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Abstract: With the increase in cloud users and internet of things (IoT) applications, advanced task
scheduling (TS) methods are required to reasonably schedule tasks in cloud computing. This study
proposes a diversity-aware marine predators algorithm (DAMPA) for solving TS in cloud computing.
In DAMPA, to enhance the premature convergence avoidance ability, the predator crowding degree
ranking and comprehensive learning strategies were adopted in the second stage to maintain the
population diversity and thereby inhibit premature convergence. Additionally, a stage-independent
control of the stepsize-scaling strategy that uses different control parameters in three stages was
designed to balance the exploration and exploitation abilities. Two case experiments were conducted
to evaluate the proposed algorithm. Compared with the latest algorithm, in the first case, DAMPA
reduced the makespan and energy consumption by 21.06% and 23.47% at most, respectively. In the
second case, the makespan and energy consumption are reduced by 34.35% and 38.60% on average,
respectively. Meanwhile, the algorithm achieved greater throughput in both cases.

Keywords: cloud computing; task scheduling; marine predators algorithm

1. Introduction

Cloud computing is a large resource pool that is dynamic and scalable, and the data
center of a third-party service operator provides resources. Users can directly use the
computing and storage resources of the cloud servers through the network [1], and internet
of things (IoT) applications are deployed on the cloud. It has facilitated applications based
on artificial intelligence and IoT [2], whereas, with the many conveniences brought by
cloud computing, the increasing task to be processed and expansion of cloud resources also
make scheduling cloud resources challenging.

Cloud resource scheduling has two main layers. The first layer schedules appropriate
virtual resources for tasks submitted by users, and the second layer schedules appropriate
hosts for virtual resources. This study focuses on the first layer because task scheduling
in cloud computing (TSCC) directly affects the quality of services (QoS) parameters [3],
such as the makespan, energy consumption, resource utilization rate, task response time,
and task rejection rate. Under the constraints of QoS parameters, mapping a set of tasks
to a suitable virtual resource is an NP-hard problem [4,5], and the algorithm suffers from
dimensionality breakdown as the problem sizes increase.

Hence, ideas that apply meta-heuristic algorithms (MHAs) to TS have emerged to
efficiently allocate available resources to complex and diverse incoming tasks within a
reasonable time and with limited resources because of some of its inherent properties, such
as its stochastic behavior. In addition, it has no dependency on the problem being solved
and can search the solution space quickly to find the approximate optimal solution. Classical
meta-heuristics, such as GA [6], PSO [7], novel whale optimization algorithm (WOA) [8],
and Harris hawks optimization (HHO) [9] have been applied to TSCC successfully.
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Although many MHA have been applied to cloud computing task scheduling prob-
lems, these algorithms tend to fall into the local optimum, resulting in high energy consump-
tion of the system, long task completion time and other problems, affecting the overall
optimization effect. This study applies a novel MHA, the marine predators algorithm
(MPA), to solve TS in cloud computing. The motivation for this is that the MPA algorithm
is capable of avoiding falling into the local optimum and achieves excellent performance in
the optimization of complex problems [10]. To further strengthen the performance of the
MPA algorithm and find a better solution that satisfies the QoS parameters, we propose a
diversity-aware marine predators algorithm (DAMPA) to reduce makespan and energy
consumption and increase throughput. Two strategies were used in the DAMPA to raise the
variety of the population and prevent premature convergence. First, the predator crowding
degree ranking strategy was designed to determine whether a predator performs explo-
ration or exploitation in the second stage. Second, a comprehensive learning strategy was
applied to enable predators to share the best experience. In addition, a stage-independent
control of the stepsize-scaling strategy in DAMPA, which uses different control parameters
in three stages, was designed to balance the exploration and exploitation abilities. The
main contributions of this study are described below:

(1) The DAMPA is proposed for resolving TSCC in reducing makespan and energy
consumption and increasing throughput.

(2) To avoid premature convergence, the predator crowding degree ranking strategy is
designed, and the comprehensive learning strategy is applied.

(3) A stage-independent control of the stepsize-scaling strategy is designed to balance
the exploration and exploitation abilities.

This article’s structure is as follows: Section 2 discusses the similar works on TSCC.
Section 3 introduces the problem formulation of the TS. Section 4 first introduces the MPA
algorithm and then elaborates on our proposed DAMPA algorithm. Section 5 presents
an experimental evaluation consisting of tests for multiple indicators. Section 6 is the
conclusion of this work.

