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Abstract: In this study, learning pathways are modelled by networks constructed from the log data of
student-LMS interactions. These networks capture the sequence of reviewing the learning materials
by the students enrolled in a given course. In previous research, the networks of successful students
showed a fractal property; meanwhile, the networks of students who failed showed an exponential
pattern. This research aims to provide empirical evidence that students” learning pathways have the
properties of emergence and non-additivity from a macro level; meanwhile, equifinality (same end
of learning process but different learning pathways) is presented at a micro level. Furthermore, the
learning pathways of 422 students enrolled in a blended course are classified according to learning
performance. These individual learning pathways are modelled by networks from which the relevant
learning activities (nodes) are extracted in a sequence by a fractal-based method. The fractal method
reduces the number of nodes to be considered relevant. A deep learning network classifies these
sequences of each student into passed or failed. The results show that the accuracy of the prediction
of the learning performance was 94%, the area under the receiver operating characteristic curve
was 97%, and the Matthews correlation was 88%, showing that deep learning networks can model
equifinality in complex systems.
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1. Introduction

Complex systems comprise interactions among many elements [1]. This kind of system
could be physical, biological or social [2]. The emergence is a central feature of a complex
system; the interaction of lower level elements of the system moulds the higher-order level
patterns. Furthermore, examining the lower elements separately cannot give insight into
how the system behaves at a macro level [2—4]. Hence, complex system-science focuses on
these interactions instead of studying the elements themselves [2,5].

A complex network is a good representation of a complex system [6,7]. In educational
research, Ramirez-Arellano [8] modelled student-Learning Management System (LMS)
interactions with a network representing the individual learning pathways. These pathways
were used to construct a collective network, which is a non-additive system. This means
that the resulting collective network was not equal to the sum of individual ones. The
individual learning pathways were mostly linear with some bifurcations; meanwhile, the
collective learning pathways were fractal. Thus, focusing only on isolated components
cannot explain the behaviour of the whole system [9].

Previous research has focused on studying learning pathways from the point of view
of learning analytics and machine learning to personalise the sequence of learning elements
or courses. Furthermore, network-based models are employed to extract network features
(such as centrality measures) or to retain the relevant nodes and links by computing the
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maximum spanning trees or detecting communities. The objective of those studies was to
classify learning performance using machine learning techniques. Learning analytics and
network-based approaches have focused on exploring individual behaviour and learning
pathways but have failed to conceptualise the phenomena as a complex system.

This research aims to provide empirical evidence that student learning pathways have
the properties of emergence and non-additivity from a macro level; meanwhile, equifinality
(same end, quantified by final grade of learning process but different learning pathways) is
presented at a micro level. Moreover, the individual learning pathways and the relationship
of their components were analysed to classify learning achievements. Furthermore, it was
shown that the computation of online learning rate (OLR) on the individual pathways was
lower correlated with the final grade, as computed on the collective learning pathways.
The following research questions are stated:

R1. Does a strong relationship between OLR and learning performance emerge when
analysis from a micro to a macro level is performed?

R2. Can the equifinality property in an individual learning pathway be modelled to
classify the learning performance?

R3. Are the student’s learning pathways a complex system?

The remaining sections of this article report the related work and provide the learning
pathways preliminaries and tools rooted in the complex network research. Then the
methodology, results and discussion are described. Finally, the conclusions are presented.

2. Related Work

Learning pathways are dynamic trajectories or learning routes that could be different
but end in the “same” place regarding learning achievement. Previous works have analysed
the learning pathways of blended learning as a collective behaviour [8,10]. However, the
analysis of the behaviours of individual agents is necessary [11,12]. These studies have
shown that learning pathways have the emergence property. This means that analysing
individual learning pathways—modelled as networks—cannot provide insight into their
impact on learning achievements. On the contrary, collective pathway topology differs for
students who pass compared to those who fail a course.

The complexity in learning pathways is due to individual experiences, such as a stu-
dent’s motivation, emotions, engagement, cognition and metacognition that change over
time [8,10,13]. These variations provoke the system’s elements to change their relationships
to raise self-organisation and adaptive behaviour [6]. Linear models have been extensively
employed in educational research and can model complexity together with non-linear
approaches [4]. An example is a nonlinear fractional model to quantify the learning acqui-
sition from the collective learning pathways [10]. The fractal dimension and v parameters
of this fractional model were estimated by multiple linear regression with behavioural and
emotional engagement and disaffection as independent variables. These linear regressions
explained 68% and 78% of the variance of the fractal dimension and v, respectively.

