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Abstract: This article offers an optimal control tracking method using an event-triggered technique
and the internal reinforcement Q-learning (IrQL) algorithm to address the tracking control issue of
unknown nonlinear systems with multiple agents (MASs). Relying on the internal reinforcement
reward (IRR) formula, a Q-learning function is calculated, and then the iteration IRQL method is
developed. In contrast to mechanisms triggered by time, an event-triggered algorithm reduces the
rate of transmission and computational load, since the controller may only be upgraded when the
predetermined triggering circumstances are met. In addition, in order to implement the suggested
system, a neutral reinforce-critic-actor (RCA) network structure is created that may assess the indices
of performance and online learning of the event-triggering mechanism. This strategy is intended to
be data-driven without having in-depth knowledge of system dynamics. We must develop the event-
triggered weight tuning rule, which only modifies the parameters of the actor neutral network (ANN)
in response to triggering cases. In addition, a Lyapunov-based convergence study of the reinforce-
critic-actor neutral network (NN) is presented. Lastly, an example demonstrates the accessibility and
efficiency of the suggested approach.

Keywords: neural networks (NNs); optimal tracking control; event-triggered mechanism; reinforcement
learning (RL); systems with multiple agents

1. Introduction

Recently, distributed coordination control of MASs has received a great deal of atten-
tion as a result of its extensive applications in power systems [1,2], multi-vehicle [3] and
multi-area power systems [4], and other fields. MASs have a variety problems, such as
consensus control [5–7], synchronization control [8,9], anti-synchronization control [10],
and tracking control [11]. Reinforcement learning (RL) [12] and adaptive dynamic program-
ming (ADP) methods [13,14] have been employed by researchers as a means of solving
the optimal control problems. Due to its excellent ability for global approximation, neural
networks are excellent for dealing with nonlinearities and uncertainties [15]. ADP has great
online learning and adaptive ability when it uses neural networks. Furthermore, researchers
used RL/ADP algorithms to settle optimal coordination control matters, proposed a lot
of directions, tracked control [16–19], graphical games [19], consensus control [20], con-
tainment control [21] and formation control [22]. The controller is designed in the above
ways were relying on traditional time-triggered methods. Event-triggered in [23,24], it
was suggested that the traditional implementation be changed to an event-triggered one.
Because of the increasing number of agents, MASs are required to resolve many computing
costs related to the exchange of information. Traditionally, the controller or actuator is con-
stantly updated over a fixed period while the system is in operation. In order to minimize
computation and preserve resources, aperiodic sampling is employed in the method of
triggering events to improve the controller’s computation efficiency. There have been a
number of developments in methods that are based on events for addressing discrete time
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systems [24]. The traditional implementation was suggested to be replaced by one that is
triggered by events.

With an increase in the number of agents, MASs must solve a large number of com-
puting costs related to information exchange. Traditionally, the controller or actuator is
constantly updated frequently using a predetermined period of sampling during system
operation. To lessen the computational and save resources, aperiodic sampling is used
in the event-triggering scheme to improve the associated controller’s computational effi-
ciency. Researchers have developed some event-based methods to address discrete time
systems [25] as well as systems based on continuous time [26,27]. Several algorithms based
on triggered events have been designed to solve discrete-time systems [25], as well as
systems that operate in continuous time [26,27]. According to these results, the system
dynamics are assumed to be accurate ahead of time. However, it is not always possible to
understand dynamics properly in practice. According to [24], a controller that was trig-
gered by events was proposed which was designed with inaccurate or unknown dynamics
for the system.

The application of Q-learning to process control [28], chemical process control, indus-
trial process automatic control, and other areas was an early application of reinforcement
learning (RL). The Q-learning algorithm provides a modeless data-driven method for solv-
ing control problems. A key point to keep in mind is all potential actions in the present state.
Q-learning is currently used primarily for routing optimization and reception processing
in network communication within the context of network management. The Q-learning
algorithm supports a modeless data-driven method for solving control problems. It is
important to note that all potential actions in the present state [29] are evaluated in the
Q-learning method, relying on the Q-function. At present, Q-learning is used primarily for
routing optimization and reception processing in network communication in the domain of
network management [30]. As a result of AlphaGo’s emergence, dynamic research has been
conducted in the field of game theory, and tracking control research has been conducted on
issues associated with nonlinear MAS tracking control based on Q-learning, such as in [31].
At present, there is some research for tracking control issues for nonlinear MASs based on
Q-learning, such as in [32].

The MAS’s issue of optimal control was solved using the RL/ADP method, as men-
tioned above. The majority of the above results share two common features. First, the
direct use of the immediate or immediate reward (IR) signal to define each agent’s perfor-
mance index function results in limited learning opportunities. As a second step, a state’s
value function is used to determine the Hamilton–Jacobi–Bellman (HJB) equation. The
corresponding controller is designed using RL/ADP, which results in efficient learning of
the MAS equation. It is beneficial to provide each agent with more information signals
in a wide range of realistic applications in order to enhance their learning capabilities. In
addition to merely considering performance in terms of status, performance can also be
viewed from a broader perspective. The purpose of our research is to avoid the limitations
described above.

Taking into consideration the aforementioned findings, this work investigates an ideal
solution to the optimum control issue for MASs with unknown nonlinearity to enhance the
process of learning as well as the effectiveness of control systems. Utilizing the graph theory,
a coordination control problem is first identified. According to the gathered information of
the IR, increased reinforcement reward (IRR) signals are provided for a longer-term reward
period. Based on the IRR function, a Q-function is then developed to assess the efficacy of
each agent’s control system. In addition, a tracking control technique is developed using
iterative IrQL to derive the HJB equation for each agent. Then, based on the IrQL technique,
triggering mechanisms are employed to establish a tracking control system. Finally, an
optimum event-triggered controller based on a network topology of reinforce-actor-critic is
created. The event triggering mechanism in a closed-loop approach guarantees that the
network weights converge and the system remains stable. In light of the findings of this
study, an additional contribution has been made to the literature:
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(1) With respect to nonlinear MAS tracking control, the authors of [32] proposed an IrQL
framework, which differs from [18,33,34], and the design of a new long-term IRR signal is
completed. This product was designed on the basis of the data of neighbors to provide more
information to the agent. The IRR function is used to define a Q-function, and an iterative
IrQL method is proposed for obtaining control schemes that are optimally distributed.