2. Related Works

TSCC has received considerable attention from scholars. Marahatta et al. [11] proposed
a scheduling approach that first classifies heterogeneous tasks and virtual machines (VMs),
then similar types of tasks are combined and scheduled. Additionally, it exploits the energy
efficiency and optimal operating frequency of heterogeneous physical hosts to save energy
when creating and deleting VMs. Hussain et al. [12] divided TS into two stages according to
the optimization objectives. The first stage of scheduling focuses on reducing the execution
time of the tasks, and the second stage is to reduce energy consumption.

In addition to classification-based and phased scheduling methods, meta-heuristic
algorithms are key in solving TS problems in cloud computing because of their superior
performance in the optimization of complex problems. For example, Chen et al. [13] used
the WOA algorithm for improving the efficiency of task execution. Abdullah et al. [14]
combined the PSO algorithm with the Pareto optimal frontier, and a mutation operator
was introduced to avoid premature convergence. Laili et al. [15] designed a parallel TS
algorithm, which divides tasks into several groups, finds the best solution with meta-
heuristic algorithms for each group and then merges all sub-solutions into the final solution.
This algorithm decreases the total execution time and energy consumption, but the TS
model is complex. Ali et al. [16] proposed an optimization model based on NSGA-II
that realizes automatic mapping between tasks and cloud nodes and minimizes the total
execution time.

To reduce the makespan, Xiong et al. [17] introduced Johnson’s rule to GA, which
adds a new crossover and the mutation operation. Pirozmand et al. [18] first prioritized
tasks and then assigned tasks to VMs using GA. Pang et al. [19] introduced the estimated
distribution algorithm (EDA) to the GA algorithm to initialize the solution. Xu et al. [20]
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prioritized the TS sequence according to the priority algorithm and used the ant colony
algorithm (ACO) to obtain a global optimal scheduling scheme under certain constraints.

Because of the limitations of a single meta-heuristic algorithm, several scholars have
adopted a hybrid bio-inspired algorithm. For example, Attiya et al. [21] combined the
manta-ray foraging optimizer (MRFO) and Salp Swarm algorithm (SSA), which strengthens
the exploitation capability, and the results indicate that the approach outperforms the
existing algorithms. Similarly, Walia et al. [22] combined GA with the flower pollination
algorithm (FPA), and the crossover and mutation of the GA are introduced in the FPA.
Domanal et al. [23] used an improved PSO to find a better solution for mapping tasks
to VMs and adopted a modified hybrid bio-inspired algorithm for resource allocation
according to the needs of the tasks. Fu et al. [24] combined the PSO and GA algorithms to
reduce the task completion time. Although hybrid algorithms have achieved better results
in several indicators, they are also overly complex.

Based on the above analysis, various algorithms have been applied to the TS. The opti-
mization of makespan, energy consumption, and throughput, three important indicators of
TS, is still insufficient. Therefore, a new method based on MPA was proposed for TSCC.

3. Problem Formulation
3.1. Task Scheduling

In the cloud, the data center receives the tasks uploaded through the network, and the
broker allocates the tasks to the appropriate available resources according to the task require-
ments and information of the VMs and optimization goals. TS in the cloud can be summa-
rized as the mapping of a group of tasks {T1, T2, T3 . . . , Tm} to {VM1, VM2, VM3 . . . , VMn},
m is the total number of tasks to be processed, n is the total number of virtual machines. Ti
has a corresponding task size, and the key factors of VMj are processing speed, RAM, and
CPU processing elements. One task can only be assigned to one VM, and each VM executes
multiple tasks. In this study, our goal is to map tasks to VMs to decrease the makespan and
energy consumption and increase throughput.