From a learning analytics point of view, the learning pathways were grouped into
self-directed and teacher-directed. The findings suggest that students who are free to
review the learning content have a low level of engagement and need more scaffolding,
while those who follow a predefined path show a higher level of engagement [14,15]. A
similar study [16] found that participants in a massive online open course preferred self-
directed pathways, and those with high self-regulated learning had a single entry pathway
for courses. Moreover, in teaching biology, the student learning outcomes of students
who followed a learning pathway were higher than those who learned from a traditional
face-to-face course [17].

Personalised education has been attempted by providing individual learning se-
quences with information technology that analyses historical data and then suggests the
next step in learning; such systems can be based on rules [18,19] or can integrate expert
knowledge [20]. The results suggested that personalised learning pathways enhance learn-
ing outcomes [20]. A network-based learning path recommendation approach constructs
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course and learner networks; the latter is used to guide the pathway recommendation
based on the similarity of the students’ learning performance. The course—course network
is the basis for recommending appropriate courses in different scenarios, such as a student
who has not been enrolled in any course [21].

Furthermore, learning pathways are modelled as a complex network, each node
represents a course, and the Pearson correlation coefficient quantifies the relationship
between courses. Based on the strength of the correlation, a network is constructed. Then
the nodes with a correlation value above a given threshold are retained in the network. By
varying the threshold, the resulting maximal spanning tree has features such as degree
distribution, the clustering coefficient, and betweenness, and average paths centrality are
analysed [22,23]. Following a community analysis on networks where each node was a
student, the weight edges represented the similitude of the students’ learning behaviour;
Mai et al. [24] discovered the communities; then the number of learning materials and
the number of transitions were extracted. The communities with the highest and lowest
average learning performances significantly differed in the number of learning materials
reviewed. Moreover, the information extracted from communities was employed to build
several machine learning models to classify students as passed or failed. The resulting area
under the receiver operating characteristic curve of classification was 80% [24].

The previous works reported in this section had two aims: to recommend the next
element of the learning path (courses or learning material) and to classify the learning
performance based on the individual learning pathways. The recommendation employs
rule and knowledge inferences models, or modelling the course and students’” similarity
based on network. Moreover, network-based models were employed to extract network
features (such as centrality measures and the number of learning materials reviewed)
or retain the relevant nodes and links by computing the maximum spanning trees or
detecting communities. The main objective of those approaches was to classify the learning
performance using machine learning techniques. All these approaches focused on analysing
individuals’ behaviour and learning pathways but failed to conceptualise the phenomena as
a complex system. Furthermore, Ramirez-Arellano, Sigarreta Almira and Bory-Reyes [10]
and Ramirez-Arellano [8] have shown the emergence of the fractality from collective
learning pathways but have not studied the individual components to obtain evidence of
non-additivity and equifinality, which are features of dynamic complex systems.

3. Preliminaries on Learning Pathway Networks
3.1. Construction of Learning Pathway Networks

Individual and collective networks are constructed based on learning record history
obtained from Moodle log files. This information includes lessons, quizzes, learning
activities and examinations, chronologically ordered (from the beginning to the end); as
shown in the top of Figure 1. Hence, this approach captures the dynamic of the system
across time. For example, the first learning event (lesson A) is followed by the second
(lesson B). This means that an arc from activity A to lesson B was added. Then, activity one
was opened when lesson B was still being reviewed; hence, an arc from lesson B to activity
one was drawn. Since activity one was finalised before lesson B ended, an arc from the
first to the second was added. Quiz one was solved, and it was the final event connected
to lesson B. For further details, the Supplementary Material contains an example of the
implementation of the network construction algorithm [8].

The adjacency matrix of each personal learning network can be put together to build
collective networks by graph union operation. For example, let LP; and LP, be the ad-
jacency matrix of two individual learning pathways. To combine them, the “or” matrix
operation denoted by LP; | LP; is defined as 1 if LP;(i,j) # 0 or LP,(i,j) # 0; it is defined
as 0, otherwise. This operation can be repeated for every student enrolled in the course
to obtain a collective learning pathway network. Since the individual learning pathways
follow different combinations in the sequence of learning resources, the collective learning
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pathways are complex networks, as shown in Figure 2. The direction of the arcs indicates
the order in which the resources were reviewed.