(2) It is designed to trigger a new condition and cite in an asynchronous and distributed
manner [24]. As a result, each agent triggers at its own time. Consequently, there is no
need to update the controller on a regular basis. For the purpose of achieving online
learning, a reinforce-actor-critic neural network based on triggered events is established to
determine the optimal control scheme for triggered events. When compared with other
papers [18,33,35,36], this paper adjusts the weights non-periodically, and the ANN is only
adjusted when a trigger is encountered.

(3) In this paper, the objective is to develop the most effective tracking control method
using a new triggering mechanism developed using the IrQL method. As far as event-
triggered optimal control mechanisms are concerned, the Lyapunov approach is used
to determine the rigorous stability assurance of closed-loop multi-agent networks. The
designed RCA-NN framework [32] offers an effective means of executing the proposed
method online without requiring any knowledge of the dynamics of the system. We made
a comparison between the traditional activation method and the IrQL method. According
to the simulation results, the designed algorithm is capable of detecting control problems
with good tracking performance.

This article is organized as follows. The graph theory and problems of Section 2
provide an overview of some foundations. In Section 3, IrQL-based HJB equations are
obtained. As described in Section 4, the most appropriate controller design should be
triggered by an event to build the proposed algorithm. Section 5 develops the RCA-NN.
The use of Lyapunov technology leads to convergence of weights in the neural networks.
Through analogy examples and comparisons, its effectiveness and correctness of the method
are demonstrated in Section 6. The last part includes our final thoughts.

2. Preliminary Findings
2.1. Theoretical Basis of Graphs

It would be possible to model the exchange of information using a directed graph
between agents G = (V , E ,A), in which V = {υ1, υ2, . . . , υn} represents N nonempty notes
and E = {(υi, υj)|υi, υj ∈ V} ∈ V × V represents an edge set, indicating agent i could
derive the data from agent j. We define A = [aij] , which is a matrix that is adjacency
relevant and does not contain negative elements aij, where aij > 0 is satisfied if (i, j) ∈ E .
Otherwise, aij = 0. Ni = {j|(i, j) ∈ E} is defined as the set of nodes that are neighbors with
node i, and aij > 0 is satisfied for each j ∈ Ni. We denote the input matrix D = diag{di},
where di = ∑j∈N Aij. The Laplacian matrix is then defined as L = D −A ∈ RN×N .

A leader’s relationship with its followers is the subject of this article. In order to
describe follower-leader interactions, we propose an enhanced directed graph model, (i.e.,
Ĝ = (V̂ , Ê), in which V̂ = {0, 1, 2, . . . , N} and Ê ∈ V̂ × V̂). A leader’s communication with
his or her followers is determined by bi. If bi > 0, then there is an assumption that the leader
and followers are in communication. Otherwise, bi = 0. B = diag{b1, . . . , bn} ∈ RN×N is
defined as the matrix of related connections.

2.2. Problem Formulation

If a nonlinear MAS has one leader as well as N followers, then the dynamics for the
ith follower would be as follows:

xi(k + 1) = Axi(k) + Biui(k) (1)

In this case, xi ∈ RN represents the system state, ui ∈ Rpi represents the control input,
and A ∈ Rn×n, Bi ∈ Rn×n represent unknown matrices for the plants and inputs.
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The leader is written as follows:

x0(k + 1) = Ax0(k) (2)

It is assumed that x0 ∈ Rn represents the leader state.

Assumption 1. If there is a spanning tree with a leader, then Ĝ has a network of communication
interactions, and Ĝ does not contain repeated edges.

Definition 1. As a result of our design, we are able to develop a control scheme ui(k) that only
requires agent information. Therefore, the followers can keep track of the leader. In the event that the
funder’s conditions are met, we will be able to implement a perfect control scheme [32]:

lim
k→∞

‖ xi(k)− x0(k) ‖= 0, i = 1, 2, . . . , n (3)

The MAS’s local consensus error is expressed as follows:

ei(k) = ∑
j∈Ni

aij(xi(k)− xj(k)) + bi(xi(k)− x0(k)) (4)

Then, an overview of the error vector is presented as follows:

e(k) = ((L + B)
⊗

In)(x(k)− x̂0(k)) (5)

e(k) = (e1
T(k), e2

T(k), . . . , en
T(k))T ∈ RnN ,x(k) = (x1

T(k), x2
T(k), . . . , xn

T(k))T ∈ RnN ,
x̂0(k) = In

⊗
x0 ∈ RnN , as well as vector In having n dimensions.

The tracking error is written as ζi(k) = xi(k)− x0(k), which has the vector form

ζ(k) = x(k)− x̂0(k) (6)

In this equation, ζ(k) = (ζ1
T(k), ζ2

T(k), . . . , ζn
T(k))T ∈ RnN , x̂0(k) = (x0

T(k), x0
T(k), . . . , x0

T(k))T.
Consequently, the localized neighbor error ei(k) is represented in the following manner,

in agreement with Equations (1) and (4):

ei(k + 1) =Aei(k) + (di + bi)Biui(k)

− ∑
j∈Ni

aijBjuj(k)

=Fi(ei(k), ui(k))

(7)

Given Equations (5) and (6), it is evident that e(k) and ζ(k) are related as follows:
lim
k→∞

‖ e(k) ‖= 0 as lim
k→∞

‖ ζ(k) ‖= 0. Consequently, when the localized neighboring error

is close to zero, the control problem is resolved.

