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Abstract: In modern industry, due to the poor working environment and the complex working
conditions of mechanical equipment, the characteristics of the impact signals caused by faults are
often submerged in strong background signals and noises. Therefore, it is difficult to effectivelyextract
the fault features. In this paper, a fault feature extraction method based on improved VMD multi-scale
dispersion entropy and TVD-CYCBD is proposed. First, the marine predator algorithm (MPA) is
used to optimize the modal components and penalty factors in VMD. Second, the optimized VMD is
used to model and decompose the fault signal, and then the optimal signal components are filtered
according to the combined weight index criteria. Third, TVD is used to denoise the optimal signal
components. Finally, CYCBD filters the de-noised signal and then envelope demodulation analysis is
carried out. Through the simulation signal experiment and the actual fault signal experiment, the
results verified that multiple frequency doubling peaks can be seen from the envelope spectrum, and
there is little interference near the peak, which shows the good performance of the method.

Keywords: rolling bearing; fault feature extraction; VMD; TVD; CYCBD

1. Introduction

With the continuous acceleration of the industrialization process in the world, modern
industry is gradually developing towards the direction of large-scale, complex, high-
speed, and automatic production equipment. Especially since the concept of Industry 4.0
was presented, the state data generated by the operation of mechanical equipment has
increased [1,2]. As the most basic and essential mechanical components, rolling bearings are
widely used in modern aviation, aerospace, navigation, machine tools, etc. Rolling bearing
runs under poor working conditions for a long time, so it is easy to have various faults. It
may cause excessive energy consumption, cause a bad mechanical equipment vibration,
and affect the performance of the relevant instruments on the equipment. In the worst case,
it will lead to the shutdown of mechanical equipment, causing substantial economic losses
and even endangering the life safety of the relevant staff. Therefore, the fault diagnosis
of this component can not only ensure the smooth and healthy operation of mechanical
equipment but also help prevent major accidents. Generally, due to the limitation of the
working environment of bearing, it is impossible to diagnose directly. In the process of
a practical application, the vibration signal extracted by observing the running state of
the bearing contains a lot of information. Meanwhile, the requirements for equipment
and staff skills are low in the process of signal acquisition. Therefore, vibration signal
analysis has become one of the most widelyused fault detection methods. Because the
bearingvibration signal under fault conditions shows prominent non-stationary, nonlinear,
and weak fault characteristics [3], it is important and difficult for experts and scholars in
this field to enhance fault information from the noise background.
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As an effective method, time-frequency analysis has been widely used in the pro-
cessing of nonlinear and non-stationary signals of mechanical equipment. So far, many
experts and scholars have proposed various time-frequency analysis methods. Traditional
methods include short-time Fourier transform (SFFT) [4,5], Wigner Ville distribution [6,7],
wavelet transform [8,9], etc. The above methods have achieved good results in practical
applications. Burriel Valencia J et al. [10] used SFFT to diagnose faults in induction motors
operating under transient conditions. The results show that it is suitable for online diagno-
sis. Wu J D et al. [11] developed an engine platform diagnostic system. The system uses the
Wigner Ville distribution to extract the instantaneous capability map as a feature quantity
and input it into the upgraded network model for modeling. The experimental results
show that the system has achieved good results. KankarP K et al. [12] extracted the feature
quantity from the wavelet coefficients of the collected vibration signal and performed the
fault diagnosis in the local defects of the bearing components. The results of the fault
classification show that the accuracy of the fault identification using the support vector
machine is higher. However, there are still some defects in the use of these methods. SFFT
has a low time-frequency resolution. Meanwhile, the short-time SFFT cannot meet the
two conditions of the resolution of the time and frequency domain. The variation adopted
by the Wigner Ville distribution is nonlinear and cross-interference will occur when the
multi-component analysis is carried out. The decomposition of multi-component mixed
signals by a wavelet transform will lead to the problem of mode aliasing. At the same time,
there is no reference standard for selecting appropriate wavelet bases. In addition, the
above method cannot adaptively decompose the signal.

Compared with the traditional methods above, time-frequency domain analysis meth-
ods such as empirical mode decomposition (EMD), cyclic symplectic component decompo-
sition (CSCD), symplectic geometry packet decomposition (SGPD), and ensemble empirical
mode decomposition (EEMD) proposed by Huang and other scholars [13–16] can adaptively
decompose signals. Therefore, it shows certain advantages. Sun Y et al. [17] introduced
the EMD and improved Chebyshev distance into the bearing fault diagnosis. Experiments
show that the method can diagnose bearing faults by using the signal components obtained
from EMD to construct the improved Chebyshev distance. Cui H et al. [18] introduced
EMD in the fault diagnosis of weak signals. The results show that it can improve the quality
of decomposition. Aiming at the intermittent faults in analog circuits, Zhong T et al. [19]
offered a method combining EEMD and a deep belief network (DBN). They concluded
that the method can independently select features and diagnosis intermittent faults and
has a higher fault diagnosis accuracy than other standard methods. In an attempt to solve
the problem of many harmonic components and noise signals mixed in the signals under
complex operating conditions, Wang L et al. [20] introduced a method combining EEMD
and improved sparse representation. The experimental results show that it can effectively
extract the shock components from the signals. Although EMD and EEMD have been tested
in practical applications, the idea of this method is to follow the recursive decomposition
pattern. Therefore, there are usually problems with mode aliasing and the end effect. In
recent years, Dragomiretskiy et al. [21] developed another method, namely, variational
mode decomposition (VMD). As a signal processing method, this method decomposes
the signal through non-recursive and variational modal decomposition mode to overcome
modal aliasing and the endpoint effect and has been applied in fault diagnosis. Aiming at
the diagnosis problem of bearing weak fault signals caused by long transmission paths,
Cui H et al. [22] introduced an algorithm combining VMD and maximum correlated kurto-
sis deconvolution (MCKD). The results show that it can diagnose rolling element faults.
Ye M et al. [23] introduced VMD in the diagnosis of bearing fault. First, the original signal
is decomposed into multiple signal components. Then, multi-scale replacement entropy
is extracted from the original signal to complete the modeling of the pattern recognition
model. Experiments verify the effectiveness of this method. Since the early fault signal
characteristics of hydro generators are weak, it is difficult to extract the fault characteristics.
Tang X et al. [24] used the technique of combining VMD and a singular value for fault
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diagnosis. The method’s accuracy is verified by analyzing the vibration data of the actual
hydropower station. To effectively identify the early fault characteristics of the gearbox,
Mansi, Saini K et al. [25] introduced an algorithm by combining the maximum overlap dis-
crete wavelet transform and the VMD. By comparing the recognition effects of the different
classifiers, it is concluded that the fault features extracted by VMD are more conducive to
accurately dividing the fault stages.

