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Abstract: Electron temperature is reconsidered for weakly-ionized oxygen and nitrogen plasmas with
its discharge pressure of a few hundred Pa, with its electron density of the order of 1017 m−3 and in a
state of non-equilibrium, based on thermodynamics and statistical physics. The relationship between
entropy and electron mean energy is focused on based on the electron energy distribution function
(EEDF) calculated with the integro-differential Boltzmann equation for a given reduced electric field
E/N. When the Boltzmann equation is solved, chemical kinetic equations are also simultaneously
solved to determine essential excited species for the oxygen plasma, while vibrationally excited
populations are solved for the nitrogen plasma, since the EEDF should be self-consistently found
with the densities of collision counterparts of electrons. Next,the electron mean energy U and entropy
S are calculated with the self-consistent EEDF obtained, where the entropy is calculated with the
Gibbs’s formula. Then, the “statistical” electron temperature Tst

e is calculated as Tst
e = [∂S/∂U]−1.

The difference between Tst
e and the electron kinetic temperature Tkin

e is discussed, which is defined as
[2/(3k)] times of the mean electron energy U = 〈ε〉, as well as the temperature given as a slope of
the EEDF for each value of E/N from the viewpoint of statistical physics as well as of elementary
processes in the oxygen or nitrogen plasma.

Keywords: non-equilibrium plasma; electron energy distribution function (EEDF); electron temperature;
mean energy; Gibbs entropy; statistical physics

1. Introduction

For high-temperature and high-density plasmas such as atmospheric-arc discharge
plasmas, assumption of thermodynamic equilibrium holds almost exactly, and conse-
quently, fluid-dynamic approximation can be applied with sufficient accuracy. Therefore,
basic research on the collective phenomena, including relaxation processes, has produced
various results [1]. Similarly, for industrial applications of low-temperature, approximately
∼1–4 eV, low-density ∼109–1012 cm−3, and non-equilibrium plasma systems, it is impor-
tant to understand the fundamentals of such collective phenomena. However, in the
low-temperature and low-density plasmas, almost all the constituents, such as electrons,
positive and negative ions, reactive radicals, photons, etc., are non-uniformly distributed in
the space with various time constants, and in short, they are in a state of non-equilibrium [2].
Since the collision frequency of each particle is small there, the electrons accelerated by the
electric field do not sufficiently reach the thermodynamic equilibrium with atoms or ions.
Therefore, while the electron temperature of plasmas generated in general experimental
laboratories is tens of thousands of degrees Celsius, the temperature of ions and neutral
particles remains approximately at room temperature for industrial applications, e.g., in
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electronic engineering such as semiconductor etching, thin-film deposition [3,4], or mate-
rial processing such as plasma surface modification [5]. As a result, the electron energy
distribution usually deviates from the Maxwell-Boltzmann distribution law [6,7]. That is,
the processing plasma of lab-scale is generally in a state of non-equilibrium. Consequently,
the simple treatment such as thermal equilibrium plasmas in which the energies of all the
constituent particles can be described by a single temperature T becomes impossible.

However, even in a plasma system with such a high-degree of non-equilibrium, there
are various methods to evaluate the thermodynamic properties of the plasmas compre-
hensively, one of which is to understand the electron energy distribution function (EEDF),
and those of various excited species [3]. By evaluating the thermodynamic quantities of the
constituents, it is considered that the unique structure and a certain order can be confirmed
to describe the collective phenomena. Among them, the electron populations play the
most important role in determining the characteristics of low-temperature, non-equilibrium
plasma systems, and in particular, high-energy electron groups often play the most essential
role. Moreover, the EEDF of the plasma is calculated accurately by reflecting the informa-
tion of the elementary processes that are considered to occur in the plasma [7,8]. Therefore,
it is considered that the analysis of the EEDF will greatly improve the understanding of
the collective characteristics as well as the elementary chemical processes in plasmas. For
example, if the EEDF is known, it can determine not only the macroscopic parameters,
such as electron density and electron average energy, but also the various rate coefficients
of various excitations, dissociations of neutral molecules and even ionization, which can
provide essential guidelines for process application of the non-equilibrium plasmas [9].

