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Abstract: A two-terminal distributed binary hypothesis testing problem over a noisy channel is stud-
ied. The two terminals, called the observer and the decision maker, each has access to n independent
and identically distributed samples, denoted by U and V, respectively. The observer communicates
to the decision maker over a discrete memoryless channel, and the decision maker performs a binary
hypothesis test on the joint probability distribution of (U, V) based on V and the noisy information
received from the observer. The trade-off between the exponents of the type I and type II error proba-
bilities is investigated. Two inner bounds are obtained, one using a separation-based scheme that
involves type-based compression and unequal error-protection channel coding, and the other using
a joint scheme that incorporates type-based hybrid coding. The separation-based scheme is shown
to recover the inner bound obtained by Han and Kobayashi for the special case of a rate-limited
noiseless channel, and also the one obtained by the authors previously for a corner point of the
trade-off. Finally, we show via an example that the joint scheme achieves a strictly tighter bound than
the separation-based scheme for some points of the error-exponents trade-off.

Keywords: distributed hypothesis testing; noisy channel; error-exponents; source-channel separation;
joint source-channel coding; hybrid coding

1. Introduction

Hypothesis testing (HT), which refers to the problem of choosing between one or more
alternatives based on available data, plays a central role in statistics and information theory.
Distributed HT (DHT) problems arise in situations where the test data are scattered across
multiple terminals, and need to be communicated to a central terminal, called the decision
maker, which performs the hypothesis test. The need to jointly optimize the communication
scheme and the hypothesis test makes DHT problems much more challenging than their
centralized counterparts. Indeed, while an efficient characterization of the optimal hypoth-
esis test and its asymptotic performance is well known in the centralized setting, thanks
to [1–5], the same problem in even the simplest distributed setting remains open, except for
some special cases (see [6–11]).

In this work, we consider a DHT problem with two parties, an observer and a decision
maker, such that the former communicates to the latter over a noisy channel. The observer
and the decision maker each has access to independent and identically distributed samples,
denoted by U and V, respectively. Based on the information received from the observer and
its own observations V, the decision maker performs a binary hypothesis test on the joint
distribution of (U, V). Our goal is to characterize the trade-off between the best achievable
rate of decay (or exponent) of the type I and type II error probabilities with respect to
the sample size. We will refer to this problem as DHT over a noisy channel, and its special
instance with the noisy channel replaced by a rate-limited noiseless channel as DHT over a
noiseless channel.

Entropy 2023, 25, 304. https://doi.org/10.3390/e25020304 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3615-8961
https://orcid.org/0000-0002-7725-395X
https://doi.org/10.3390/e25020304
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020304?type=check_update&version=2


Entropy 2023, 25, 304 2 of 33

1.1. Background

Distributed statistical inference problems were first conceived in [12] and the information-
theoretic study of DHT over a noiseless channel was first investigated in [6], where the
objective is to characterize Stein’s exponent κse(ε), i.e., the optimal type II error-exponent sub-
ject to the type I error probability constrained to be at most ε ∈ (0, 1). The authors therein
established a multi-letter characterization of this quantity including a strong converse,
which shows that κse(ε) is independent of ε. Furthermore, a single-letter characterization
of κse(ε) is obtained for a special case of HT known as testing against independence (TAI),
in which the joint distribution factors as a product of the marginal distributions under
the alternative hypothesis. Improved lower bounds on κse(ε) were subsequently obtained
in [7,8], respectively, and the strong converse was extended to zero-rate settings [13]. While
all the aforementioned works focus on κse(ε), the trade-off between the exponents of both
the type I and type II error probabilities in the same setting was first explored in [14].

In the recent years, there has been a renewed interest in distributed statistical inference
problems motivated by emerging machine learning applications to be served at the wireless
edge, particularly in the context of semantic communications in 5G/6G communication
systems [15,16]. Several extensions of the DHT over a noiseless channel problem have
been studied, such as generalizations to multi-terminal settings [9,17–21], DHT under
security or privacy constraints [22–25], DHT with lossy compression [26], interactive
settings [27,28], successive refinement models [29], and more. Improved bounds have been
obtained on the type I and type II error-exponents region [30,31], and on κse(ε) for testing
correlation between bivariate standard normal distributions [32]. In the simpler zero-rate
communication setting, there has been some progress in terms of second-order optimal
schemes [33], geometric interpretation of type I and type II error-exponent region [34], and
characterization of κse(ε) for sequential HT [35]. DHT over noisy communication channels
with the goal of characterizing κse(ε) has been considered in [10,11,36,37].

1.2. Contributions

In this work, our objective is to explore the trade-off between the type I and type II
error-exponents for DHT over a noisy channel. This problem is a generalization of [14]
from noiseless rate-limited channels to noisy channels, and also of [10,11] from a type I
error probability constraint to a positive type I error-exponent constraint.

Our main contributions can be summarized as follows:

(i) We obtain an inner bound (Theorem 1) on the error-exponents trade-off by using a
separate HT and channel coding scheme (SHTCC) that is a combination of a type-based
(type here refers to the empirical probability distribution of a sequence, see [38])
quantize-bin strategy and unequal error-protection scheme of [39]. This result is
shown to recover the bounds established in [10,14]. Furthermore, we evaluate Theo-
rem 1 for two important instances of DHT, namely TAI and its opposite, i.e., testing
against dependence (TAD) in which the joint distribution under the null hypothesis
factors as a product of marginal distributions.

(ii) We also obtain a second inner bound (Theorem 2) on the error-exponents trade-off
by using a joint HT and channel coding scheme (JHTCC) based on hybrid coding [40].
Subsequently, we show via an example that the JHTCC scheme strictly outperforms
the SHTCC scheme for some points on the error-exponent trade-off.

While the above schemes are inspired from those in [10], which have been proposed
with the goal of maximizing the type II error-exponent, novel modifications in its design and
analysis are required when considering both of the error-exponents. More specifically, the
schemes presented here perform separate quantization-binning or hybrid coding on each in-
dividual source sequence type at the observer/encoder (as opposed to a typical ball in [10])
with the corresponding reverse operation implemented at the decision-maker/decoder.
This necessitates a different analysis to compute the probabilities of the various error events
contributing to the overall error-exponents. We finally mention that the DHT problem con-
sidered here was recently investigated in [41], where an inner bound on the error-exponents
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trade-off (Theorem 2 in [41]) is obtained using a combination of a type-based quantization
scheme and unequal error protection scheme of [42] with two special messages. A qual-
itative comparison between Theorem 2 and Theorem 2 in [41] seems to suggest that the
JHTCC scheme here uses a stronger decoding rule depending jointly on the source-channel
statistics. In comparison, the metric used at the decoder for the scheme in [41] factors as
the sum of two metrics, one which depends only on the source statistics, and the other
which depends only on the channel statistics. Importantly, this hints that the inner bound
achieved by JHTCC scheme is not subsumed by that in [41]. That said, a direct compu-
tational comparison appears difficult, as evaluating the latter requires optimization over
several parameters as mentioned in the last paragraph of [41].

The remainder of the paper is organized as follows. Section 2 formulates the oper-
ational problem along with the required definitions. The main results are presented in
Section 3. The proofs are furnished in Section 4. Finally, concluding remarks are given in
Section 5.

2. Preliminaries
2.1. Notation

We use the following notation. All logarithms are with respect to the natural base
e. N, R, R≥0, and R̄ denotes the set of natural, real, non-negative real and extended real
numbers, respectively. For a, b ∈ R≥0, [a : b] := {n ∈ N : a ≤ n ≤ b} and [b] := [1 : b].
Calligraphic letters, e.g., X , denote sets, while X c and |X | stands for its complement and
cardinality, respectively. For n ∈ N, X n denotes the n-fold Cartesian product of X , and
xn = (x1, · · · , xn) denotes an element of X n. Bold-face letters denote vectors or sequences,
e.g., x for xn; its length n will be clear from the context. For i, j ∈ N such that i ≤ j,
xj

i := (xi, xi+1, · · · , xj), the subscript is omitted when i = 1. 1A denotes the indicator of set

A. For a real sequence {an}n∈N, an
(n)−→ b stands for limn→∞ an = b, while an & b denotes

limn→∞ an ≥ b. Similar notations apply for other inequalities. O(·), Ω(·) and o(·) denote
standard asymptotic notations.

Random variables and their realizations are denoted by uppercase and lowercase
letters, respectively, e.g., X and x. Similar conventions apply for random vectors and their
realizations. The set of all probability mass functions (PMFs) on a finite set X is denoted
by P(X ). The joint PMF of two discrete random variables X and Y is denoted by PXY; the
corresponding marginals are PX and PY. The conditional PMF of X given Y is represented
by PX|Y. Expressions such as PXY = PXPY|X are to be understood as pointwise equality,
i.e., PXY(x, y) = PX(x)PY|X(y|x), for all (x, y) ∈ X × Y . When the joint distribution of a
triple (X, Y, Z) factors as PXYZ = PXYPZ|X , these variables form a Markov chain X−Y− Z.
When X and Y are statistically independent, we write X ⊥⊥ Y. If the entries of Xn are
drawn in an independent and identically distributed manner, i.e., if PXn(x) = ∏n

i=1 PX(xi),
∀ x ∈ X n, then the PMF PXn is denoted by P⊗n

X . Similarly, if PYn |Xn(y|x) = ∏n
i=1 PY|X(yi|xi)

for all (x, y) ∈ X n ×Yn, then we write P⊗n
Y|X for PYn |Xn . The conditional product PMF given

a fixed x ∈ X n is designated by P⊗n
Y|X(·|x). The probability measure induced by a PMF P is

denoted by PP. The corresponding expectation is designated by EP.
The type or empirical PMF of a sequence x ∈ X n is designated by Px, i.e., Px(x) :=

1
n ∑n

i=1 1{xi=x}. The set of n-length sequences x ∈ X n of type PX is Tn(PX ,X n) := {x ∈ X n :
Px = PX}. Whenever the underlying alphabet X n is clear from the context, Tn(PX,X n)
is simplified to Tn(PX). The set of all possible types of n-length sequences x ∈ X n is
T (X n) :=

{
PX ∈ P(X ) :

∣∣Tn(PX,X n)
∣∣ ≥ 1

}
. Similar notations are used for larger

combinations, e.g., Pxy, Tn(PXY,X ×Y) and T (X n ×Yn). For a given x ∈ Tn(PX ,X n) and
a conditional PMF PY|X, Tn(PY|X, x) := {y ∈ Yn : (x, y) ∈ Tn(PXY,X n × Yn)} stands for
the PY|X-conditional type class of x.

For PMFs P, Q ∈ P(X ), the Kullback–Leibler (KL) divergence between P and Q is
D(P||Q) := ∑x∈X P(x) log

(
P(x)/Q(x)

)
. The conditional KL divergence between PY|X and

QY|X given PX is D
(

PY|X ||QY|X
∣∣PX
)

:= ∑x∈X PX(x)D
(

PY|X(·|x)||QY|X(·|x)
)
. The mutual
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information and entropy terms are denoted by IP(·) and HP(·), respectively, where P
denotes the PMF of the relevant random variables. When the PMF is clear from the context,
the subscript is omitted. For (x, y) ∈ X n × Yn, the empirical conditional entropy of y
given x is He(y|x) := HP(Ỹ|X̃), where PX̃Ỹ = Pxy. For a given function f : Z → R and a
random variable Z ∼ PZ, the log-moment generating function of Z with respect to f is
ψPZ , f (λ) := logEPZ [e

λ f (Z)] whenever the expectation exists. Finally, let

ψ∗PZ , f (θ) := sup
λ∈R

θλ− ψPZ , f (λ), (1)

denote the rate function (see, e.g., Definition 15.5 in [43]).

2.2. Problem Formulation

Let U , V , X and Y be finite sets, and n ∈ N. The DHT over a noisy channel setting
is depicted in Figure 1. Herein, the observer and the decision maker observe n indepen-
dent and identically distributed samples, denoted by u and v, respectively. Based on its
observations u, the observer outputs a sequence x ∈ X n as the channel input sequence
(note that the ratio of the number of channel uses to the number of data samples, termed
the bandwidth ratio, is taken to be 1 for simplicity; however, our results easily generalize
to arbitrary bandwidth ratios). The discrete memoryless channel (DMC) with transition
kernel PY|X produces a sequence y ∈ Yn according to the probability law P⊗n

Y|X(·|x) as its

output. We will assume that PY|X(·|x)� PY|X(·|x′), ∀ (x, x′) ∈ X 2, where P� Q indicates
the absolute continuity of P with respect to Q. Based on its observations, y and v, the
decision maker performs binary HT on the joint probability distribution of (U, V) with the
null (H0) and alternative (H1) hypotheses given by

H0 : (U, V) ∼ P⊗n
UV ,

H1 : (U, V) ∼ Q⊗n
UV .

The decision maker outputs ĥ ∈ Ĥ := {0, 1} as the decision of the hypothesis test,
where 0 and 1 denote H0 and H1, respectively.

Figure 1. DHT over a noisy channel. The observer observes an n-length independent and identically
distributed sequence U, and transmits X over the DMC P⊗n

Y|X . Based on the channel output Y and the
n-length independent and identically distributed sequence V, the decision maker performs a binary
HT to determine whether (U, V) ∼ P⊗n

UV or (U, V) ∼ Q⊗n
UV .

A length-n DHT code cn is a pair of functions ( fn, gn), where

(i) fn : Un → P(X n) denotes the encoding function;
(ii) gn : Vn ×Yn → Ĥ denotes a deterministic decision function specified by an accep-

tance region (for null hypothesis H0) An ⊆ Vn × Yn as gn(v, y) = 1− 1{(v,y)∈An},
∀(v, y) ∈ Vn ×Yn.

We emphasize at this point that there is no loss in generality in restricting our attention
to a deterministic decision function for the objective of characterizing the error-exponents
trade-off in HT (for e.g., see Lemma 3 in [24])).
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A code cn = ( fn, gn) induces the joint PMFs P(cn)

UVXYĤ
and Q(cn)

UVXYĤ
under the null and

alternative hypotheses, respectively, where

P(cn)

UVXYĤ
(u, v, x, y, ĥ) := P⊗n

UV(u, v) fn(x|u) P⊗n
Y|X(y|x) 1{gn(v,y)=ĥ

}, (3)

and

Q(cn)

UVXYĤ
(u, v, x, y, ĥ) := Q⊗n

UV(u, v) fn(x|u) P⊗n
Y|X(y|x) 1{gn(v,y)=ĥ

}, (4)

respectively. For a given code cn, the type I and type II error probabilities are αn(cn) :=
PP(cn)(Ĥ = 1) and βn(cn) := PQ(cn)(Ĥ = 0) respectively. The following definition formally
states the error-exponents trade-off we aim to characterize.