3.2. Mathematical Model

In the TS process, Dij represents the decision variable of the allocation process, which
is expressed as follows:

Dij =

{
1, Ti to VMj

0, otherwise
(1)

The ranges of the subscripts i and j of the decision variable Dij are the number of tasks
and the number of virtual machines respectively. When the number of virtual machines or
tasks increases, more decision values are required. Since each task must be handled by just
one VM, and since the schedule allocates all the tasks, we have

n

∑
j=1

Dij = 1 (2)

m

∑
i=1

n

∑
j=1

Dij = m (3)

The processing time of Ti on VMj can be calculated by the following:

tij =
Wi
Sj

(4)

where tij represents the processing time of Ti on VMj, Wi represents the task size of task Ti,
Sj represents the processing speed of VMj.
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3.2.1. Makespan

We assumed that each VM starts executing the first task from time 0 until the last task
is executed, and the time spent during this period is the total execution time of VMj. The
makespan can be calculated as follows:

tj =
m

∑
i=1

tij · Dij (5)

tM = max (tj), j = 1, 2 . . . n. (6)

where tj represents the total execution time of VMj, tM represents the makespan.

3.2.2. Energy Consumption

The energy consumed by VMs includes the idle state and the working state. The
consumption of VMs in the idle state is approximately 0.6 times the working state [25]. The
total energy consumption (TEC) is calculated as follows:

TEj = (tj · α + (tM − tj) · β) · Sj (7)

TEC =
n

∑
j=1

TEj (8)

where TEj is the energy consumption of the VMj, α = 10−8 · S2
j , β = 0.6 · α.

3.2.3. Throughput

Throughput metric measures, the performance of the cloud system to complete tasks
over a period is reflected in work completed by the cloud data center per unit of time. It
can be calculated as follows:

Throughput =
Task quantity

tM
(9)

3.2.4. Fitness Function

The fitness function measures the performance of individuals. Based on our opti-
mization goals of energy consumption, makespan, and throughput, as makespan is a
key factor in throughput, we set the objective function to the following to evaluate the
candidate solutions:

Fitness = λ1·TEC + λ2·tM (10)

where λ1 + λ2 = 1, we set λ1 = 0.5 and λ2 = 0.5.

4. The Proposed Algorithm

This part first introduces the MPA algorithm to present its optimization process, and
then the proposed DAMPA algorithm is elaborated. There are three differences between
DAMPA and MPA: the predator crowding degree ranking strategy, comprehensive learning
strategy, and stage-independent control of the stepsize-scaling strategy.
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4.1. The Overview of MPA
4.1.1. Elite and Prey Matrix

Based on the theory of survival of the fittest, the best predators are better at foraging
in natural survival. Therefore, the optimal solution is set as the top predator. The optimal
solution for each predator constructs the El matrix. The El matrix is as follows:

El =


IE
1,1 IE

1,2 · · · IE
1,d

IE
2,1 IE

2,2 · · · IE
2,d

...
...

. . .
IE
k,1 IE

k,2 · · · IE
k,d

 (11)

where
−→
IE
i =

[
IE
i,1, IE

i,2 . . . IE
i,d

]
, k marks the number of predators in the population, and

dimension d represents the number of variables in the solution
−→
IE
i .

The prey matrix (Pe) and the El matrix are similar, the Pe matrix saves the new value
produced each iteration, and the El matrix represents the historical optimal solution of the
predators. The Pe matrix is expressed as follows:

Pe =


IP
1,1 IP

1,2 · · · IP
1,d

IP
2,1 IP

2,2 · · · IP
2,d

...
...

. . .
IP
k,1 IP

k,2 · · · IP
k,d

 (12)

where
−→
IP
j =

[
IP
j,1, IP

j,2 . . . IP
j,d

]
. In the initialization phase of the algorithm, the values in the

Pe matrix will be randomly generated within the specified range, the optimal solution
−→
IE will be obtained through calculating each

−→
IP , and the El matrix will be initialized by

duplicating
−→
IE .

4.1.2. Optimization Process

In the first stage, all predators perform exploration. Taking advantage of the Brow-
nian motion step sizes helps predators approach the optimal target more quickly at the
initial stage when they are far from the optimal target. Formulated as follows, when
iter < 1

3 Maxiter,
−→
Li =

−→
MB ⊗ (

−→
Eli −

−→
MB ⊗

−→
Pei) (13)

−→
Pei =

−→
Pei + P ∗ −→R ⊗−→Li (14)

where
−→
Li represents the step size of each predator,

−→
MB is a vector composed of standard

normal distribution random numbers (RND),
−→
R is a uniform RND vector in [0, 1], and

P is a constant,
−→
Pei and

−→
Eli are the row vector of the matrix, iter is the current number of

iterations, and Maxiter is the maximum number of iterations.
The second stage involves the shift from exploration to exploitation. Half of the

predators adopted the exploitation strategy, and the remainder adopted the exploration
strategy. When 1