The concepts of “temperature” in equilibrium and that in non-equilibrium are differ-
ent, and especially in the latter case, care must be taken in the use and definition of the
expression “temperature”. It goes without saying that the electron temperature and that
of heavy species are different, and this temperature difference causes non-equilibrium to
protect the process target from thermal damage. In addition, due to the deviation of the
EEDF from the Maxwellian, it is necessary to pay attention to the fact that integral calcula-
tion using the cross-section data is required in the calculation of various rate coefficients to
evaluate the densities of reactive species in the plasma [3,6–9]. These facts show that the
consideration of “electron temperature” defined by the electron population is important in
terms of basic physics.

It has been well known that the EEDF F becomes far from a Maxwellian one in weakly-
ionized plasma for various processing applications, partly because the elastic and inelastic
collisions with neutral species become predominant to the Coulomb collision. This kind
of evaluation of the EEDF has been frequently reported based on the interest in the gas
discharge physics [10–12]. For example, the high-energy component of EEDF is depleted
for argon plasma with its discharge pressure of approximately ∼100 Pa due to frequent
excitation of neutral argon atoms, which was experimentally observed with Langmuir
probe measurement for CCP discharge and for microwave discharge [10,13]. On the other
hand, numerically, the EEDF can be calculated as a solution to the integro-differential
Boltzmann equation (hereafter, referred to as the Boltzmann equation, which will be later
specified with its definition as Equations (23)–(26)) with two-term approximation for the
given applied reduced electric field E/N in several gas discharge species, for which even
free software can be obtained through web pages, e.g., BOLSIG+ [14].

Meanwhile, Alvarez et al., discussed the definition of rigorous electron temperature
even for the plasma with non-Maxwellian EEDF in a state of non-equilibrium [15]. Al-
varez et al., applied the software BOLSIG+ (Ver. 06/2013) to several gas discharge plasmas
and discussed the relationship between the electron mean energy U ≡ 〈ε〉 and the entropy
S. They claimed that they found a common relationship Te ≡ [∂S/∂U]−1 = [2/(3k)]〈ε〉,
for any kinds of discharge species with non-Maxwellian EEDF, where k is the Boltzmann
constant, which should be reconfirmed. It should be further remarked that Alvarez et al.,
did not consider the variation in the constituents of discharge species as counterparts of
the electron collision, which becomes essential for the evaluation of super-elastic collisions.
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Namely, the rate equations of the essential excited species in the discharge should be
simultaneously solved with the Boltzmann equation, which had been reported for many
atmospheric discharge species [7,16–18]. If a rigorous EEDF is necessary as a solution to
the Boltzmann equation, the chemical kinetics of discharge species must be also solved for
the precise evaluation of the collision terms.

For example, if the electron kinetics are treated in weakly ionized O2 or N2 gas
discharge plasmas to obtain the EEDF, the dissociation degree of O2 molecules or the
vibrational distribution of N2 molecule must be considered because of the variation in the
inelastic collisions of electrons. For instance in the oxygen plasma, if the value of E/N
is increased as one of the input parameters, the dissociation degree becomes larger, and
consequently, the electron collisions with O atoms should become essential in comparison
with those with O2 molecules, which results in the variation in the EEDF [19–23]. If we
treat nitrogen plasma, we must notice that the vibrational distribution function (VDF) of
N2 X state has strong coupling with the EEDF of the plasma, which should be corrected
in accordance with the VDF [7,17,18,22,24–26]. However, Alvarez et al., did not consider
these kinds of variation in the collision partners of electrons as back ground gas species [15].
Based on the backgrounds described so far, the objective of the present study is to reconsider
the “electron temperature” of the non-equilibrium plasma with non-Maxwellian EEDF from
the viewpoint of statistical physics by applying the concept of entropy. As Alvarez et al.,
studied from the viewpoint of statistical physics, the temperature is given as a reciprocal
value of the partial derivative of the entropy with respect to the internal energy. On the other
hand, if the distribution function is known, the entropy of the system can be calculated,
without concepts on equilibrium physics such as “free energy”. Thus, examination on
the relation between the entropy and the energy through the distribution function can
give another concept of the electron temperature of the non-equilibrium plasma, which is
precisely the objective of the present study.

2. Theoretical Backgrounds

As case studies, an oxygen plasma and a nitrogen plasma are chosen in this study. For
the oxygen discharge plasma, the essential chemical kinetics of oxygen atoms and molecules
are simultaneously solved with the Boltzmann equation including dissociation degree of
oxygen molecule [23], while the vibrational distribution function of the N2 molecule is
solved simultaneously for the nitrogen plasma to include the effect of the superelastic
collision of electrons with the vibrational levels [26].

