation, although using the
joint probability distribution p(xs, xt). For the time ordering of t ≤ s, we can observe
that the term −∂t p(xs, xt) describes the change of the probability distribution as we move
backward in time. In accordance with Leibniz’ rule, we can marginalise over xs without
interfering with the partial derivative ∂t, to obtain

−∂t p(xt) =− ∂xt

[
p(xt)

(
−µ(xt) +

1
p(xt)

∂xt

[
σ2(xt) p(xt)

])]
(A56)

+
1
2

∂2
xt

[
p(xt)σ

2(xt)
]

(A57)

and introduce the time reversal τ
.
= 1− t, which, with respect to the integration with

respect to the flow of time, yields

−∂t p(xt) =∂τ p(x1−τ) (A58)

=− ∂x1−τ

[
p(x1−τ)

(
−µ(x1−τ) +

1
p(x1−τ)

∂x1−τ

[
σ2(x1−τ) p(x1−τ)

])]
(A59)

+
1
2

∂2
x1−τ

[
p(x1−τ)σ

2(x1−τ)
]

(A60)

which finally gives us a stochastic differential equation analogous to the Fokker–Planck/
forward Kolmogorov equation, which we can solve backward in time:

dXτ =

(
−µ(x1−τ) +

1
p(x1−τ)

∂x1−τ

[
σ2(x1−τ) p(x1−τ)

])
dτ + σ(x1−τ)dWτ (A61)

where Wτ is a Wiener process that flows backward in time.
By keeping the σ2(x1−τ) constant and independent of xt and applying the log-derivative

trick, the drift simplifies to

dXτ =
(
− µ(x1−τ) +

1
p(x1−τ)

∂x1−τ

[ =σ2︷ ︸︸ ︷
σ2(x1−τ) p(x1−τ)

])
dτ + σ(x1−τ)dWτ (A62)

=

(
−µ(x1−τ) +

σ2

p(x1−τ)
∂x1−τ

p(x1−τ)

)
dτ + σ(x1−τ)dWτ (A63)

=
(
− µ(x1−τ) + σ2∂x1−τ

log p(x1−τ)
)

dt + σ(x1−τ)dW̃τ (A64)
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Appendix B. Log-Gradient-Density Estimation and Implicit Score Estimation

Here, we present the proof of the equivalency that the optimum of the criterion does
indeed yield the correct optimum when φ(x) = −µ(x) + σ2∇x log p(x). The proof goes
as follows:

L[φ, µ] = E
[
φ2(x) + 2µ(x)φ(x) + 2σ2∂xφ(x)

]
(A65)

=
∫

p(x)
(

φ2(x) + 2µ(x)φ(x) + 2σ2∂xφ(x)
)

dx (A66)

=
∫

p(x)
(

φ2(x) + 2µ(x)φ(x)
)

dx + 2σ2
∫

p(x)∂xφ(x)dx︸ ︷︷ ︸
integration by parts

(A67)

=
∫

p(x)
(

φ2(x) + 2µ(x)φ(x)
)

dx− 2σ2
∫

∂x p(x)φ(x)︸ ︷︷ ︸
log-derivative trick

dx (A68)

=
∫

p(x)
(

φ2(x) + 2µ(x)φ(x)− 2σ2φ(x)∂x log p(x))
)

dx (A69)

=
∫

p(x)
(

φ2(x) + 2φ(x){µ(x)− σ2∂x log p(x)}︸ ︷︷ ︸
complete the square

)
dx (A70)

=
∫

p(x)
((

φ(x) + {µ(x)− σ2∂x log p(x)}
)2
)

−
∫

p(x)
(

σ2∂x log p(x)− µ(x)
)2

dx (A71)

= E
[(

φ(x)− {−µ(x) + σ2∂x log p(x)}
)2
]

−E
[
(−µ(x) + σ2∂x log p(x))2

]
(A72)

The criterion above achieves its optimum with respect to φ(x) when the first term
evaluates to zero, namely arg minφ L[φ, µ] = −µ(x) + σ2∇x log p(x). Furthermore, we can
see that the original criterion, which does not require the explicit score, trains the reverse
drift φ(x) implicitly on the correct score up to an additive term.