Definition 1 (Error-exponent region). An error-exponent pair (κα, κβ) ∈ R2
≥0 is said to be

achievable if there exists a sequence of codes {cn}n∈N such that

lim inf
n→∞

− 1
n

log αn(cn) ≥ κα, (5a)

lim inf
n→∞

− 1
n

log βn(cn) ≥ κβ. (5b)

The error-exponent region R̄ is the closure of the set of all achievable error-exponent pairs (κα, κβ).
Set R := {

(
κα, κ(κα)

)
: κα ∈ (0, κ?α)}, where κ?α = inf{κα : κ(κα) = 0} and κ(κα) := sup{κβ :

(κα, κβ) ∈ R̄}.

We are interested in a computable characterization ofR, which pertains to the region
of positive error-exponents (i.e., excluding the boundary points corresponding to Stein’s
exponent). To this end, we present two inner bounds onR in the next section.

3. Main Results

In this section, we obtain two inner bounds on R, first using a separation-based
scheme which performs independent HT and channel coding, termed the SHTCC scheme,
and the second via a joint HT and channel coding scheme that uses hybrid coding for
communication between the observer and the decision maker.

3.1. Inner Bound onR via SHTCC Scheme

Let S = X and PSXY = PSXPY|X be a PMF under which S− X − Y forms a Markov
chain. For x ∈ X , let Λx,PSXY (y) := log

(
PY|X=x(y)/PY|S=x(y)

)
and define

Esp(PSX , θ) := ∑
s∈S

PS(s)ψ∗PY|S=s ,Λs,PSXY
(θ),

where the rate function ψ∗ is defined in (1). For a fixed PSX and R ≥ 0, let

Eex(R, PSX) := max
ρ≥1
−ρR− ρ log

(
∑

s,x,x̃
PS(s)PX|S(x|s)PX|S(x̃|s)

(
∑
y

(
PY|X(y|x)PY|X(y|x̃)

) 1
2
) 1

ρ

)
,

denote the expurgated exponent [38,44]. Let W be a finite set and F denote the set of
all continuous mappings from P(U ) to P(W|U ), where P(W|U ) is the set of all con-
ditional distributions PW|U . Set θl(PSX) := ∑s∈S PS(s)D

(
PY|S=s||PY|X=s

)
, θu(PSX) :=
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∑s∈S PS(s)D
(

PY|X=s||PY|S=s
)
, Θ(PSX) :=

(
− θl(PSX), θu(PSX)

)
. Denote an arbitrary el-

ement of F×R≥0 ×P(S × X )×Θ(PSX) by (ω, R, PSX , θ), and set

L(κα) :=

{
(ω, R, PSX , θ) : ζ(κα, ω)− ρ(κα, ω) ≤ R < IP(X; Y|S), PSXY = PSXPY|X

min
{

Esp(PSX , θ), Eex(R, PSX), Eb(κα, ω, R)
}
≥ κα

}
,

L̂(κα, ω) :=
{

PÛV̂Ŵ : D
(

PÛV̂Ŵ ||PUVŴ
)
≤ κα, PŴ|Û = ω(PÛ), PUVŴ = PUV PŴ|Û

}
, (6a)

Eb(κα, ω, R) :=

{
R− ζ(κα, ω) + ρ(κα, ω), if 0 ≤ R < ζ(κα, ω),

∞, otherwise,

ζ(κα, ω) := max
PÛŴ : ∃ PV̂ ,PÛV̂Ŵ∈L̂(κα ,ω)

IP(Û; Ŵ), (6b)

ρ(κα, ω) := min
PV̂Ŵ : ∃ PÛ ,PÛV̂Ŵ∈L̂(κα ,ω)

IP(V̂; Ŵ), (6c)

E1(κα, ω) := min
(PŨṼW̃ ,QŨṼW̃ )∈T1(κα ,ω)

D(PŨṼW̃ ||QŨṼW̃),

E2(κα, ω, R) :=

 min
(PŨṼW̃ ,QŨṼW̃ )∈T2(κα ,ω)

D(PŨṼW̃ ||QŨṼW̃) + Eb(κα, ω, R), if R < ζ(κα, ω),

∞, otherwise,

E3(κα, ω, R, PSX) :=



min
(PŨṼW̃ ,QŨṼW̃ )∈T3(κα ,ω)

D(PŨṼW̃ ||QŨṼW̃) + Eb(κα, ω, R) + Eex(R, PSX),

if R < ζ(κα, ω),
min

(PŨṼW̃ ,QŨṼW̃ )∈T3(κα ,ω)
D(PŨṼW̃ ||QŨṼW̃) + ρ(κα, ω) + Eex(R, PSX),

otherwise,

E4(κα, ω, R, PSX , θ) :=



min
PV̂ :PÛV̂Ŵ∈L̂(κα ,ω)

D(PV̂ ||QV) + Eb(κα, ω, R) + Em(PSX , θ)− θ,

if R < ζ(κα, ω),
min

PV̂ :PÛV̂Ŵ∈L̂(κα ,ω)
D(PV̂ ||QV) + ρ(κα, ω) + Em(PSX , θ)− θ,

otherwise,

where,

T1(κα, ω) :=

{
(PŨṼW̃ , QŨṼW̃) : PŨW̃ = PÛŴ , PṼW̃ = PV̂Ŵ , QŨṼW̃

:= QUV PW̃|Ũ for some PÛV̂Ŵ ∈ L̂(κα, ω)

}
, (6d)

T2(κα, ω) :=

{
(PŨṼW̃ , QŨṼW̃) : PŨW̃ = PÛŴ , PṼ = PV̂ , HP(W̃|Ṽ) ≥ HP(Ŵ|V̂),

QŨṼW̃ := QUV PW̃|Ũ for some PÛV̂Ŵ ∈ L̂(κα, ω)

}
,

T3(κα, ω) :=

{
(PŨṼW̃ , QŨṼW̃) : PŨW̃ = PÛŴ , PṼ = PV̂ , QŨṼW̃ := QUV PW̃|Ũ

for some PÛV̂Ŵ ∈ L̂(κα, ω)

}
.

We have the following lower bound for κ(κα), which translates to an inner bound forR.

Theorem 1 (Inner bound via SHTCC scheme). κ(κα) ≥ κ?s (κα), where

κ?s (κα) := max
(ω,R,PSX ,θ)∈ L(κα)

min
{

E1(κα, ω), E2(κα, ω, R), E3(κα, ω, R, PSX),

E4(κα, ω, R, PSX , θ)
}

. (7)

The proof of Theorem 1 is presented in Section 4.1. The SHTCC scheme, which achieves
the error-exponent pair (κα, κ?s (κα)), is a coding scheme analogous to separate source and
channel coding for the lossy transmission of a source over a communication channel with
correlated side-information at the receiver [45], however, with the objective of reliable HT. In
this scheme, the source samples are first compressed to an index, which acts as the message
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to be transmitted over the channel. But, in contrast to standard communication problems,
there is a need to protect certain messages more reliably than others; hence, an unequal
error-protection scheme [39,42] is used. To describe briefly, the SHTCC scheme involves
(i) the quantization and binning of u sequences, whose type Pu is within a κα-neighborhood
(in terms of KL divergence) of PU , using V as side information at the decision maker for
decoding, and (ii) unequal error-protection channel coding scheme in [39] for protecting a
special message which informs the decision maker that Pu lies outside the κα-neighborhood
of PU . The output of the channel decoder is processed by an empirical conditional entropy
decoder which recovers the quantization codeword with the least conditional entropy with
V. Since this decoder depends only on the empirical distributions of the observations,
it is universal and useful in the hypothesis testing context, where multiple distributions
are involved (as was first noted in [8]). The various factors E1 to E4 in (7) have natural
interpretations in terms of events that could possibly result in a hypothesis testing error.
Specifically, E1 and E2 correspond to the error events arising due to quantization and
binning, respectively, while E3 and E4 correspond to the error events of wrongly decoding
an ordinary channel codeword and special message codeword, respectively.

Remark 1 (Generalization of Han–Kobayashi inner bound). In Theorem 1 in [14], Han and
Kobayashi obtained an inner bound onR for DHT over a noiseless channel. At a high level, their
coding scheme involves type-based quantization of u ∈ Un sequences, whose type Pu lies within
a κα-neighborhood of PU , where κα is the desired type I error-exponent. As a corollary, Theorem 1
recovers the lower bound for κ(κα) obtained in [14] by (i) setting Eex(R, PSX), Em(PSX, θ) and
Em(PSX , θ)− θ to ∞, which hold when the channel is noiseless, and (ii) maximizing over the set{
(ω, R, PSX, θ) ∈ F× R≥0 × P(S × X ) × Θ(PSX) : ζ(κα, ω) ≤ R < IP(X; Y|S), PSXY :=

PSXPY|X
}
⊆ L(κα) in (7). Then, note that the terms E2(κα, ω, R), E3(κα, ω, R, PSX) and

E4(κα, ω, R, PSX, θ) all equal ∞, and thus the inner bound in Theorem 1 reduces to that given
in Theorem 1 in [14].

Remark 2 (Improvement via time-sharing). Since the lower bound on κ(κα) in Theorem 1 is
not necessarily concave, a tighter bound can be obtained using the technique of time-sharing similar
to Theorem 3 in [14]. We omit its description, as it is cumbersome, although straightforward.

Theorem 1 also recovers the lower bound for the optimal type II error-exponent
for a fixed type I error probability constraint established in Theorem 2 in [10] by letting
κα → 0. The details are provided in Appendix A. Further, specializing the lower bound in
Theorem 1 to the case of TAI, i.e., when QUV = PU PV , we obtain the following corollary
which characterizes the optimal type II error-exponent for TAI established in Proposition 7
in [10] as a special case.

Corollary 1 (Inner bound for TAI). Let PUV ∈ P(U × V) be an arbitrary distribution and
QUV = PU PV . Then,

κ(κα) ≥ κ?s (κα) ≥ κ?i (κα), (8)

where

κ?i (κα) := max
(ω,PSX ,θ)∈L?(κα)

min
{

Ei
1(κα, ω), Ei

2(κα, ω, PSX), Ei
3(κα, ω, PSX , θ)

}
,

L?(κα) :=

{
(ω, PSX , θ) ∈ F×P(S × X )×Θ(PSX) : ζ(κα, ω) < IP(X; Y|S),
PSXY := PSXPY|X , min

{
Esp(PSX , θ), Eex(ζ(κα, ω), PSX)

}
≥ κα

}
, (9)

Ei
1(κα, ω) := min

PV̂Ŵ :∃PÛV̂Ŵ∈L̂(κα ,ω)
IP(V̂; Ŵ) + D(PV̂ ||PV),

Ei
2(κα, ω, PSX) := ρ(κα, ω) + Eex

(
ζ(κα, ω), PSX

)
,

Ei
3(κα, ω, PSX , θ) := ρ(κα, ω) + Esp(PSX , θ)− θ,
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and L̂(κα, ω), ζ(κα, ω) and ρ(κα, ω) are defined in (6a), (6b) and (6c), respectively. In particular,

lim
κα→0

κ(κα) = κ?s (0) = κ?i (0) = max
PW|U :IP(U;W)≤C(PY|X),

PUVW=PUV PW|U

IP(V; W), (10)

where |W| ≤ |U|+ 1 and C(PY|X) denotes the capacity of the channel PY|X .

The proof of Corollary 1 is given in Section 4.2. Its achievability follows from a special
case of the SHTCC scheme without binning at the encoder.

Next, we consider testing against dependence (TAD) for which QUV is an arbitrary joint
distribution and PUV = QUQV . Theorem 1 specialized to TAD gives the following corollary.

Corollary 2 (Inner bound for TAD). Let QUV ∈ P(U × V) be an arbitrary distribution and
PUV = QUQV . Then,

κ(κα) ≥ κ?s (κα) = κ?d(κα) := max
(ω,PSX ,θ)
∈L?(κα)

min
{

Ed
1 (κα, ω), Ed

2 (κα, ω, PSX), Ed
3 (PSX , θ)

}
, (11)

where

Ed
1 (κα, ω) := min

(PŨṼW̃ ,QŨṼW̃ )
∈T1(κα ,ω)

D(PŨṼW̃ ||QŨṼW̃) ≥ min
(PV̂Ŵ ,QVŴ ): PÛV̂Ŵ∈L̂(κα ,ω),

QUVŴ=QUV PŴ|Û

D(PV̂Ŵ ||QVŴ),

Ed
2 (κα, ω, PSX) := Eex(ζ(κα, ω), PSX),

Ed
3 (PSX , θ) := Esp(PSX , θ)− θ,

and L̂(κα, ω), T1(κα, ω) and L?(κα) are given in (6a), (6d) and (9), respectively. In particular,

lim
κα→0

κ(κα) ≥ κ?s (0) = κ?d(0) ≥ κ?TAD, (12)

where

κ?TAD = max
(PW|U ,PSX):

IQ(W;U)≤IP(X;Y|S),
QUVW=QUV PW|U ,

PSXY=PSX PY|X

min
{

D(QV QW ||QVW), Eex
(

IQ(U; W), PSX
)
, θl(PSX)

}
,

and |W| ≤ |U|+ 1.

The proof of Corollary 2 is given in Section 4.3. Note that the expression for κ?s (κα)
given in (11) is relatively simpler to compute compared to that in Theorem 1. This will be
handy in showing that the JHTCC scheme strictly outperforms the SHTCC scheme, which
we highlight via an example in Section 3.3 below.

3.2. Inner Bound via JHTCC Scheme

It is well known that joint source-channel coding schemes offer advantages over
separation-based coding schemes in several information theoretic problems, such as the
transmission of correlated sources over a multiple-access channel [40,46] and the error-
exponent in the lossless or lossy transmission of a source over a noisy channel [42,47].
Recently, it was shown via an example in [10] that joint schemes also achieve a strictly
larger type II error-exponent in DHT problems compared to a separation-based scheme in
some scenarios. Motivated by this, we present an inner bound onR using a generalization
of the JHTCC scheme in [10].