Reviewing sequence

13:15:46h  13:30:46h  13:45:46h  14:15:46h  14:30:46h  14:45:46h  15:15:46h  15:30:46h  15:45:46h  16:45:46h

Begining

Lesson A

;d
6

Lesson B

Activity 1

. N

[ Lesson A ] [ Lesson B ]_[ Lesson A ]

o

Figure 2. The collective learning pathway network from 42 students enrolled in Mathematics applied
to Biological Science from January—July 2020 semester. a = activity, e = examination, 1 = lesson,
r = reading.

3.2. Extraction of the Relevant Nodes of Learning Pathway Networks

The topology of the collective pathway networks has been analysed in [8,10], and the
findings show that these networks are fractal. This feature is the cornerstone of extracting
the relevant nodes by identifying the network boxes [25]. Then, the nodes with the highest
betweenness are removed to fragment the network. The resulting list of nodes contains
those identified as relevant. The nodes that are disconnected by removing the nodes with
the highest betweenness are not considered relevant. In a fractal network, the boxes contain
a hub (the node where several nodes are connected), and those boxes usually are connected
to other boxes by the hub (assortativity). Hence, the hub nodes are expected to have a high
betweenness degree, and removing these vital nodes leaves the “satellite” nodes isolated
from the rest of the network.

An example is shown in Figure 3. The directed arcs are transformed into undirected
ones before applying the procedure. Then the minimum boxes to cover the network are
computed, as shown in Figure 3a. Note that nodes in the same colour belong to the same
box. For each box, the node with the highest betweenness is deleted, which are nodes
36, 29, 26 and 32 in our example (and are big nodes, as shown in Figure 3b). The highest
betweenness value computed in the whole network differs when computed on the boxes
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extracted as subnetworks. For example, the highest betweenness value of the network is
of node 2 (51.93) but differs when the computation is carried out in the red box (42.63 for
node 36 and 25.1 for node 2); hence, node 36 is removed. The node with the highest
betweenness is removed from the remaining boxes (green, blue, yellow), deleting nodes
29, 26, and 32. After this, node 33 was disconnected, so it was not considered a relevant
node. Next, the previous steps are repeated in the network, as shown in Figure 3b, adding
2,14, 24, 18 and 35 to the list. The box covering and node removal steps are repeated on the
resulting network(s) until every node has a neighbourhood. If two or more disconnected
subnetworks are produced after node removal, the process is carried out on the subnetwork
that has the higher number of nodes.
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Figure 3. Extracting relevant nodes by computing the boxes to cover the learning pathway network
of the January-July 2020 semester. (a) The minimum boxes to cover the network. (b) Nodes with the
highest betweenness in each box are deleted, which are nodes 36, 29, 26 and 32.

The fractal approach outperforms degree, betweenness, and PageRank methods. For
further details on the fractal approach, see [25]. The relevant nodes of individuals’ pathways
are ordered sequences (from highest to lowest relevance) that can be compared to those
from the planned pathway. In other words, we compare how the students browse the
material with how the faculty members expect it to be browsed.

Extracting vital nodes can identify the relevant learning pathways in collective and
individual learning networks. Once a list of nodes is obtained, the subnetwork formed by
those nodes and their respective arcs can be extracted; an example of a relevant learning
pathway is shown in Figure 4. The resulting network summarises relevant learning path-
ways and contains fewer nodes and arcs than the original one, as shown in Figures 2 and 4.
The relevant node identification produces an ordered list (from the most relevant to the
least) that, in practice, is a subset of the original ones. This is an advantage over other node
ordering methods, such as topological sort. Note that the examinations (e) of the network
in Figure 2 were not relevant, so they were not included in the network in Figure 4.