2.1. Thermodynamics and Statistical Physics of Electrons

First, from the viewpoint of thermodynamics and statistical mechanics, the definition
of “temperature” should be reconfirmed. The current definition of temperature T in physics
is the differentiation of the kinetic energy U of a species in equilibrium by a statistical value
called entropy S [27]. Since the equilibrium states in the true sense of the word are rare
in nature, the temperature is defined for convenience even for the non-equilibrium state.
At present, the definition of temperature in the non-equilibrium state is in the process of
being defined because it may not be possible to define it in the original sense. Therefore,
the definition of temperature is confirmed here based on the conventional theory.

Then, the first law of thermodynamics is confirmed. The kinetic energy of electron gas
U is given by the so-called electron mean energy. Then, we denote the electron entropy S,
its pressure p, its volume V, its chemical potential µ, and its total number n. The first law
of thermodynamics is described as follows for a closed system [27,28]:

dS =
1
T
(dU + pdV − µdn). (1)

In this research, only the free electron group is focused on in the plasma, ignoring
the energy of ions and neutral particles. The excitation energy of the generated atomic
molecules is also neglected for the time being. Since only the laboratory non-equilibrium
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plasmas are being targeted such as those obtained by small current discharge, the tempera-
ture of ions and neutral particles is much lower than that of electrons. Hence, the pressure
of these heavy particles can be ignored. Since the number of electrons in the space is
assumed to be constant and the volume change is not considered, the electron density can
also be considered to be constant. Of course, from Equation (1), the following equations
become obvious: (

∂S
∂U

)
V,n

=
1
T

, (2)(
∂S
∂V

)
U,n

=
p
T

, (3)(
∂S
∂n

)
V,U

= − µ

T
. (4)

If the electron population performs electrical or mechanical work, it must be incorporated
into energy conservation. However, for the sake of simplification of the discussion that
follows, the volume change is neglected, that is, it is assumed that dV = 0. Electrons
are to move in a given DC electric field with its reduced electric field E/N. Neither the
polarization effect of the charged species nor the plasma oscillation is considered. It is also
assumed that the electron kinetic energy acquired by the change of space potential shall
be exactly lost by collisions with the neutral particle as well as by any kind of radiation.
That is, the change in spatial potential need not be described explicitly by the energy
conservation relation. Furthermore, it is assumed that the electron density Ne is also
constant, then it leads to dNe = 0 when dV = 0, that is, the total number of electrons n does
not change, i.e., dn = 0, and consequently, the chemical potential need not be considered
throughout this study. To fulfill this condition, the discharge condition applied in this study
is controlled so that the electron density may be kept constant.

As a result, in this study, the following equation is assumed without its validation but
basically from analogy of the thermodynamics of thermal systems:

dS =
1
T

dU. (5)

That is, in order to obtain the temperature T, the entropy S and the kinetic energy U should
be obtained under the given conditions, and the relationship between these S and U should
be investigated in detail under the above assumption, where the strategy is the same as
Alvarez et al. [15].

In the meantime, the internal energy and entropy of the free electron group are
calculated as follows. By applying the knowledge of statistical physics, it is possible to
find a relation with conventional plasma physics. That is, in the field of plasma or gas
discharge, various discussions are being held on the EEDF F(ε) or the electron energy
probability function (EEPF) f (ε) ≡ F/

√
ε by solving the Boltzmann equation by two-term

approximation as a function of the reduced electric field E/N, where ε is the electron
energy, E is the electric field and N is the number density of the neutral particles [3,6–9].