Let W and S be arbitrary finite sets, and F′ denote the set of all continuous map-
pings from P(U × S) to P(W| U × S), where P(W| U × S) is the set of all conditional
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distributions PW|US. Let
(

PS, ω′(·, PS), PX|USW , PX′ |US
)

denote an arbitrary element of
P(S)× F′ ×P(X |U × S ×W)×P(X |U × S), and define

Lh(κα) :=
{(

PS, ω′(·, PS), PX|USW , PX′ |US
)

: E′b(κα, ω′, PS, PX|USW) ≥ κα

}
,

L̂h(κα, ω′, PS, PX|USW)

:=

{
(PÛV̂ŴŶS : D(PÛV̂ŴŶ|S||PUVŴY|S|PS) ≤ κα, PSUVŴXY := PSPUV PŴ|ÛSPX|USW PY|X ,

PŴ|ÛS = ω′(PÛ , PS)

}
,

E′b(κα, ω′, PS, PX|USW) := ρ′(κα, ω′, PS, PX|USW)− ζ ′q(κα, ω′, PS),

ζ ′(κα, ω′, PS) := max
PÛŴS : ∃ PV̂Ŷ s.t.

PÛV̂ŴŶS ∈L̂h(κα ,ω′ ,PS ,PX|USW )

IP(Û; Ŵ|S),

ρ′(κα, ω′, PS, PX|USW) := min
PV̂ŴŶS : ∃ PÛ s.t.

PÛV̂ŴŶS ∈L̂h(κα ,ω′ ,PS ,PX|USW )

IP(Ŷ, V̂; Ŵ|S),

E′1(κα, ω′) := min
(PŨṼW̃ỸS ,QŨṼW̃ỸS)∈T ′1 (κα ,ω′)

D(PŨṼW̃Ỹ|S||QŨṼW̃Ỹ|S|PS),

E′2(κα, ω′, PS, PX|USW) := min
(PŨṼW̃ỸS ,QŨṼW̃ỸS)∈T ′2 (κα ,ω′ ,PS ,PX|USW )

D(PŨṼW̃Ỹ|S||QŨṼW̃Ỹ|S|PS)

+ E′b(κα, ω′, PS, PX|USW),

E′3(κα, ω′, PS, PX|USW , PX′ |US) := min
PV̂ŶS :PÛV̂ŴŶS∈L̂h(κα ,ω′ ,PS ,PX|USW )

D(PV̂Ŷ|S||QVY′ |S|PS)

+ E′b(κα, ω′, PS, PX|USW),

QSUVX′Y′ := PSQUV PX′ |USPY′ |X′ , PY′ |X′ := PY|X ,

T ′1 (κα, ω′, PS, PX|USW) :=


(PŨṼW̃ỸS, PŨW̃S = PÛŴS, PṼW̃ỸS = PV̂ŴŶS,

QŨṼW̃ỸS) : QSŨṼW̃X̃Ỹ := PSQUV PW̃|ŨS PX|USW PY|X
for some PÛV̂ŴŶS ∈ L̂h(κα, ω′, PS, PX|USW)

,

T ′2 (κα, ω′, PS, PX|USW) :=


(PŨṼW̃ỸS, PŨW̃S = PÛŴS, PṼỸS = PV̂ŶS,

QŨṼW̃ỸS) : HP(W̃|Ṽ, Ỹ, S) ≥ HP(Ŵ|V̂, Ŷ, S),
QSŨṼW̃X̃Ỹ := PSQUV PW̃|ŨS PX|USW PY|X
for some PÛV̂ŴŶS ∈ L̂h(κα, ω′, PS, PX|USW)

.

Then, we have the following result.

Theorem 2 (Inner bound via JHTCC scheme).

κ(κα) ≥ max{κ?h(κα), κ?u(κα)}, (13)

where

κ?h(κα) := max
(PS ,ω′ ,PX|USW ,PX′ |US)∈ Lh(κα)

min
{

E′1(κα, ω′), E′2(κα, ω′, PS, PX|USW),

E′3(κα, ω′, PS, PX|USW , PX′ |US)
}

,

κ?u(κα) := max
(PS ,PX|US)∈P(S)×P(X |S×U )

κu(κα, PS, PX|US),

κu(κα, PS, PX|US) := min
PSPV̂Ŷ :D

(
PV̂Ŷ|S ||PVY|S |PS

)
≤κα

D
(

PV̂Ŷ|S||QVY|S|PS
)
,

PSUVXY = PSPUV PX|USPY|X and QSUVXY = PSQUV PX|USPY|X .
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The proof of Theorem 2 is given in Section 4.4, and utilizes a generalization of hybrid
coding scheme [40] to achieve the stated inner bound. Specifically, the error-exponent
pair

(
κα, κ?h(κα)

)
is achieved using type-based hybrid coding, while

(
κα, κ?u(κα)

)
is realized

by uncoded transmission, in which the channel input X is generated as the output of a
DMC PX|U with input U (along with time sharing). In standard hybrid coding, the source
sequence is first quantized via joint typicality and the channel input is then chosen as a
function of both the original source sequence and its quantization. At the decoder, the
quantized codeword is first recovered using the channel output and side information via
joint typicality decoding, and an estimate of the source sequence is output as a function
of the channel output and recovered codeword. The quantization part forms the digital
part of the scheme, while the use of the source sequence for encoding and channel output
for decoding comprises the analog part. The scheme derives its name from these joint
hybrid digital-analog operations. In the HT context considered here, the aforementioned
source quantization is replaced by a type-based quantization at the encoder, and the joint
typicality decoder is replaced by a universal empirical conditional entropy decoder. We
note that Theorem 2 recovers the lower bound on the optimal type II error-exponent proved
in Theorem 5 in [10]. The details are provided in Appendix B.

Next, we provide a comparison between the SHTCC and JHTCC bounds via an
example as mentioned earlier.

3.3. Comparison of Inner Bounds

We compare the inner bounds established in Theorem 1 and Theorem 2 for a simple
setting of TAD over a BSC. For this purpose, we will use the inner bound κ?d(κα) stated
in Corollary 2 and κ?u(κα) that is achieved by uncoded transmission. Our objective is to
illustrate that the JHTCC scheme achieves a strictly tighter bound onR compared to the
SHTCC scheme, at least for some points of the trade-off.

Example 1. Let p, q ∈ [0, 0.5], U = V = X = Y = S = {0, 1},

QUV =

[
q 0.5− q

0.5− q q

]
, PY|X =

[
1− p p

p 1− p

]
, and PUV = QUQV .

A comparison of the inner bounds achieved by the SHTCC and JHTCC schemes
for the above example are shown in Figures 2 and 3, where we plot the error-exponents
trade-off achieved by uncoded transmission (a lower bound for the JHTCC scheme), and
the expurgated exponent at a zero rate:

Eex(0) := max
PSX∈P(S×X )

Eex(PSX , 0) = −0.25 log(4p(1− p)),

which is an upper bound on κ?d(κα) for any κα ≥ 0. To compute Eex(0), we used the
closed-form expression for Eex(·) given in Problem 10.26(c) in [38]. Clearly, it can be seen
that the JHTCC scheme outperforms SHTCC scheme for κα below a threshold, which
depends on the source and channel distributions. In particular, the threshold below which
improvement is seen is reduced when the channel or the source becomes more uniform.
The former behavior can be seen directly by comparing the subplots in Figures 2 and 3,
while the latter can be noted by comparing Figure 2a with Figure 3a, or Figure 2b with
Figure 3b.
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(a) (b)

Figure 2. Comparison of the error-exponents trade-off achieved by the SHTCC and JHTCC schemes
for TAD over a BSC in Example 1 with parameters p = 0.25, q = 0 for (a) and p = 0.35, q = 0 for
(b). The red curve shows (κα, κ?u(κα)) pairs achieved by uncoded transmission while the blue line
plots (κα, Eex(0)). The joint scheme clearly achieves a better error-exponent trade-off for values of
κα below a threshold which depends on the transition kernel of the channel. In particular, a more
uniform channel results in a lesser threshold.

(a) (b)

Figure 3. Comparison of the error-exponents trade-off achieved by the SHTCC and JHTCC schemes
for Example 1 with parameters p = 0.25, q = 0.05 for (a) and p = 0.35, q = 0.05 for (b). The JHTCC
scheme improves over the separation based scheme for small values of κα; however, the region of
improvement is reduced compared to Figure 2 as the source is more uniformly distributed.

4. Proofs
4.1. Proof of Theorem 1

We will show the achievability of the error-exponent pair (κα, κ?s (κα)) by constructing
a suitable ensemble of HT codes, and showing that the expected type I and type II error
probabilities (over this ensemble) satisfy (5) for the pair (κα, κ?s (κα)). Then, an expurgation
argument [44] will be used to show the existence of a HT code that satisfies (5) for the same
error-exponent pair, thus showing that (κα, κ?s (κα)) ∈ R as desired.

Let n ∈ N, |W| < ∞, κα > 0, (ω, R, PSX, θ) ∈ L(κα), R′ := ζ(κα, ω), and η > 0 be a
small number. Additionally, suppose that R ≥ 0 satisfies

ζ(κα, ω)− ρ(κα, ω) ≤ R < IP(X; Y|S), (14)

where ζ(κα, ω) and ρ(κα, ω) are defined in (6b) and (6c), respectively. The SHTCC scheme
is as follows:
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Encoding: The observer’s encoder is composed of two stages, a source encoder followed by
a channel encoder.
Source encoder: The source encoding comprises a quantization scheme followed by bin-
ning to reduce the rate if necessary.
Quantization codebook: Let

Dn(PU , η) :=
{

PÛ ∈ T (U
n) : D(PÛ ||PU) ≤ κα + η

}
. (15)

Consider some ordering on the types in Dn(PU , η) and denote the elements as PÛi
for

i ∈
[
|Dn(PU , η)|

]
. For each type PÛi

∈ Dn(PU , η), i ∈
[
|Dn(PU , η)|

]
, choose a joint type

variable PÛiŴi
∈ T (Un ×Wn) such that

D
(

PŴi |Ûi
||PWi |U

∣∣PÛi

)
≤ η

3
, (16a)

IP

(
Ûi; Ŵi

)
≤ R′ +

η

3
, (16b)

where PWi |U = ω(PÛi
). Note that this is always possible for n sufficiently large by the

definition of R′.
Let

Dn(PUW , η) :=
{

PÛiŴi
: i ∈

[
|Dn(PU , η)|

]}
, (17a)

R′i := IP
(
Ûi; Ŵi

)
+ (η/3), i ∈

[
|Dn(PU , η)|

]
, (17b)

M′
i :=

[
1 +

i−1

∑
k=1

enR′k :
i

∑
k=1

enR′k

]
, (17c)

and BW,n =
{

W(j), 1 ≤ j ≤ ∑
|Dn(PU ,η)|
i=1 |M′

i|
}

denote a random quantization codebook
such that the codeword W(j) ∼ Unif

[
Tn(PŴi

)
]
, if j ∈ M′

i for some i ∈
[
|Dn(PU , η)|

]
.

Denote a realization of BW,n by BW,n =
{

w(j) ∈ Wn, 1 ≤ j ≤ ∑
|Dn(PU ,η)|
i=1 |M′

i|
}

.

Quantization scheme: For a given codebook BW,n and u ∈ Tn
(

PÛi

)
such that PÛi

∈
Dn(PU , η) for some i ∈

[
|Dn(PU , η)|

]
, let

M̃
(
u,BW,n

)
:=
{

j ∈ M′
i : w(j) ∈ BW,n, (u, w(j)) ∈ Tn

(
PÛiŴi

)
, PÛiŴi

∈ Dn(PUW , η)
}

.

If |M̃(u,BW,n)| ≥ 1, let M′(u,BW,n) denote an index selected uniformly at random from
the set M̃(u,BW,n), otherwise, set M′(u,BW,n) = 0. Denoting the support of M′(u,BW,n)
byM′, we have for sufficiently large n that

|M′| ≤ 1 +
|Dn(PU ,η)|

∑
i=1

enR′i ≤ 1 + |Dn(PU , η)|e
max

PÛŴ∈Dn(PUW ,η)
nI(Û;Ŵ)+(nη/3)

≤ en(R′+η), (18)

where the last inequality uses (16b) and |Dn(PU , η)| ≤ (n + 1)|U |.

Binning: If |M′| > |M|, then the source encoder performs binning as described below.
Let Rn := log

(
enR/|Dn(PU , η)|

)
, Mi := [1 + (i − 1)Rn : iRn], i ∈

[
|Dn(PU , η)|

]
, and

M := {0}⋃ { ∪i∈[|Dn(PU ,η)|]Mi
}

. Note that

enRn ≥ enR−|U| log(n+1). (19)

Let fB denote the random binning function such that for each j ∈ M′
i, fB(j) ∼ Unif [|Mi|]

for i ∈
[
|Dn(PU , η)|

]
, and fB(0) = 0 with probability one. Denote a realization of fB(j)

by fb, where fb : M′ →M. Given a codebook BW,n and binning function fb, the source
encoder outputs M = fb(M′(u,BW,n)) for u ∈ Un. If |M′| ≤ |M|, then fb is taken to be
the identity map (no binning), and in this case, M = M′(u,BW,n).



Entropy 2023, 25, 304 13 of 33

Channel codebook: Let BX,n := {X(m) ∈ X n, m ∈ M} denote a random channel code-
book generated as follows. Without loss of generality, denote the elements of the set
S = X as 1, . . . , |X |. The codeword length n is divided into |S| = |X | blocks, where
the length of the first block is dPS(1)ne, the second block is dPS(2)ne, so on and so forth,
and the length of the last block is chosen such that the total length is n. For i ∈ [|X |], let
ki := ∑i−1

l=1dPS(l)ne+ 1 and k̄i := ∑i
l=1dPS(l)ne, where the empty sum is defined to be zero.

Let s ∈ X n be such that sk̄i
ki
= i, i.e., the elements of s equal i in the ith block for i ∈ [|X |].

Let X(0) = s with probability one, and the remaining codewords X(m), m ∈ M\{0} be

constant composition codewords [38] selected such that Xk̄i
ki
(m) ∼ Unif

[
TdPS(i)ne(P̂X|S(·|i))

]
,

where P̂X|S is such that TdPS(i)ne
(

P̂X|S(·|i)
)

is non-empty and D(P̂X|S||PX|S|PS) ≤ η
3 . Denote

a realization of BX,n by BX,n := {x(m) ∈ X n, m ∈ M}. Note that for m ∈ M\{0} and
large n, the codeword pair (x(0), x(m)) has joint type (approx) Px(0)x(j) = P̂SX := PS P̂X|S.

Channel encoder: For a given BX,n, the channel encoder outputs x = x(m) for output m
from the source encoder. Denote this map by fBX,n :M→ X n.

