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Abstract: A violation of Bell-CHSH inequalities does not justify speculations about quantum non-
locality, conspiracy and retro-causation. Such speculations are rooted in a belief that setting depen-
dence of hidden variables in a probabilistic model (called a violation of measurement independence (MI))
would mean a violation of experimenters’ freedom of choice. This belief is unfounded because it is
based on a questionable use of Bayes Theorem and on incorrect causal interpretation of conditional
probabilities. In Bell-local realistic model, hidden variables describe only photonic beams created by
a source, thus they cannot depend on randomly chosen experimental settings. However, if hidden
variables describing measuring instruments are correctly incorporated into a contextual probabilistic
model a violation of inequalities and an apparent violation of no-signaling reported in Bell tests can
be explained without evoking quantum non-locality. Therefore, for us, a violation of Bell-CHSH
inequalities proves only that hidden variables have to depend on settings confirming contextual
character of quantum observables and an active role played by measuring instruments. Bell thought
that he had to choose between non-locality and the violation of experimenters’ freedom of choice.
From two bad choices he chose non-locality. Today he would probably choose the violation of MI
understood as contextuality.

Keywords: Bell inequality; quantum nonlocality; free choice; measurement independence; contextuality;
local causality; local realism; probabilistic coupling; superdeterminism

1. Introduction

Quantum mechanics (QM) provides probabilistic predictions and the main question
debated since nearly 100 years is: are these probabilities irreducible or do they emerge
from some more detailed description of physical reality and experiments used to probe
it. Einstein strongly believed that QM should emerge from a more detailed description of
individual physical systems [1,2].

Bell was a realist who believed that physical objects possess definite properties [3,4].
In 1964, he proposed a probabilistic local realistic hidden variable model (LRHVM) trying
to reproduce quantum predictions for an ideal EPRB experiment [3]. Pair-wise expecta-
tions deduced using LRHVM have to satisfy Clauser-Horne-Shimony–Holt inequalities
(CHSH) [5,6] which for some experimental settings are violated by quantum predictions
and by experimental data in Bell Tests. The violation of inequalities is a source of unfounded
speculations about the non-locality of Nature, free will and quantum magic.

In LRHVM, it is correctly assumed that hidden variables, describing only photonic
beams created by a source, do not depend on randomly chosen experimental settings:
p(λ, x, y) = p(λ)p(x, y). Using the Bayes theorem, we obtain p(λ|x, y) = p(λ) and
p(x, y|λ) = p(x, y) . This is why this assumption, called, measurement independence (MI),
free choice or no conspiracy has been believed, for many years, to be a direct consequence of
experimenters’ freedom of choice (FC). For majority of scientists FC is a prerequisite of science
and its violation would be unacceptable.
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However, a choice of (x, y) being labels of different experimental settings is followed
by a choice of corresponding measuring instruments which, as fathers of QM taught us,
are playing an active role in creation of measurement outcomes. Therefore, if one wants to
explain outcomes of Bell Tests, using a hidden variable model, one should incorporate, in
this model, variables describing measuring instruments. Of course, it does not guarantee
that such an extended contextual hidden variable model (CHV) is successful.

In this article we review and generalize arguments given in [7–12], that a violation of
MI (called more recently statistical independence) does not restrict FC. A misunderstanding
is based on incorrect causal interpretation of conditional probabilities [9–12]. If p(λ|x, y) 6=
p(λ) then p(x, y|λ) = p(λ|x, y)p(x, y)/p(λ) 6= p(x, y) but it does not mean, that λ can
causally influence, how (x, y) are chosen. A statistical dependence does not imply a causal
dependence and correlation does not mean causation.

CHV contains setting dependent (contextual) variables describing measuring instru-
ments thus statistical dependence is incorporated into this model and easy to understand. As
Bohr insisted one may not separate the behavior of atomic objects and the interaction with
measuring instruments.

In QM experiments performed in incompatible experimental contexts are described
by specific dedicated probabilistic models. In LRHVM, MI allows implementing random
variables, describing random experiments performed using incompatible experimental
settings, on a unique probability space, on which they are jointly distributed. Such imple-
mentation defines a noncontextual probabilistic coupling. In fact, CHSH are noncontextuality
inequalities for a 4-cyclic Bell scenario [13]. Therefore, MI can be called noncontextuality and
its violation contextuality.