However, there is still some noise in the signal components after decomposition
by time-frequency analysis of the rolling bearing fault signal under complex working
conditions. If fault analysis is conducted directly, the noise interference will harm the
development of the research work. To effectively reduce noise interference, Rudin et al. [26]
proposed the total variation denoising algorithm (TVD) and applied it to reduce the
image noise. This method has achieved good results in the application process. TVD
not only retains significant edges but also enhances the image’s structure. At present,
the algorithm has been applied in many aspects of research work. Kumar S S et al. [27]
proposed a TVD-based ECG R-peak location algorithm. The experiment provedthat the
algorithm can effectively retain the signal’s steep slope or peak value and has a high
accuracy. Wan Z et al. [28] proposed a kurtosis-wavelet total variation denoising model.
The experiments verified the effectiveness and robustness of this method. Lv D et al. [29]
proposed an improved TVD algorithm. The results show that the algorithm can effectively
improve the denoising effect.

In this paper, a method based on improved VMD multi-scale dispersion entropy and
total variation denoising(TVD)-maximum second-order cyclostationary blind convolution
(CYCBD) is proposed.First, according to the optimization principle of minimizing the mean
value of dispersion entropy, the marine predator algorithm (MPA) is used to optimize the
modal components and penalty factors in VMD to optimize the initialization parameters.
Second, the optimization results are input into VMD for modeling and the fault signals
are decomposed adaptively. Then, according to the combined weight screening criteria
which were constructed, the optimal signal component is selected for TVD noise reduction
and the noise-reduced signal is input into the CYCBD algorithm for filtering to further
enhance the shock characteristics in the signal. Finally, the envelope spectrum of the signal
is analyzed to extract the fault characteristic frequency.

The main contributions of this study are as follows:

(1) The strategy for optimizing VMD by MPA is proposed, and the initialization param-
eters of the algorithm are optimized. It enables the signal to be decomposed with a
high quality and eliminates adverse effects, such as mode aliasing.

(2) A combined weight screening criterion that balances the advantages and disadvan-
tages of the two indicators is constructed. On the basis of this, the evaluation of the
IMF signal components and the selection of the best signal components are completed.
Meanwhile, the signal is subsequently processed by TVD noise reduction to reduce
the noise interference.

(3) After CYCBD filtering, the periodic pulse characteristics of the fault signals can be
effectively enhanced. It makes the extracted bearing fault feature frequency clear and
richer. It can provide an important referencemethod for solving the problem of fault
feature extraction of rolling bearings.

The arrangement of this paper is as follows: Section 2 describes the basic theory of
improved VMD, multi-scale dispersion entropy, TVD, and CYCBD algorithms. Section 3
introduces the specific steps and flow chart of the improved VMD multi-scale dispersion
entropy and TVD-CYCBD. Section 4 validates the feasibility of the proposed method.
Section 5 shows the practical application performance of the proposed method. Section 6
draws a conclusion.
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2. Theoretical Background
2.1. Improved VMD

The main parameters of the VMD algorithminclude the modal components and penalty
factors. The modal component ensures the appropriateness and accuracy of the number of
decomposition modes. The penalty factor is related to the accuracy of the signal reconstruc-
tion. The selection of the two factors plays an essential role in the decomposition effect of
the VMD. When the modal component and penalty factor are too large, it is easy to cause
modal aliasing. Otherwise, it will cause the loss of useful information. The marine predator
algorithm (MPA) proposed in recent years has the advantages of a simple structure, flexible
algorithm, easy implementation, and the ability to coordinate exploration and development.
Compared with other algorithms, it has a better optimization performance. Therefore, this
paper introduced MPA to optimize VMD. Then, the optimization results are entered into
VMD for modeling.

2.1.1. VMD

VMD is an adaptive signal processing method proposed by Dragomiretskiy. It de-
composes the signal into finite component signals. The component signal is the limited
bandwidth of a specific center frequency, which satisfies that the sum of all the component
signals is equal to the original signal. The signal is solved iteratively to minimize the sum
of the bandwidth. It is defined as follows:

µk(t) = Ak(t) cos[φk(t)] (1)

where Ak(t) is the instantaneous amplitude. φk(t) is a phase. ωk(t) is the instanta-
neous phase.

ωk(t) = φk
′(t) =

dφk(t)
dt

(2)

By decomposing the original signal, discrete modes µk(t) (k ∈ 1, 2, · · ·, k) can be
obtained. Then, it follows the following process.

(1) The unilateral spectrum of each modal component is calculated by Hilbert.

(δ(t) +
j

πt
) ∗ µk(t) (3)

where µk(t) is the k-th modal. δ(t) is the unit pulse function. j is an imaginary number.
(2) The center frequency is estimated and the spectrum of each mode is modulated to

the corresponding fundamental frequency band by exponential correction e−jωkt.