Encoder: Denote by fn : Un → P(X n) the encoder induced by all the above operations,
i.e., fn(·|u) = fBX,n ◦ fb

(
M′(u,BW,n)

)
.

Decision function: The decision function consists of three parts, a channel decoder, a
source decoder and a tester.

Channel decoder: The channel decoder first performs a Neyman–Pearson test on the
channel output y according to Π̃θ : Yn → {0, 1}, where

Π̃θ(y) := 1

(
n

∑
i=1

log

(
PY|X(yi|si)

PY|S(yi|si)

)
≥ nθ

)
. (20)

If Π̃θ(y) = 1, then M̂ = 0. Else, for a given BX,n, maximum likelihood (ML) decoding
is done on the remaining set of codewords {x(m), m ∈ M\{0}}, and M̂ is set equal to the
ML estimate. Denote the channel decoder induced by the above operations by gBX,n , where
gBX,n : Yn →M.

For a given codebook BX,n, the channel encoder–decoder pair described above induces
a distribution

P(BX,n)

XYM̂|M(m, x, y, m̂|m) := 1{
fBX,n (m)=x

} P⊗n
Y|X(y|x)1{m̂=gBX,n

}.

Note that Px(0)x(m) = P̂SX, Y ∼ ∏
|X |
i=1 P⊗dPS(i)ne

Y|X (·|i) for M = 0 and Y ∼ ∏
|X |
i=1 P⊗dPS(i)ne

Y|S (·|i)
for M = m 6= 0. Then, it follows by an application of Proposition A1 proved in Appendix C that
for any BX,n and n sufficiently large, the Neyman–Pearson test in (20) yields

P
P(BX,n)

(
M̂ = 0|M = m

)
≤ e−n(Esp(PSX ,θ)−η), m ∈ M\{0}, (21a)

P
P(BX,n)

(
M̂ 6= 0|M = 0

)
≤ e−n(Esp(PSX ,θ)−θ−η). (21b)

Moreover, given M̂ 6= 0, a random coding argument over the ensemble of Bn
X (see Exercise

10.18, 10.24 in [38,44]) shows that there exists a deterministic codebook BX,n such that (21a)
and (21b) holds, and the ML decoding described above asymptotically achieves

P
P(BX,n)

(
M̂ 6= m|M = m 6= 0, M̂ 6= 0

)
≤ e−n(Eex(R,PSX)−η). (22)

This deterministic codebook BX,n is used for channel coding.

Source decoder: For a given codebook BW,n and inputs M̂ = m̂ and V = v, the source
decoder first decodes for the quantization codeword w(m̂′) (if required) using the empirical
conditional entropy decoder, and then declares the output Ĥ of the hypothesis test based
on w(m̂′) and v. More specifically, if binning is not performed, i.e., if |M| ≥ |M′|, M̂′ = m̂.
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Otherwise, M̂′ = m̂′, where m̂′ = 0 if m̂ = 0 and m̂′ = arg minj: fb(j)=m̂ He(w(j)|v)
otherwise. Denote the source decoder induced by the above operations by gBW,n : M×
Vn →M′.

Testing and Acceptance region: If m̂′ = 0, Ĥ = 1 is declared. Otherwise, Ĥ = 0 or Ĥ = 1
is declared depending on whether (m̂′, v) ∈ An or (m̂′, v) /∈ An, respectively, where An
denotes the acceptance region for H0 as specified next. For a given codebook BW,n, let
Om′ denote the set of u such that the source encoder outputs m′, m′ ∈ M′\{0}. For each
m′ ∈ M′\{0} and u ∈ Om′ , let

Zm′(u) = {v ∈ Vn : (w(m′), u, v) ∈ Jn(κα + η, PWm′UV)},

where Jn(r, PX) := {x ∈ X n : D(Px||PX) ≤ r},

PUVWm′
:= PUV PWm′ |U and PWm′ |U = ω(Pu). (23)

For m′ ∈ M′\{0}, set Zm′ := {v : v ∈ Zm′(u) for some u ∈ Om′}, and define the accep-
tance region for H0 at the decision maker as An := ∪m′∈M′\0 m′ × Zm′ or equivalently
as Ae

n := ∪m′∈M′\0Om′ ×Zm′ . Note that An is the same as the acceptance region for H0
in Theorem 1 in [14]. Denote the decision function induced by gBX,n , gBW,n and An by
gn : Yn × Vn → Ĥ.

Induced probability distribution: The PMFs induced by a code cn = ( fn, gn) with respect
to codebook Bn := (BW,n, fb,BX,n) under H0 and H1 are

P(Bn ,cn)

UVM′MXYM̂M̂′ Ĥ
(u, v, m′, m, x, y, m̂, m̂′, ĥ)

:= P⊗n
UV(u, v) 1{M′(u,BW,n)=m′ , fb(m′)=m}P(BX,n)

XYM̂|M(x, y, m̂|m) 1{
gBW,n

(m,v)=m̂′ ,ĥ=1{(m̂′ ,v)∈Ac
n}
},

Q(Bn ,cn)

UVM′MXYM̂M̂′ Ĥ
(u, v, m′, m, x, y, m̂, m̂′, ĥ)

:= Q⊗n
UV(u, v) 1{M′(u,BW,n)=m′ , fb(m′)=m}P(BX,n)

XYM̂|M(x, y, m̂|m) 1{
gBW,n

(m,v)=m̂′ ,ĥ=1{(m̂′ ,v)∈Ac
n}
},

respectively. For simplicity, we will denote the above distributions by P(Bn) and Q(Bn).
Let Bn := (BW,n, fB,BX,n), Bn, and µn denote the random codebook, its support, and the
probability measure induced by its random construction, respectively. Additionally, define
P̄P(Bn) := Eµn

[
PP(Bn)

]
and P̄Q(Bn) := Eµn

[
PQ(Bn)

]
.

Analysis of the type I and type II error probabilities: We analyze the type I and type
II error probabilities averaged over the random ensemble of quantization and binning
codebooks (BW , fB). Then, an expurgation technique [44] guarantees the existence of a
sequence of deterministic codebooks {Bn}n∈N and a code {cn = ( fn, gn)}n∈N that achieves
the lower bound given in Theorem 1.

Type I error probability: In the following, random sets where the randomness is induced
due to Bn will be written using blackboard bold letters, e.g., An for the random acceptance
region for H0. Note that a type I error can occur only under the following events:

(i) EEE :=
⋃

PÛ∈Dn(PU ,η)

⋃
u∈Tn(PÛ)

EEE(u), where

EEE(u) :=
{
@ j ∈ M′\{0} s.t. (u, W(j)) ∈ Tn

(
PÛiŴi

)
, PÛi

= Pu,

PÛiŴi
∈ Dn(PUW , η)

}
,

(ii) ENE := {M̂′ = M′ and (M̂′, V) /∈ An},
(iii) EOCE := {M′ 6= 0, M̂ 6= M and (M̂′, V) /∈ An},
(iv) ESCE := {M′ = M = 0, M̂ 6= M and (M̂′, V) /∈ An},
(v) EBE := {M′ 6= 0, M̂ = M, M̂′ 6= M′ and (M̂′, V) /∈ An}.
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Here, EEE corresponds to the event that there does not exist a quantization codeword
corresponding to atleast one sequence u of type Pu ∈ Dn(PU , η); ENE corresponds to
the event, in which, there is neither an error at the channel decoder nor at the empirical
conditional entropy decoder; EOCE and ESCE corresponds to the case, in which there is an
error at the channel decoder (hence also at the empirical conditional entropy decoder); and
EBE corresponds to the case that there is an error (due to binning) only at the empirical
conditional entropy decoder. For the event EEE, it follows from a slight generalization of
the type-covering lemma (Lemma 9.1 in [38]) that

P̄P(Bn)(EEE) ≤ e−enΩ(η)
. (24)

Since enΩ(η)/n
(n)−→ ∞ for η > 0, the event EEE may be safely ignored from the analysis of

the error-exponents. Given that E c
EE holds for some BW,n, it follows from Equation 4.22

in [14] that

P̄P(Bn)(ENE|E c
EE) ≤ e−nκα , (25)

for sufficiently large n since the acceptance region is the same as that in Theorem 1 in [14].
Next, consider the event EOCE. We have for sufficiently large n that

P̄P(Bn)(EOCE) ≤ P̄P(Bn)

(
M′ 6= 0

)
P̄P(Bn)

(
M̂ 6= M|M′ 6= 0

)
(a)
≤ P̄P(Bn)

(
M̂ 6= M|M 6= 0

)
≤ P̄P(Bn)

(
M̂ = 0|M 6= 0

)
+ P̄P(Bn)

(
M̂ 6= M|M 6= 0, M̂ 6= 0

)
(b)
≤ e−n(Em(PSX ,θ)−η) + e−n(Eex(R,PSX)−η)

= e−n(min{Em(PSX ,θ),Eex(R,PSX)}−η), (26)

where

(a) holds since the event {M′ 6= 0} is equivalent to {M 6= 0};
(b) holds due to (21a) and (22), which holds for BX,n.

Additionally, the probability of ESCE can be upper bounded as

P̄P(Bn)(ESCE) ≤ P̄P(Bn)

(
M′ = 0

)
≤ P̄P(Bn)

(
M′ = 0|U ∈ Dn(PU , η)

)
+ P̄P(Bn)

(
U /∈ Dn(PU , η)

)
= P̄P(Bn)(EEE) + P̄P(Bn)(U /∈ Dn(PU , η))

≤ e−nκα , (27)

where (27) is due to (24), the definition of Dn(PU , η) in (15) and Lemma 2.2 and Lemma 2.6
in [38].

Finally, consider the event EBE. Note that this event occurs only when |M| ≤ |M′|.
Additionally, M = 0 iff M′ = 0, and hence M′ 6= 0 and M̂ = M implies that M̂ 6= 0. Let

Dn(PVW , η) :=

PV̂Ŵ :
∃ (w, u, v) ∈ ∪

m′∈M′\{0}
Jn(κα + η, PWm′UV), PWm′UV satisfies

(23) and Pwuv = PŴÛV̂

.

We have

P̄P(Bn)(EBE) = P̄P(Bn)

(
EBE, (M′, V) ∈ An

)
+ P̄P(Bn)

(
EBE, (M′, V) /∈ An

)
. (28)

The second term in (28) can be upper bounded as

P̄P(Bn)

(
EBE, (M′, V) /∈ An

)
≤ P̄P(Bn)

(
(M′, V) /∈ An, EEE

)
+ P̄P(Bn)

(
(M′, V) /∈ An, E c

EE
)
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≤ e−enΩ(η)
+ P̄P(Bn)

(
(M′, V) /∈ An|E c

EE
)

≤ e−enΩ(η)
+ P̄P(Bn)

(
(U, V) /∈ Ae

n
)

≤ e−enΩ(η)
+ e−nκα , (29)

where the inequality in (29) follows from Equation (4.22) in [14] for sufficiently large n since
the acceptance region Ae

n is the same as that in [14]. To bound the first term in (28), define
Dn(PV , η) := {PV̂ : ∃ PV̂Ŵ ∈ Dn(PVW , η)}, and observe that since (M′, V) ∈ An implies
M′ 6= 0, we have

P̄P(Bn )

(
EBE, (M′, V) ∈ An

)
= ∑

(m′ ,m)∈M′×M
P̄P(Bn )

(
EBE, (M′, V) ∈ An, M = m, M′ = m′

)
= ∑

(m′ ,m)∈M′×M
P̄P(Bn )

(
M = m, M′ = m′, M̂ = M

)
P̄P(Bn )

(
M̂′ 6= M′, (M̂′, V) /∈ An, (M′, V) ∈ An

∣∣M′ = m′, M = m, M̂ = M
)

≤ ∑
(m′ ,m)∈M′×M

P̄P(Bn )

(
M = m, M′ = m′, M̂ = M

)
P̄P(Bn )

(
M̂′ 6= M′, (M′, V) ∈ An

∣∣M′ = m′, M = m, M̂ = M
)

(30)

(a)
= P̄P(Bn )

(
M̂′ 6= M′, (M′, V) ∈ An

∣∣M′ = 1, M = 1, M̂ = M
)

(b)
≤ ∑

Pv∈Dn(PV ,η)
∑

v∈Pv

P̄P(Bn ) (V = v|M′ = 1)

P̄P(Bn )

(
∃ j ∈ f−1

B (1), j 6= 1, He(W(j)|v) ≤ He(W(1)|v)
∣∣M′ = 1, V = v

)
, (31)

where (a) follows since by the symmetry of the source encoder, binning function and
random codebook construction, the term in (30) is independent of (m, m′); (b) holds since
(M′, V) ∈ An implies that Pv ∈ Dn(PV , η) and (V,BW) − M′ − (M, M̂) form a Markov
chain. Defining PV̂ = Pv, and the event E ′1 := {M′ = 1, V = v}, we obtain

P̄P(Bn)

(
∃ j ∈ f−1

B (1), j 6= 1, He(W(j)|v) ≤ He(W(1)|v)
∣∣ E ′1)

= ∑
j∈M′\{0,1}

P̄P(Bn)

(
fB(j) = 1, He(W(j)|v) ≤ He(W(1)|v)

∣∣ E ′1)
(a)
≤ 1

enRn ∑
j∈M′\{0,1}

P̄P(Bn)

(
He(W(j)|v) ≤ He(W(1)|v)

∣∣ E ′1)
(b)
≤ 1

enRn ∑
j∈M′\{0,1}

∑
PŴ :PV̂Ŵ∈Dn(PVW ,η)

∑
w:(v,w)∈Tn(PV̂Ŵ )

P̄P(Bn)

(
W(1) = w

∣∣ E ′1)
∑

w̃∈Tn(PŴ ):He(w̃|v)≤H(Ŵ|V̂)

P̄P(Bn)

(
W(j) = w̃

∣∣ E ′1 ∪ {W(1) = w}
)

(c)
≤ 1

enRn ∑
j∈M′\{0,1}

∑
PŴ :PV̂Ŵ∈Dn(PVW ,η)

∑
w:(v,w)∈Tn(PV̂Ŵ )

P̄P(Bn)

(
W(1) = w

∣∣ E ′1)
∑

w̃∈Tn(PŴ ):He(w̃|v)≤H(Ŵ|V̂)

2 P̄P(Bn)(W(j) = w̃), (32)

where

(a) follows since fB(·) is the uniform binning function independent of BW,n;
(b) holds due to the fact that if Pv ∈ Dn(PV , η), then M′ = 1 implies that (W(1), v) ∈