Statistical dependence does not restrict FC, thus talking about a violation of free choice
as a resource [10,12] in Bell experiments is misleading. Of course, statistical independence
could be violated due to superdeterminism understood as specific causal influences from the
common past of photonic beams, experimenters and instruments they are using in distant
laboratories. Next, hidden variables and experimenters’ choices could be influenced in a
way, to make experimental outcomes comply with QM. This explains why MI is called free
choice or no conspiracy and Bell clearly preferred non-locality to the violation of free choice.

There are two probabilistic hidden variable models: LRHVM and a stochastic hidden
variable model (SHVM) [5,6]. Contrary to what several authors believe, LRHVM is not a
special case of SHVM. These two probabilistic models allow deriving CHSH inequalities,
but they describe completely different random experiments requiring different experimen-
tal protocols. In LRHVM for a fixed λ distant outcomes are strictly predetermined and
correlated. In SHVM for a fixed λ they are created in two random independent experiments.
In LRHVM, ‘entangled photon pairs’ are described as pairs of socks. In SHVM, they are de-
scribed as pairs of dice and in each setting (x, y) we have a different family of stochastically
independent distant random experiments labeled by λ. A detailed discussion of these two
models and experimental protocols, implied by them, may be found in [7].

In LRHVM, outcomes (clicks on detectors coded ±1) are locally predetermined by
variables describing correlated photonic signals, produced by a source. Local predeter-
mination of outcomes of all experiments, by some ontic properties of signals, is called
usually: local realism, classicality or counterfactual definiteness. Local realism implies MI and
the existence of a probabilistic coupling. CHSH are significantly violated in various Bell Tests.
Therefore, experimental outcomes are not predetermined by the properties of photonic
signals and as Peres correctly concluded: unperformed experiments have no results [14].

Various metaphysical assumptions may motivate a choice of a probabilistic model.
However, once a model is chosen, its meaning and its implications can only be rigorously
discussed in a probabilistic framework. This is why, for us, saying that λ can be anything
even the quantum wave function of Universe is misleading and meaningless. Hidden
random variables describe details of an experimental protocol consistent with a given
probabilistic model [7].
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The ideal EPRB experiments and perfect correlations do not exist [15]. Random vari-
ables describing data in Bell Tests are inconsistently connected and should be analyzed
using Contextuality-by-Default approach (CbD) [11,16–23]. In CbD, proposed by Dzhafarov
and Kujala, all empirical scenarios are described by systems of random variables represent-
ing measurements of properties q in contexts c. Properties of experimental scenarios and
possible hidden variable models are studied without evoking any metaphysical assump-
tions. Free choice is equivalent to context-independent mapping and experimenters’ free will
assumption is completely redundant [21–23]. In this paper, we are not using CbD approach.
We define and explain only specific probabilistic couplings using a simplified notation.

At the end of this introduction, we want to summarize in a simpler language, what is
the main motivation of this paper? What is new, what the conclusions are and how they
are derived in detail in subsequent sections.

It is well known that CHSH may be derived for 4 jointly distributed random variables
describing a random experiment in which 4 outcomes are outputted in each trial. In such
experiment estimates of pair-wise expectations obey this inequality for any finite sample.

It is clear, that random variables describing outcomes of EPRB and Bell Tests are not
jointly distributed and Bell never claimed the opposite. One may ask: how could he derive
his inequalities. He could do it, because in LRHVM, there exists a JP of 4 random variables,
and he used implicitly this JP in his proof. In the literature about Bell inequalities no
distinction is made between these two sets of random variables. In Section 2 we decided to
make a distinction.

It allows explaining more clearly, how LRHVM defines a probabilistic coupling for
EPRB experiments. This probabilistic coupling is neither consistent with quantum predic-
tions nor with experimental data in Bell Tests.

The existence of a probabilistic coupling does not mean that CHSH hold in the experi-
ments performed using incompatible settings and described using this coupling. CHSH
can be and are violated in these experiments by estimates of pair-wise expectations ob-
tained using finite samples. The existence of a probabilistic coupling only allows deriving
probability bounds on how large and how frequent violations may be observed in these
experiments. This problem is discussed in Section 3.