3.3. Online Learning Rate

The online learning rate is defined as follows [8]:

A
2 [ Ny(l)di
=1
1-——— 1
— M)
where 1 is [M1] [US2] the number of nodes, A is the diameter plus 1 of the network, and
Ny(1) is the minimum number of boxes to cover the network. For a detailed description
of the box-covering algorithm, see [26]. The OLR can be computed on individual and
collective networks. The OLR is a normalised measure that can be compared among
different learning pathway networks where one means the fastest learning rate and zero is
the slowest.
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Figure 4. The relevant learning pathways are extracted by relevant node identification from the
January-July 2020 semester. a = activity, e = examination, | = lesson, r = reading.

The OLR computes the number of sessions (the uninterrupted time when students
browse the learning material) necessary to cover all the learning material in the network.
The rationale is varying the length (I) of the sessions. For example, given a network, as
shown in Figure 3, the length of the session is represented by the diameter of the boxes (I) to
cover the network using the box-covering algorithm. Thus, for a session length of [ = 1, the
number of sessions (IN}) equals the number of nodes (1 = 35; note that node enumeration
starts from 2). In other words, reviewing the material at the speed of sessions of size one
will take 35 sessions to complete the course. Now the speed is five (I = A = 5)-which means
sessions of size five (box size)—hence, the entire network is covered by a session (one box)
that includes all the learning material (nodes). It means that Nj is computed with boxes
of diameter | = A; thus, Nj, = 1. The box-covering implementation in the Supplementary
Material obtains the Ny, for | = [2, A—1]. When the student reviews the material in a linear
pathway, the resulting plot of [ vs. N, is similar to a straight line with a slope of —1/2.

4. Method
4.1. Participants and Context

The participants in this study were enrolled in a blended course, “Mathematics applied
to Biological Science”, offered from 2019 to 2022. The number of university students was
424, with 201 males and 223 females. This course is included in a Mexican university
bachelor’s degree program. It contains online lectures complemented with lessons, videos,
tutorials, readings and learning activities delivered by Moodle. A new lecture is delivered
weekly. The students” materials (lectures and other resources) are available until the
semester ends. Due to the COVID-19 pandemic, the weekly face-to-face sessions were
supported via videoconference for 2020 and 2021. In the first semester of 2022, the session
returned to the classroom. These sessions focused on solving individual concerns and
giving deep explanations of learning activities and student feedback if necessary. The
online lecture and its face-to-face session were scheduled for the same week.

The lecture articulates how the learning activities and other resources should be
reviewed. It contains a linear pathway designed by the faculty members. Before the
beginning of each semester, the faculty members revise and update each lesson. This
update includes new materials, such as learning activities and readings. Moreover, the
learning pathways can be updated by moving or deleting some resources. The lesson,
examinations and learning materials are only available through Moodle, and students were
not permitted to download them. Three examinations and learning activities were included
in computing the students’ final grades. The final grade was the operationalisation of the
student’s learning at the end of the course. Thus, achieving the same learning performance
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following different learning pathways shows equifinality. The learning activities were to be
turned in by the following week; late deliveries were not permitted. The students received
feedback for all uploaded learning activities. All students and teachers were informed of
the research objectives and voluntarily participated. Both agreed that their anonymised
information would be used for this research [27].

4.2. Analysis of Emergence

The collective and individual learning pathway networks were constructed following
the previous approach. The partitioned collective networks included all the students
enrolled in the semesters, and they were constructed according to the final grade (passed or
failed the course), as shown in Table 1. A student failed the course if he/she received a final
grade below six. The Equation (1) computed the OLR in ten collective networks (partitioned)
and 454 individual ones. The Supplementary Material contains an implementation and an
example of the box-covering algorithm [26]. Using this approach, the improper integral

A

| Ny(I)dl can be approximated by the numerical integration of the point / vs. Nj,. The
I=1
Mann-Whitney U test was performed on OLR (computed in collective and individual

networks) to determine if the students who failed the course obtained a lower OLR score
than those who passed. Moreover, the OLR and final grade correlations were analysed
using the partitioned collective network. Moreover, this analysis was performed using all
individual networks. These analyses of individual and collective networks seek to answer
research question one, as shown in Figure 5.

Table 1. The semester and participants in the study.