Tn(PV̂Ŵ) with probability one for some PV̂Ŵ ∈ Dn(PVW , η);
(c) holds since P̄P(Bn)

(
W(j) = w̃

∣∣ E ′1 ∪ {W(1) = w}
)
≤ 2 P̄P(Bn)(W(j) = w̃), which

follows similarly to Equation (101) in [10].
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Continuing, we can write for sufficiently large n,

P̄P(Bn)

(
∃ j ∈ f−1

B (1), j 6= 1, He(W(j)|v) ≤ He(W(1)|v)
∣∣ E ′1)

(a)
≤ 1

enRn ∑
j∈M′\{0,1}

∑
PŴ :PV̂Ŵ∈Dn(PVW ,η)

∑
w:(v,w)∈Tn(PV̂Ŵ )

P̄P(Bn)

(
W(1) = w

∣∣ E ′1)
∑

w̃∈Tn(PŴ ):He(w̃|v)≤H(Ŵ|V̂)

2 e−n(H(Ŵ)−η)

(b)
≤ 1

enRn ∑
j∈M′\{0,1}

∑
PŴ :PV̂Ŵ∈Dn(PVW ,η)

∑
w:(v,w)∈Tn(PV̂Ŵ )

P̄P(Bn)

(
W(1) = w

∣∣ E ′1)
(n + 1)|V||W|enH(Ŵ|V̂)2 e−n(H(Ŵ)−η)

≤ 1
enRn ∑

j∈M′\{0,1}
∑

PŴ :PV̂Ŵ∈Dn(PVW ,η)
2 (n + 1)|V||W| e−n(I(Ŵ;V̂)−η)

(c)
≤ 1

enRn ∑
j∈M′\{0,1}

2 (n + 1)|W| (n + 1)|V||W| e
−n

(
min

PV̂Ŵ∈Dn(PVW ,η)
I(Ŵ;V̂)−η

)

(d)
≤ e−n(R−R′+ρn−η′n), (33)

where ρn := minPV̂Ŵ∈Dn(PVW ,η) I(V̂; Ŵ) and η′n := 3η + o(1). In the above,

(a) used Lemma 2.3 in [38] and the fact that the codewords are chosen uniformly at
random from Tn(PŴ);

(b) follows since the total number of sequences w̃ ∈ Tn(PŴ) such that Pw̃v = PW̃Ṽ

and H(W̃|Ṽ) ≤ H(Ŵ|V̂) is upper bounded by enH(Ŵ|V̂), and |T (Wn × Vn)| ≤
(n + 1)|V||W|;

(c) holds due to Lemma 2.2 in [38];
(d) follows from R′ := ζ(κα, (14), (18) and (19).

Thus, since ρn → ρ(κα, ω) +O(η), we have from (28), (29), (31), (33) for large enough n that

P̄P(Bn)(EBE) ≤ e−n(min{κα ,R−ζ(κα ,ω)+ρ(κα ,ω)−O(η)}). (34)

By choice of (ω, PSX , θ) ∈ L(κα), it follows from (24), (25), (26), (27) and (34) that the type I
error probability is upper bounded by e−n(κα−O(η)) for large n.

Type II error probability: We analyze the type II error probability averaged over Bn. A
type II error can occur only under the following events:

(i) Ea :=
{

M̂ = M, M̂′ = M′ 6= 0, (U, V, W(M′)) ∈ Tn
(

PÛV̂Ŵ
)

s.t. PÛŴ ∈ Dn(PUW , η) and PV̂Ŵ ∈ Dn(PVW , η)

}
,

(ii) Eb :=


M′ 6= 0, M̂ = M, M̂′ 6= M′, fB(M̂′) = fB(M′), (U, V, W(M′),
W(M̂′)) ∈ Tn

(
PÛV̂ŴŴd

)
s.t. PÛŴ ∈ Dn(PUW , η),

PV̂Ŵd
∈ Dn(PVW , η) and He

(
W(M̂′)|V

)
≤ He(W(M′)|V)

,

(iii) Ec :=

{
M′ 6= 0, M̂ 6= M or 0, (U, V, W(M′), W(M̂′)) ∈ Tn

(
PÛV̂ŴŴd

)
s.t.

PÛŴ ∈ Dn(PUW , η) and PV̂Ŵd
∈ Dn(PVW , η)

}
,

(iv) Ed :=
{

M = M′ = 0, M̂ 6= M, (V, W(M̂′)) ∈ Tn

(
PV̂Ŵd

)
s.t. PV̂Ŵd

∈ Dn(PVW , η)
}

.
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Similar to (24), it follows that P̄Q(Bn)(EEE) ≤ e−enΩ(η)
. Hence, we may assume that E c

EE holds
for the type II error-exponent analysis. It then follows from the analysis in Equations (4.23)–
(4.27) in [14] that for sufficiently large n,

P̄Q(Bn)(Ea|E c
EE) ≤ e−n(E1(κα ,ω)−O(η)).

The analysis of the error events Eb, Ec and Ed follows similarly to that in the proof of Theo-
rem 2 in [10], and results in

− 1
n

log
(
P̄Q(Bn)(Eb)

)
&

 min
(PŨṼW̃ ,QŨṼW̃ )∈T2(κα ,ω)

D(PŨṼW̃ ||QŨṼW̃) + Eb(κα, ω, R)−O(η), if R < ζ(κα, ω) + η,

∞, otherwise,

= E2(κα, ω, R)−O(η).
−1
n

log
(
P̄Q(Bn)(Ec)

)

&


min

(PŨṼW̃ ,QŨṼW̃ )∈T3(κα ,ω)
D(PŨṼW̃ ||QŨṼW̃) + Eb(κα, ω, R) if R < ζ(κα, ω) + η

+Eex(R, PSX)−O(η),
min

(PŨṼW̃ ,QŨṼW̃ )∈T3(κα ,ω)
D(PŨṼW̃ ||QŨṼW̃) + ρ(κα, ω) otherwise,

+Eex(R, PSX)−O(η),

= E3(κα, ω, R, PSX)−O(η).
−1
n

log
(
P̄Q(Bn)(Ed)

)

&


min

PṼ :PṼW̃∈Dn(PVW ,η)
D(PṼ ||QV) + Eb(κα, ω, R) if R < ζ(κα, ω) + η,

+Esp(PSX , θ)− θ −O(η),
minPṼ :PṼW̃∈Dn(PVW ,η) D(PṼ ||QV) + ρ(κα, ω) otherwise,

+Esp(PSX , θ)− θ −O(η),

= E4(κα, ω, R, PSX , θ)−O(η).

Since the exponent of the type II error probability is lower bounded by the minimum of the
exponent of the type II error-causing events, we have shown from the above that for a fixed
(ω, R, PSX , θ) ∈ L(κα) and sufficiently large n,

P̄P(Bn)

(
Ĥ = 1

)
≤ e−n(κα−O(η)), (35a)

P̄Q(Bn)

(
Ĥ = 0

)
≤ e−n(κ̄s(κα ,ω,R,PSX ,θ)−O(η)), (35b)

where

κ̄s(κα, ω, R, PSX , θ) := min
{

E1(κα, ω), E2(κα, ω, R), E3(κα, ω, R, PSX), E4(κα, ω, R, PSX , θ)
}

.

Expurgation: To complete the proof, we extract a deterministic codebook B?n that satisfies

PP(B?n)
(

Ĥ = 1
)
≤ e−n(κα−O(η)),

PQ(B?n)
(

Ĥ = 0
)
≤ e−n(κ̄s(κα ,ω,R,PSX ,θ)−O(η)).

For this purpose, remove a set B′n ⊂ Bn of highest type I error probability codebooks such
that the remaining set Bn\B′n has a probability of τ ∈ (0.25, 0.5), i.e., µn(Bn\B′n) = τ.
Then, it follows from (35a) and (35b) that for all Bn ∈ Bn\B′n,

PP(Bn)

(
Ĥ = 1

)
≤ 2e−n(κα−O(η)),
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P̃Q(Bn)

(
Ĥ = 0

)
≤ 4e−n(κ̄s(κα ,ω,R,PSX ,θ)−O(η)),

where P̃Q(Bn) =
1
τEµn

[
PQBn1{Bn∈Bn\B′n}

]
is a PMF. Perform one more similar expurgation

step to obtain B?n =
(
B?W,n, f ?b ,B?X,n

)
∈ Bn\B′n such that for all sufficiently large n

PP(B?n)
(

Ĥ = 1
)
≤ 2e−n(κα−O(η)) ≤ e−n

(
κα−O(η)−(log 2/n)

)
,

PQ(B?n)
(

Ĥ = 0
)
≤ 4e−n

(
κ̄s(κα ,ω,R,PSX ,θ)−O(η)

)
≤ e−n

(
κ̄s(κα ,ω,R,PSX ,θ)−O(η)−(log 4/n)

)
.

Maximizing over (ω, R, PSX, θ) ∈ L(κα) and noting that η > 0 is arbitrary completes the
proof.

4.2. Proof of Corollary 1

Consider (ω, PSX, θ) ∈ L?(κα) and R = ζ(κα, ω). Then, (ω, R, PSX, θ) ∈ L(κα). Addi-
tionally, for any (PŨṼW̃ , QŨṼW̃) ∈ T1(κα, ω), we have

D(PŨṼW̃ ||QŨṼW̃) = D(PŨW̃ ||QŨW̃) + D
(

PṼ|ŨW̃ ||QṼ|ŨW̃ |PŨW̃

)
(a)
≥ D

(
PṼ|ŨW̃ ||PV |PŨW̃

)
= D

(
PṼŨW̃ ||PV PŨW̃

)
(b)
≥ D(PṼW̃ ||PV PW̃)

(c)
= D

(
PV̂Ŵ ||PV PŴ

)
= IP(V̂; Ŵ) + D(PV̂ ||PV), (36)

where (a) is due to the non-negativity of KL divergence and since QṼ|ŨW̃ = PV ; (b) is
because of the monotonicity of KL divergence Theorem 2.14 in [43]; (c) follows since for
(PŨṼW̃ , QŨṼW̃) ∈ T1(κα, ω), PṼW̃ = PV̂Ŵ for some PÛV̂Ŵ ∈ L̂(κα, ω). Minimizing over all
PÛV̂Ŵ ∈ L̂(κα, ω) yields that

E1(κα, ω) = min
(PŨṼW̃ ,QŨṼW̃ )∈T1(κα ,ω)

D(PŨṼW̃ ||QŨṼW̃)

≥ min
PÛV̂Ŵ∈L̂(κα ,ω)

[
IP(V̂; Ŵ) + D(PV̂ ||PV)

]
= min

PV̂Ŵ :PÛV̂Ŵ∈L̂(κα ,ω)

[
IP(V̂; Ŵ) + D(PV̂ ||PV)

]
:= Ei

1(κα, ω),

where the inequality above follows from (36). Next, since ζ(κα, ω) = R, we have that
E2(κα, ω, R) = ∞. Additionally, by the non-negativity of KL divergence

E3(κα, ω, R, PSX) = min
(PŨṼW̃ ,QŨṼW̃ )
∈T3(κα ,ω)

D(PŨṼW̃ ||QŨṼW̃) + ρ(κα, ω) + Eex(R, PSX)

≥ ρ(κα, ω) + Eex(ζ(κα, ω), PSX) := Ei
2(κα, ω, PSX),

E4(κα, ω, PSX , θ) = min
PV̂ :PÛV̂Ŵ∈L̂(κα ,ω)

D(PV̂ ||PV) + ρ(κα, ω) + Em(PSX , θ)− θ

= ρ(κα, ω) + Em(PSX , θ)− θ := Ei
3(κα, ω, PSX , θ),

where the final equality is since PUV PW|U ∈ L̂(κα, ω) for PW|U := ω(PU). The claim in (8)
now follows from Theorem 1.

Next, we prove (10). Note that L̂(0, ω) = {PUVW = PUV PW|U : PW|U = ω(PU)}
and L?(0) = {(ω, PSX, θ) ∈ F× P(S × X )× Θ(PSX) : IP(U; W) < IP(X; Y|S), PW|U =
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ω(PU), PSXY := PSXPY|X} since Esp(PSX, θ) ≥ 0 and Eex(IP(U; W), PSX) ≥ 0. Hence,
we have

Ei
1(0, ω) ≥ min

PÛV̂Ŵ∈L̂(0,ω)
IP(V̂; Ŵ) = IP(V; W).

Additionally, ρ(0, ω) = IP(V; W), Ei
2(0, ω, PSX) ≥ ρ(0, ω) and Ei

3(0, ω, PSX, θ) ≥
ρ(0, ω). By choosing PXS = P?

XPS where P?
X is the capacity achieving input distribu-

tion, we have IP(X; Y|S) = C. Then, it follows from (8) and the continuity of Ei
1(κα, ω),

Ei
2(κα, ω, PSX) and Ei

3(κα, ω, PSX, θ) in κα that limκα→0 κ(κα) ≥ κ?i (0). On the other hand,
limκα→0 κ(κα) ≤ κ?i (0) follows from the converse proof in Proposition 7 in [10]. The proof of
the cardinality bound |W| ≤ |U|+ 1 follows from a standard application of the Eggleston–
Fenchel–Carathéodory theorem (Theorem18 in [48]), thus completing the proof.

4.3. Proof of Corollary 2

Specializing Theorem 1 to TAD, note that ρ(κα, ω) = 0 since PÛV̂Ŵ = QUQV PŴ|Û ∈
L̂(κα, ω) and IP(V̂; Ŵ) = 0. Additionally, for R ≥ ζ(κα, ω), Eb(κα, ω, R) = ∞. Hence,

L(κα)=

{
(ω, R, PSX , θ) :

ζ(κα, ω) ≤ R < IP(X; Y|S), PSXY = PSXPY|X ,

min
{

Esp(PSX , θ), Eex(R, PSX)
}
≥ κα

}
,

L̂(κα, ω) :=
{

PÛV̂Ŵ : D
(

PÛV̂Ŵ ||PUVŴ
)
≤ κα, PŴ|Û = ω(PÛ), PUVŴ = QUQV PŴ|Û

}
.