3. Design of the IrQL Method

To resolve the issue of tracking control in systems with multiple agents, the authors
of [32] developed the IrQL method. What is important is that in order to provide agents
with a greater level of local information from other agents or environments, it is necessary to
introduce IRR information, thereby improving control and learning efficiency. In addition,
agents have been defined according to the Q-function, and the relevant HJB equation is
acquired using the IrQL method.

As an example, consider the following IR function for the ith agent:

ji(ei(k), ui(k), u−i(k)) =ei(k)T Riiei(k) + ui(k)TQiiui(k)

+ ∑
j∈Ni

uj(k)TQijuj(k)
(8)
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In this case, we can represent the agent’s neighbors’ input with u−i = {uj|j ∈ Ni}.
The weight matrices Rii > 0, Qii > 0, and Qij > 0 are positive.

According to the IR function, as a function of IRR, the following is expressed:

Ri(ei(k), ui(k), u−i(k)) =
∞

∑
s=k

rs−k ji(ei(s), ui(s), u−i(s)) (9)

where the IRR function is defined as r ∈ (0, 1] and r is its discount factor.
The following performance indices must be minimized for every agent to find a

solution to the issue of controlling tracking optimally:

Ji(ei(0), ui(0), u−i(0)) =
∞

∑
t=0

βtRi(ei(t), ui(t), u−i(t)) (10)

In this case, its performance index discount factor is β ∈ (0, 1].

Remark 1. The function of the designed IRR function incorporates accumulated prospective long-
term reward data from the IR function. The performance factor is measured depending on IRR as
opposed to IR, which is contrary to the majority of methods. The advantage is that we can enhance
the control actions, and the learning process can be accelerated by using a great deal of data.

Remark 2. Intrinsic motivation (IM) provides a possible method for enhancing the faculty of
abstract actions or solving the difficulties associated with exploring the environment in its re-
inforcement learning direction. IRR acts as a driving agent that learns skills through intrinsic
motivation [32].

Definition 2. In order to resolve the MAS’s tracking control issue, we propose a distributed tracking
control scheme. As the time step k approaches infinity, ei(k) −→ 0 minimizes the performance
metrics (10) simultaneously.

We can obtain a state value function as follows based on the control method of the
agent as well as the neighbors ui(t) and u−i(t):

Vi(ei(k)) =
∞

∑
t=k

βt−kRi(ei(t), ui(t), u−i(t)) (11)

Equation (11) can also be expressed as the following formula:

Vi(ei(k) = Ri(ei(k), ui(k), u−i(k)) + βVi(ei(k + 1)) (12)

Based on the theory, the ideal state value function meets the following conditions:

V∗i (ei(k)) = min
ui(k)
{Ri(ei(k), ui(k), u−i(k)) + βV∗i (ei(k + 1))} (13)

In this case, in Bellman form, the function of IRR is expressed as

Ri(ei(k), ui(k), u−i(k))

=ji(ei(k), ui(k), u−i(k))

+ $Ri(ei(k + 1), ui(k + 1), u−i(k + 1))

(14)
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On the basis of the condition of stationarity, (i.e., ∂V∗i (ei(k))
∂ui(k)

), the description of the
optimal distributed control method is given below:

u∗i (k) = argmin
ui(k)

{
Ri(ei(k), ui(k), uNi (k)) + βV∗i (ei(k + 1))

}
= −1

2
β(di + bi)Q−1

ii hT
i (xi(k))5V∗i (ei(k + 1))

(15)

In this equation,5V∗i (ei(k + 1)) = ∂V∗i (ei(k+1))
∂ei(k+1) .

Remark 3. As is well known, the state value algorithm Vi(ei(k)) is highly concerned with the
space of states. In accordance with the state action function, the Q-learning method is designed with
RL. The Q-function can be used by each agent to estimate the properties of all possible decisions in
the current situation, and we can determine what is the best behavior of the agent at each step by
using the Q-function.

The Q-function is written as follows:

Qi(ei(k), ui(k), u−i(k)) = Ri(ei(k),ui(k), u−i(k))

+ βVi(ei(k + 1))
(16)

In accordance with the optimal scheme, the optimal Q-function is given by

Q∗i (ei(k), ui(k), u−i(k))

=Ri(ei(k), ui(k), u−i(k))

+ βQ∗i (ei(k + 1), u∗i (k + 1), u∗−i(k + 1))

(17)

Based on Equations (16) and (17), we can express the optimal solution as follows:

u∗i (k) = argmin
ui(k)
{Q∗i (ei(k), ui(k), u−i(k))} (18)

In comparison with the control method of Equation (15), its optimum Q-function
provides the optimal solution for the control scheme here. As a result, we intend to calculate
the solution to Equation (17).

4. Designs of the Event-Driven Controller

According to a previous work [18], a time-triggered controller was developed. Never-
theless, a new event-triggering mechanism is designed to minimize computing costs for
this case.