Here, the definition of the EEDF should be confirmed. First, the electron velocity
distribution function g(v) is defined in this study as follows:

g3(v)d3v = g3(vx, vy, vz)dvxdvydvz = g(v)× 4πv2dv
= number of electrons inside a three-dimensional velocity space

with its volume dvxdvydvz at v divided by total number of electrons.
(6)

Namely, the distribution function g3(vx, vy, vz) is uniformly distributed. However, the scalar-
velocity distribution function g(v) is normalized as∫ ∞

0
g(v)× 4πv2dv = 1, (7)
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and in this respect, the velocity interval (v, v + dv) is statistically weighted by 4πv2.
Then, in the present study, the definition of the corresponding EEDF, F(ε), is defined

as follows [3,29]:
4πv2g(v)dv ≡ F(ε)dε, (8)

and for electron with its mass me, as a matter of course,

ε =
1
2

mev2, (9)

and from Equations (7) and (8), EEDF F(ε) is normalized as∫ ∞

0
F(ε)dε = 1. (10)

For electrons with Maxwellian EEDF and temperature Te, it is well known that g(v) and
F(ε) become gM(v) and FM(ε) as follows, respectively [29],

gM(v)× 4πv2dv =

(
me

2πkTe

)3/2
exp

(
−mev2

2kTe

)
× 4πv2dv, (11)

FM(ε)dε =
2√
π

(
1

kTe

)3/2
exp

(
− ε

kTe

)√
ε · dε, (12)

which are valid only for the equilibrium condition. As Equation (12) shows, the equilib-
rium EEDF has the weighting factor

√
ε in its form in addition to the Boltzmann factor

exp[−ε/(kTe)]. Therefore, to draw the EEDF on a semilogarithmic plot for convenience,
the electron energy probabilistic function (EEPF) f (ε) has been frequently defined as
follows [30–33]:

f (ε) ≡ F(ε)√
ε

. (13)

Then, the Boltzmann plot, i.e., the semi-logarithmic plot of the electron population against
the electron energy ε becomes linear for the Maxwellian EEDF, Equation (12). On the other
hand, if the Boltzmann plot of the EEPF f (ε) is not linear, it indicates that the electrons are
not in the state of equilibrium. It should be also remarked that the EEPF is related to the
velocity distribution function g(v) as the following:

f (ε) = 2π

(
2

me

)3/2
g(v), (14)

and consequently, the EEPF f is found to be a constant multiple of g.
If F is known, the internal energy U can be considered as the average energy of the

electron group, and it can be calculated as follows:

U ≡ 〈ε〉 =
∫ ∞

0
εF(ε)dε. (15)

On the other hand, the electron entropy can be calculated with integral calculation
by the Gibbs’s entropy formula established to a continuous variable rather than a discrete
type [27]:

S = −k
∫ ∞

0
F(ε) ln[ f (ε)]dε. (16)

Since the statistical weight of the energy interval (ε, ε + dε) is
√

ε as shown in
Equations (12) and (13), the argument of the function ln in Equation (16) must be the
EEPF f (ε), not the EEDF F(ε). The validity of Equation (16) will be confirmed in the final
discussion of this paper.
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When the EEDF is Maxwellian as defined in Equation (12), its internal energy UM and
the Maxwellian entropy SM are analytically calculated as follows, respectively:

UM =
∫ ∞

0
εFM(ε)dε =

3
2

kTe, (17)

SM = −k
∫ ∞

0
FM(ε) ln[ fM(ε)]dε =

3k
2

[
1 + ln

(
4πUM

3me

)]
. (18)

Then, Equations (17) and (18) lead to

∂SM

∂UM
=

3k
2UM

=
1
Te

. (19)

Hence, for the Maxwellian EEDF, Equation (12), the validity of Equation (2) is confirmed,
which is also consistent with the definition of the entropy by Equation (16).

That is, in this study, first, the gas type was fixed to oxygen or nitrogen, and then, after a
reduced electric field E/N was given, EEDF F(ε) was obtained by the Boltzmann analysis.
Subsequently, the energy U and the entropy S are obtained by Equations (15) and (16),
respectively. In other words, the relational expression between S and U can be obtained by
changing the reduced electric field E/N. Then, the relationship with the “electron tempera-
ture” obtained from Equation (2), i.e., [∂S/∂U]−1 = Te is discussed in this study [15].

As a similar previous study, Alvarez et al., has already developed the above discussion
on the pure discharge plasmas of Ar, He, N2, O2, and H2 [15]. Using the free software
BOLSIG+ [14], Alvarez et al., solved the corresponding Boltzmann equation and obtained
their EEDF based on two-term approximation, and drew the following conclusions. That is,
Alvarez et al., claimed for any of the foregoing discharge gas species that the relation

S = S0 +
3k
2

ln U (20)

held, and consequently, the following relationship

Te =

(
∂S
∂U

)−1
=

2U
3k

i.e., U =
3
2

kTe, (21)

was found. Additionally they concluded that the above equation is universally valid even
when the EEDF does not follow the Boltzmann distribution, Equation (12) [15].