3 Maxiter < iter < 2
3 Maxiter, we have the following.

First one-half of predators:

−→
Li =

−→
ML ⊗ (

−→
Eli −

−→
ML ⊗

−→
Pei) (15)

−→
Pei =

−→
Pei + P ∗ −→R ⊗−→Li (16)
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Other predators:
−→
Li =

−→
MB ⊗ (

−→
MB ⊗

−→
Eli −

−→
Pei) (17)

−→
Pei =

−→
Eli + P ∗ CF⊗−→Li (18)

where
−→
ML is a RND vector generated based on the Levy distribution and CF controls the

step sizes of the predators and can be calculated as follows:

CF = (1− iter
Maxiter

)2 iter
Maxiter (19)

In the third stage, all individuals are in a state of Levy movement and execute the
exploitation strategy, when iter > 2

3 Maxiter:

−→
Li =

−→
ML ⊗ (

−→
ML ⊗

−→
Eli −

−→
Pei) (20)

−→
Pei =

−→
Eli + P ∗ CF⊗−→Li (21)

In simulating the survival of predators, the eddy taking shape or fish aggregation
device (FADs) effect in the environment also causes predators to adjust to their movement
states. A broad range of jumps helps the algorithm avoid stagnancy in the local optima.
The FADs effect is expressed as follows:

−→
Pei =

{−→
Pei + CF

[−→
Pel +

−→
R ⊗ (

−→
Peu −

−→
Pel)

]
⊗−→U , if r ≤ FADs

−→
Pei + [FADs(1− r) + r](

−→
Pei1 −

−→
Pei2), if r > FADs

(22)

where FADs = 0.2 represents the probability that the solution is affected during the update
process, r is a RND in [0,1], and R is a RND vector in [0,1].

−→
Pel consists of the minimum

value in each dimension and
−→
Peu consists of the maximum value in each dimension. U is a

binary number, and i1 and i2 are random indices. Finally, the pseudocode of the MPA is
expressed as Algorithm 1.

Algorithm 1 MPA

1: initialize the Pe,
−→
S , P, FADs, Maxiter, Tf, Tp

2: while iter < Maxiter do
3: Compute the fitness
4: Construct Elite matrix
5: Save memory
6: update CF using (19)
7: if iter < 1

3 Maxiter then
8: Update Pe using (13) and (14)
9: else if 1

3 Maxiter < iter < 2
3 Maxiter then

10: First one-half of predators:
11: Update Pe using (15) and (16)
12: other predators:
13: Update Pe using (17) and (18)
14: else if iter > 2

3 Maxiter then
15: Update Pe using (20) and (21)
16: end if
17: Compute the fitness
18: Saving memory
19: Applying FADs effect using (22)
20: iter++
21: end while
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4.2. The DAMPA Algorithm
4.2.1. The Predator Crowding Degree Ranking Strategy

In the optimization process of the MPA, the second stage, which carries out the
transition from exploration to exploitation, is indispensable. Here, the MPA algorithm
neglects the population diversity when selecting predators to perform exploitation and
exploration. If predators that are closer to each other are selected for exploitation in the
second stage, the population diversity will be prematurely reduced. Therefore, to raise
the variety of the population and thereby avoid premature convergence, the predator
crowding degree ranking strategy is adopted in the DAMPA. The crowding degree of a
predator describes the magnitude of the location difference between the predator and the
remaining predators in the population, if a predator is close to other predators, it has a
larger crowding degree. After the end of the first stage in the DAMPA, the crowding degree
of each predator is calculated using (23) and (24), and rank the predators according to
their degree of crowding from small to large. The predators with lower rankings execute
the exploration, and the remaining predators execute the exploitation. The number of
predators executing the two strategies was the same. Algorithm 2 shows the crowding
degree ranking algorithm. We assume that

−→
Pei is the current predator and

−→
Pej is the other

predator. The mathematical expression for crowding degree (CD) is as follows:

DE−→Pei
=

m

∑
j=1

(
d

∑
k=1

(Ii,k − Ij,k)
2)0.5(i 6= j) (23)

CD−→Pei
=

1
PopulationSize− 1

∗ DE−→Pei
(24)

where
−→
Pei =

[
IP
i,1, IP

i,2 . . . IP
i,d

]
,
−→
Pej =

[
IP
j,1, IP

j,2 . . . IP
j,d

]
.