Then, we have

E1(κα, ω) := Ed
1 (κα, ω) := min

(PŨṼW̃ ,QŨṼW̃ )∈T1(κα ,ω)
D(PŨṼW̃ ||QŨṼW̃)

(a)
≥ min

(PŨṼW̃ ,QŨṼW̃ )∈T1(κα ,ω)
D(PṼW̃ ||QṼW̃)

(b)
= min

(PV̂Ŵ ,QVŴ ):PÛV̂Ŵ∈L̂(κα ,ω),
QUVŴ=QUV PŴ|Û

D(PV̂Ŵ ||QVŴ), (37)

where (a) follows due to the data-processing inequality for KL divergence Theorem 2.15
in [43]; (b) is since (PŨṼW̃ , QŨṼW̃) ∈ T1(κα, ω) implies that PṼW̃ = PV̂Ŵ and QŨṼW̃ =

QUV PŴ|Û for some PÛV̂Ŵ ∈ L̂(κα, ω). Next, note that since R ≥ ζ(κα, ω), E2(κα, ω, R) = ∞.
Additionally,

E3(κα, ω, R, PSX) = min
(PŨṼW̃ ,QŨṼW̃ )∈T3(κα ,ω)

D(PŨṼW̃ ||QŨṼW̃) + Eex(R, PSX) (38a)

(a)
= Eex(R, PSX), (38b)

E4(κα, ω, PSX , θ) = min
PV̂ :PÛV̂Ŵ∈L̂(κα ,ω)

D(PV̂ ||QV) + Em(PSX , θ)− θ

(b)
= Em(PSX , θ)− θ =: Ed

3 (PSX , θ), (38c)

where

(a) is obtained by taking PÛV̂Ŵ = QUQV PW|U ∈ L̂(κα, ω) and PW|U = ω(QU) in the
definition of T3(κα, ω). This implies that (PŨṼW̃ , QŨṼW̃) = (QUV PW|U , QUV PW|U) ∈
T3(κα, ω), and hence that the first term in the right hand side (RHS) of (38a) is zero;

(b) is due to QUQV PW|U ∈ L̂(κα, ω) for PW|U = ω(QU).

Since Eex(R, PSX) is a non-increasing function of R and R ≥ ζ(κα, ω), selecting R = ζ(κα, ω)
maximizes E3(κα, ω, R, PSX). Then, (11) follows from (37), (38b) and (38c).
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Next, we prove (12). Note that ζ(0, ω) = IQ(U; W), where QUW = QU PW|U , PW|U =

ω(QU), and since Esp(PSX , θ) ≥ 0 and Eex
(

IQ(U; W), PSX
)
≥ 0,

L?(0) =
{
(ω, PSX , θ) ∈ F×P(S ×X )×Θ(PSX) : IQ(U; W) < IP(X; Y|S),
QUVW = QUV PW|U , PW|U = ω(QU), PSXY := PSXPY|X

}
.

Additionally, L̂(0, ω) =
{

QUQV PW|U : PW|U = ω(QU)
}

. By choosing θ = −θl(PSX)

(defined above (6a)) that maximizes Ed
3 (PSX , θ), we have

Ed
1 (0, ω) ≥ min

(PV̂Ŵ ,QVŴ ): PÛV̂Ŵ∈L̂(0,ω),
QUVŴ=QUV PŴ|Û

D(PV̂Ŵ ||QVŴ)

= min
(PW|U ,PSX): IQ(U;W)≤IP(X;Y|S),
QUVW=QUV PW|U ,PSXY=PSX PY|X

D(QV QW ||QVW), (39a)

Ed
2 (0, ω, PSX) = Eex

(
IQ(U; W), PSX

)
, (39b)

Ed
3 (PSX ,−θl(PSX)) = Em(PSX ,−θl(PSX)) + θl(PSX) = θl(PSX), (39c)

where (39c) is due to Em(PSX,−θl(PSX)) = 0. The latter in turn follows similar to (A10)
and (A11) from the definition of Em(·, ·). From (11), (39a, 39b, 39c), and the continuity of
Ed

1 (κα, ω), Ed
2 (κα, ω, PSX) in κα, (12) follows. The proof of the cardinality bound |W| ≤

|U|+ 1 in the RHS of (39a) follows via a standard application of the Eggleston–Fenchel–
Carathéodory Theorem (Theorem 18 in [48]). To see this, note that it is sufficient to preserve
{QU(u), u ∈ U}, D(QV QW ||QVW) and HQ(U|W), all of which can be written as a linear
combination of functionals of QU|W(·|w) with weights QW(w). Thus, it requires |U | − 1
points to preserve {QU(u), u ∈ U} and one each for D(QV QW ||QVW) and HQ(U|W). This
completes the proof.

4.4. Proof of Theorem 2

We will show that the error-exponent pairs
(
κα, κ?h(κα)

)
and

(
κα, κ?u(κα)

)
are achieved

by a hybrid coding scheme and uncoded transmission scheme, respectively. First, we
describe the hybrid coding scheme.

Let n ∈ N, |W| < ∞, κα > 0, and
(

PS, ω′(·, PS), PX|USW , PX′ |US
)
∈ Lh(κα). Further,

let η > 0 be a small number, and choose a sequence s ∈ Tn
(

PŜ
)
, where PŜ satisfies

D
(

PŜ||PS
)
≤ η. Set R′ := ζ ′(κα, ω′, PŜ).

Encoding: The encoder performs type-based quantization followed by hybrid coding [40].
The details are as follows:

Quantization codebook: Let Dn(PU , η) be as defined in (15). Consider some ordering
on the types in Dn(PU , η) and denote the elements as PÛi

, i ∈
[
|Dn(PU , η)|

]
. For each

joint type PŜÛi
such that PÛi

∈ Dn(PU , η) and Ŝ ⊥⊥ Ûi, choose a joint type variable PŜÛiŴi
,

PŴi
∈ T (Wn), such that D

(
PŴi |Ûi Ŝ

||PWi |UŜ

∣∣PÛi Ŝ
)
≤ η/3 and I(Ŝ, Ûi; Ŵi) ≤ R′ + (η/3),

where PWi |U,S = ω′(PÛi
, PŜ). Define Dn(PSUW , η) :=

{
PŜÛiŴi

: i ∈
[
|Dn(PU , η)|

]}
, R′i :=

IP(Ŝ, Ûi; Ŵi) + (η/3) for i ∈
[
|Dn(PU , η)|

]
andM′

i :=
[
1 + ∑i−1

m=1 enR′m : ∑i
m=1 enR′m

]
, i ∈[

|Dn(PU , η)|
]
. Let BW,n =

{
W(j) ∈ Wn, 1 ≤ j ≤ ∑

|Dn(PU ,η)|
i=1 enR′i

}
denote a random quanti-

zation codebook such that for i ∈
[
|Dn(PU , η)|

]
, each codeword W(j), j ∈ M′

i, is indepen-
dently selected from Tn(PŴi

) according to uniform distribution, i.e., W(j) ∼ Unif
[
Tn(PŴi

)
]
.

Let BW,n denote a realization of BW,n.
Type-based hybrid coding: For u ∈ Tn

(
PÛi

)
such that PÛi

∈ Dn(PU , η) for some i ∈[
|Dn(PU , η)|

]
, let

M̄(u,BW,n) :=
{

j ∈ M′
i : w(j) ∈ BW,n, (s, u, w(j)) ∈ Tn(PŜÛiŴi

), PŜÛiŴi
∈ Dn(PSUW , η)

}
.
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If |M̄(u,BW,n)| ≥ 1, let M′(u,BW,n) denote an index selected uniformly at random from
the set M̄(u,BW,n); otherwise, set M′(u,BW,n) = 0. Given BW,n and u ∈ Un, the quantizer

outputs M′ = M′(u,BW,n), where the support of M′ isM′ := {0}⋃|Dn(PU ,η)|
i=1 M′

i. Note
that for sufficiently large n, it follows similarly to (18) that |M′| ≤ en(R′+η). For a given
BW,n and u ∈ Un, the encoder transmits X ∼ P⊗n

X|USW(·|u, s, w(m′)) if M′ = m′ 6= 0, and

X′ ∼ P⊗n
X′ |US(·|u, s) if M′ = 0.

Acceptance region: For a given codebook BW,n and m′ ∈ M′\{0}, let Om′ denote the set
of u such that M′(u,BW,n) = m′. For each m′ ∈ M′\{0} and u ∈ Om′ , set

Z ′m′(u) =
{
(v, y) ∈ Vn ×Yn : (s, u, w̄m′ , v, y) ∈ Jn

(
κα + η, PŜUWm′VY

)}
,

where recall that Jn(r, PX) := {x ∈ X n : D(Px||PX) ≤ r}, and

PŜUWm′VXY = PŜPUV PWm′ |UŜPX|UŜWm′
PY|X , (40a)

PWm′ |UŜ = ω′(Pu, PŜ) and PX|UŜWm′
= PX|USW . (40b)

For m′ ∈ M′\{0}, define Z ′m′ := {(v, y) : (v, y) ∈ Z ′m′(u) for some u ∈ Om′}. The
acceptance region for H0 is given by An := ∪m′∈M′\0 s × m′ × Z ′m′ or equivalently as
Ae

n := ∪m′∈M′\0 s×Om′ ×Z ′m′ .
Decoding: Given codebook BW,n, Y = y, and V = v, if (v, y) ∈ ⋃

m′∈M′\{0} Z ′m′ , then
M̂′ = m̂′, where m̂′ := arg minj∈M′\0 He(w(j)|v, y, s). Otherwise, M̂′ = 0. Denote the
decoder induced by the above operations by gBW,n : Sn × Vn ×Yn →M′.

Testing: If M̂′ = 0, Ĥ = 1 is declared. Otherwise, Ĥ = 0 or Ĥ = 1 is declared depending on
whether (s, m̂′, v, y) ∈ An or (s, m̂′, v, y) /∈ An, respectively. Denote the decision function
induced by gBW,n and An by gn : Sn × Vn ×Yn → Ĥ.

Induced probability distribution: The PMFs induced by a code cn = ( fn, gn) with respect
to codebook BW,n under H0 and H1 are

P(BW,n ,cn)

UVM′XYM̂′ Ĥ
(u, v, m′, x, y, m̂′, ĥ)

:=



P⊗n
UV(u, v) 1{M′(u,BW,n)=m′} P⊗n

X|USW(x|s, u, w(m′)) P⊗n
Y|X(y|x)

1{
gBW,n

(v,y,s)=m̂′
} 1{

ĥ=1{(s,m̂′ ,v,y)∈Ac
n}

}, if m′ 6= 0,

P⊗n
UV(u, v) 1{M′(u,BW,n)=m′} P⊗n

X′ |US(x|s, u) P⊗n
Y|X(y|x)

1{
gBW,n

(v,y,s)=m̂′
} 1{

ĥ=1{(s,m̂′ ,v,y)∈Ac
n}

}, otherwise,

and

Q(BW,n ,cn)

UVM′XYM̂′ Ĥ
(u, v, m′, x, y, m̂′, ĥ)

:=



Q⊗n
UV(u, v) 1{M′(u,BW,n)=m′} P⊗n

X|USW(x|s, u, w(m′)) P⊗n
Y|X(y|x)

1{
gBW,n

(v,y,s)=m̂′
} 1{

ĥ=1{(s,m̂′ ,v,y)∈Ac
n}
}, if m′ 6= 0,

Q⊗n
UV(u, v) 1{M′(u,BW,n)=m′} P⊗n

X′ |US(x|s, u) P⊗n
Y|X(y|x)

1{
gBW,n

(v,y,s)=m̂′
} 1{

ĥ=1{(s,m̂′ ,v,y)∈Ac
n}
}, otherwise,

respectively. For brevity, we will denote BW,n by Bn, BW,n by Bn, and the above probability
distributions by P(Bn) and Q(Bn). Let Bn and µn stand for the support and probability
measure of Bn, respectively, and set P̄P(Bn) := Eµn

[
PP(Bn)

]
, P̄Q(Bn) := Eµn

[
PQ(Bn)

]
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Analysis of the type I and type II error probabilities: We analyze the expected type I and
type II error probabilities, where the expectation is with respect to the randomness of Bn,
followed by the expurgation technique to extract a sequence of deterministic codebooks
{Bn}n∈N and a code {cn = ( fn, gn)}n∈N that achieves the lower bound in Theorem 2.

Type I error probability: Denoting by An the random acceptance region for H0, note that a
type I error can occur only under the following events:

(i) E ′EE :=
⋃

PÛ∈Dn(PU ,η)

⋃
u∈Tn(PÛ)

E ′EE(u), where

E ′EE(u) :=

{
@ j ∈ M′\{0} s.t. (s, u, W(j)) ∈ Tn(PŜÛiŴi

), PŜÛi
= Psu,

PŜÛiŴi
∈ Dn(PSUW , η)

}
,

(ii) E ′NE := {M̂′ = M′ and (s, M̂′, V, Y) /∈ An},
(iii) E ′ODE := {M′ 6= 0, M̂′ 6= M′ and (s, M̂′, V, Y) /∈ An},
(iv) E ′SDE := {M′ = 0, M̂′ 6= M′ and (s, M̂′, V, Y) /∈ An}.
By definition of R′i, we have, similar to (24), the following:

P̄PBn (E ′EE) ≤ e−enΩ(η)
. (41)

Next, the event E ′NE can be upper bounded as

P̄PBn

(
E ′NE|E ′cEE

)
≤ P̄PBn

(
(s, M̂′, V, Y) /∈ An|M̂′ = M′, E ′cEE

)
= 1− P̄PBn

(
(s, U, V, Y) ∈ Ae

n|E ′cEE
)
. (42)

For u ∈ Om′ , note that, similar to Equation 4.17 in [14], we have

P̄PBn

(
(V, Y) ∈ Z′m′(u)|U = u, W(m′) = w̄m′ , E ′cEE

)
≥ 1− e−n(κα+

η
3−D(Pu||PU)).