In Section 4 we explain a violation of inequalities and an apparent violation of non-
signaling, reported in Bell Tests, by incorporating into a probabilistic model, variables
describing measuring instruments. If (i, j) denote 4 incompatible settings in Bell Tests,
using Bayes Theorem, we demonstrate that p(i, j|λ) = 1, what only means: if a ‘hidden
event’

{
(λ1, λ2, λi, λj)

}
‘happened’, then the settings (i, j) were used. Thus, the violation of

statistical independence in our model does not justify speculations about the violation of free
choice or conspiracy. This result was derived for the first time in [9] and reproduced in [11,12].
In previous papers [9–12] we assumed that pij

(
λi, λj

)
= pi(λi)pj

(
λj
)
. In Section 4, we

prove, that our conclusions hold even, if pij
(
λi, λj

)
do not factorize.

In Section 5 we rectify some misleading claims of Lambare and Franco, made in [24].
In particular we reject their criticism of correct arguments given in [25–33].

Section 6 contains some final conclusions and additional discussion of local realism,
statistical independence and superdeterminism.

2. LRHVM and Probabilistic Coupling

We discuss LRHVM and its implications using a rigorous probabilistic framework,
what avoids misunderstanding.

The experimental protocol of an ideal EPRB is the following [15]:

1. A beam (ensemble) E of entangled pairs of particles is created by a source. One
particle is sent to Alice and its twin partner to Bob in distant laboratories, who chose
independently experimental settings (x, y) of their polarization beam splitters (PBS).
In general (x, y) are labels and not necessarily values of some random variables.

2. Particles pass by corresponding beam splitters (PBS) and produce clicks on detectors,
which are coded by two random variables Ax and By taking values ±1.
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In QM, it does not matter, how settings (x, y) are chosen. Experiments performed using
incompatible settings are described, by specific, setting dependent, probability distributions.
In particular pair-wise expectations for a setting (x, y) are given by:

E(AxBy) = TrρÂx B̂y (1)

where ρ is a density matrix describing the ensemble E prepared by a source, Âx and B̂y are
operators representing spin projection measurements made by Alice and Bob, respectively.

As Cetto et al. pointed out in [34], the Equation (1) can be rewritten as:

E(AxBy) = ∑
a,b

abpxy(a, b) (2)

where a = ±1 and b = ±1 are experimental outcomes being eigenvalues of the operators
Âx and B̂y. The quantum probabilistic models (1) and (2) explicitly depend on settings. If
settings were changed, then the quantum description would change.

For a singlet state ρ and for identical settings (x, x) QM predicts p(Ax = 1) = 1/2,
p
(

By = 1
)
= 1/2 and p(Ax = 1, Bx = −1) = 1. It is mind boggling, if one believes that

quantum randomness is perfect and irreducible. Perfect randomness, by definition, is
incompatible with strictly correlated outcomes [33]. The outcomes of flipping a fair coin
cannot be predicted, thus when two coins are flipped their outcomes cannot be always
strictly correlated. It is believed that quantum randomness is perfect and irreducible.
However, it is difficult to prove it because subsequent digits in the decimal approximation
of a number π pass with success all randomness tests even, if they are strictly determined.
As a matter of fact, the violation of inequalities in Bell Tests gave not only the arguments
against LRHVM but also against SHVM and irreducible randomness.

This is why Bell assumed that experimental outcomes in an ideal EPRB are predeter-
mined by correlated properties of particles prepared at the source. An apparent randomness
and a statistical scatter of outcomes are then due, similar as in classical physics, to a lack of
knowledge of the statistical ensemble E.

Let us cite Bell [35]: “For me, it is so reasonable to assume that the photons in those
experiments carry with them programs, which have been correlated in advance, telling them how to
behave. This is so rational that I think that when Einstein saw that, and the others refused to see it,
he was the rational man.”

It is well known that CHSH inequalities may be derived for a random experiment
in which 4 outcomes are outputted in each trial and described by 4 jointly distributed
random variables on a unique probability space. It is obvious that the random variables
(Ax, By, Ax′ , By′) are not jointly distributed and Bell never claimed the opposite. Never-
theless, in LRHVM he used implicitly a joint probability of 4 random variables in order
to prove the inequalities. We explain below that he, in fact, postulated the existence of
a probabilistic coupling. In order to make it easier to understand we are using primed
random variables (A′x, B′y, A′x′ , B′y′), which in LRHVM are jointly distributed. Bell did not
make this distinction, but we do and we define LRHVM as below:

E(A′xB′y) = ∑
λ∈Λ

Ax(λ)By(λ)p(λ) (3)

Please note, that Bell replaced E(A′xB′y) in the Formula (3) by E(AxBy). We use primed
random because, there is no JP of (Ax, By, Ax′ , By′), but there exists a JP of primed variables
(A′x, B′y, A′x′ , B′y′). Namely for four experimental settings (x, y) = (i, j) = (1, 1), (1, 2), (2, 1)
or (2, 2) we have:

E(A′1B′1 A′2B′2) = ∑
λ∈Λ

A1(λ)B1(λ)A2(λ)B2(λ)p(λ) (4)
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Moreover, there exists a mapping M : Λ⇒ Ω = {ω = (a1, b1, a2, b2)} , where ai =
Ai(λ) = ±1 and bj = Bj(λ) = ±1 thus:

E(A′1B′1 A′2B′2) = ∑
ω∈Ω

a1b1a2b2 p(a1, b1, a2, b2) (5)

and instead of (3) we may use:

E(A′iB
′
j) = ∑

ω∈Ωij

aibj pA′i B
′
j
(ai, bj) (6)

where Ωij =
{
(ai, bj)

}
and pA′i B

′
j
(ai, bj) is a standard marginal distribution obtained from

p(a1, b1, a2, b2) = p(ω) = ∑
λ∈M−1(ω)

p(λ). Please note, that sample space Ω contains exactly

16 elements and each sample space Ωij only 4 elements. Using (5) and (6) one easily obtains
CHSH inequalities [4]:∣∣E(A′1B′1) + E(A′1B′2) + E(A′2B′1)− E(A′2B′2)

∣∣≤ 2 (7)

As Fine demonstrated [36,37], the inequalities (7) are necessary and sufficient condi-
tions for the existence of JP defined above.

In EPRB such JP does not exist. Nevertheless, Bell postulated from the beginning that:

E(AiBj) = E(A′iB
′
j) = ∑

λ∈Λ
Ai(λ)Bj(λ)p(λ) (8)

without noticing that his proofs implicitly rely on the existence of a counterfactual JP [3,4].
He demonstrated that, for some experimental settings, the inequalities were violated by
quantum predictions (1-2), but in 1964, he still hoped that experimental data might agree
with his model.

In CbD [16–23], the Equation (8) defines a non-contextual coupling of only pairwise
jointly measurable observables:

P(Ai = a) = P(A′i = a); P(Bj = b) = P(B′j = b); E(AiBj) =
〈

AiBj
〉
=
〈

A′iB
′
j

〉
(9)

which in general does not exist. To indicate explicitly, that the experiments performed in
different settings are incompatible, in CbD one would replace in (8-9) Ai by Aij and Bj by
Bij. Since in EPRB no-signaling is not violated, thus we used a simplified notation.

Ideal EPRB experiments, with perfectly correlated clicks on distant detectors, do not
exist [15,33]. Nevertheless, a significant violation of (7) was reported in several Bell Tests.
Thus, the data in these experiments can neither be described using LRHVM nor by SHVM.

For a mathematician, the violation of (7) means only, that a non-contextual probabilistic
coupling (9) does not exist and that CHSH inequalities are simply noncontextuality inequali-
ties for a 4-cyclic scenario [13] which can be rigorously derived for a random experiment
such that in each trial 4 experimental outcomes (a1, b1, a2, b2) are outputted.

3. Experimental Protocols and Finite Samples

Probabilistic models describe a scatter of observed outcomes without entering into
details how these data were produced. However, there is an intimate relation between
probabilistic models and experimental protocols [7,38]. If we assume, that experimental
settings are randomly chosen for each successive trial as it is carried out in Bell Tests, the
model (3) describes a three- step random experiment.

1. A marble is drawn from an urn (or a box) E. Properties of marbles in E are described
by λ being values of a random variable L distributed according to a probability
distribution p(λ) on a unique probability space Λ.
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2. Experimenters, choose at random one among 4 available incompatible settings (i, j)
of their instruments, which output two numbers ai = Ai(λ) and bj = Bj(λ).

3. The marble is returned to the box and another marble is drawn from the box.

Since A′i = Ai(L) and B′j = Bj(L), there exists a JP of all these random variables. It is
obvious, that the random variable L and its probability distribution do not depend on how
the settings (i, j) are chosen in the step 2 of the experimental protocol. As in QM, (i, j) are
only labels of 4 incompatible experimental settings and experimenters’ freedom of choice (FC)
is never compromised.

In Bell Tests, instead of a marble we have ‘pairs of photons’. In LRHVM they are
described as pairs of socks which may have different colors and sizes. In SHVM, they are
described as pairs of dice. More detailed discussion of these probabilistic models and their
intimate relation with experimental protocols may be found in [7].