Algorithm 2 Crowding degree ranking algorithm.

1: initialize the CD,Ranking (two arrays of length PopulationSize)
2: for i = 0 to PopulationSize do
3: Computing CDi based on (23) and (24)
4: end for
5: for j = 0 to PopulationSize do
6: for k = 0 to PopulationSize do
7: if CDj < CDk then
8: Rankingj ++
9: end if

10: end for
11: end for
12: return Ranking

4.2.2. Comprehensive Learning Strategy

In DAMPA, a comprehensive learning strategy is also applied in the second stage,
which enables the exchange of best experiences between predators. This maintains the
population diversity and avoids premature convergence [26]. Predators with high crowding
degrees are given a larger learning rate to maximize the population diversity, and the
learning rate of predators can be calculated by the following:

Peli = c + e ∗
exp( 10(Rankingi−1)

PopulationSize−1 )

exp(10)− 1
(25)

where c = 0.05, and e = 0.5.
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A comprehensive learning strategy is shown in Algorithm 3. First, the learning rate
Pel of the predators was calculated. Subsequently, a random value r is generated, and
predators Pek1 and Pek2 are randomly selected. When r < Pel , the fitness value of each
predator was calculated. If the fitness value of Pek1 is less than Pek2, then Pek1 is used as an
exemplar. Otherwise, Pek2 was used as an example. If r > Pel , then the predator is used as
an exemplar.

Next, in the second stage, we applied comprehensive learning, in which (15) and (17)
are replaced by (26) and (28), respectively.

First one-half of predators:

−→
Li =

−→
ML ⊗ (

−→
Eli −

−→
ML ⊗

−→
Pei + c1 ∗ R⊗ (

−−→
PebFi −

−→
Pei)) (26)

c1 =
1

1 + e−θ∗ iter
Maxiter

+ 2 ∗ ( iter
Maxiter

− 1)2 (27)

where
−−→
PebFi = exemplar , θ = 0.0001.

Other predators:

−→
Li =

−→
MB ⊗ (

−→
MB ⊗

−→
Eli −

−→
Pei + c2 ∗ R⊗ (

−−→
PebFi −

−→
Pei)) (28)

c2 =
1

1 + e−θ∗ iter
Maxiter

+ 2 ∗ ( iter
Maxiter

)2 (29)

Algorithm 3 Comprehensive learning strategy.

1: for i = 0 to PopulationSize do
2: Calculate

−→
Peli using (25)

3: Select two random agents with indexs k1,k2
4: if

−→
Pli > r then

5: Calculate the fitness of
−−→
Pek1 and

−−→
Pek2

6: if f itnessPek1 < f itnessPek2 then
7: exemplar =

−−→
Pek1

8: else
9: exemplar =

−−→
Pek2

10: end if
11: end if
12: if

−→
Pli < r then

13: exemplar =
−→
Pei

14: end if
15: end for

4.2.3. Stage-Independent Control of Stepsize-Scaling Strategy

In MPA, P is the parameter of step size scaling, which controls the enlargement or
reduction of the step sizes in three stages simultaneously. Figure 1 shows the convergence
performance at each stage with different step sizes scaling control parameters. When
P = 0.1, the algorithm performs better in the first stage and has a strong exploration ability,
but the exploitation ability is insufficient in the third stage. When P = 0.5, the algorithm
has a strong exploitation ability, but the exploration ability in the first stage is insufficient.
Therefore, to balance the exploration and exploitation capabilities of the MPA algorithm,
the stage-independent control of the stepsize-scaling strategy is designed in DAMPA to
optimize the performance at each stage by using P1, P2, and P3 to control the scaling of
the step sizes of the three stages. The control parameter is set to P1 in the first stage. The
second stage corresponds to P2. In the third stage, we have P3.
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Based on the above operations, we use (30), (31), (32), and (33) to replace (14), (16), (18),
and (21), respectively. The complete DAMPA is presented in Algorithm 4.

−→
Pei =

−→
Pei + P1 ∗ −→R ⊗−→Li (30)

−→
Pei =

−→
Pei + P2 ∗ −→R ⊗−→Li (31)

−→
Pei =

−→
Eli + P2 ∗ CF⊗−→Li (32)

−→
Pei =

−→
Eli + P3 ∗ CF⊗−→Li (33)

Figure 1. Phase convergence performance of different step sizes scaling control parameters.