From this and (15), we obtain, similar to Equation (4.22) in [14] that

P̄PBn ((s, U, V, Y) ∈ An
e |E ′cEE) ≥ 1− e−nκα . (43)

Substituting (43) in (42) yields

P̄PBn

(
E ′NE|E ′cEE

)
≤ e−nκα . (44)

Next, we bound the probability of the event E ′ODE as follows:

P̄PBn

(
E ′ODE

)
= P̄PBn

(
M′ 6= 0, M̂′ 6= M′, (s, M′, V, Y) ∈ An, (s, M̂′, V, Y) /∈ An

)
+ P̄PBn

(
M′ 6= 0, M̂′ 6= M′, (s, M′, V, Y) /∈ An, (s, M̂′, V, Y) /∈ An

)
≤ P̄PBn

(
M′ 6= 0, M̂′ 6= M′, (s, M′, V, Y) ∈ An, (s, M̂′, V, Y) /∈ An

)
+ P̄PBn

(
M′ 6= 0, M̂′ 6= M′, (s, M′, V, Y) /∈ An

)
(a)
≤ P̄PBn

(
M′ 6= 0, M̂′ 6= M′, (s, M′, V, Y) ∈ An, (s, M̂′, V, Y) /∈ An

)
+ e−enΩ(η)

+ e−nκα (45)

≤ P̄PBn

(
M̂′ 6= M′|M′ 6= 0, (s, M′, V, Y) ∈ An

)
+ e−enΩ(η)

+ e−nκα ,
(b)
= P̄PBn

(
M̂′ 6= M′|M′ 6= 0, M̂′ 6= 0, (s, M′, V, Y) ∈ An

)
(46)

(c)
≤ e−n(ρ′(κα ,ω′ ,PS ,PX|USW )−ζ ′(κα ,ω′ ,PŜ)−O(η)), (47)
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where (a) follows similar to (29) using (41) and (43); (b) is since (s, M′, V, Y) ∈ An implies
that M̂′ 6= 0; and (c) follows similar to (33). Further,

P̄PBn

(
E ′SDE

)
≤ P̄PBn

(
M′ = 0

)
≤ P̄PBn

(
M′ = 0|E ′cEE

)
+ P̄PBn

(
E ′EE

)
= ∑

u:Pu /∈Dn(PU ,η)
P⊗n

U (u) + P̄PBn

(
E ′EE

)
≤ e−nκα + e−enΩ(η)

, (48)

where the penultimate equality is since given E ′cEE, M′ = 0 occurs only for U = u such
that Pu /∈ Dn(PU , η), and the final inequality follows from (41), the definition of Dn(PU , η)
and Lemma 1.6 in [38]. From (41), (44), (47) and (48), the expected type I error probability
satisfies e−n(κα−O(η)) for sufficiently large n via the union bound.

Type II error probability: Next, we analyze the expected type II error probability over Bn.
Let

Dn(PSVWY, η) :=

 PŜV̂ŴŶ : ∃ (s, u, v, w̄, y) ∈ ∪
m′∈M′\{0}

Jn

(
κα + η, PŜUVWm′Y

)
,

PŜUVWm′Y
satisfies (40) and Psuvw̄y = PŜÛV̂ŴŶ

,

F ′1,n(η) :=
{

PŜŨṼW̃Ỹ ∈ T (Sn ×Un × Vn ×Wn ×Yn) : PŜŨW̃ ∈ Dn(PSUW , η),
PŜṼW̃Ỹ ∈ Dn(PSVWY, η)

}
.

A type II error can occur only under the following events:

(a) E ′a :=
{

M̂′ = M′ 6= 0, (s, U, V, W(M′), Y) ∈ Tn
(

PŜÛV̂ŴŶ
)

s.t. PÛŴ ∈ Dn(PSUW , η) and PŜV̂ŴŶ ∈ Dn(PSVWY, η)

}
,

(b) E ′b :=


M′ 6= 0, M̂′ 6= M′, (s, U, V, W(M′), Y, W(M̂′)) ∈ Tn

(
PŜÛV̂ŴŶŴd

)
s.t. PŜÛŴ ∈ Dn(PSUW , η), PŜV̂ŴdŶ ∈ Dn(PSVWY, η),
and He

(
W(M̂′)|s, V, Y

)
≤ He(W(M′)|s, V, Y)

,

(c) E ′c :=

{
M′ = 0, M̂′ 6= M′, (s, V, Y, W(M̂′)) ∈ Tn

(
PŜV̂ŶŴd

)
s.t. PŜV̂ŴdŶ ∈ Dn(PSVWY, η)

}
.

Considering the event E ′a, we have

P̄QBn

(
E ′a
)

≤ ∑
PŜŨṼW̃Ỹ
∈F ′1,n(η)

∑
(u,v,w̄,y):
(s,u,v,w̄,y)
∈Tn(PŜŨṼW̃Ỹ)

∑
m′∈M′\{0}

P̄QBn

(
U = u, V = v, M′ = m′, W(m′) = w̄, Y = y|S = s

)

≤ ∑
PŜŨṼW̃Ỹ∈F

′
1,n(η)

∑
(u,v,w̄,y):

(s,u,v,w̄,y)∈Tn(PŜŨṼW̃Ỹ)

∑
m′∈M′\{0}

P̄QBn

(
U = u, V = v, M′ = m′|S = s

)
P̄QBn

(
W(m′) = w̄|U = u, V = v, M′ = m′, S = s

)
P̄QBn

(
Y = y|U = u, V = v, M′ = m′, W(m′) = w̄, S = s

)
(a)
≤ ∑

PŜŨṼW̃Ỹ∈F
′
1,n(η)

∑
(u,v,w̄,y):

(s,u,v,w̄,y)∈Tn(PŜŨṼW̃Ỹ)

e−n(H(Ũ,Ṽ)+D(PŨṼ ||QUV)) e−n(H(W̃|Ŝ,Ũ)−η)

e−n
(

H(Ỹ|Ũ,Ŝ,W̃)+D
(

PỸ|ŨŜW̃ ||PY|USW |PŨŜW̃

))
≤ ∑

PŜŨṼW̃Ỹ∈F
′
1,n(η)

enH(Ũ,Ṽ,W̃,Ỹ|Ŝ)e−n(H(Ũ,Ṽ)+D(PŨṼ ||QUV)) e−n(H(W̃|Ŝ,Ũ)−η)
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e−n
(

H(Ỹ|Ũ,Ŝ,W̃)+D
(

PỸ|ŨŜW̃ ||PY|USW |PŨŜW̃

))
≤ e−nE′1,n , (49)

where

E′1,n := min
PŜŨṼW̃Ỹ∈F

′
1,n(η)

H(Ũ, Ṽ) + D(PŨṼ ||QUV) + H(W̃|Ŝ, Ũ)− η + H(Ỹ|Ũ, Ŝ, W̃)

+ D
(

PỸ|ŨŜW̃ ||PY|USW |PŨŜW̃

)
− H(Ũ, Ṽ, W̃, Ỹ|Ŝ)− 1

n
||U ||V||W||Y| log(n + 1)

& min
(PŨṼW̃ỸS ,QŨṼW̃ỸS)
∈T ′1 (κα ,ω′ ,PS ,PX|USW )

D(PŨṼW̃Ỹ|S||QUVWY|S|PS)−O(η)

= E′1(κα, ω′)−O(η).

For the inequality in (a) above, we used ∑ P̄QBn

(
M′ = m′|U = u, V = v, S = s

)
≤ 1 and

P̄QBn

(
W(m′) = w̄|U = u, V = v, S = s, M′ = m′

)
≤
{

e−n
(

H(W̃|Ŝ,Ũ)−η
)

, if w̄ ∈ Tn(W̃),
0, otherwise,

which in turn follows from the fact that given M′ = m′ and U = u, W(m′) is uniformly
distributed in the set Tn

(
PW̃|ŜŨ , s, u

)
and that for sufficiently large n

∣∣Tn
(

PW̃|ŜŨ , s, u
)∣∣ ≥

en(H(W̃|Ŝ,Ũ)−η).
Next, we analyze the probability of the event E ′b. Let

F ′2,n(η) :=

{
PŜŨṼW̃ỸW̃d

: PŜŨW̃ ∈ Dn(PSUW , η), PŜṼW̃dỸ ∈ Dn(PSVWY, η)

H
(
W̃d|Ŝ, Ṽ, Ỹ

)
≤ H

(
W̃|Ŝ, Ṽ, Ỹ

) }
.

Then,

P̄QBn

(
E ′b
)

≤ ∑
PŜŨṼW̃ỸW̃d
∈F ′2,n(η)

∑
(u,v,w̄,y,w′):
(s,u,v,w̄,y,w′)
∈Tn(PŜŨṼW̃ỸW̃d

)

∑
m′∈
M′\{0}

P̄QBn

(
U = u, V = v, M′ = m′, W(m′) = w̄, Y = y|S = s

)

∑
m̂′∈M′\{0,m′}

P̄QBn

(
W̄(m̂′) = w′|U = u, M′ = m′, W(m′) = w̄, S = s

)
≤ ∑

PŜŨṼW̃ỸW̃d
∈F ′2,n(η)

∑
(u,v,w̄,y):

(s,u,v,w̄,y)∈Tn(PŜŨṼW̃Ỹ)

e−n(H(Ũ,Ṽ)+D(PŨṼ ||QUV)) e−n
(

H(W̃|Ŝ,Ũ)−η
)

e−n
(

H(Ỹ|Ũ,Ŝ,W̃)+D
(

PỸ|ŨŜW̃ ||PY|USW |PŨŜW̃

))
en(ζ ′(κα ,ω′ ,PŜ)+η) 2enH(W̃d |Ŝ,Ṽ,Ỹ)

en(H(W̃d)−η)

≤ e−nE′2,n , (50)

where

E′2,n & min
(PŨṼW̃ỸS ,QŨṼW̃ỸS)∈T ′2 (κα ,ω′ ,PS ,PX|USW )

D(PŨṼW̃Ỹ|S||QUVWY|S|PS) + ρ′(κα, ω′, PS, PX|USW)

− ζ ′(κα, ω′, PS)−O(η)

= E′2(κα, ω′, PS, PX|USW)−O(η).
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Finally, considering the event E ′c, we have

P̄QBn

(
E ′c
)
= ∑

u∈Tn(PŨ):
PŨ∈Dn(PU ,η)

P̄QBn

(
U = u, E ′EE, E ′c|S = s

)
+ ∑

u∈Tn(PŨ):
PŨ /∈Dn(PU ,η)

P̄QBn

(
U = u, E ′c|S = s

)
.

The first term in the RHS decays double exponentially as e−enΩ(η)
, while the second

term can be handled as follows:

∑
u∈Tn(PŨ):PŨ /∈Dn(PU ,η)

P̄QBn

(
U = u, E ′c|S = s

)
≤ ∑

u∈Tn(PŨ):
PŨ /∈Dn(PU ,η)

∑
(v,y,w′):

(s,v,y,w′)∈Tn

(
PŜṼỸW̃d

)
,

PŜṼW̃dỸ∈Dn(PSVWY ,η)

∑
m̂∈M\{0}

P̄QBn

(
U = u, V = v, M′ = 0, Y = y|S = s

)

∑
m̂′∈M′\{0}

P̄QBn

(
W(m̂′) = w̄

)
≤ ∑

PŨŜṼW̃dỸ ∈Dn(PU ,η)c

×Dn(PSVWY ,η)

enH(Ũ,Ṽ,Ỹ|Ŝ)e−n(H(Ũ,Ṽ,Ỹ|Ŝ)+D(PŨṼỸ|Ŝ ||QUVY′ |Ŝ |PŜ)) enH(W̃d |Ŝ,Ṽ,Ỹ)en(R′+η)

en(H(W̃d)−η)

≤ e−nE′3,n , (51)

where

E′3,n & min
PV̂ŶS :PÛV̂ŴŶS ∈

L̂h(κα ,ω′ ,PS ,PX|USW )

D
(

PV̂Ŷ|S||QVY′ |S|PS
)
+ ρ′(κα, ω′, PS, PX|USW)− ζ ′(κα, ω′, PS)−O(η)

= E′3(κα, ω′, PS, PX|USW , PX′ |US)−O(η).

Since the exponent of the type II error probability is lower bounded by the minimum
of the exponent of the type II error-causing events, it follows from (49), (50) and (51) that
for a fixed

(
PS, ω′(·, PS), PX|USW , PX′ |US

)
∈ Lh(κα)

P̄P(Bn)

(
Ĥ = 1

)
≤ e−n(κα−O(η)), (52a)

P̄Q(Bn)

(
Ĥ = 0

)
≤ e−n

(
κ̄h(κα ,ω′ ,PS ,PX|USW ,PX′ |US)−O(η)

)
, (52b)

where κ̄h = min
{

E′1(κα, ω′), E′2(κα, ω′, PS, PX|USW), E′3(κα, ω′, PS, PX|USW , PX′ |US)
}

. Per-
forming expurgation as in the proof of Theorem 1 to obtain a deterministic codebook
Bn satisfying (52a, 52b), maximizing over

(
PS, ω′(·, PS), PX|USW , PX′ |US

)
∈ Lh(κα) and

noting that η > 0 is arbitrary yields κ(κα) ≥ κ?h(κα).
Finally, we show that κ(κα) ≥ κ?u(κα), which will complete the proof. Fix PX|US and let

PUVXY := PUV PX|USPY|X and QUVXY := QUV PX|USPY|X. Consider an uncoded transmis-
sion scheme in which the channel input X ∼ fn(·|u) = P⊗n

X|US(·|u, s). Let the decision rule

gn be specified by the acceptance region An =
{
(s, v, y) : D

(
Pvy|s||PVY|S|Ps

)
≤ κα + η

}
for

some small η > 0. Then, it follows from Lemma 2.6 in [42] that for sufficiently large n,

αn( fn, gn) = P⊗n
VY|S(A

c
n|s) ≤ e−nκα ,

βn( fn, gn) = Q⊗n
VY|S(An|s) ≤ e−n(κ?u(κα)−O(η)).

The proof is complete by noting that η > 0 is arbitrary.

5. Conclusions

This work explored the trade-off between the type I and type II error-exponents for
distributed hypothesis testing over a noisy channel. We proposed a separate hypothesis
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testing and channel coding scheme as well as a joint scheme utilizing hybrid coding, and
analyzed their performance resulting in two inner bounds on the error-exponents trade-off.
The separate scheme recovers some of the existing bounds in the literature as special cases.
We also showed via an example of testing against dependence that the joint scheme strictly
outperforms the separate scheme at some points of the error-exponents trade-off. An
interesting avenue for future research is the exploration of novel outer bounds that could
shed light on the scenarios where the separate or joint schemes are tight.
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Appendix A. Proof that Theorem 1 Recovers Theorem 2 in [10]

We prove that limκα→0 κ?s (κα) = κs, where κs is the lower bound on the type II error-
exponent for a fixed type I error probability constraint and unit bandwidth ratio estab-
lished in Theorem 2 in [10]. Note that L̂(0, ω) = {PUVW = PUV PW|U , PW|U = ω(PU)},
ζ(0, ω) = IP(U; W), and ρ(0, ω) = IP(V; W). The result then follows from Theorem 1
by noting that L̂(κα, ω), ζ(κα, ω) and ρ(κα, ω) are continuous in κα and the fact that
Esp(PSX , θ), Eex(R, PSX) and Eb(κα, ω, R) are all greater than or equal to zero.