[(δ(t) +
j

πt
) ∗ µk(t)]e−jωkt (4)

(3) Find the square L2 norm of the demodulation signal gradient.∥∥∥∥dt[(δ(t) +
j

πt
) ∗ µk(t)]e−jωkt

∥∥∥∥2

2
(5)

The constraint model is built on the basis of the above formula, and then:
min

{µk},{ωk}

{
∑
k

∥∥∥dt[(δ(t) +
j

πt ) ∗ µk(t)]e−jωkt
∥∥∥2

2

}
s.t. ∑

k
µk(t) = x(t)

(6)

where {ωk} = {ω1, ω2, ω3, · · ·ωk} is the k-th central frequency of the signal after VMD. t is
the time. δ(t) is the Dirac function. j is an imaginary unit. ∗ is a convolution operation. ‖‖2

2
is the L2 norm. x(t) is the original signal.
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To calculate the above model, the penalty factor and Lagrangian multiplication opera-
tor are introduced in the above equation. Then, the problem to be solved is transformed
into an unconstrained variational problem and the following formula can be obtained:

L({µk}, {ωk}, λ) = α∑
k

∥∥∥∥dt[(δ(t) +
j

πt
) ∗ µk(t)]e−jωkt

∥∥∥∥2

2
+

∥∥∥∥∥x(t) −∑
k

µk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), x(t)−∑

k
µk(t)

〉
(7)

2.1.2. MPA Method

The main inspiration for MPA [30] comes from the foraging strategy of marine preda-
tors, the Lévy motion and Brownian motion, and the optimal encounter strategy of the
interaction between predators and prey. The mathematical description of the MPA opti-
mization process is as follows:

(1) Initialization phase. To commence the optimization process, the MPA algorithm
will randomly initialize the prey location in the search space. The expression formula is
as follows:

X0 = Xmin + rand(Xmax − Xmin) (8)

where Xmax and Xmin are the upper and lower bounds of the search space.
(2) MPA optimization stage. At the initial stage, under the condition of a high-speed

ratio, the predator does not move. When Iter < 1
3 Max_Iter, the mathematical description

of the MPA optimization process is as follows:{
stepsicei = RB ⊗ (Elitei − RB ⊗ Preyi)
Preyi = Preyi + P•R⊗ stepsicei

i = 1, 2, . . . , n;

Iter < 1
3 Max_Iter

(9)

where stepsice is the moving step. Elitei is the elite matrix. Preyi is the prey matrix. P is a
constant. P is taken as 0.5. R and is the uniform random vector. RB is the random vector.
Iter, Max_Iter is the current iteration number and the maximum iteration number.

In the middle of the iteration, the optimization process is transformed from the explo-
ration to the development when the speed of the predator and prey is the same. Therefore,
half will be used for exploration and the other half for development. The mathematical
descriptions of the development and exploration are as follows:{

stepsicei = RL ⊗ (Elitei − RL ⊗ Preyi)
Preyi = Preyi + P•R⊗ stepsicei

i = 1, 2, . . . , n/2;

1
3 Max_Iter < Iter < 2

3 Max_Iter
(10)

{
stepsicei = RB ⊗ (RB ⊗ Elitei − Preyi)
Preyi = Elitei + P • CF⊗ stepsicei

i = n/2, . . . , n;

1
3 Max_Iter < Iter < 2

3 Max_Iter
(11)

where RL is a random vector with Lévy distribution. CF = (1 − Iter/Max_Iter)(2·Iter/Max_Iter).
At the end of the iteration, the predator moves based on the way of Lévy walking and

its position changes as follows:{
stepsicei = RL ⊗ (RL ⊗ Elitei − Preyi)
Preyi = Elitei + P • CF⊗ stepsicei

i = 1, 2, . . . , n;

Iter > 2
3 Max_Iter

(12)

(3) Fish aggregating devices (FADs) effect and eddy the current effect. This strategy
can enable MPA to overcome the premature convergence problem in the optimization
process and escape from the local extremum.



Entropy 2023, 25, 277 6 of 26

2.2. Total Variation Denoising

TVD [24] is a nonlinear fast noise reduction method without iteration, which achieves
the smooth processing of discrete signals.

Suppose that the signal x with N points is shown as follows:

x= [x0, x1, x2, . . . , xN−1] (13)

The first-order differential of the matrix (N − 1 × N) is as follows:

D1 =


−1 1
−1 1

...
...

−1 1

 (14)

The second-order differential of the matrix (N − 2 ×N) is as follows:

D2 =


−1 2 − 1
−1 2 − 1

...
...

...
−1 2 − 1

 (15)

The expression of the lp norm (P ≥ 1) is as follows:

‖x‖p = (‖x1‖p + ‖x2‖p + · · ·+ ‖xN‖p)
1
p (16)

In special cases, when p = 1, Equation (16) will become the following form:

‖x‖1 = (|x1|+ |x2|+ · · ·+ |xN |) (17)

When p = 2, Equation (16) becomes the following form:

TV(x) = ‖D1x‖1 =
N−1

∑
n=1
|x(n)− x(n− 1)| (18)

Assume that the signal y(n) containing noise is:

y(x) = x(n) + w(n) (n = 0, 1, . . . , N − 1) (19)

The noise reduction of this algorithm can be summarized into the following
optimization problems:

argmin
x
‖y− x‖2

2 + λ|D1x|1 (20)

2.3. CYCBD Method

The CYCBD maximizes the second-order cyclostationarity (ICS2) by solving the eigen-
value to extract the required fault signal from the complex source signal. The convolution
process is expressed as follows:

s = x⊗ h (21)

where s is the original signal. x is the observation signal. h is the inverse filter.
The above formula can be expressed as follows:

s = Xh (22)
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 s[N − 1]
...

s[L− 1]

 =

 x[N − 1] · · · x[0]
...

...
...

x[L− 1] · · · x[L− N − 2]

 •
 h[0]

...
h[N − 1]

 (23)

where L is the length of discrete signal s. N is the length of the inverse filter h.
Therefore, ICS2 can be expressed in the form of generalized Rayleigh entropy:

ICS2 =
hHXHWXh
hHXHXh

=
hH RXWXh
hH RXXh

(24)

where H is the conjugate transpose of the matrix. RXWX is the weighted correlation matrix.
RXX is the correlation matrix. The weighting matrix W is as follows.

W = diag(
p[|s|2]

sHs
)(L− N + 1) (25)

p[|s|2] = EEH |s|2
L− N + 1

(26)

|s|2= [s|N − 1|2, . . . , s|L− 1|2]T (27)

E =


e−j2π 1

T (N−1) · · · e−j2π K
T (N−1)

...
...