In LRHVM, each experiment (i, j) is described as a fair sampling from Λ followed by
a deterministic assignment of outcomes (Ai(λ), Bj(λ)). If we limit ourselves to 4 settings,
then as we saw in (5, 6), instead of Λ, we may use a finite sample space containing only
16 elements: Ω = {a1, b1, a2, b2}, where ai = ±1 and bj = ±1. For each experimental setting
(i, j), in each trial, only two outcomes (ai, bj) are outputted. If we estimate expectations
E(A′iB

′
j) using finite samples of size N these estimated expectations violate the inequalities

(7) approximately 50% of time [15,39–42], but not as significantly as predicted by QM and
reported in Bell Tests.

An experimental protocol consistent with LRHVM is similar to the experimental
protocol of a following thought experiment [39]. In each trial (a1, b1, a2, b2) is drawn from Ω
and displayed as a line in 4N× 4 spreadsheet. Next, setting labels (i, j) are randomly chosen
and outcomes (ai, bj) are outputted and displayed in a corresponding N × 2 spreadsheet
and another quadruplet is drawn from Ω. If by chance, each pair of settings is chosen
N times at the end we have four N × 2 spreadsheets, which may be used to estimate
expectations E(A′iB

′
j) and checking (7). We see that in each trial of this thought experiment

outcomes are predetermined and measuring instruments passively register corresponding
predetermined values.

In real experiments, 4N × 4 spreadsheets do not exist and four N × 2 spreadsheets
describing the data obtained using 4 incompatible settings, are not simple random samples
drawn from columns of some 4N × 4 spreadsheet [8,33]. They cannot be reordered, what
was claimed in [24] to satisfy (7) and the only constraint, without additional assumptions,
on estimated E(AiBj) 6= E(A′iB

′
j), is: S ≤ 4 [11].

4. Violation of Statistical Independence in Bell Tests

In Bell Tests, some data violate no-signaling [41–45], thus they are also inconsistent
with quantum predictions (1-2) for an ideal EPRB. Using CbD terminology [16–23], the data
used to estimate pair-wise expectations are described by inconsistently connected random
variables, thus they should be analyzed using CbD approach [11,12].

It is clear, that LRHVM and SHVM are oversimplified probabilistic models unable to
describe these experimental data from Bell Tests. As Theo Nieuwenhuizen [46–48] correctly
concluded, LRHVM suffers from contextuality loophole, because it does not incorporate
correctly hidden variables describing measuring instruments, as they are perceived by
incoming photonic signals.

If setting dependent hidden variables, describing instruments, are added to LRHVM,
the data in Bell Tests may be described by a contextual probabilistic model:

E(AijBij) = ∑
λ∈Λij

Ãi(λ1, λi)B̃j(λ2, λj)pij(λ) (10)

where Ã(λ1, λi) = ±1; B̃j(λ2, λj) = ±1, λ =
(
λ1, λ2, λi, λj

)
, Λij ∩Λi′ j′ = ∅ and

pij(λ) = p(λ
∣∣i, j) = pij(λi, λj)p(λ1, λ2) (11)
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This model violates statistical independence and p(i, j|λ) 6= p(i, j) but, contrary to
what is often claimed, it does not give arguments in favor of superdeterminism.

Using (11) and Bayes Theorem we obtain

p(λ, i, j) = pij(λi, λj)p(λ1, λ2)p(i, j) = p(λ)→ p(i, j
∣∣λ) = 1 (12)

The equation: p(i, j|λ) = 1 tells only, that if a hidden ‘event’
{
(λ1, λ2, λi, λj)

}
‘hap-

pened’ then the settings (i, j) were used [9–12]. It has nothing to do with conspiracy and FC
is not compromised. In each trial, labels (i, j) of experimental settings are chosen in two
distant random experiments which do not depend how photonic beams are produced and
how they are going to be processed later in the experiment.

However, if an event {(i, j)} occurred then specific instruments described by (λi, λj)
are used. It was explained in detail for the first time in [9]. Therefore, the assumption
p(λ|i, j) 6= p(λ) may be called Bohr contextuality and not conspiracy or superdeterminism. In
CbD approach, contextuality has a different more restricted meaning.

In (11), variables describing photonic signals are causally independent but stochasti-
cally dependent; variables describing measuring instruments are also causally independent
but stochastically dependent pij(λi, λj) 6= pi(λi)pj(λj). Variables (i, j) are causally and
stochastically independent from (λ1, λ2).