Appendix B. Proof that Theorem 2 Recovers Theorem 5 in [10]

We show that limκα→0 κ?h(κα) = κh, where κh is as defined in Theorem 5 in [10]. Note
that L̂h(0, ω′, PS, PX|USW) :=

{
PUVŴYS : PSUVWXY := PSPUV PW|USPX|USW PY|X, PW|US =

ω′(PU , PS)
}

, ζ ′(0, ω′, PS) := IP(U; W|S), ρ(0, ω′, PS, PX|USW) = IP(Y, V; W|S),

Lh(0) :=
{(

PS, ω′(·, PS), PX|USW , PX′ |US
)

: IP(U; W|S) < IP(Y, V; W|S)
}

,

and E′b(0, ω′, PS, PX|USW) = IP(Y, V; W|S) − IP(U; W|S). The result then follows from
Theorem 2 via the continuity of L̂h(κα, ·, ·, ·), ζ ′(κα, ·, ·), ρ(κα, ·, ·, ·), Lh(κα) and E′b(κα, ·, ·, ·)
in κα.

Appendix C. An Auxiliary Result

Here, we prove a result which was used in the proof of Theorem 1, namely Proposition A1
given below. For this purpose, we require a few properties of log-moment generating
function, which we briefly review next.

Lemma A1. (Theorem 15.3, Theorem 15.6 in [43])
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(i) ψPZ , f (0) = 0 and ψ′PZ , f (0) = EPZ [ f (Z)], where ψ′PZ , f (λ) denotes the derivative of
ψPZ , f (λ) with respect to λ.

(ii) ψPZ , f (λ) is a strictly convex function in λ.
(iii) ψ∗PZ , f (θ) is strictly convex and strictly positive in θ except ψ∗PZ , f (EPZ [Z]) = 0.

Proposition A1 is basically a characterization of the error-exponent region of a hypoth-
esis testing problem, which we introduce next. Let PX0X1 ∈ P(X 2) be an arbitrary joint
PMF, and consider a sequence of pairs of n-length sequences (x̃, x′) such that

Px̃x′(x̃, x′)
(n)−→ PX0X1(x̃, x′), ∀ (x̃, x′) ∈ X 2. (A1)

Consider the following HT:
H0 : Y ∼ P⊗n

Y|X(·|x̃), (A2a)

H1 : Y ∼ P⊗n
Y|X(·|x

′). (A2b)

With the achievability of an error-exponent pair (κα, κβ) defined similar to Definition 1,
consider the error-exponent region of interest

R′(PX0X1) := {(κα, κ′(κα, PX0X1)) : κα ∈ (0, κ′?α )},

where κ′(κα, PX0X1) := sup{κβ : (κα, κβ) is achievable for HT in (A2)} and κ′?α := inf{κα :
κ′(κα, PX0X1) = 0}. We mention at this point that the notationR′(PX0X1) is justified as the
error-exponent region for the above hypothesis test depends on (x̃, x′) only through its
limiting joint type PX0X1 , as will be evident later. Given this, the following proposition
provides a single-letter characterization ofR′(PX0X1).

Proposition A1.

R′(PX0X1) = ∪
θ∈I(PX0X1 )

(
EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
, EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
− θ
)

where Πx̃,x′(y) := log
(

PY|X(y|x′)/PY|X(y|x̃)
)

for (x̃, x′) ∈ X 2,

I(PX0X1) :=
(
− dmin(PX0X1), dmax(PX0X1)

)
,

dmin(PX0X1) := EPX0X1

[
D
(

PY|X(·|X0)||PY|X(·|X1)
)]

dmax(PX0X1) := EPX0X1

[
D
(

PY|X(·|X1)||PY|X(·|X0)
)]

.

Proof. Let (x̃, x′) ∈ X n ×X n be sequences that satisfy (A1). For simplicity, we will denote
dmax(PX0X1) and dmin(PX0X1) by dmax and dmin, respectively.
Achievability: We will show that for −dmin < θ < dmax,

κ′
(
EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
, PX0X1

)
≥ EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
− θ.

Consider the Neyman–Pearson test given by gn(y) = 1{
Π(n)

x̃,x′ (y)≥nθ
}, where Π(n)

x̃,x′(y) :=

∑n
i=1 Πx̃i ,x′i ,PY|X

(yi). Observe that the type I error probability can be upper bounded for
θ > −dmin and sufficiently large n as follows:

αn(gn) = PP⊗n
Y|X(·|x̃)

(
Π(n)

x̃,x′(Y) ≥ nθ
)

(a)
≤ e

−sup
λ≥0

nθλ−ψ
P⊗n

Y|X (·|x̃),Π(n)
x̃,x′

(λ)
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(b)
= e

−sup
λ∈R

n

θλ− 1
n ψ

P⊗n
Y|X (·|x̃),Π(n)

x̃,x′
(λ)


, (A3)

where (a) follows from the Chernoff bound, and (b) holds because for θ > −dmin and
sufficiently large n, the supremum in (A3) always occurs at λ ≥ 0. To see this, note that
the term ln(λ) := θλ− n−1ψ

P⊗n
Y|X(·|x̃),Π

(n)
x̃,x′

(λ) is a concave function of λ by Lemma A1 (i).

Additionally, denoting its derivative with respect to λ by l′n(λ), we have

l′n(0) = θ − 1
n
EP⊗n

Y|X(·|x̃)

[
Π(n)

x̃,x′

]
(A4)

= θ − 1
n

n

∑
i=1

EPY|X(·|x̃i)

[
log
(

PY|X(Yi|x′i)/PY|X(Yi|x̃i)
)]

(n)−→ θ + dmin > 0, (A5)

where (A4) follows from Lemma A1 (iii), and (A5) is due to the absolute continuity as-
sumption, PY|X(·|x) � PY|X(·|x′), ∀ (x, x′) ∈ X 2 on the channel, and (A1). Thus, by the
concavity of ln(λ), its supremum has to occur at λ ≥ 0. Simplifying the term within the
exponent in (A3), we obtain

1
n

ψ
P⊗n

Y|X(·|x),Π
(n)
x̃,x′

(λ) = ∑
x̃,x′

Px̃x′(x̃, x′) log
(
EPY|X(·|x̃)

[(
PY|X(Y|x′)/PY|X(Y|x̃)

)λ
])

(A6)

(n)−→ EPX0X1

[
log
(
EPY|X(·|X0)

[
eλΠX0,X1 (Y)

])]
, (A7)

where (A7) follows from (A1) and the absolute continuity assumption on PY|X. Substi-
tuting (A7) in (A3) and from (1), we obtain for arbitrarily small (but fixed) δ > 0 and
sufficiently large n, that

αn(gn) ≤ e
−sup

λ∈R

(
n
(

θλ−EPX0X1

[
log
(
EPY|X (·|X0)

[
e

λΠX0,X1
(Y)
])]
−δ

))

= e
−n

(
EPX0X1

[
sup
λ∈R

(
θλ−EPY|X (·|X0)

(
e

λΠX0,X1
(Y)
))]

−δ

)

= e
−n
(
EPX0X1

[
ψ∗PY|X (·|X0),ΠX0,X1

(θ)

]
−δ

)
. (A8)

Similarly, it can be shown that for θ < dmax,

βn(gn) ≤ e
−n
(
EPX0X1

[
ψ∗PY|X (·|X1),ΠX0,X1

(θ)

]
−δ

)
. (A9)

Moreover, for (x̃, x′) ∈ X 2, we have

e
ψPY|X (·|x′),Πx̃,x′

(λ)
= ∑

y∈Y
Pλ+1

Y|X (·|x′)/Pλ
Y|X(·|x̃) = e

ψPY|X (·|x̃),Πx̃,x′
(λ+1)

.

It follows that

ψ∗PY|X(·|x′),Πx̃,x′
(θ) := sup

λ∈R
λθ − ψPY|X(·|x′),Πx̃,x′

(λ)

= sup
λ∈R

λθ − ψPY|X(·|x̃),Πx̃,x′
(λ + 1)

= ψ∗PY|X(·|x̃),Πx̃,x′
(θ)− θ.
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Hence,

EPX0X1

[
ψ∗PY|X(·|X1),ΠX0,X1

(θ)
]
= EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
− θ.

From this, (A8) and (A9), we obtain for −dmin < θ < dmax that

κ′
(
EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
− δ, PX0X1

)
≥ EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
− θ − δ.

Then, the proof of achievability is completed by noting that δ > 0 is arbitrary and
κ′(κα, PX0X1) is a continuous function of κα for a fixed PX0X1 .

Converse: Let In(x̃, x′) := {i ∈ [n] : x̃i = x̃ and x′i = x′}. For any θ ∈ R and decision
function gn, we have from Theorem 14.9 in [43] that

αn(gn) + e−nθ βn(gn) ≥ PP⊗n
Y|X(·|x̃)

(
log
(

P⊗n
Y|X(Y|x

′)/P⊗n
Y|X(Y|x̃)

)
≥ nθ

)
.

Simplifying the RHS above, we obtain

PP⊗n
Y|X(·|x̃)

(
log
(

P⊗n
Y|X(Y|x

′)/P⊗n
Y|X(Y|x̃)

)
≥ nθ

)
= PP⊗n

Y|X(·|x̃)

(
∑
x̃,x′

∑
i∈In(x̃,x′)

log
(

PY|X(Yi|x′i)/PY|X(Yi|x̃i)
)
≥ nθ

)

= PP⊗n
Y|X(·|x̃)

∑
x̃,x′

∑
i∈In(x̃,x′)

log
(

PY|X(Yi|x′i)/PY|X(Yi|x̃i)
)
≥ ∑

(x̃,x′)∈X 2

nPx̃x′(x̃, x′)θ


(a)
≥ PP⊗n

Y|X(·|x̃)

⋂
x̃,x′

 ∑
i∈In(x̃,x′)

log
(

PY|X(Yi|x′i)/PY|X(Yi|x̃i)
)
≥ nPx̃x′(x̃, x′)θ


(b)
= ∏

(x̃,x′)∈X 2

PP⊗n
Y|X(·|x̃)

 ∑
i∈In(x̃,x′)

log
(

PY|X(Yi|x′i)/PY|X(Yi|x̃i)
)
≥ nPx̃x′(x̃, x′)θ

,

where

(a) follows since

⋂
x̃,x′

 ∑
i∈In(x̃,x′)

log
(

PY|X(Yi|x′i)/PY|X(Yi|x̃i)
)
≥ nPx̃x′(x̃, x′)θ


⊆

∑
x̃,x′

∑
i∈In(x̃,x′)

log
(

PY|X(Yi|x′i)/PY|X(Yi|x̃i)
)
≥ ∑

(x̃,x′)∈X 2

nPx̃x′(x̃, x′)θ

;

(b) is due to the independence of the events
{

∑i∈In(x̃,x′) log
(

PY|X(Yi|x′i)/PY|X(Yi|x̃i)
)
≥

nPx̃x′(x̃, x′)θ
}

for different (x̃, x′) ∈ X 2.

Define bx̃,x′(θ) := minQ̃x̃∈P(Y):EQ̃x̃
[log(PY|X(Y|x′)/PY|X(Y|x̃))]≥θ D

(
Q̃x||PY|X(·|x̃)

)
. Then,

for arbitrary δ > 0, δ′ > δ and sufficiently large n, we can write

αn + e−nθ βn
(a)
≥ ∏

(x̃,x′)∈X 2

e−nPx̃x′ (x̃,x′) (bx̃,x′ (θ)+δ)

(b)
≥ ∏

(x̃,x′)∈X 2

e
−nPx̃x′ (x̃,x′)

(
ψ∗PY|X (·|x̃),Πx̃,x′

(θ)+δ

)
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(c)
= e

−n
(
EPX0X1

[
ψ∗PY|X (·|X0),ΠX0,X1

(θ)

]
+δ′

)
,

where (a) follows from Theorem 15.9 in [43]; (b) follows since bx̃,x′(θ) = ψ∗PY|X(·|x̃),Πx̃,x′
(θ)

from Theorem 15.6 in [43] and Theorem 15.11 in [43]; and (c) is due to (A1). The equation
above implies that

lim sup
n→∞

min
{
− 1

n
log αn,− 1

n
log βn + θ

}
≤ EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
+ δ′.

Hence, if − log(αn)/n > EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
+ δ′ for all sufficiently large n, then

lim sup
n→∞

− 1
n

log βn ≤ EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
− θ + δ′.

Since δ (and δ′) is arbitrary, this implies via the continuity of κ′
(
κα, PX0X1

)
in κα that

κ′
(
EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
, PX0X1

)
≤ EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
− θ.

To complete the proof, we need to show that θ can be restricted to lie in I(PX0X1).
Toward this, it suffices to show the following:

(i) EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(−dmin)
]
= 0,

(ii) EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(dmax)
]
= dmax, and

(iii) EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]

and EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(θ)
]
− θ are convex functions

of θ.
We have

EPX0 X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(−dmin)
]

:= sup
λ∈R
−λ EPX0 X1

[
D
(

PY|X(·|X0)||PY|X(·|X1)
)]
−EPX0 X1

[
ψPY|X(·|X0),ΠX0,X1

(λ)
]

≤ ∑
x̃,x′

PX0X1 (x̃, x′)

[
sup

λx̃,x′∈R
−λx̃,x′D

(
PY|X(·|x̃)||PY|X(·|x′)

)
− ψPY|X(·|x̃),Πx̃,x′

(λx̃,x′ )

]
= 0, (A10)

where (A10) follows since each term inside the square braces in the penultimate equation is
zero, which in turn follows from Lemma A1 (iii). Additionally,

EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(−dmin)
]
= ∑

x̃,x′
PX0X1(x̃, x′) ψ∗PY|X(·|x̃),Πx̃,x′

(−dmin) ≥ 0, (A11)

where (A11) follows from the non-negativity of ψ∗PY|X(·|x̃),Πx̃,x′
for every (x̃, x′) ∈ X 2 stated

in Lemma A1 (iii). Combining (A10) and (A11) proves (i). We also have

EPX0X1

[
ψ∗PY|X(·|X0),ΠX0,X1

(dmax)
]
− dmax = EPX0X1

[
ψ∗PY|X(·|X1),ΠX0,X1

(dmax)
]
= 0, (A12)

where the final equality follows similarly to the proof of (i). This proves (ii). Finally,
(iii) follows from Lemma A1 (iii) and the fact that a weighted sum of convex functions is
convex provided the weights are non-negative, thus completing the proof.
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