Q∗i , (ei(k), ui(k), u−i(k)) is defined as the sequence of trigger times. At the triggering
instant, the sampled disagreement error is expressed as ês

i .
As a result of the threshold value and error, the triggering time varies. The control scheme

can only be updated when k = kti
s and cannot be updated under any other circumstances:

ui(k) = ui(kti
s), k ∈ [kti

s, kti
s+1) (19)

To design a triggering condition, we propose a function that measures the gap arising
from the existing error and the previously sampled error:

εs
i (k) = ês

i − ei(k), k ∈ [kti
s, kti

s+1) (20)

We have set the triggering error equal to zero at k = kti
s.
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The dynamic expression of localized mistakes based on an event-triggered controlling
approach can be written as

ei(k + 1) = Fi(ei(k), ui(kti
s)) (21)

Thus, the equation for event-triggered events is obtained:

V∗i (ei(k)) =

min
ui(kti

s)

{
Ri(ei(k), ui(kti

s), u−i(kti
s)) + βV∗i (Fi(ei(k), ui(kti

s)))
} (22)

Q∗i (ei(k))

=Ri(ei(k), ui(kti
s), u−i(kti

s))

+ βQ∗i (Fi(ei(k), ui(kti
s)))

(23)

It is possible to express the optimal tracking control using an event-triggered approach
in the following way:

u∗i (k) = arg min
ui(kti

s)
{Q∗i (ei(k))} (24)

Assumption 2. There is a constant L that explains the inequality below:∥∥∥Fi(ei(k), ui(kti
s))
∥∥∥ ≤ L‖ei(k)‖+ L‖εs

i (k)‖ (25)

Assumption 3. There is a triggering condition which is as follows:

‖εs
i (k)‖

2 ≤ (1− 2L2)/(2L2)‖ei(k)‖2 = πiT (26)

where πiT represents the triggering threshold and L ∈ (0,
√

2/2) [24]. Once the multi-agent
system dynamics have stabilized, followers are able to track their leaders.

5. Neural Network Implementation for the Event-Triggered Approach Using the
IrQL Method

This section discusses the tree-NN structure, also known as RCA-NNs. Three virtual
networks are included in the tree-NN structure.

5.1. Reinforce Neutral Network (RNN) Learning Model

The reinforced NN is employed to approximate the IRR signal as follows:

R̂(Zri(k)) = ϕri(ω
T
r2i(k) · ϕri(ω

T
r1i(k) · Zri(k))) (27)

where Zri(k) represents the input vector, which has ei(k), ui(k), while u−i(k). ωr1i rep-
resents the matrix of weights for input-to-hidden layering. Meanwhile, ωr2i represents
the matrix of weights for hidden-to-output layering, and ϕri(·) represents an activation
function [24].

Due to the reinforced NN, the associated error function is as follows:

eri(k) = ji(ei(k− 1),ui(k− 1), u−i(k− 1))

+ $R̂i(Zri(k))− R̂i(Zri(k− 1))
(28)

The loss function is written as

Eri(k) =
1
2

e2
ri(k) (29)

For convenience’s sake, only the matrices ωr2i are updated, and the matrices ωr1i
remain unchanged during the training process.
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The RNN’s update law is expressed as

ωr2i(k + 1) = ωr2i(k)− αri ·
(

∂Eri(k)
∂ωr2i(k)

)
(30)

In this equation, αri represents the rate at which the RNN learns.
The gradient descent rule (GDR) is used to obtain an updated law for the reinforced

NN’s weight, which yields the following results:

ωri(k + 1)

= ωri(k)− αri ·
(

∂Eri(k)
∂eri(k)

· ∂eri(k)
∂R̂(Zri(k))

· ∂R̂(Zri(k))
∂ωr2i(k)

)
= ωr2i(k)− αri$eri(k)

[
1− ϕ2

ri

(
ωT

r2i(k) · ∆ri(k)
)]

∆ri(k)

(31)

In this equation , ∆ri(k) = ϕri(ω
T
r1i(k) · Zri(k)).

5.2. Critic Neutral Network (CNN) Learning Model

In the following section, when designing the critic NN, an attempt is made to achieve
a close approximation of the Q-function:

Q̂i(Zci(k)) = ωT
c2i(k) · ϕci(ω

T
c1i(k) · Zci(k)) (32)

In this equation, Zci(k) represents the relative vector of inputs that has R̂i(k), ei(k), and
ui(k) as well as u−i(k), while ωT

c1i(k) and ωT
c2i(k) represent the input layer weight matrices

and output layer weight matrices.
It is possible to express the function of the error for the CNN to be

eci(k) = R̂i(Zri(k− 1)) + βQ̂i(Zci(k))− Q̂i(Zci(k− 1)) (33)

Its function of loss is written to be

Eci(k) =
1
2

e2
ci(k) (34)

In accordance with the operation of RNNs, only ωc2i is updated, and ωc1i remains unchanged.
With the help of the gradient descent rule (GDR), it can be used to express the weight

update law:

ωc2i(k + 1) = ωc2i(k)− αci

(
∂Eci(k)

∂ωc2i(k)

)
(35)

where αci represents the critic NN’s learning rate. Furthermore, we can obtain its weight
update schemes for the critic NN:

ωc2i(k + 1)

= ωc2i(k)− αci

(
∂Eci(k)
∂eci(k)

· ∂eci(k)
∂Q̂i(Zci(k))

· ∂Q̂i(Zci(k))
∂ωc2i(k)

)
= ωc2i(k)− αciβ

[
R̂i(Zci(k− 1)) + βωT

c2i(k) · ∆ci(k)

−ωT
c2i(k− 1) · ∆ci(k− 1)

]
· ∆ci(k)

(36)

In this equation, ∆ci(k) = ϕci(ω
T
ci1(k)Zci(k)).
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5.3. Actor Neutral Network (ANN) Learning Model

Based on the actor NN, an approximate optimal scheme is defined as follows:

ûi(k) = ωT
a2i · ϕai(ω

T
a1i · Zai(k)) (37)

where the input data of the ANN is represented by Zai(k) = ei(k), ωa1i represents the weight
matrices of the input layer, and ωa2i represents the weight matrices of the output layer.