In Bell Tests, two distant time series of clicks have to be converted into two discrete
correlated samples using synchronized time windows. In [9,11,15,33], we described raw
data in Bell Tests using a model similar to (10), but with Ai(λ1, λi) = ±1, 0, Bj(λ2, λj) =
±1, 0 and pij(λi, λj) = pi(λi)pj(λj). By conditioning on pairs of non-vanishing outcomes
we derived a model describing the final set of data violating CHSH and no-signaling.
Setting dependent pairing of distant outcomes was the origin of stochastic dependence of
(λi, λj) in (10).

The model (10) allows explaining data from Bell Tests in a local and causal way. Choos-
ing a particular statistical dependence more precise predictions for expectations E(AijBij)
may be made [49]. We know that transmission probabilities between two polarization filters
obey the Malus law, which depends only on cos(θ), where θ is a relative angle between
polarization axes of polarization filters. Therefore, if λ are hidden variables describing
a polarization filter how it is ‘perceived’ by an incoming beam at the moment of a mea-
surement, it is plausible to assume, that after a rotation by an angle θ, the same filter is
described by variables λ = f (λ, cos(θ)). Therefore, one may try to explain θ dependence
of estimated expectations E(AijBij), assuming that pij(λi, λj) is also a function of cos

(
θij
)
.

The importance of rotational invariance was strongly advocated by Karl Hess [50].

5. Fine’s Theorem and Joint Probabilities

In [24], Lambare and Franco made some statements, which we want to rectify.
They claim that talking about joint probabilities is misleading because LRHVM, which

they call LHV model, may be derived using local causality, perfect correlations and MI.
However, they do not realize that the conjunction of these three assumptions implies the
existence of a counterfactual non-contextual probabilistic coupling (9) and a joint probability
of 4 random variables (JP), which was implicitly used by Bell to derive CHSH. The authors’
finite sample proof of CHSH fails, if JP does not exist. If MI is violated p(λ|x, y) 6= p(λ)
then JP does not exist and, for different settings, sampling is made from different probability
spaces. Lambare and Franco dismissed the violation of statistical independence, believing
that the violation of MI would mean conspiracy.

Fine demonstrated, that CHSH are necessary and sufficient conditions for the existence
of JP of 4 only pair-wise measurable random variables [35,36]. Nobody claims that Fine has
disproved Bell’s Theorem. Bell’s Theorem is a mathematical theorem which says: if LRHVM
is used to describe EPRB, then some pair-wise cyclic expectations obey Bell-CHSH inequalities,
which for some settings are violated by quantum predictions. JP of n- random variables only
exists, if in each trial n-results are outputted [7,9,38,51]. Therefore, JP neither exists in Bell
scenario nor in their counterexample [24].
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In their counterexample we have: 7 random variables: L taking values λ ∈ Λ =
{1, 2, 3, 4, 5, 6}, X taking values x = {1, −1}, Y taking values y = {1, −1}, Ax and By. L
describes an experiment in which hidden variables are sampled from Λ by rolling a dice,
X and Y are random variables describing flipping fair coins in order to determine exper-
imental settings (x, y), Ax = A(x, L) and By = B(y, L) are random variables describing
predetermined outcomes. Namely:

Ax(λ) = A(x, λ) = xλ, By(λ) = B(y, λ) = yλ+1 (13)

We have 4 incompatible experiments, labeled by (x, y), and only 2 outcomes are
outputted in each trial, thus JP of 4 random variables (A1, A−1, B1, B−1) does not exist. It is
easy to evaluate 4 expectations entering the inequality (7):

E(A1B1) = 1, E(A1B−1) = E(A−1B1) = 0, E(A−1B−1) = −1 (14)

Expectations (14) do not violate the inequality (7). Lambare and Franco incorrectly
conclude: “according to Fine’s theorem A, a joint probability P(A1; A−1; B1; B−1) exists,
although the experiments are incompatible”.