Algorithm 4 DAMPA

1: Initialize the Pe,
−→
S , P1, P2, P3, FADs, Maxiter, Tfs, Tp

2: while iter < Maxiter do
3: Compute the fitness of

−→
Pe

4: Construct El matrix
5: Save memory
6: update CF using (19)
7: if iter < 1

3 Maxiter then
8: Update Py using (13) and (30)
9: else if iter = 1

3 Maxiter then
10: Calculate the crowding degree ranking
11: else if 1

3 Maxiter < iter < 2
3 Maxiter then

12: if Ranking−→Pei
< 1

2 PopulationSize then
13: Update Py using (26) and (31)
14: else
15: Update Py using (28) and (32)
16: end if
17: else if iter > 2

3 Maxiter then
18: Update Py using (20) and (33)
19: end if
20: Compute

−→
Pe

21: Save memory
22: Apply FADs effect using (22)
23: iter++
24: end while
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4.2.4. Complexity Analysis

The complexity of the MPA algorithm is O(T(Pd× Ps + C× Ps)), the crowding de-
gree ranking algorithm is O(Ps× Ps× Pd), and the comprehensive learning strategy is
O( 1

3 × T× Ps). The DAMPA complexity is O(T(Pd× Ps +C× Ps) + Ps× Ps× Pd), where
T is the maximum iterations, Ps is the amount of predators, C is the evaluated cost, and Pd
is the dimension of predators.

5. Experiment and Analysis

This section introduces the dataset settings, parameter settings, and experimental
results compared with those of other algorithms. The proposed DAMPA is written based
on the Java language, and the experimental computer specifications are inter-core i7-
9700CPU@3.0GHZ, 32 GB RAM, Windows 10 64-bit operating system, Cloudsim4.0.

5.1. Data Set

The establishment of the dataset was mainly from the perspectives of tasks and VMs.
It was considered in two cases to simulate resource-limited and resource-rich situations.

5.1.1. Case1

The number of VMs is fixed at 50, and the processing speed of each VM to 2000+ j× 40,
where j is the index of the VMs and j = 1, 2, 3 . . . 50. The tasks is set to 100, 200, 300, 400,
500, 600, 700, and 800. The size of the tasks was randomly generated within [200, 12,000].

5.1.2. Case2

The number of tasks is fixed at 200, and the size of each task was set to 1000 + i× 5,
where i is the index of the tasks and i = 1, 2, 3 . . . 200. The VM is set to 50, 60, 70, 80, 90, 100,
110, 120, and 130. The Sj of the VMs was generated in [200, 12,000] randomly.

5.2. Parameter Setting

We compared the proposed algorithm with existing algorithms including IMMPA [27],
WOA, MRFOSSA [21], and HHO to verify our algorithm performance. Table 1 lists the
parameter settings of the algorithms, the population size is 50, and the maximum iteration
is ten thousand. Each algorithm was run twenty times independently, and the results
were averaged.

Table 1. Parameter setting.

Algorithm Parameter Value

DAMPA P1 0.05
P2 0.5
P3 1

IMMPA P 1

HHO β 1.5

WOA b 1

MRFOSSA S 2

5.3. Discretization

At this stage, since the proposed optimization algorithm contains continuous values, it
needs to be discretized. The continuous values of predator need to be converted to discrete
values (VMs number). First, the predator vector is normalized as follows:

normalizedNV =
NV −min
max−min

(34)
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where min and max are the minimum and maximum values in the predator vector
−→
I , respectively. NV is the new value generated by each update in the vector

−→
I , and

normalizedNV represents the normalized value. After that, the following equation is used
to scale the value in vector

−→
I :

scaledNV = normalized NV ∗ (n− 1) + 1 (35)

where scaledNV is the scaled value, n is the number of virtual machines.