Based on the prediction error of the actor NN, the following result is obtained:

eai(k) = Q̂i(Zci(k))−Uc (38)

It is possible to express the function of loss of the ANN to be

Eai(k) =
1
2

eai(k) (39)

As with RNNs and CNNs, ωa1i must remain unchanged throughout the learning
process. The actor NN update laws are defined as follows:

ωa2i(k + 1) = ωa2i(k)− αai

(
∂Eai(k)

∂ωa2i(k)

)
(40)

where αai represents the ANN learning rate. We can design a weight-tuning scheme for an
ANN as follows:

ωa2i(k + 1)

= ωa2i(k)− αai ·
(

∂Eai(k)
∂eai(k)

· ∂eai(k)
∂Q̂i(Zci(k))

×∂Q̂i(Zci(k))
∂ûi(k)

· ∂ûi(k)
∂ωa2i(k)

)
= ωa2i(k)− αai∆ai(k)ωT

a2i(k)

×5′ci(k)ω
T
c1i(k)5ûi (Zci(k))

[
ωT

a2i∆ci(k)
]

(41)

where ∆ai(k) = ϕai(ω
T
a1i(k)Zai(k)),5

′
ci(k) =

∂ϕci(ωc1i(k)Zci(k))
∂ϕci(ω

T
c1i(k)Zci(k))

,5ûi (Zci(k)) =
∂Zci(k)
∂ûi(k)

.

Furthermore, we can obtain

ωa2i(k + 1) =


ωa2i(k)− αai∆ai(k)ωT

a2i(k)

×5′ci(k)ω
T
c1i(k)5ûi (Zci(k))

[
ωT

a2i∆ci(k)
]
, k = kti

s

ωa2i(k), k ∈ [kti
s, kti

s+1).

(42)

It is described in detail in Algorithm 1 how the controller is designed using RCA-NNs
and event triggering. When the trigger conditions are met, the actor NN is updated.

For analysis of stability based on the Lyapunov method, we present an analysis of
stability and convergence in the following section.

Assumption 4. The following conditions are assumed to be true: ‖ωr2i(k)‖ ≤ ωrim, ‖ωc2i(k)‖ ≤
ωcim, ‖ωa2i(k)‖ ≤ ωaim. There are bounded activation functions, i.e., ‖∆ri(k)‖ ≤ ∆rim, ‖∆ci(k)‖ ≤
∆cim, ‖∆ai(k)‖ ≤ ∆aim. What’s more, the functions of activation ϕai(k) is the function of Lipschitz
that satisfies

∥∥ϕai(ei(kti
s))− ϕai(k)

∥∥ ≤ θai
∥∥ei(kti

s)− ei(k)
∥∥ = θai

∥∥εs
i (k)

∥∥ ≤ θaiπiT, where θai,
πiT are positive constants. Approximation errors of NNs’ output can be defined to be: δci(k) =
ωc2i(k)∆ci(k), δai(k) = ωa2i(k)∆ai(k), ϑri(k) = ωr2i(k)∆ri(k).

Theorem 1. Assume that Assumptions 1 and 2 are true. CNN and ANN weights are renewed by
(36) and (42). Upon satisfying the triggering term(26), the local inconsistency error is ei(k), critic
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evaluated error and actor evaluated error error are consistent and ultimately bounded. Furthermore
the control method ui converges to the optimal value u∗i .

Evidence: Set ω̃r2i(k) = ωr2i(k)−ω∗r2i as the weighting assessment error between the
optimal weights for RNNs ω∗r2i. Its assessment ωr2i(k), ω̃c2i(k) = ωc2i(k)−ω∗c2i is the error
resulting from weighting evaluation involving the ideal CNN weights ω∗c2i ; its assessed
ωc2i(k), as well as ω̃a2i(k) = ωa2i(k)−ω∗a2i is the weighting evaluated error involving the
ideal ANN weightings ω∗a2i and its estimation ωa2i(k).

Algorithm 1 RCA neural networks based on the IrQL method with event triggering.

Set initial value:
1: Set initial values for ωr2i(0), ωa2i(0), ωc2i(0) between (0, 1);
2: Set a low level of degree of precision for the calculation E .
3: Initialize the score of xi(0), x0(0) within (0, 1)
The iterative process: Make kisequalto0. Error calculation at the localized level ei(k);
4: Keep on;
5: Based on actor NN, estimate ûi(k) by (37)
6: Update the reinforce NN;
7: Via the inputting [ei(k), ui(k), u−i(k)] into the reinforce NN, and we can obtain the
estimated the function of IRR Ri(Zri(k)) via (27)
8: Obtain eri(k) by (28);
9: Renew the matrices ωr2i(k) by (31);
10: Renew the critic NN:
11: Via the inputting [R̂i(Zri(k)), ei(k), ui(k), andu−i(k)] into critic NN,
and we can obtain its estimated Q-function via (32);
12: Obtain eci(k) by (33);
13: Renew the matrices ωc2i(k) by (36);
14: Renew the actor NN:
15: Input [ei(k)] to the actor NN, and we can obtain the estimated Q-function
ûi(k) via (37)
16: Calculation eai(k) via (38)
17: In the event that the triggering conditions are met, renew the matrices
ωa2i(k) of the actor NN using (41)
18: Otherwise, do not update the weight matrices ωa2i(k)
19: Until ‖ωc2i(k + 1)−ωc2i(k)‖ ≤ E ; otherwise, set k = k + 1, then go to
procedure (5)
20: Keep on ωr2i(k), ωc2i(k), ωa2i(k) as the optimal weights.

(1) We can obtain the following function at the time of triggering as follows:

L(k) = L1(k) + L2(k) + L3(k) + L4(k) + L5(k) (43)

In this equation,

L1(k) =
1

αri
tr(ωT

r2i(k)ωr2i(k)),

L2(k) =
1

αci
tr(ωT

c2i(k)ωc2i(k)),

L3(k) =
1

αai
tr(ωT

a2i(k)ωa2i(k)),

L4(k) = $kR̂i(k),

L5(k) = βkQ̂i(k).