Semester Partition Short Name Students Enrolled Final Grade

(Mean)
] A JJ2020A 33 8.73
January—-July 2020 F JJ2020F 9 2.33
A AD2020A 68 8.87
August-December 2020 F AD2020F 7 2.29
- A JJ2021A 107 8.21
January-July 2021 F JJ2021F 10 4.6
A AD2021A 81 7.73
August-December 2021 F AD2021F 20 3.05
) A JJ2022A 84 8.13
January-July 2020 F JJ2022F 5 24
R1
correlation analysis
OLR
Collective Pathway " (e.m.ergence from
Ketwork individual pathway) R3
Learning
Archievements
Individual Pathway R2
Network
Relevant pathway

(equifinality)

deep learning model
Figure 5. The overview of the method to answer the research questions.

4.3. Analysis of Equifinality

The relevant nodes extracted from the individual learning pathway network by fractal
approach were compared with the expected learning pathways (the expected sequence
to review the course content). Since both represent the lecture, learning activities and
examinations, each sequence was encoded as a string, such as RLP = “11,a3,e1” where
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1 = lesson, a = learning activity and e = examination. Let ELP = “I1,al,e1” be the expected
learning pathway, then the Levenshtein distance [28] quantifies the total number of opera-
tions necessary to transform RLP into ELP. In the example, the student’s learning pathway
differs from the expected by one since he/she solves activity three instead of one (the
number 1 needs to be replaced by 3 in LP to become ELP). The Levenshtein distance was
computed by semester since the ELP changed as faculty members revised and updated
the course material. The Levenshtein distance was analysed by the Mann-Whitney U test
to determine how far the students’ learning pathways were from the expected one and if
there was a significant difference in their learning performance.

Similarly, the encoded relevant nodes of individual learning pathways extracted by
fractal approach and topological sort were employed to train and test a long short-term
memory network (LSTMN). For this purpose, each relevant node sequence was treated as
a sequence of “words”, where each word is the encoded node as in the previous example.
Several students’ learning pathways differed in the sequence of nodes, but these students
reached the same learning performance, showing equifinality. Based on this property, the
LSTMN can classify the learning achievements to answer research question two, as shown
in Figure 5. The architecture of the LSTMN is shown in Figure 6.

@ @ ® O) ® ®

<

?

Sequence input  Word-embedding LSTM Fully connected Softmax Classification

Figure 6. The architecture of the LSTM network.

The “words” in each learning pathway sequence were encoded as integer numbers
according to the vocabulary constructed from all individual learning pathways. The
first layer received a one-dimensional sequence of these integer numbers. The word-
embedding layer (dimension = 50) maps word indices to vectors that feed up to the LSTM
layer. The LSTM layer contains 100 hidden units, and its output is the input of the fully
connected layer. It connects all of the inputs to the outputs with weights and biases. The
classification layer computes the cross-entropy loss for passed and failed, to choose the
lowest value. The evaluation of the classification was performed using a ten-fold cross-
validation technique. The LSTM network was implemented in MATLAB, and all the
computations were performed on CPU Intel Core i7 9700, 64 Gb RAM, and GPU GeForce
RTX 3090 with 24 Gb RAM.

5. Results
5.1. The Emergence of OLR and Learning Performance Correlation

The Mann-Whitney U test on OLR was carried out in the ten partitioned learning
pathway networks in Table 1. A significant difference was found between the OLR com-
puted on the collective partitioned networks of those students who passed (Mdn = 0.939)
and failed (Mdn = 0.91); U(N, =5, Nf =5) =0.000, z = —2.611, p = 0.008. This result shows
that the OLR can differentiate between passing students and those with poor learning
performance, as was found in previous research [8]. Moreover, a significant difference in
the OLR computed on individual learning pathway networks was found between students
who passed (Mdn = 0.669) and failed (Mdn = 0.591); U(N, = 373, Ny=51) =45135,z= -1,
p < 0.001, as shown in Figure 7.
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Figure 7. The significant difference in OLR by learning performance of individual learning path-
ways (a) and collective ones (b).