The integration by parts can be understood as an operation opposite to the product
rule of differentiation. Under the assumption of the vanishing probability of data at infinity,
namely limx→±∞ p(x) = 0, we obtain

∫ ∞

−∞
p(x)∂xφ(x)dx =

=0︷ ︸︸ ︷
[p(x)φ(x)]∞−∞−

∫
∂x p(x)φ(x)dx (A73)

= −
∫

∂x p(x)φ(x)dx (A74)

Appendix C. Trace Estimation

Appendix C.1. Hutchinson’s Stochastic Trace Estimation

For a square matrix A ∈ Rd×d, the trace is defined as

Tr[A] =
d

∑
i

Aii (A75)

which sums over the diagonal terms of the matrix A.
We can approximate the exact trace with a sampled approximation. We, therefore,

haverandom samples Z ∈ RD for which the mean is a zero vector and the covariance
matrix is a identity matrix, i.e., Σ[Z] = I.
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The Rademacher distribution, which samples from the set {−1,+1} with equal proba-
bility, offers the lowest estimator variance and is commonly used in the trace estimation
trick for this reason.

Tr[A] = Tr[IA] (A76)

= Tr
[
Ez∼p(z)

[
zzT
]

A
]

(A77)

= Ez∼p(z)

[
zT Az

]
(A78)

where the trace operator disappears as zT Az ∈ R is a scalar value for which the trace is a
superfluous operation.

For estimating the trace of the Jacobian, we can circumvent the quadratic nature of
the Jacobian by reducing the network output with a random vector z to a scalar, which can
then be readily derived with a single backward pass.

Tr
[

J f (x)
]
= Ez∼p(z)

[
zT J f (x)z

]
(A79)

= Ez∼p(z)

[
zT∇x[ f (x)T ]z

]
(A80)

= Ez∼p(z)

[
zT∇x[ f (x)Tz]

]
(A81)

Appendix C.2. Stein’s Lemma

Let X ∈ RN be a normally distributed random variable p(x) = N (x; µ, σ2) with mean
µ and variance σ2. Let the derivative of the normal distribution with respect to x be

∂x p(x) = ∂x

[
1√
2πσ

e−
(x−µ)2

2σ2

]
(A82)

= − (x− µ)

σ2
1√
2πσ

e−
(x−µ)2

2σ2 (A83)

= − (x− µ)

σ2 p(x). (A84)

Integration by Parts (IbP) yields the often-used identity:∫ ∞

x=−∞
u(x)∂xv(x)dx = [u(x)v(x)]∞x=−∞ −

∫ ∞

x=−∞
∂xu(x)v(x)dx. (A85)

In practice, the property that either u(x) or v(x) or both evaluate to zero at x = ±∞ as is
the case with common probability distributions is leveraged as an algebraic trick to “switch
the derivative to the other function”.
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Given a function g(x), we can obtain a gradient estimator with the following steps via
integration by parts:

Ep(x))[g(x)(x− µ)] =
∫

g(x)(x− µ)
1√
2πσ

e−
(x−µ)2

2σ2 dx (A86)

= −σ2
∫

g(x)
(x− µ)

−σ2
1√
2πσ

e−
(x−µ)2

2σ2︸ ︷︷ ︸
∂x p(x)

dx (A87)

= −σ2
∫

g(x)∂x p(x)dx︸ ︷︷ ︸
IbP

(A88)

= −σ2{ [g(x)p(x)]∞x=−∞︸ ︷︷ ︸
p(±∞)=0

−
∫

∂xg(x)p(x)dx
}

(A89)

= σ2Ep(x)[∂xg(x)] (A90)

Appendix C.3. Trace Estimation with Stein’s Lemma

By choosing a perturbation ε ∼ p(0, σ2
ε ) with zero mean and a small variance σ2

ε , we
can define a perturbed data point x′ ∼ p(x, σ2

ε ) via x′ = x + ε. This transforms Stein’s
lemma into

Ep(ν))
[
g(x′)(x′ − x)

]
= Ep(ε))[g(x + ε)ε] = σ2

εEp(ε)
[
∂x′g(x′)

]
. (A91)

In practice, we rescaled with 1/σ2
ε and evaluated the left side of the following identity:

Ep(ε)

[
g(x + ε)