(44)

∆L1(k) is written to be

∆L1(k) =
1

αri
tr(ωT

r2i(k + 1)ωr2i(k + 1)−ωT
r2i(k)ωr2i(k)). (45)
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In this equation, we have

ω̃r2i(k + 1) = ωr2i(k + 1)−ω∗r2i

= ωr2i(k)− αri$[j(k− 1) + $R̂(k)− R̂(k− 1)]

× δri(k)∆ri(k)

(46)

Furthermore, we have

∆L1(k) =− 2$2δri(k)[$−1 j(k) + R̂(k)− R̂(k− 1)]

+ αri$
4[$−1 j(k) + R̂(k)− R̂(k− 1)]2ϑ2

ri(k)

=
{

δri(k)− $2[$−1 j(k) + R̂(k)− R̂(k− 1)]
}2

− (1− αri(k)∆2
ri(k))$

4[$−1 j(k) + R̂(k)− R̂(k− 1)]2

× ϑ2
ri(k)− δ2

ri(k)

(47)

∆L2(k) can be written as

∆L2(k) =
1

αci
tr(ωT

c2i(k + 1)ωc2i(k + 1)−ωT
c2i(k)ωc2i(k)). (48)

Within this equation, we have

ω̃c2i(k + 1) = ωc2i(k + 1)−ω∗c2i

= ωc2i(k)− αciβ∆ci(k)[R̂i(k− 1)

+ β(ωc2i(k) + ω∗c2i)∆ci(k)−ωT
c2i(k− 1)∆ci(k− 1)]

(49)

Furthermore, we have

∆L2(k) =
1

αci

{
D1 + D2 + D3 −ωT

c2i(k)ωc2i(k)
}

(50)

where
D1 = ωT

c2i(k)(I − αciβ
2∆ci(k)∆T

ci(k))
2ωc2i(k

= ‖ωc2i(k)‖2 − 2αciβ
2‖δci(k)‖2

+ α2
ciβ

4‖∆ci(k)‖2‖δci(k)‖2

D2 = −2αciβ
2δci(k)[β−1R̂i(k− 1) + (ω∗c2i)

T∆ci(k)

− β−1ωc2i(k− 1)∆ci(k− 1)]‖∆ci(k)‖2

D3 = α2
ciβ

4[β−1R̂i(k− 1) + (ω∗c2i)
T∆ci(k)

− β−1ωT
c2i(k− 1)∆ci(k− 1)]T

× [β−1R̂i(k− 1) + (ω∗c2i)
T∆ci(k)− β−1ωT

c2i(k− 1)∆ci(k− 1)]

The following result is obtained by computation:

∆L2(k) = −β2‖δci(k)‖2 − β2(1− αciβ
2‖∆ci(k)‖2)

× ||δci(k) + β−1R̂i(k− 1) + (ω∗c2i)
T∆ci(k)

−β−1ωT
c2i(k− 1)∆ci(k− 1))||2

+ ||R̂i(k− 1) + β(ω∗c2i)
T∆ci(k)

−ωT
c2i(k− 1)∆ci(k− 1)||2

(51)
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In the case of the difference of the first order of L3(k), we can obtain

∆L3(k) =
1

αai
(ωT

a2i(k + 1)ωa2i(k + 1)−ωT
a2i(k)ωa2i(k)) (52)

where,
ω̃a2i(k + 1) = ωa2i(k + 1)−ω∗a2i

= ωa2i(k)− αai∆ai(k)ωT
c2i(k)C(k)

× [ωT
c2i(k)∆ci(k)]

(53)

Therefore, we have

∆L3(k) =
1

αai
(E1−ωT

a2i(k)ωa2i(k)) (54)

where
E1 =||ωa2i(k)||2 − 2αaiω

T
c2i(k)C(k)δai(k)[ωT

c2i(k)∆ci(k)]

+ αai||ωT
c2i(k)∆ci(k)||2||∆ai(k)||2||ωT

c2i(k)C(k)||2
(55)

In the case of ∆L3(k), the simplified formula is given below:

∆L3(k) =− (1− αai||∆ai(k)||2)||ωT
c2i(k)∆ci(k)||2

× ||ωT
c2i(k)C(k)||2 − ||δai(k)||2

+ ||ωT
c2i(k)C(k)∆ai(k)ωT

c2i(k)− δai(k)||2
(56)

By adding Equations (47), (51), and (56), we can obtain L(k) as follows:

∆L(k) = ∆L1(k) + ∆L2(k) + ∆L3(k) + ∆L4(k) + ∆L5(k)

= −β2||δci(k)||2 − β2(1− αciβ
2||∆ci(k)||2)

× ||δci(k) + β−1R̂i(k− 1) + (ω∗c2i)
T∆ci(k)

− β−1ωT
c2i(k− 1)∆ci(k− 1)||2

− (1− αai||∆ai(k)||2)
× ||ωT

c2i(k)∆ci(k)||2||ωT
c2i(k)C(k)||2 + ||R̂i(k− 1)

+ β(ω∗c2i)
T∆ci(k)−ωT

c2i(k− 1)∆ci(k− 1)||2

+ ||ωT
c2i(k)C(k)∆

T
ci(k)ω

T
c2i(k)− δai(k)||2

− (1− αri∆2
ri(k))$

4

× ||$−1 j(k) + R̂i(k)− $−1R̂i(k− 1)||2

ϑ2(k) + ||δri(k)− $2[$−1 j(k) + R̂i(k)

− $−1R̂i(k− 1)]||2

− ||δai(k)||2 − ||δri(k)||2 + βk+1Qi(k + 1)− βkQi(k)