...
e−j2π 1

T (L−1) · · · e−j2π K
T (L−1)

 (28)

where W is the weighting matrix. p[|s|2] is the matrix containing the fault characteristic
cycle frequency. K is the number of samples. T represents the failure cycle. The cycle
frequency is the frequency related to the signal pulse, which is related to mechanical
equipment failures such as bearings.

Formula (25) is the core of CYCBD. The weighting matrix W can be calculated by the
inverse filter h and the observation signal x. Then, using the characteristics of generalized
Rayleigh entropy, it can be concluded that the optimal inverse filter h is equivalent to
the maximum eigenvector corresponding to the maximum generalized eigenvalue of the
weighted correlation matrix RXWX and the correlation matrix RXX in the Formula (24).
Then, the calculation result is converted into Formula (21) and the deconvolution signal
corresponds to the maximum second-order cyclostationarity, and the fault frequency can
be extracted from the observation signal x.

3. The Process of Fault Feature Extraction
3.1. Parameter Optimization of VMD Based on MPA

In the MPA algorithm optimizing VMD, the selection of the fitness function directly
affects the optimization effect. Once the bearing is damaged during operation, it will
produce a pulse impact. This method can be used to characterize the irregularity of the
time series. The greater the entropy of dispersion, the higher the degree of irregularity.

Therefore, the concept of dispersion entropy is used to measure the irregularity of the
intrinsic mode function (IMF) time series data obtained by VMD and took the average value
of the dispersion entropy of the signal component as the fitness function of MPA. Then,
through the global optimization of the mean value of the minimum dispersion entropy,
the optimal decomposition level k and the penalty factor αare obtained. The flow chart of
MPA-VMD is shown in Figure 1. The specific steps are as follows:

(1) Initialize the parameters of the MPA, including the population size, maximum itera-
tions, FADs, and the parameter range to be optimized for VMD.

(2) Set the fitness function value, then obtain the initial position of the prey and calculate
the fitness value.
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(3) Iterative optimization is performed from the initial, middle, and late stages of the
iteration. Comparing the fitness values in the iteration process can detect whether the
optimal fitness value can be found and then update the predator’s position. Then,
calculate the fitness of the new location and evaluate the impact of the FADs or eddy
current effect on the fitness value. Calculate the optimal predator position accord-
ing to the prey position and behavior and, finally, determine and store the current
optimal position.

(4) Judge whether the following relationship is true: iter ≥ Max_iter. If not, continue
to repeat steps 2 and 3 to find the optimal solution. Otherwise, the calculation is
terminated and the set of optimal parameters is the output.

(5) The optimal parameters obtained from the MPA algorithm optimization are assigned
to VMD to build the algorithm model.

Entropy 2023, 25, x FOR PEER REVIEW 9 of 27 
 

 

Input signal

Set the initialization parameters of MPA 
and parameter range of VMD

Calculate The predator position and run 
VMD

Calculate the fitness value of all IMF 
components

Current fitness value         previous fitness 
value ?

Update predator 
location

Current iteration number          maximum  
iteration Number?

1/3Max_Iter<Iter?
1/3Max_Iter<Iter<2/3Max

_Iter?
Iter>2/3Max_Iter?

Initial stage of 
iteration

Mid iteration 
stage

End iteration 
stage

Update prey position 
through FADs effect and 

eddy current effect

Determine the optimal 
solution

VMD decomposition

Yes

Yes

No

No No No

Yes Yes Yes

 

 

 

Figure 1. Flowchart of MPA-VMD. 

3.2. IMF Component Selection Criteria 

After VMD, the IMF components obtained may have false components or compo-

nents with a small correlation with the original signal. If the practical signal components 

are not filtered, the subsequent noise reduction and fault feature extraction will be 

somewhat disturbed. Therefore, this paper established a combined weight-effective sig-

nal component screening rule that combines kurtosis and cross-correlation coefficients. 

The cross-correlation coefficient can represent the interdependence between two 

signal amplitudes. The greater the cross-correlation coefficient between the IMF signal 

components and the original signal, the stronger the degree of correlation. Kurtosis is an 

index used to judge the Gaussian performance of vibration signals, which can be used to 

know whether each IMF signal component carries shock and fault components from the 

side. Kurtosis reflects the impact of the impact components. 

Although kurtosis is sensitive to impact components, proper signals are vulnerable 

to noise interference. Although the correlation coefficient can measure the correlation 

between signals, it is easily affected by the total number of samples. By combining the 

Figure 1. Flowchart of MPA-VMD.



Entropy 2023, 25, 277 9 of 26

3.2. IMF Component Selection Criteria

After VMD, the IMF components obtained may have false components or components
with a small correlation with the original signal. If the practical signal components are
not filtered, the subsequent noise reduction and fault feature extraction will be somewhat
disturbed. Therefore, this paper established a combined weight-effective signal component
screening rule that combines kurtosis and cross-correlation coefficients.

The cross-correlation coefficient can represent the interdependence between two signal
amplitudes. The greater the cross-correlation coefficient between the IMF signal compo-
nents and the original signal, the stronger the degree of correlation. Kurtosis is an index
used to judge the Gaussian performance of vibration signals, which can be used to know
whether each IMF signal component carries shock and fault components from the side.
Kurtosis reflects the impact of the impact components.

Although kurtosis is sensitive to impact components, proper signals are vulnerable to
noise interference. Although the correlation coefficient can measure the correlation between
signals, it is easily affected by the total number of samples. By combining the advantages
and disadvantages of the above two evaluation indicators, the calculation method based
on the combination weight value is as follows:

K− C = log2(1 + φ ∗ Kurtosis + ϕ ∗ Collelation) (29)

where φ and ϕ are the weights of kurtosis and the correlation coefficient, respectively,
and φ + ϕ = 1 is satisfied. In combination with the parameter selection rules in the
literature [31], this paper has selected φ = 0.4, ϕ = 0.6 through the experiments.

3.3. Implementation Process

The implementation process of the proposed method is as follows. The specific
implementation flowchart is shown in Figure 2.
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(1) Optimize VMD parameters. Initialize the parameters of the MPA algorithm and
determine the optimal k and α by optimizing VMD through MPA.
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(2) The best parameters are substituted into the VMD algorithm model to complete the
modeling. Then, the VMD is carried out for the collected signals and several signal
components are obtained. The K-C index of each IMF is calculated according to the
screening criteria based on the K-C combination weight. Then, we can evaluate the
quality of the IMF signal components. Finally, select the IMF signal component with
the largest K-C value.