The random variables (A1, A−1, B1, B−1) are not jointly distributed. Nevertheless,
there exist 4 jointly distributed random variables

(
A′1, A′−1, B′1, B′−1

)
, which define a non-

contextual coupling E(Ax) = E(A′x), E
(

By
)
= E(B′y), E

(
AxBy

)
= E(A′xB′y). Instead of (4)

using (13) we have now:

E(A′1 A′−1B′1B′−1) = ∑
λ∈Λ

A1(λ)A−1(λ)B1(λ)B−1(λ)p(λ) =
6

∑
λ=1

1λ(−1)λ1λ+1(−1)λ+1 1
6
= −1 (15)

The random variables (A′1, A′−1, B′1, B′−1) define a mapping
M : Λ⇒ Ω = {(1, 1, 1,−1), (1,−1, 1, 1} and their joint probability distribution is:

p1 = p(1, 1, 1,−1) =
1
2

, p2 = p(1,−1, 1, 1) =
1
2

(16)

Using (16) we immediately obtain:

E(A′1 A′−1B′1B′−1) = 1× 1× 1× (−1)× p1 + 1× (−1)× 1× 1× p2 = −1 (17)

E(A′−1B′1) = E(A′1B′−1) = 0 and E(A′−1B′−1) = −1. We use only (16) and we do not need
to mention hidden variables.

Jointly distributed (A′1, A′−1, B′1, B′−1) describe outcomes of a different random experi-
ment in which in each trial one obtains one of two quadruplets with probability 1/2 . For
example, after receiving the same λ both Alice and Bob flip two fair coins each, and output
their outcomes calculated using (13). After N trials Bob sends his N × 2 spreadsheet to
Alice, who displays her and his results (strictly preserving the order) in a new N × 4
spreadsheet. Only these data are described by JP of 4 random variables and now various
pair-wise correlations between them can be estimated and they obey strictly (7) for all
values of N. This is the main problem in real Bell Tests, because there is no unambiguous
ordering between distant clicks produced by entangled photonic signals [15,33].

It is difficult to understand, why such arguments are not understood and are still a
minority stance [24]. Already in 1984, we wrote [52]: “To describe random events in any partic-
ular experiment we do not need to abandon the Kolmogorov axioms of probability theory. However,
the measured probabilities in the different experiments may not be determined by conditionalization
from a unique probability space. The last assumption was used in all the proofs of Bell inequalities.”

6. Conclusions

In LRHVM clicks on detectors (coded ±1) are locally predetermined by variables
describing correlated photonic signals, Local predetermination of outcomes of experiments,
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by some ontic properties of signals, is called usually: local realism, classicality or counterfactual
definiteness (CFD). Since different authors attach a different meaning to the notion of realism,
thus CFD understood as local predetermination of outcomes is less ambiguous.

Such assumption was proven incorrect, but it was not stupid. Reinhold Bertlmann
remembers, what his friend John said to him: “I’m a realist . . . I think that in actual daily
practice all scientists are realists, they believe that the world is really there, that it is not a creation of
their mind. They feel that there are things there to be discovered, not a world to be invented but a
world to be discovered. So I think that realism is a natural position for a scientist and in this debate
about the meaning of quantum mechanics I do not know any good arguments against realism.” [53].

This paper is about assumptions underlying various probabilistic hidden variable
models and their meaning. CHSH can be rigorously derived for random experiments
described by 4 jointly distributed random variables. In EPRB and in Bell Tests such JP does
not exist. CFD implies statistical independence, called also free choice, no conspiracy or MI,
and the existence of probabilistic coupling (3–9).

Bell inequalities are violated in several experiments in physics and in cognitive sci-
ence [54–56], what proves that LRHVM and SHVM provide an incorrect and an over-
simplified description of these experiments. Several authors arrived many years ago
and often independently, to such correct conclusion [7–12,14,15,26–34,36–38,40–52,57–84],
where more references may be found.

In Bell Tests, some data violating inequalities violate also no-signalling [41–45], thus
they are also inconsistent with quantum predictions (1, 2) for an ideal EPRB. We demon-
strated in [11,15,33] that this apparent violation of no-signalling can be easily explained in a
locally causal way, if hidden variables describing measuring instruments are incorporated
into probabilistic model.

The speculations about quantum nonlocality are based on incorrect interpretations of
QM and/or incorrect mental pictures of quantum phenomena [33,75]. Andrei Khrennikov
rejected nonlocality claims using statistical and contextual interpretation of QM [30,67,70,71].
Different arguments were given by Robert Griffiths using consistent histories interpretation
of QM [25,85–89]. These two interpretations differ, but in both interpretations, there is no
place for quantum nonlocality.

If hidden variables depend on settings, then using Bayes Theorem one concludes that
settings depend statistically on hidden variables (12). If statistical dependence and correlation
between distant outcomes are incorrectly interpreted as causation one has two options:
spooky influences between distant measurements or correlated common causes (possibly
coming from a Big Bang) making Nature to comply with the laws of QM.