+ $k+1Ri(k + 1)− $kRi(k)

(57)



Entropy 2023, 25, 299 13 of 22

Therefore, we can obtain

∆L(k) = −β2||δci(k)||2 − β2(1− αciβ
2||∆ci(k)||2)× ||δci(k)

+ β−1V1(k)||2 − (1− αai||∆ai(k)||2)||X1(k)||2

× ||W1(k)||2 + ||V1(k)||2 + ||W1(k)XT
1 (k)− δai(k)||2

− (1− αai(k)||∆ri(k)||2)$4||$−1Y1(k)||2υ2
ri(k)

− ||δai(k)||2 − ||δri(k)||2 + βk+1Qi(k + 1)− βkQi(k)

+ $k+1Ri(k + 1)− $kRi(k)

(58)

where V1(k) = R̂i(k − 1) + β(ω∗c2i)
T∆ci(k) − ωT

c2i(k − 1)∆ci(k − 1), W1(k) = ωT
c2i(k)C(k),

X1(k) = ωT
c2i(k)∆ci(k), Y1(k) = j(k) + $R̂i(k)− R̂i(k − 1), and we can obtain ||V1(k)|| ≤

V1m, ||W1(k)|| ≤W1m, ||X1(k)|| ≤ X1m, ||Y1(k)|| ≤ Y1m. Next, we can obtain

∆L(k) ≤− β2||δci(k)||2 − β2(1− αciβ
2||∆ci(k)||2)

× ||δci(k) + β−1V1(k)||2

− (1− αai||∆ai(k)||2)||X1(k)||2||W1(k)||2

+ 2||W1(k)XT
1 (k)||2 + ||δai(k)||2

− (1− αri||∆ri(k)||2)$2||Y1(k)||2ϑ2
ri(k)

+ 2||δri(k)||2 + 2||Y1(k)||2

− βkQi(k)− $kRi(k)

(59)

Moreover, we can obtain

∆L(k) ≤− β2||δci(k)||2 − β2(1− αciβ
2||∆ci(k)||2)

× ||δci(k) + β−1V1(k)||2

− (1− αai||∆ai(k)||2)||X1(k)||2||W1(k)||2

+ V2
1m + 2W2

1mX2
1m + 2||(ω∗a2i)

T∆ai(k)||2

+ 2||ωT
a2i∆ai(k)||2

− (1− αri||∆ri(k)||2)$2||Y1(k)||2ϑ2
ri(k)

+ 2||δri(k)||2 + 2||Y1(k)||2

− βkQi(k)− $kRi(k)

≤ −β2||δci(k)||2 − β2(1− αciβ
2||∆ci(k)||2)

× ||δci(k) + β−1V1(k)||2

− (1− αai||∆ai(k)||2)||X1(k)||2||W1(k)||2

+ V2
1m + 2W2

1mX2
1m + 4ω2

aim∆2
aim

− (1− αri||∆ri(k)||2)$2||Y1(k)||2ϑ2
ri(k)

+ 2δ2
rim + 2Y2

1m

− βkQi(k)− $kRi(k)

(60)

If the conditions are met, then we can obtain

αri ≤
1

||∆ri(k)||2
, αci ≤

1
β2||∆ci(k)||2

, αai ≤
1

||∆ai(k)||2

||δci(k)|| >
√
(V2

1m + 2W2
1mX2

1m + 4ω2
a2im∆2

aim + 2δ2
rim + 2Y2

1m)/β2

We can derive ∆L(k) ≤ 0. The proof has been completed.
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(2) In the absence of the triggering conditions, consider the following:

L(k) = L1(k) + L2(k) + L4(k) (61)

where
L1(k) =

1
αri

tr(ωT
r2i(k)ωr2i(k)),

L2(k) =
1

αci
tr(ωT

c2i(k)ωc2i(k)),

L4(k) = eT
i (k)ei(k)

∆L(k) = ∆L1(k) + ∆L2(k) + ∆L4(k)

= −β2||δci(k)||2 − β2(1− αciβ
2||∆ci(k)||2)

× ||δci(k) + β−1V1(k)||2 + ||V1(k)||2

− (1− αri||∆ri(k)||2)$2||Y1(k)||2ϑ2
ri(k)

+ 2δ2
rim + 2Y2

1m

+ eT
i (k + 1)ei(k + 1)− eT

i (k)ei(k)

(62)

∆L(k) ≤ −β2||δci(k)||2 − β2(1− αciβ
2||∆ci(k)||2)

× ||δci(k) + β−1V1(k)||2 + ||V1(k)||2

− (1− αri||∆ri(k)||2)$2||Y1(k)||2ϑ2
ri(k)

+ 2δ2
rim + 2Y2

1m

+ ((ι||ei(k) + ι||εs
i ||)2 − ||ei(k)||2)

≤ −β2||δci(k)||2 − β2(1− αciβ
2||∆ci(k)||2)

× ||δci(k) + β−1V1(k)||2 + V2
1m

− (1− αri||∆ri(k)||2)$2||Y1(k)||2ϑ2
ri(k)

+ 2δ2
rim + 2Y2

1m

− (1− 2ι2)||ei(k)||2 − 2ι2||εs
i ||2

(63)

In the event that it is satisfied that αri ≤ 1
||∆ri(k)||2

, αci ≤ 1
β2||∆ci(k)||2

, αai ≤ 1
||∆ai(k)||2

,

and ||δci(k)|| >
√
(V2

1m + 2δ2
rim + 2Y2

1m)/β2 , one has ∆L(k) ≤ 0. Thus, we can derive
∆L(k) ≤ 0, and the proof is completed.

6. Statistical Data Illustration

To demonstrate the viability of the proposed method, a simulation is presented in the
following section.