(3) Input the filtered IMF signal components into TVD for noise reduction to reduce noise
interference in valuable signals.

(4) The fault frequency of the original signal is calculated according to the fault fre-
quency formula and the appropriate cycle frequency is set. Then, the signal is filtered
by CYCBD.

(5) The signal filtered by CYCBD is analyzed by Hilbert envelope.

4. Simulation Verification

To determine whether the proposed method based on improved VMD multi-scale
dispersion entropy and TVD-CYCBD can extract the fault pulse impact component, this
research constructs the rolling bearing vibration simulation signal:

s(t) = y0e−2π fnξt sin(2π fn

√
1− ξ2t) (30)

where y0 is the displacement constant and its value is 5. fn is the carrier frequency and
its value is 3000 Hz. ξ is the damping coefficient and its value is 0.1. fs is the sampling
frequency and its value is 20 KHz. t indicates the sampling time. T = 0.01 s. The sampling
points are N = 4096. The fault frequency is f 0 = 100 Hz.

To simulate the bearing fault according to the actual situation, this experiment adds
noise to the simulation signal s(t), and its signal-to-noise ratio (SNR) is −5 dB. The wave-
form of the simulation signal is shown in Figure 3. The time and frequency domain diagram
of the simulation signal after adding noise are shown in Figure 3a,b.
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Firstly, the MPA optimization algorithm is used to optimize the parameters in VMD.
The parameter search range in VMD is as follows: the k ∈ [3, 15] and the α ∈ [100, 5000].
In the MPA algorithm, the population size is 10 and the FADs are 0.2. Meanwhile, the
maximum iteration number is 20. In the process of optimization, the fitness function
adopted is the average value of dispersion entropy. After parameter optimization, the
fitness curve of the MPA obtained is shown in Figure 4. According to the results shown
in Figure 4, when the fitness value is optimal, the corresponding k and α are 3 and 3348,
respectively. Therefore, the above parameters are substituted into the VMD for modeling
and then VMD is performed on the simulation signal added with noise. To compare
and analyze the effects of the MPA-VMD method and other methods, this research also
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conducted experiments based on the EMD and EEMD methods. The decomposition results
obtained based on MPA-VMD, EMD, and EEMD are shown in Figures 5 and 6.
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Compared with Figures 5 and 6, it is shown that the number of signal components
obtained based on MPA-VMD is the least, and the modal components have a good separa-
bility and weak modal aliasing. More signal components are obtained based on the EMD
and EEMD methods: 11 signal components and 1 residual component. Meanwhile, it can
be seen that some signal components have severe mode aliasing and many false compo-
nents are generated. Next, the kurtosis and correlation values of the signal components
decomposed by the MPA-VMD, EMD, and EEMD methods will be calculated. Each signal
component’s K-C combined weight index will be calculated according to the calculation
formula of the combined weight proposed in this paper. The calculation results based on
MPA-VMD, EMD, and EEMD are shown in Tables 1–3.

Table 1. K-Cindex (MPA-VMD).

IMF1 IMF2 IMF3

C(t) 0.346 0.618 0.281
Q(t) 3.055 6.915 3.193
K-C 1.281 2.049 1.290



Entropy 2023, 25, 277 12 of 26Entropy 2023, 25, x FOR PEER REVIEW 13 of 27 
 

 

0 0.05 0.1 0.15 0.2
-5
0
5

IM
F

1

0 0.05 0.1 0.15 0.2
-5
0
5

IM
F

2

0 0.05 0.1 0.15 0.2
-2
0
2

IM
F

3

0 0.05 0.1 0.15 0.2
-1
0
1

IM
F

4

0 0.05 0.1 0.15 0.2
-1
0
1

IM
F

5

0 0.05 0.1 0.15 0.2
-0.5

0
0.5

IM
F

6

0 0.05 0.1 0.15 0.2
-0.5

0
0.5

IM
F

7

0 0.05 0.1 0.15 0.2
-0.2

0
0.2

IM
F

8

0 0.05 0.1 0.15 0.2
-0.2

0
0.2

IM
F

9

0 0.05 0.1 0.15 0.2
-0.1

0
0.1

IM
F

1
0

0 0.05 0.1 0.15 0.2
-0.05

0
0.05

IM
F

1
1

0 0.05 0.1 0.15 0.2
0

0.05
0.1

Time[s]

R

 

0 0.05 0.1 0.15 0.2
-5
0
5

IM
F

1

0 0.05 0.1 0.15 0.2
-5
0
5

IM
F

2

0 0.05 0.1 0.15 0.2
-2
0
2

IM
F

3

0 0.05 0.1 0.15 0.2
-1
0
1

IM
F

4

0 0.05 0.1 0.15 0.2
-1
0
1

IM
F

5

0 0.05 0.1 0.15 0.2
-0.5

0
0.5

IM
F

6
0 0.05 0.1 0.15 0.2

-0.2
0

0.2

IM
F

7

0 0.05 0.1 0.15 0.2
-0.2

0
0.2

IM
F

8

0 0.05 0.1 0.15 0.2
-0.1

0
0.1

IM
F

9

0 0.05 0.1 0.15 0.2
-0.05

0
0.05

IM
F

1
0

0 0.05 0.1 0.15 0.2
-0.05

0
0.05

IM
F

1
1

0 0.05 0.1 0.15 0.2
0

0.1
0.2

Time[s]

R

 
(a) (b) 

Figure 6.EMD (a) and EEMD (b) decomposition result. 