5.4. Experimental Results

In the first case, the fitness under different numbers of tasks is shown in Table 2, which
indicates that DAMPA obtains a lower fitness value than IMMPA, HHO, MRFOSSA, and
WOA. DAMPA has a small improvement based on IMMPA, and a large improvement
based on HHO, MRFOSSA, and WOA. Table 3 shows the makespan under the different
number of tasks. The makespan value increases when the amount of tasks to be processed
increases. DAMPA obtains the lesser makespan value. To more accurately describe the
effect of optimization, Table 4 compares the percentage of makespan decrease of different
algorithms, when the task size is minimal and the makespan value is reduced by 2.60%,
11.56%, 16.27%, and 31.37%, over IMMPA, HHO, MRFOSSA, and WOA. With the expansion
of the scale of the scheduling problem, finding a solution becomes difficult for all algorithms,
and the overall optimization effect of DAMPA is constantly weakening. DAMPA improved
by 7.38% at most based on IMMPA and improved by 1.86–11.56%, 12.59–21.06%, 7.58–31.37%
based on HHO, MRFOSSA, and WOA respectively. Table 5 lists the TEC under the different
numbers of tasks. More energy is consumed with an increasing number of tasks. DAMPA
consumes less energy than IMMPA, HHO, MRFOSSA, and WOA. More specifically, Table 6
describes the improvement percentage in TEC. When the task size is minimal, the TEC is
reduced by 0.99%, 17.64%, 23.47%, and 33.14% over IMMPA, HHO, MRFOSSA, and WOA,
respectively. As the scale of the problem increases, the optimization effect of DAMPA weakens
on the whole. Compared with IMMPA, HHO, MRFOSSA, and WOA, the improvement ranges
are 0.07–6.33%, 1.85–17.64%, 11.57–23.47%, and 5.60–33.14%, respectively. The throughput
of the system under different numbers of tasks is depicted in Figure 2, which shows that
DAMPA achieves a greater throughput than IMMPA, HHO, MRFOSSA, and WOA.

Table 2. Comparison based on fitness under different number of tasks.

Tasks DAMPA IMMPA HHO MRFOSSA WOA

100 1191 1233 1426 1553 1800
200 2603 2730 2854 3167 3453
300 3790 3898 4065 4588 4491
400 4989 5081 5260 5939 5705
500 6207 6251 6614 7255 7167
600 7490 7515 7943 8496 8361
700 8557 8665 8725 9693 9093
800 9710 9781 10,036 10,908 10,676

Table 3. Comparison based on makespan under different number of tasks.

Tasks DAMPA IMMPA HHO MRFOSSA WOA

100 8.16 8.37 9.22 9.74 11.89
200 15.19 16.40 16.87 19.24 20.82
300 22.00 23.10 24.08 26.72 26.69
400 28.52 29.14 29.83 33.70 32.55
500 35.21 35.79 37.44 40.28 39.73
600 41.77 41.80 44.25 48.53 48.17
700 47.32 47.93 48.22 55.33 51.20
800 53.43 53.43 55.70 62.34 62.05
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Table 4. The improvement percentage in makespan under different number of tasks.

Algorithm 100 200 300 400 500 600 700 800

IMMPA 2.60% 7.38% 4.76% 2.14% 1.62% 0.07% 1.28% 0%
MRFOSSA 16.27% 21.06% 17.69% 15.38% 12.59% 13.93% 14.48% 14.30%

HHO 11.56% 9.99% 8.64% 4.41% 5.96% 5.60% 1.86% 4.08%
WOA 31.37% 27.05% 17.59% 12.40% 11.37% 13.28% 7.58% 13.89%

Table 5. Comparison based on TEC under different number of tasks.

Tasks DAMPA IMMPA HHO MRFOSSA WOA

100 2400 2424 2915 3137 3591
200 5108 5453 5754 6356 6834
300 7625 8037 8321 9202 8954
400 10,122 10,294 10,382 11,922 11,378
500 12,484 12,741 13,236 14,433 14,280
600 14,934 14,946 15,753 16,993 16,674
700 17,165 17,245 17,490 19,413 18,185
800 19,286 19,719 19,989 21,859 21,316

Table 6. The improvement percentage in TEC under different number of tasks.

Algorithm 100 200 300 400 500 600 700 800

IMMPA 0.99% 6.33% 5.12% 1.67% 2.01% 0.07% 0.46% 0.11%
MRFOSSA 23.47% 19.63% 17.13% 15.10% 13.50% 12.11% 11.57% 11.76%

HHO 17.64% 11.22% 8.35% 2.50% 5.68% 5.19% 1.85% 3.51%
WOA 33.14% 25.25% 14.83% 11.04% 12.57% 10.43% 5.60% 9.52%

Figure 2. Comparison based on throughput under different number of tasks.