Nonlinear MAS Consisting of One Leader and Six Followers

There were six followers and one leader in this tangled set of MASs which were
considered. Figure 1 depicts the connection graph of the studied MASs. There was a
leader of 0, and there were followers of 1, 2, 3, 4, 5, and 6. It is possible to obtain the
corresponding adjacency matrix a14 = a21 = a32 = a43 = a52 = a65 = 1. There is a
weighted relationship involving the leaders and followers where b1 = 1, b2 = b3 = b4 =
b5 = b6 = 0. It is possible for agent 1 to accept the information of the leader immediately.
The system model parameters for MASs with one leader as well as six followers are

as follows: A =

∣∣∣∣ 0.995 0.09980
−0.09982 0.995

∣∣∣∣, B1 = [0, 0.2]T , B2 = [0, 0.5]T , B3 = [0, 0.4]T , B4 =

[0, 0.3]T , B5 = [0, 0.6]T , and B6 = [0, 0.7]T .
The weight matrices are as follows: Q11 = Q22 = Q33 = Q44 = Q55 = Q66 = 1, R11 =

R22 = R33 = R44 = R55 = R66 = I2×2, and Q14 = Q21 = Q32 = Q43 = Q52 = Q65 = I2×2.
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The learning rates are αri = 0.95, αai = 0.90, and αci = 0.07(iisequalto1, 2, 3, 4, 5, 6), with a
discount factor of $ = 0.57, β = 0.9.

For the agents, the activation function of the RNNs and ANNs is as follows: Zr1(k) =
[eT

1 (k), uT
1 (kt1

s ), uT
4 (kt4

s )]
T ,Za1(k) = e1(kt1

s ),Zr2(k) = [eT
2 (k), uT

2 (kt2
s ), uT

1 (kt1
s )]

T ,Za2(k) =
e2(kt2

s ),Zr3(k) = [eT
3 (k), uT

3 (kt3
s ), uT

2 (kt2
s )]

T ,Za3(k) = e3(kt3
s ),Zr4(k) = [eT

4 (k), uT
4 (kt4

s ), uT
3 (kt3

s )]
T ,

Za4(k) = e4(kt4
s ),Zr5(k) = [eT

5 (k), uT
5 (kt5

s ), uT
2 (kt2

s )]
T ,Za5(k) = e5(kt5

s ),Zr6(k) = [eT
6 (k), uT

6 (kt6
s ),

uT
5 (kt5

s )]
T ,Za6(k) = e6(kt6

s ). The initial values of the leader and followers are x0(0) =
[0.6675, 0.7940]T , x1(0) = [0.5734, 0.6000]T , x2(0) = [0.5667, 0.7348]T ,
x3(0) = [0.8694, 0.7140]T , x4(0) = [1.0212, 1.3842]T , x5(0) = [0.8606, 1.5565]T , and x6(0) =
[0.5274, 1.3235]T .

According to Figure 2, all followers of the leader were able to accurately follow the
leader, and the whole MAS was able to achieve synchronization. Figure 3 illustrates the
six agents’ cumulative amount of trigger instants. On average, the amount of trigger
instants for the six agents was approximately 220. However, using the traditional RL
method, the number was approximately 1000. As a result, the computational burden was
reduced by 78.0% in comparison with the conventional time-triggered method. According
to Figure 4, the trigger mechanism of each agent is illustrated, which indicates that the
actor network weight will be updated only when the trigger mechanism is satisfied. As
can be seen in Figure 5, there is a correlation involving the error of triggering ||εs

i (k)||2 as
well as the minimum triggering requirements πiT. Over time, it appears that the triggering
error converged. Figures 6 and 7 illustrate the evaluation of the local neighborhood errors
using the proposed control method, and it is shown that they could be converged to 0 at
k = 60. The local neighborhood errors of [32] are shown in Figures 8 and 9. In comparison
with Figures 8 and 9, our proposed control method produced a better convergence effect.
Figures 10 and 11 show the estimation of the ANN weight parameters. With the proposed
control method, the actor network weights can stabilize faster than with IrQL.

Figure 1. The topology structure for leader-follower MASs.
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Figure 2. The tracks for the leader and followers.

Figure 3. The comparison of the trigger time number involving the suggested method as well as the
conventional approach.
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Figure 4. The triggering instant for each agent.

Figure 5. The triggering error trajectory||εs
i (k)||

2 in addition to triggering thresholds
πiT(i = 1, 2, 3, 4, 5, 6).
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Figure 6. Local neighborhood errors ei1(k) with the proposed control method.

Figure 7. Local neighborhood errors ei2(k) with proposed control method.
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Figure 8. Local neighborhood errors ei1(k) of [32].

Figure 9. Local neighborhood errors ei2(k) of [32].
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Figure 10. The estimation of weight parameters of the ANN of [32].

Figure 11. Estimation of the weight parameters of an ANN using the proposed control method.

7. Conclusions

According to this study, an event-triggered optimum controlling problem for model-
free MASs was examined using the IrQL method based on RL. A new IrQL method was
introduced by adding additional IRR functions [32], As a result, more information could
be obtained by the agent. As a consequence of defining the IRR formula, we defined
the Q-function and derived the corresponding HJB equation. In an iterative approach to
IrQL, this method was designed to calculate the optimal control strategy. Using the IrQL
algorithm, an event-triggered controller utilizing the IrQL method was presented. It was
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designed to update the controller only at the time of triggering to reduce the burden on
computing resources and the transmission network. An RCA-NN was used to implement
the suggested approach, which eliminated the need for a model of the system. It is possible
to determine the convergent weights of neural networks using the Lyapunov method. To
assess the performance and control efficiency of the suggested algorithm, a simulation
model was used. Further research will be conducted on the effect of the discount rates on
system reliability.
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