However, their theory has some serious problems. The first problem is the shape of
the EEDF they calculated. Their EEDF’s are far from the Maxwellian distribution for any
discharge gas. It is incredible that Equations (20) and (21) can be obtained in such cases.
The points that may require further reverification are as follows. There is a crucial physical
process that is omitted in their model to calculate the EEDF of the actual discharge plasma.
Specifically, in the plasma of molecular gas species such as oxygen and nitrogen, the state of
the target gas should change as a result of the dissociation of molecules and the existence of
vibrationally excited states, which have not been incorporated in their calculation. Changes
in the excited state distribution of these targets are not taken into account. More specifically,
in the case of O2, dissociation should proceed as the E/N increases. Depending on the
degree of dissociation, the rate of O2 molecule excitation in the energy loss process should
decrease, and instead collision with O atoms should be predominant. When dealing with
N2, the VDF of N2 X state changes, and the amount of energy change in inelastic collision
changes according to the VDF under each discharge condition. Then, the effectiveness of the
superelastic collision should be reflected in EEDF in the nitrogen plasma. However, these
changes in target species are not included, which leaves problems with the calculations of
Alvarez et al. [15].

On the other hand, in the research field of low-temperature plasma, the mainstream is
the method of establishing a global model for the density change of the excited species and
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solving it simultaneously with the Boltzmann Equation [7,16–19,34,35]. Rather, changes
in the excited-state populations as collision counterparts such as oxygen and nitrogen are
focused on, which are important for the formation of EEDF. Studies have been conducted
on the kinetics of excitation kinetics. From such past accumulation, it is possible to obtain a
self-consistent EEDF by coordinating with the change in excited-state density [21–26,36].

Therefore, in this study, the conventional model is applied to find both the number
density of the major excited states in oxygen or nitrogen plasma and the EEDF as a function
of the reduced electric field in a self-consistent manner. Therefore, the EEDF is calculated
according to this model, and then the “electron temperature” obtained statistically and
thermodynamically is calculated using Equations (2), (15) and (16). Then, the obtained
electron temperature will be compared and discussed with the slope of the EEPF obtained
for each E/N. Regarding the electron temperature of plasmas with non-Maxwellian
EEDF, the main objective of this study is to deepen the mathematical-physics study on the
validity of Equations (15) and (16), as well as the deeper mechanism for describing such
non-equilibrium electron statistics.

2.2. Confirmation of the Boltzmann Equation to Be Solved

It should be emphasized that the EEPF f (ε) determined in Equation (13) has long been
applied in the two-term approximated Boltzmann equation instead of the EEDF [30,31,37].
These references showed that the velocity distribution function g(v) under the external
electric field along the z-axis is well described with the two-term approximation, that
is, the summation of the isotopic component of g as g0 and the first-order anisotropic
component g1:

g(v) = g0(v) +
vz

v
g1(v) (22)

On the other hand, the velocity distribution function g(v) is given as a solution to the
Boltzmann equation as follows:

∂g
∂t

+ v · ∇r g− eE
me
· ∇v g =

δg
δt

∣∣∣∣
coll.

, (23)

where e is the elementary charge, E is the electric field, and δg/δt|coll. is the collision
term. In the present analysis, since the electrons do not depend on spatial coordinates,
∇r ≡ 0. It can be also assumed that me � mi, M where mi and M are the mass of ions and
that of neutral particles, respectively, and that Te � Tg where Tg is the gas temperature,
which are common to low-temperature plasmas. Thus, by substitution of Equation (22)
into Equation (23), multiplying the respective Legendre polynomials (1 and cos θ) and
integrating over cos θ, the following two differential equations are obtained for the isotopic
component of the EEPF f0 and the directional component f1 instead of g by applying
Equation (14) [14,30,31,37,38]:

∂ f0
∂t = 1

3

(
2e
me

)1/2 E
ε1/2

∂
∂ε (ε f0) +

1
ε1/2

∂
∂ε

[
ε3/2 2me

M νel(ε) f1

]
+∑

j

[(
ε+εsi−j

ε

)
νin

j (ε + εsi−j) f0(ε + εsi−j)− νin
j (ε) f0(ε)