By comparing the K-C combined weight index of each signal component in Table 1, 

it is shown that the result value of IMF1 obtained based on the MPA-VMD method is the 

largest. The correlation and kurtosis values of this signal component are the largest 

compared with other signal components. Therefore, IMF1 is selected as the optimal sig-

nal component for the reduction in signal noise. Comparing the K-C combined weight 

index of each signal component in Table 2 shows that the result value of IMF2 obtained 

based on the EMD method is the largest. Therefore, IMF2 is selected as the optimal signal 

component for the reduction in the signal noise. Comparing the K-C combined weight 

index of each signal component in Table 3 shows that the result value of IMF2 obtained 

based on the EEMD method is the largest. Therefore, according to the comparison of the 

computer values, the IMF2 will be used as the optimal signal component for the reduc-

tion in the signal noise. Furthermore, it can also be seen from Tables 1–3 that using one of 

the cross-correlation coefficients and kurtosis values to filter will cause a specific inter-

ference in the filtering of the signal components. 

Table 1. K-Cindex (MPA-VMD). 
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C(t) 0.346 0.618 0.281 

Figure 6. EMD (a) and EEMD (b) decomposition result.

Table 2. K-C index (EMD).

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

C(t) 0.740 0.516 0.281 0.202 0.155 0.103
Q(t) 3.355 4.270 3.107 3.012 3.216 2.425
K-C 1.478 1.593 1.270 1.218 1.250 1.023

IMF7 IMF8 IMF9 IMF10 IMF11 R

C(t) 0.064 0.022 0.024 0.005 0.006 0.006
Q(t) 3.831 2.479 2.578 2.674 1.702 1.634
K-C 1.362 1.003 1.033 1.052 0.752 0.729
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Table 3. K-C index (EEMD).

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

C(t) 0.794 0.578 0.329 0.250 0.179 0.113
Q(t) 3.671 4.499 3.220 3.376 3.217 2.826
K-C 1.558 1.654 1.314 1.322 1.260 1.136

IMF7 IMF8 IMF9 IMF10 IMF11 R

C(t) 0.079 0.062 0.029 0.018 0.004 0.012
Q(t) 2.130 2.810 2.308 2.090 1.687 3.365
K-C 0.925 1.112 0.956 0.885 0.746 1.235

By comparing the K-C combined weight index of each signal component in Table 1,
it is shown that the result value of IMF1 obtained based on the MPA-VMD method is
the largest. The correlation and kurtosis values of this signal component are the largest
compared with other signal components. Therefore, IMF1 is selected as the optimal signal
component for the reduction in signal noise. Comparing the K-C combined weight index of
each signal component in Table 2 shows that the result value of IMF2 obtained based on the
EMD method is the largest. Therefore, IMF2 is selected as the optimal signal component for
the reduction in the signal noise. Comparing the K-C combined weight index of each signal
component in Table 3 shows that the result value of IMF2 obtained based on the EEMD
method is the largest. Therefore, according to the comparison of the computer values, the
IMF2 will be used as the optimal signal component for the reduction in the signal noise.
Furthermore, it can also be seen from Tables 1–3 that using one of the cross-correlation
coefficients and kurtosis values to filter will cause a specific interference in the filtering of
the signal components.

Figures 7–9 are the time-domain waveforms of the signal components filtered based
on MPA-VMD, EMD, and EEMD methods after noise reduction. Through analysis, the
following conclusions can be drawn: after the TVD noise reduction, the noise interference
has been reduced to varying degrees. Several evaluation indexes are introduced in this
study to compare the noise reduction effects. They are SNR, RMSE, and MAE. Calculating
the above index values shows the results in Table 4.
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Table 4. Noise reduction effect analysis.

Index EMD-TVD EEMD-TVD MPA-VMD-TVD

SNR 1.120 1.023 4.225
Correlation coefficient 0.481 0.487 0.792

RMSE 0.510 0.516 0.357
MAE 0.197 0.179 0.179

The data shown in Table 4 are the results of the three methods. It shows that the SNR
based on the MPA-VMD-TVD method is 4.225, the correlation coefficient is 0.792, the RMSE
is 0.357, and the MAE is 0.179. Compared with EMD-TVD and EEMD-TVD, the SNR is
higher and the RMSE is smaller. Therefore, according to the above results, we can come to
the conclusion that the method proposed in this paper has a better noise reduction effect.

Next, envelope spectrum analysis is performed on the noise-reduced signals using
the above three methods. The envelope spectrum obtained by the hilbert transformation is
shown in Figures 10–12. Through the analysis of the above three results, it can be seen that
the fault characteristic frequency and its multiple frequency can appear in the envelope
spectrum obtained based on the EMD-TVD method. However, the amplitude of the fault
frequency is relatively low, which brings some interference to the extraction of the fault
characteristics. Meanwhile, although the characteristic frequency of the fault and its double
frequency, three-time frequency, four-time frequency, and other components can be seen
from Figure 10, due to an insufficient signal noise reduction, the interference of other
irrelevant frequencies exists near the peak value of the multiple fault frequencies. From
the envelope spectrum obtained on the basis of MPA-VMD-TVD, the fault characteristic
frequency and its double frequency, three-time frequency, four-time frequency, and other
components are clearly displayed. Meanwhile, the outside interference near the fault
frequency is significantly reduced.



Entropy 2023, 25, 277 15 of 26

Entropy 2023, 25, x FOR PEER REVIEW 16 of 27 
 

 

teristic frequency and its double frequency, three-time frequency, four-time frequency, 

and other components are clearly displayed. Meanwhile, the outside interference near 

the fault frequency is significantly reduced. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

f [Hz]

A
m

p
li

tu
d

e[
m

/s
2
]

f
0

3f
0

9f
0

8f
0

7f
0

6f
05f

0

4f
0

2f
0

 

Figure 10. Envelope spectrum based on MPA-VMD-TVD. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

f [Hz]

A
m

p
li

tu
d

e[
m

/s
2
]

2f
0 4f

0f
0

 

Figure 11. Envelope spectrum based on EMD-TVD. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Frequency[Hz]

A
m

p
li

tu
d

e[
m

/S
2 ]

2f
0

3f
0

f
0

4f
0

5f
0

6f
0

8f
07f

0 9f
0

 

Figure 12. Envelope spectrum based on EEMD-TVD. 

Finally, the above three signals after TVD noise reduction are inputted to the 

CYCBD filter for further filtering to enhance the signal’s periodic impact characteristics. 