In the second case, Figure 3 shows the effect of different numbers of VMs on fitness. The
fitness value keeps increasing with the number of VMs increasing, which is caused by more
energy consumption. The fitness value of DAMPA is below IMMPA, HHO, MRFOSSA,
and WOA. The makespan for different numbers of VMs is shown in Figure 4, which
indicates that DAMPA obtains a lower makespan value than IMMPA, HHO, MRFOSSA,
and WOA. More VMs enable DAMPA, IMMPA, MRFOSSA, and HHO to find better
scheduling schemes, makespan continues to decrease, and the WOA algorithm has the
largest fluctuation. Table 7 lists the percentage reduction of makespan, the increase in
VMs scale has no obvious impact on the optimization effect of DAMPA, the makespan was
reduced by 6.81%, 26.92%, 34.35%, and 50.60% on average over IMMPA, HHO, MRFOSSA,
and WOA, respectively. The TEC of VMs is shown in Figure 5, which shows that the
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DAMPA consumes less energy. To obtain more accurate results, Table 8 lists the percentage
of TEC optimization, the TEC is reduced by 6.30%, 27.04%, 38.60%, and 47.50% on average
over IMMPA, HHO, MRFOSSA, and WOA, respectively. Figure 6 shows the system
throughput for different VMs. The DAMPA achieves a greater throughput of all algorithms.

Summarizing case 1 and case 2, when there are many tasks with limited resources,
the improvement of DAMPA based on other algorithms is up to 33.14% at most, when the
available resources increase, DAMPA can reduce the makespan by 50.60% and the energy
consumption by 47.50% at most.

Figure 3. Comparison based on fitness under different numbers of VMs.

Figure 4. Comparison based on makespan under different numbers of VMs.

Table 7. The improvement percentage in makespan under different numbers of VMs.

Algorithm 50 60 70 80 90 100 110 120 130 Ave

IMMPA 10.48% 5.53% 7.07% 4.00% 4.64% 6.09% 6.33% 8.50% 8.68% 6.81%
MRFOSSA 41.76% 35.60% 36.11% 36.33% 31.64% 33.12% 33.00% 34.33% 27.27% 34.35%

HHO 30.43% 28.57% 26.53% 24.79% 19.27% 24.79% 28.89% 31.38% 27.63% 26.92%
WOA 48.77% 50.94% 54.63% 55.74% 43.26% 46.33% 51.12% 48.65% 55.94% 50.60%
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Figure 5. Comparison based on TEC under different numbers of VMs.

Table 8. The improvement percentage in TEC under different numbers of VMs.

Algorithm 50 60 70 80 90 100 110 120 130 Ave

IMMPA 6.97% 2.40% 8.39% 11.11% 3.77% 6.10% 9.08% 4.15% 4.69% 6.30%
MRFOSSA 40.32% 36.14% 40.76% 43.65% 36.02% 37.61% 40.16% 37.41% 35.37% 38.60%

HHO 30.82% 23.23% 31.51% 30.60% 21.41% 27.46% 29.33% 25.65% 23.34% 27.04%
WOA 48.46% 33.39% 54.38% 49.19% 41.11% 49.75% 53.25% 44.35% 53.61% 47.50%

Figure 6. Comparison based on throughput under different numbers of VMs.

6. Conclusions

This study proposes a novel meta-heuristic algorithm DAMPA for solving TSCC. In
DAMPA, the predator crowding degree ranking strategy and comprehensive learning
strategy are taken to maintain the diversity of the population, thereby avoiding premature
convergence. In the second stage of DAMPA, the predators are selected to perform explo-
ration or exploitation according to the ranking of the crowding degree of the predators, and
a comprehensive learning strategy makes predators share the optimal historical experience.
Additionally, to balance the exploitation and exploration capabilities of the algorithm, a
stage-independent control of the stepsize-scaling strategy is designed, which uses differ-
ent control parameters for scaling the step sizes in three stages. Two case experimental
results show that DAMPA achieves lower makespan and energy consumption and greater
throughput compared with the latest algorithms: IMMPA, HHO, MRFOSSA, and WOA.
Especially in the second case, DAMPA has a distinct advantage in solving TSCC problems.
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In the future, we will focus on applying the DAMPA algorithm to other problems,
such as cloud-fog collaborative TS with constraints and cloud-edge collaborative TS.
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