]
,

(24)

∂ f1

∂t
=

(
2eε

me

)1/2
E

∂

∂ε
( f0)−

[
νel(ε) + ∑

j
νin

j (ε)

]
f1(ε), (25)

where E = |E|, absolute value of the electric field, νel(ε) is the elastic collision frequency of
electron of energy ε with neutral particles, νin

j (ε) is that of the j-th type electron inelastic
collision, and εsi−j is the energy loss at the corresponding inelastic collision. In the present
study, the electrons in the plasma are assumed to be in the steady state, and consequently,
∂/(∂t) ≡ 0. Then, f1 is eliminated from Equations (24) and (25), and eventually, the second-
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order ordinary differential equation of the isotopic component of EEPF, f0, with respect to
the electron energy ε is derived as

− d
dε

[
1
3

(
E
N

)2
ε

σc(ε)+∑j σsi−j(ε)
d f0
dε + 2me

M σc(ε)ε2
(

f0 +
kTg

e
d f0
dε

)]
+∑

j

{
εσsi−j(ε) f0(ε)− (ε + εsi−j)σsi−j(ε + εsi−j) f0(ε + εsi−j)

}
= 0,

(26)

where N is the number density of the neutral species, σc is the momentum-transfer cross
section, σsi−j is the cross section of the j-th type inelastic collision, and Tg is the gas tem-
perature. Of course, E/N is the reduced electric field. The first term of the first line of
Equation (26) indicates the energy gain of electrons accelerated by the external electric
field, while the second term corresponds to the energy loss by the elastic collision processes
with neutral particles. Meanwhile, the second line shows the effect of inelastic collisions.
The first term denotes the outgoing flow from the energy interval (ε, ε + dε) whereas the
second term corresponds to the incoming kinetics to this interval by superelastic collisions.
Hereafter, as there will be no risk of misunderstandings, the isotropic component of the
EEPF, f0, will be written simply as f for the sake of simplification [24,30,31,37,39].

2.3. Calculation of EEPF of Oxygen Plasma—Self-Consistent Simultaneous Solution with Rate
Equations of Major Excited Species

The method is confirmed here to solve the EEDF of oxygen plasma simultaneously
with the density of essential excited species in the oxygen plasma [19–21]. As the E/N
increases and the average electron energy increases accordingly, the dissociation of oxygen
molecules into atoms progresses. As a result, the dominant collision processes related to
electron energy loss changes from the molecular kinetics to the atomic excitation kinetics,
which is incorporated into the computational model.

Here, a low-pressure steady-state oxygen plasma with a discharge pressure of about
1 Torr is chosen to be an example of the discussion and treated by a global model [23].
In the case of such oxygen plasma, the following eight states are individually treated as
the main states at the steady state: O2 (X 3Σ−g ), O2 (a 1∆g), O2 (b 1Σ+

g ), O−, O3, O+
2 , O (3P),

and O (1D). At this time, the input values of the numerical simulation to determine the
densities of the above excited species are the discharge pressure P for determining the
total particle density, the gas temperature Tg for determining the particle density and the
atomic/molecular reaction rate coefficient, the electron density Ne, the inner radius of the
discharge tube R that becomes necessary for diffusion loss rates of some species, and the
reduced electric field E/N to determine the EEDF.

A set of rate equations based on a global model are established for changes in the
number density of each state. That is, they are rate equations described by the generation
or loss due to the electron collision, the atomic-molecule collision reaction, or the diffusion
loss for each state. In short, the following equations are obtained for each state.

d[A]

dt
= −νW[A] + G, (27)

where, [A] is the number density of the atomic or molecular species A to be considered,
νW is the loss rate coefficient due to collision with the wall, and G is the source term
indicating the generation or loss of atomic or molecular species A due to electron collision
or atomic/molecular collision. νW is determined by the boundary condition at the discharge
tube wall, that is, the deactivation probability γ at the time of wall collision. Assuming that
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the average thermal velocity of the particles is c and the diffusion coefficient of the particles
is D, νW is calculated as follows:

νW =
γc
2R

for γ� 1, (28)

νW =

(
2.405

R

)2
D for γ ∼ 1. (29)