ε

σ2
ε

]
= Ep(ε)[∂x+εg(x + ε)]. (A92)

which gives us an estimator of the gradient ∂xg(x) by averaging the gradients in the ε-
neighbourhood of x. For a function g : RM → RN , the gradient estimation with Stein’s
lemma estimates the trace of the Jacobian Jg(x + ε):

Ep(ε)

[
g(x + ε)

ε

σ2
ε

]
= Ep(ε)

[
Tr
[

Jg(x + ε)
]]

. (A93)

In the limit of σε → 0, we obtain the trace estimator:

Tr
[

Jg(x)
]
= lim

σε↓0
Ep(ε)

[
Tr
[

Jg(x + ε)
]]

= lim
σε↓0

Ep(ε)

[
g(x + ε)

ε

σ2
ε

]
(A94)

in which we computed the right-most term to obtain the left-most term.
The scaling of the perturbation scale σε offers at least in theory intriguing similarities

to the forward diffusive process of diffusion models. These models estimate the scores of
the data distribution x′t ∼ p(x, σ2

t ) in which x is a sample from the true data distribution,
which is modelled, and the perturbation scale σt is time dependent, which decreases as
the generative process is integrated in time. Thus, to stabilise the score estimation in
higher dimensions, we aimed to to make the perturbation scale in the Stein trace estimator
time dependent.

Appendix D. Sampling with Predictor–Corrector Scheme

Recent papers [1,34] have suggested a method to correct original samples xt in order
to create better representatives of the marginal densities pt(x) (required by our estimators),
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which might deviate otherwise too far from the high-probability regions of pt. The method
is based on Langevin sampling [41–43], which performs the iteration:

x(m+1)
t = x(m)

t + ε∇x log pt(x(m)
t ) +

√
2εzm (A95)

while integrating the forward and backward SDE. The superscript (m) denotes the m’th
step of the Langevin sampler at which a standard normal random variable zm ∼ N (0, 1) is
drawn. For small ε and as m→ ∞, the samples are distributed as x(m)

t ∼ pt(·). Note that,
during the Langevin sampling, the time t remains fixed.

Unfortunately, in our approach, as well as in previous work, the direct estimation of
the score ∇x log pt(x) is avoided due to its intractability. However, by using (12) and (13),
we can still recompute the score by adding forward and backward drifts:

∇x logÐ⇀p (k−1)
t (xt) =

1
σ2

(
↼Ðµ (k)(xt, t) +Ð⇀µ (k−1)(xt, t)

)
(A96)

∇x log↼Ðp (k−1)
t (xt) =

1
σ2

(
↼Ðµ (k)(xt, t) +Ð⇀µ (k−1)(xt, t)

)
(A97)

which can be easily performed by simply evaluating both the forward and backward drift.
We evaluated the predictor–corrector sampling scheme on the manifold dataset. As

the data lie on a multi-dimensional manifold, we chose this dataset to examine the validity
of the predictor–corrector sampling scheme. Therefore, we integrated the forward process
with the Euler–Maryuama integration scheme for 200 time steps with an integration step
size of dt = 0.001. Subsequently, after each integration time step, we ran a varying number
of Langevin sampling steps M with stepsize ε = 0.0001 to obtain more representative
samples from the conditional distribution p(x(M)

t |t). Yet, we observed, similarly to other
publications on standard diffusion models, that a single corrector step yielded slightly
better results, while more than a single step yielded significantly worse Wasserstein-1
distances between the data distributions and the terminal distributions of the processes.
This behaviour can be seen in Figure A1 in more detail.

10 15 20 25 30 35 40
Dimension

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
as

se
rs

te
in

-1
D

is
ta

n
ce

/
D

im
en

si
on

Langevin: 0

Langevin: 1

Langevin: 10

Langevin: 20

Figure A1. The performance of the predictor–corrector sampling scheme dependent on the number
of Langevin steps per integration step. After each Euler–Maryuama step, a fixed number of Langevin
sampling steps are performed. Similar to other publications, we found that a single Langevin corrector
step improves the performance slightly, while more steps of Langevin sampling lead to significantly
worse performance. The Wasserstein-1 distance was evaluated on the true marginal and predicted
marginal distributions.
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