A Pearson’s coefficient was calculated to assess the correlation between the OLR of
individual learning pathways networks and students’ final grade r(424) = 0.476, p <0.001.
Similarly, the Pearson’s coefficient was calculated between the OLR of the collective par-
titioned learning pathway networks and the average final grade of the students in each
partition (as shown in Table 1) r(10) = 0.754, p = 0.012. The adjusted correlation coefficient
(adj R?) of the linear model of the OLR of the individual learning pathways networks and
students’ final grades was 0.225, F(1,422) = 123.903, p < 0.001. The regression coefficient
(B =0.476, p < 0.001) indicates that the final grade increases as OLR. Meanwhile, the collec-
tive partitioned learning pathway networks were adj R? = 0.515, F(1,8) = 10.542, p = 0.012.
Similarly, the regression coefficient is positive (3 = 0.754, p = 0.012). These results suggest
that a strong relationship emerges from individual learning pathways (effect size f> = 0.293)
analysis to collective ones (effect size f* = 1.317) [29]. Furthermore, a complex topology
emerges from the individual learning pathways when they are gathered to construct the
collective ones, although the individual ones are sequential revisions with a few bifurca-
tions, as shown in Figures 2 and 8. The complex topology of collective learning pathways
emerges from a non-additive process of the individual learning pathways, as the collective
pathways are non-additive systems.
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Figure 8. The student’s learning pathways, those of (a,b), obtained a final grade of seven and (c,d) of
nine. A = activity, e = examination, 1 = lesson, r = reading.
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5.2. Equifinality and Learning Performance

The individual learning pathways differ from the others, but the final grade is similar
or equal, as shown in Figure 8, showing equifinality.

Since it is not easy to compare the individual learning pathway networks, fractal node
extraction was employed to obtain a decreasing ordered list of relevance, as was described in
the previous section. The Levenshtein distance significantly differed between students who
passed (Mdn = 44) and those who failed (Mdn = 49); U(N, = 373, Ny = 51) = 4943, z = —5.573,
p < 0.001. The mean distances of the learning pathways of the students who passed (44)
and failed the course (49) were far from the expected learning pathway designed by the
faculty members and were higher for failed students. Moreover, the minimum distance
for successful students was 31 and 30 for failed students. These values suggest that not
even one student reviewed the learning material in the way that it was designed. Figure 9
shows the Levenshtein distance between sequences of students who (a) passed and (b)
failed the course and the expected learning pathway. Intense blue in Figure 9a,b indicates
that many deletions and insertions were performed to transform the current sequence into
the expected one to review the course content. Moreover, Figure 9b shows many more
sequences with intense blue than Figure 9a. Hence, students who failed the course did not
browse the learning material as expected.

a) 1
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5 ,
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15 55
20
: 50
25
30 45
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: 40
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45 =
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P P P = T F
2 2 Q & 8 3 < 2 3
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10 65
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Figure 9. Levenshtein distance between students who (a) passed and (b) failed the course and the
expected learning pathway.

The accuracy, area under the receiver operating characteristic curve, and the Matthews
correlation of LSTM, trained and tested with the list of encoded nodes extracted from
the individual learning pathways, using a fractal approach, were 0.94, 0.969 and 0.884,
respectively. Similarly, the LSTM was trained and tested using the nodes obtained by
a topological sort of individual networks. The main difference between the extraction
methods was that the fractal method obtained a list of nodes, usually less than the total
nodes in the network; while, in the topological sort, the number of nodes was precisely the
same as the learning pathway. The accuracy (Mdn = 0.927) obtained by the topological sort
(t) was lower than that by the fractal (f) method (Mdn = 0.94); U(N; = 500, Ny = 500) = 93,606,
z=—6.957,p <0.0001. The area under the receiver operating characteristic curve was higher
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for the fractal method (Mdn = 0.969) than for the topological sort (Mdn = 0.957); U(N; = 500,
Ny = 500) = 240,337.5, z = —2.170, p = 0.03. The Matthews correlation was analysed,
and the Mann-Whitney U test showed that the fractal method (Mdn = 0.884) obtained a
higher value than did the topological sort (Mdn = 0.857); U(N; = 500, Nf =500) =212,427.5,
z = —8.296, p < 0.0001, as shown in Figure 10. Thus, the equifinality presented in individual
learning pathways is useful for classifying the students’ learning performance. Furthermore,
the fractal node extraction approach outperformed the topological sort in classifying the
learning performance.

1.2
*
1
ke I

0.8 [ =
06 e
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0.2 |
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Fractal Topological Sort Random Forest

-0.2

B Accuracy EMCC m AUROC

Figure 10. The accuracy of the Matthews Correlation Coefficient (MCC), and Area Under the Receiver
Operating characteristic Curve (AUROC) for the classification of learning performance by the LSTM
network. * Statistically different p > 0.05.