Next, the electron collision rate coefficient ke for the generation and loss is given by
the integral as shown in the following equation,

ke =
∫ ∞

εth

σ(ε)F(ε)vdε =
∫ ∞

εth

σ(ε)[
√

ε · f (ε)] ·
√

2ε

me
dε =

√
2

me

∫ ∞

εth

σ(ε)ε f (ε)dε, (30)

where σ(ε) is the cross section of the corresponding electron collision, εth is the threshold
energy of the reaction, and f (ε) is the EEPF defined as Equation (13). For the oxygen
plasma, the two-term approximated Boltzmann Equation (26), should be modified as
follows, because of the variation in the collision partner due to dissociation of oxygen
molecules into oxygen atoms with the increase in the reduced electric field, and is solved
by numerical calculation, the procedure of which was already specified in [23]:

− d
dε

[
1
3

(
E
N

)2
ε

∑s δs

{
σs

c (ε)+∑j σs
si−j(ε)

} d f (ε)
dε

+ε2
{

∑
s

δs
2me
Ms

σs
c(ε)

}{
f (ε) + kTg

e
d f (ε)

dε

}]
+∑

j,s
δs

{
εσs

si−j(ε) f (ε)− (ε + εs
si−j)σ

s
si−j(ε + εs

si−j) f (ε + εs
si−j)

}
= 0,

(31)

where σs
c is the momentum-transfer cross section of the species s (s = 1 for O atom and

s = 2 for O2 molecule), Ms is the mass of the s-th target molecule of electron collision, δs is
the number-density fraction of the s-th species, σs

si−j is the cross section of j-th type inelastic
collision of the s-th heavy soecies, εs

si−j is the energy loss at that inelastic collision, and Tg

is the gas temperature.
In this study, 15 reactions listed in Table 1 were considered when solving Equation (27)

for the population or depopulation kinetics of chemical species as electron collision re-
actions, while another 15 types of reactions shown in Table 2 were considered as the
atomic-molecular collision reaction of Equation (27).

Table 1. List of electron inelastic collision processes considered in the calculation of number densities
of excited states in Equation (27).

Number Electron Collision Reactions References

1 O2 (X 3Σ−g ) + e− � O2 (a 1∆g) + e− [7]
2 O2 (X 3Σ−g ) + e− � O2 (b 1Σ+

g ) + e− [7]
3 O2 (a 1∆g) + e− � O2 (b 1Σ+

g ) + e− [20]
4 O2 (X 3Σ−g ) + e− → O+

2 + 2 e− [7]
5 O2 (X 3Σ−g ) + e− � O− + O (3P) [40]
6 O2 (a 1∆g) + e− � O− + O (3P) [7,40]
7 O2 (X 3Σ−g ) + e− � 2 O (3P) + e− [20]
8 O2 (a 1∆−g ) + e− � 2 O (3P) + e− [7,20]
9 O+

2 + e− → 2 O (3P) [7]
10 O3 + e− � O (3P) + O2 (X 3Σ−g ) + e− [19]
11 O− + e− → O (3P) + 2 e− [3]
12 O2 (X 3Σ−g ) + e− → O (3P) + O (1D) + e− [40]
13 O2 (a 1∆g) + e− → O (3P) + O (1D) + e− [7,40]
14 O (3P) + e− � O (1D) + e− [7]
15 O2 (X 3Σ−g ) + e− → 2 O (1D) + e− [40]
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Table 2. List of atomic and molecular collision processes considered in the calculation of number
densities of excited states in Equation (27).

Number Atomic or Molecular Collision Reactions References

16 O2 (a 1∆g) + O− → O3 + e− [7]
17 O2 (b 1Σ+

g ) + O− → O (3P) + O2 (X 3Σ−g ) + e− [7]
18 O− + O+

2 → O (3P) + O2 (X 3Σ−g ) [7]
19 O2 (a 1∆g) +O (3P) � O2 (X 3Σ−g ) + O (3P) [7]
20 O3 +O2 (X 3Σ−g ) � 2 O2 (X 3Σ−g ) + O (3P) [7]
21 O (3P) +O3 � 2 O (3P) + O2 (X 3Σ−g ) [7]
22 O (3P) +O3 → O2 (a 1∆g) + O2 (X 3Σ−g ) [7]
23 O2 (b 1Σ+

g ) +O3 → 2 O2 (X 3Σ−g ) + O (3P) [19]
24 O2 (a 1∆g) +O2 (X 3Σ−g ) � 2 O2 (X 3Σ−g ) [7]
25 O2 (a 1∆g) +O3 → 2 O2 (X 3Σ−g ) + O (3P) [19]
26 O (3P) +O3 → 2 O2 (X 3Σ−g ) [7]
27 O− +O+