In QM, it is taken for granted that experimenters can choose their setting as they
wish, and Bell never doubted in it. However, after discussions with Shimony, Horn and
Clauser [90,91] he admitted, that the violation of his inequalities might be explained by
superdeterminism instead of non-local influences. This is what he said in 1985 in BBC
interview: “There is a way to escape the inference of superluminal speeds and spooky action at
a distance. But it involves absolute determinism in the universe, the complete absence of free
will. Suppose the world is super-deterministic, with not just inanimate nature running on behind-
the-scenes clockwork, but with our behavior, including our belief that we are free to choose to do
one experiment rather than another, absolutely predetermined, including the “decision” by the
experimenter to carry out one set of measurements rather than another, the difficulty disappears.
There is no need for a faster than light signal to tell particle A what measurement has been carried out
on particle B, because the universe, including particle A, already “knows” what that measurement,
and its outcome, will be.”

In 1964, Bell assumed CFD, thus for him it was obvious that hidden variables could
not depend on chosen experimental settings. In 1985, hidden variables were assumed to
describe any local causes of clicks registered in distant laboratories and superdeterminism
was recognized as one of possible loopholes in Bell Tests. Jan-Åke Larsson in his excel-
lent review article about possible loopholes in Bell Tests concluded [92]: “The loophole of
superdeterminism cannot be closed by scientific methods; the assumption that the world is not
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superdeterministic is needed to do science in the first place”. Nevertheless, several toy models
explaining how superdeterminism allows preserving local causality were proposed [93–95].

Sabine Hossenfelder and Tim Parker succeeded to revive recently discussions about
superdeterminism [96–98].

In a recent letter to Nature Physics, Jonte Hance and Sabine Hossenfelder [99] correctly
insist that: “the observed violations of Bell’s inequality can be said to show that maintaining local
causality requires violating statistical independence. We wish to stress that this is not merely an
issue of interpretation. The statistical independence assumption is mathematically necessary for
the formulation of Bell-type inequalities.” They also correctly underline that correlation does
not mean causation and that “the mathematical assumption of statistical independence bears
no relevance to the philosophical discussion of free will.” We also agree with their conclusion:
“Contrary to what is often stated, these observations do not demonstrate that “spooky action at a
distance” is real and nature, therefore, non-local. Rather, the observations show that if nature is
local, then statistical independence must be violated.”

However, for Sabine Hossenfelder [97], the violation of statistical independence is due to
superdeterminism, which she defines as: “Superdeterminism, then, means that the measurement
settings are part of what determines the outcome of the time-evolution of the prepared state. What
does it mean to violate Statistical Independence? It means that fundamentally everything in the
universe is connected with everything else, if subtly so. You may be tempted to ask where these
connections come from, but the whole point of superdeterminism is that this is just how nature is.
It’s one of the fundamental assumptions of the theory, or rather; you could say one drops the usual
assumption that such connections are absent.”

In this paper we reviewed and extended the arguments given in [9–12] explaining
that if hidden variables describing measuring instruments are correctly incorporated in a
probabilistic model the statistical independence is violated but neither retro-causality, superder-
minism [97] nor extended causal networks [100,101] are needed to explain it. The measuring
instruments define a context of a random experiment. Therefore, statistical dependence of
hidden variables on the measurement settings should be called contextuality.

Correlations between distant experimental outcomes predicted by QM are often called
nonlocal. It is misleading because using a contextual hidden variable model they may
be explained in a local and causal way [11,15,33]. Brunner et al. [102] explain that these
correlations should be rather called Bell-nonlocal.

We explained that the violation of Bell-CHSH inequalities have quite limited meta-
physical implications. Nevertheless, the research stimulated by Bell Theorem and beautiful
experiments designed and performed to test inequalities, rewarded recently by a Nobel
prize, paved the road to important applications of “nonlocal “quantum correlations in
quantum information and in quantum technologies.

For us, the violation of BI-CHSH inequalities in Bell Tests [103–110] proves only that
hidden variables have to depend on settings confirming contextual character of quantum
observables and an active role played by measuring instruments.

Bell thought that he had to choose between nonlocality and superdeterminism under-
stood as the violation of experimenters’ freedom of choice. From two bad choices he chose
nonlocality. Today he would probably choose violation of statistical independence understood
as contextuality.
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