Moreover, the random forest algorithm was trained and tested to compare the accuracy,
area under the receiver operating characteristic curve and Matthews correlation with those
obtained by classifying the individual learning pathways (extracted by the fractal method)
using the LSTM network. Because the random forest cannot process a sequence of encoded
nodes, each sequence was split into several attributes. For example, the sequences extracted
from the learning pathways of Figure 8 are in Table 2. The random forest classification was
performed using a ten-fold cross-validation, as carried out on the LSTM network.

Table 2. The sequences extracted from learning pathways are split into several attributes to train and
test the random forest. The learning pathways are shown in Figure 8. - means no value.

Pathway Al A2 A3 A4 A5 A6 A7 A8 A9 A10 A1l A12 A13
Figure 8a a a a a a a a a e 1 1 1 e
Figure 8b a a 1 a a e e - - - - -

Figure 8c a a a a 1 a a a 1 1 - - -
Figure 8d 1 a a a 1 a a a a 1 e - -

The accuracy (Mdn = 0.87) obtained by the random forest algorithm® was lower
than the fractal method (f) (Mdn = 0.94); U(N, = 500, Ny = 500) = 1209, z = —27.259,
p <0.0001. The area under the receiver operating characteristic curve was higher for
the fractal method (Mdn = 0.969) than for the random forest (Mdn = 0.62); U(N, = 500,
Nf =500) =10, z = —27.372, p < 0.0001. Moreover, the Matthews correlation was analysed,
and the Mann-Whitney U test showed that the fractal method (Mdn = 0.884) obtained a
higher value than the random forest (Mdn = —0.025); U(N; =500, Ny= 500)=0.0,z = —21.842,
p < 0.0001, as shown in Figure 10. The low value of the Matthews correlation means
that random forest incorrectly classified most positive and negative instances, and most
of its positive and negative predictions were also incorrect [30,31]. These low results
show that the random forest cannot learn how the sequences differentiate the students’
learning performance.
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6. Conclusions

This research provides empirical evidence that students’ learning pathways have
the properties of emergence and non-additivity in a macro-level analysis; meanwhile,
equifinality is present in a micro-level inspection. A strong correlation between OLR
and learning performance emerges from individual learning (micro-level) to collective
(macro-level) pathways. The correlation between OLR and the final grade is positive and is
statistically different in both micro-level (individual learning pathways) and macro-level
(collective learning pathways) analyses for students who passed and failed. Furthermore,
the complex topology of collective pathways emerges from the individual ones in a non-
additive process; thus, the collective learning pathways are non-additive systems.

Equifinality means reaching the same ending by traversing different pathways but
having different experiences. This property of dynamic complex systems is presented in
the students’ learning pathways that contain different patterns of reviewing material but
get a similar final grade. The distance between these learning pathways and the expected
ways of reviewing materials can be measured by extracting the relevant nodes by the fractal
method. The results show that the navigation by the students through the material differs
from what was expected. The learning pathways of students who failed the course are
far from the designed route. Finally, the relevant nodes extracted by the fractal method
show good accuracy and area under the receiver operating characteristic curve and an
acceptable Matthews correlation in classifying the learning performance of individual
learning pathways. Based on the evidence presented in this article, the learning pathways
have the property of emergence, equifinality and non-additivity that characterise dynamic
complex systems.

The relevant pathway network (as shown in Figure 4) could be a powerful tool for
future research on improving the review of learning material, since it contains the essential
node. For example, the trained LSTM can generate a new pathway that contains lessons,
quizzes, and learning activities extracted from the individual pathways. It could pave the
way for further comparative analysis between relevant and collective pathways. These
tools can offer a new view of learning pathways to researchers and scholars focused
on instructional design. Moreover, an exciting future research direction is proving that
learning pathways are a fractal system. A limitation of this study is the application in a
single university faculty. It will be beneficial to carry out a similar study in other universities
and countries and in different subject areas to validate the results presented here.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/e25020291/s1, Figure S1: The box-covering implementation
example of (a) a graph. (b) The result of the box number starting from node three for a box size one.
(c) The result of the box number for a box size two. (d) The box assignment for the six nodes, varying
the box size from one to five.
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