Figure 10. Envelope spectrum based on MPA-VMD-TVD.

Entropy 2023, 25, x FOR PEER REVIEW 16 of 27 
 

 

teristic frequency and its double frequency, three-time frequency, four-time frequency, 

and other components are clearly displayed. Meanwhile, the outside interference near 

the fault frequency is significantly reduced. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

f [Hz]

A
m

p
li

tu
d

e[
m

/s
2
]

f
0

3f
0

9f
0

8f
0

7f
0

6f
05f

0

4f
0

2f
0

 

Figure 10. Envelope spectrum based on MPA-VMD-TVD. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

f [Hz]

A
m

p
li

tu
d

e[
m

/s
2
]

2f
0 4f

0f
0

 

Figure 11. Envelope spectrum based on EMD-TVD. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Frequency[Hz]

A
m

p
li

tu
d

e[
m

/S
2 ]

2f
0

3f
0

f
0

4f
0

5f
0

6f
0

8f
07f

0 9f
0

 

Figure 12. Envelope spectrum based on EEMD-TVD. 

Finally, the above three signals after TVD noise reduction are inputted to the 

CYCBD filter for further filtering to enhance the signal’s periodic impact characteristics. 

Figure 11. Envelope spectrum based on EMD-TVD.

Entropy 2023, 25, x FOR PEER REVIEW 16 of 27 
 

 

teristic frequency and its double frequency, three-time frequency, four-time frequency, 

and other components are clearly displayed. Meanwhile, the outside interference near 

the fault frequency is significantly reduced. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

f [Hz]

A
m

p
li

tu
d

e[
m

/s
2
]

f
0

3f
0

9f
0

8f
0

7f
0

6f
05f

0

4f
0

2f
0

 

Figure 10. Envelope spectrum based on MPA-VMD-TVD. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

f [Hz]

A
m

p
li

tu
d

e[
m

/s
2
]

2f
0 4f

0f
0

 

Figure 11. Envelope spectrum based on EMD-TVD. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Frequency[Hz]

A
m

p
li

tu
d

e[
m

/S
2 ]

2f
0

3f
0

f
0

4f
0

5f
0

6f
0

8f
07f

0 9f
0

 

Figure 12. Envelope spectrum based on EEMD-TVD. 

Finally, the above three signals after TVD noise reduction are inputted to the 

CYCBD filter for further filtering to enhance the signal’s periodic impact characteristics. 

Figure 12. Envelope spectrum based on EEMD-TVD.

Finally, the above three signals after TVD noise reduction are inputted to the CYCBD
filter for further filtering to enhance the signal’s periodic impact characteristics. In this
algorithm, the cyclic frequency set is set to [100,200, . . . ,1000]. Then, the signal filtered by
the CYCBD is analyzed in the envelope. The time domain diagrams of the three signals
filtered by the CYCBD filter are shown in Figures 13–15, and the generated envelope
spectrum is shown in Figures 16–18. It can be seen from Figures 13–15 that after filtering, the
periodic impact components in the time domain diagrams based on MPA-VMD-TVD, EMD-
TVD, and EEMD-TVD methods have been greatly improved. Through the comparative
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analysis of Figures 16–18, it is shown that the characteristic frequency of the faultand
its double to nine times of the fault frequency can be extracted by using the above three
methods. At the same time, in general, the amplitude of the fault frequency and multiple
frequencies of the fault frequency obtained based on the proposed method are the highest,
and there is no outside interference near the fault frequency. However, there are still
different degrees of outside interference near the fault frequency obtained by the other two
methods. Therefore, the proposed method achieved better results.
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5. Experimental Verification 

The experimental data used in this study are from the public data set of CWRU [32]. 
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efficient is shown in Table 5. The motor speed is 1797 rpm. The sampling frequency is 12 
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5. Experimental Verification

The experimental data used in this study are from the public data set of CWRU [32].
The fault acquisition equipment is shown in Figure 19 [33] and the bearing structure
coefficient is shown in Table 5. The motor speed is 1797 rpm. The sampling frequency is
12 KHz. The model used at the drive end is 6205-2RSJEMSKF, the motor speed is 1797 rpm,
and the sampling frequency is 12 KHz.
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Figure 21.(a) original fault signal with noise; (b) frequency domain diagram. 

Figure 19. Rolling bearing fault acquisition equipment.

Table 5. The bearing structure factor.

Rolling Element
Number Inner Diameter Outer Diameter Contact Angle Pitch Circle Diameter

D

9 0.9843 2.0472 0◦ 1.5327

5.1. Analysis of Inner Ring Vibration Signal

The time and frequency domain waveforms of the experimental signal are shown in
Figure 20a,b. To test the performance of the method in terms of the anti-noise interference,
this experiment adds noise to the original signal, and its SNR is −2dB. The signal’s time
and frequency domain diagram added with noise are shown in Figure 21a,b.
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Figure 20. (a) original fault signal; (b) frequency domain diagram.

Firstly, the MPA is used to optimize the decomposition level k and the penalty factor α
according to the VMD parameter optimization process proposed in this paper. The fitness
function used in MPA optimization is the average value of dispersion entropy. The parameter
search range in VMD is as follows: k ∈ [3, 15] and α ∈ [100, 3000]. In the MPA algorithm,
the population size is 10. Meanwhile, the maximum iteration number is 20 andthe FADs
are 0.2. After parameter optimization, the fitness curve of the obtained MPA is shown in
Figure 22. According to the results shown in Figure 22, when the fitness value is optimal, the
decomposition level k and penalty factor α are 3 and 1916, respectively. Therefore, k = 3 and
α = 1916 are taken as the optimal values. Then, the above two parameters are substituted into
the VMD algorithm for modeling, and VMD decomposes the bearing inner race fault signal
after adding noise. The decomposition result is shown in Figure 23.
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Next, the kurtosis and correlation values of the signal components decomposed by
the above MPA-VMD method are calculated and the K-C index of each IMF are calculated
according to the formula of the combined weights. The calculation results of the signal
components are shown in Table 6. Comparing the K-C index of each signal component in
Table 6 indicates that the K-C index of the IMF2 component obtained based on the MPA-
VMD method is the largest. Therefore, IMF2 is selected as the optimal signal component
for the next TVD noise reduction operation.
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Table 6. K-C index (VMD).

IMF1 IMF2 IMF3

C(t) 0.269 0.651 0.300
Q(t) 2.749 3.837 3.150
K-C 1.261 1.926 1.440

Figure 24 is the noise reduction waveform of the optimal signal components filtered
based on the MPA-VMD method. It shows that the noise interference is reduced to a
certain extent by the TVD method. Then, the signal after noise reduction is analyzed by
the Hilbert envelope. The following conclusions are drawn from the envelope spectrum in
Figure 25: the fault feature frequency and its double frequency appear in the figure. Still,
their amplitude is low, complicating the fault characteristics’ effective extraction. Next, the
noise-reduced signal is input into the CYCBD filter. In this algorithm, the cyclic frequency
set is set to [162.19, 324.38, 486.57, . . . ,1135.33].
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The signal filtered by the CYCBD filter is shown in Figure 26 and the generated
envelope spectrum is shown in Figure 27. Observing the waveform shows that the periodic
impact component has been significantly enhanced. It is shown in Figure 27 that the
frequency characteristic of the fault and its double frequency, three-times frequency, four-
times frequency, and five-times frequency components have appeared, and the amplitude
is exceptionally high. Therefore, it can be determined that the bearing has inner race failure.
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5.2. Analysis of Outer Ring Vibration Signal

The time and frequency domain waveforms of the experimental signal are shown in
Figures 28a and 29b. Similarly, to verify the method’s performance in anti-noise interfer-
ence, the experiment adds noise to the original signal, and its SNR is−2dB. The time and
frequency diagram of the signal after adding noise are shown in Figure 29a,b.
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Figure 29.(a) original fault signal with noise; (b) frequency domain diagram. 
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Figure 29. (a) original fault signal with noise; (b) frequency domain diagram.

Next, the MPA optimization algorithm is used to optimize the k and α in VMD.
Similarly, the parameter search range in VMD is as follows: the decomposition level
k ∈ [3, 15] and the penalty factor α ∈ [100, 3000]. In the MPA algorithm, the population size
is 10, the maximum iteration is 20, and the FADs are 0.2. After parameter optimization, the
fitness curve of the obtained MPA is shown in Figure 30. It is shown from the change in the
results of the fitness curve that when the fitness value is optimal, the corresponding optimal
k and α are 3 and 2541, respectively. Therefore, the above two parameters are substituted
into the VMD for modeling, and then VMD is carried out for the simulation experiment
signal added with excessive noise. The decomposition result is shown in Figure 31.
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Next, the kurtosis and correlation values of the signal components decomposed by the
MPA-VMD method are calculated, and the K-C combination weight calculation formula
calculates the K-C index of each IMF. The calculation results of the signal components are
shown in Table 7. By comparing the K-C index of each signal component in Table 7, it
is shown that the K-C index of the IMF2 component obtained based on the MPA-VMD
method is the largest. Therefore, the IMF2 is selected as the optimal signal component for
the next TVD noise reduction operation.
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Figure 32.MPA-VMD-TVD noise reduction results. 

Figure 31. VMD result.

Table 7. K-C index (VMD).

IMF1 IMF2 IMF3

C(t) 0.269 0.651 0.300
Q(t) 2.749 3.837 3.150
K-C 1.261 1.926 1.440

Figure 32 shows the waveform after the noise reduction of the optimal signal com-
ponents filtered based on the MPA-VMD method. Noise interference is shown to be
significantly reduced by the TVD method. Then, a Hilbert envelope analysis is performed
on the noise-reduced signal and the results are shown in Figure 33. It can be seen from
Figure 33 that the fault characteristic frequency, double frequency, five-times frequency,
and six-times frequency components appear in the envelope spectrum. However, their
amplitude is low, and some irrelevant interference components appear around them,
which makes it difficult to extract the fault features effectively. Next, the noise-reduced
signal is input into the CYCBD filter. In this algorithm, the cyclic frequency set is set to
[107.36, 214.72, 322.08, . . . , 966.24].
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Figure 32.MPA-VMD-TVD noise reduction results. Figure 32. MPA-VMD-TVD noise reduction results.

The signal filtered by the CYCBD filter is shown in Figure 34 and the envelope spec-
trum generated is shown in Figure 35. It is shown that Figure 34 that the periodic impact
component has been significantly improved. At the same time, the fault characteristic
frequency and its second- to nine-times frequency components have appeared and the
amplitude is exceptionally high. Therefore, it can be determined that the bearing has outer
ring failure.
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6. Conclusions

In this paper, the method combining improved VMD multi-scale dispersion entropy
and TVD-CYCBD is used to research the fault feature extraction of rolling bearing signals
under noise interference. The conclusions are as follows.

(1) The MPA is used to optimize the decomposition level and penalty factor in the VMD
algorithm to find the optimal parameter combination. It can avoid over-decomposition
and under-decomposition problems caused by the traditional VMD algorithm and
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realize the proper decomposition and the reconstruction of signals. This method
overcomes the difficulties of mode aliasing and the end effect caused by impact
components and noise interference in EMD and EEMD methods.

(2) The K-C index is constructed by balancing the advantages and disadvantages of
kurtosis and the cross-correlation coefficient, which solves the problems of identifying
the optimal signal components. It effectively removes the component signals with
a weak correlation with the original signal. Second, the TVD method reduces the
noise of the selected optimal component. It effectively reduces the noise interference.
Compared with the noise reduction results obtained based on EMD and EEMD
methods, the waveform of the signal received by the proposed noise reduction method
is more similar to the original signal. It is also optimal in comparing the noise
reduction evaluation index results.

(3) The fault impact component can be better highlighted by CYCBD filtering on the
signal after TVD denoising. In the simulation signal experiment and the experimental
verification of the CWRU data, the envelope spectrum generated by the proposed
method can successfully extract the fault frequency and its multiple frequencies. At
the same time, the result of fault feature extraction is better than that based on EMD
and EEMD, which shows the effectiveness of the proposed method.
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