2 → 3 O (3P) [7]
28 O (1D) +O (3P) → 2 O (3P) [3]
29 O (1D) +O2 (X 3Σ−g ) → O (3P) + O2 (X 3Σ−g ) [3]
30 O (1D) +O2 (X 3Σ−g ) → O (3P) + O2 (a 1∆g) [3]

Next, as the inelastic collisions of the collision term of the Boltzmann Equation (31)
(the third line of Equation (31), the reactions shown in Table 3 were considered. In the
Boltzmann analysis of oxygen plasma, the so-called superelastic collision, the last term of
the left hand side of Equation (31), −(ε + εs

si−j)σ
s
si−j(ε + εs

si−j) f (ε + εs
si−j), was neglected,

because of the low absolute amount of the counterpart of superelastic collision. This effect
has been found to be small enough. As will be described later, in the Boltzmann analysis
of nitrogen plasma, superelastic collision with vibrationally excited state of N2 X state is
extremely essential and cannot be ignored, which is different from the oxygen plasma.
However, for the oxygen plasma, the degree of dissociation of O2 molecule changes as the
calculation progresses. That is, not only the ground state O2 (X 3Σ−g ) of oxygen molecule
but also the ground state O (3P) of oxygen atom exists as the target of electron inelastic
collision. Therefore, it is necessary to quantitatively reflect the degree of dissociation of
oxygen molecules when performing the calculation to solve Equation (31) by giving each
value of E/N. Hence, the reactions shown in Table 3 should be included. The numerical
solution of Equation (31) was obtained with 400 points as one interval of ∆ε in 0.1 eV
increments for the energy range up to 0.1–40 eV.

Table 3. List of inelastic collision processes of electrons considered in the calculation of the Boltzmann
equation, Equation (31), for the oxygen plasma.

Number Electron Inelastic Collision Reactions Reference

31 O2 (X 3Σ−g ) + e− → O2 (Y) + e− [40]
Y = a 1∆g, b 1Σ+

g , 4.5 eV, 6.0 eV, 8.4 eV, 9.97 eV, 14.7 eV
32 O (3P) + e− → O (Z) + e− [7]

Z = 1D, 1S, 3s 5So, 3s 3So, 3p 5P, 3p 3P
33 O2 (X 3Σ−g ) + e− → O+

2 + e− + e− [7]
34 O (3P) + e− → O+ + e− + e− [41]
35 O2 (X 3Σ−g ) + e− → O + O + e− [40]
36 O2 (X 3Σ−g ; v = 0) + e− → O2 (X 3Σ−g ; v = 1, 2) + e− [40]

Considering the collisions in Tables 1–3, the rate equations for the excited-state number
densities Equation (27) and the Boltzmann Equation (31) are solved repeatedly until they
become self-consistent with respect to the excited-state density and EEPF f (ε). Normally,
the system becomes steady and self-consistent by repeated calculation several times, and the
number density of excited states and the kinetics of each reaction can be obtained. Further
details to calculate the densities of excited species in the oxygen plasma are specified in
Konno et al. [23].
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2.4. Calculation of EEPF of Nitrogen Plasma—Self-Consistent Simultaneous Solution with the
Vibrational Distribution Function of N2 Electronically Ground State

For the nitrogen plasma, the basic equation for the EEPF is still Equation (31). However,
as the essential difference of the N2 plasma from the O2 plasma, the superelastic collision
of electrons with vibrationally excited N2 becomes quite essential in Equation (31), that
is, the last term of the RHS. To calculate the effect of the superelastic collision with N2
vibrational level, the number density of the vibrational level must be known, i.e., the
vibrational distribution function of N2 of the electronically ground level, N2 X 1Σ+

g . In other
words, the s-th partner of inelastic collision in Equation (31) should be considered as each
vibrationally-excited N2 molecule with its vibrational quantum number v.

A large number of research papers have been already published on the VDF of N2
molecule in low-pressure discharge nitrogen plasma [16–18,21,22,25,26,34]. They showed
that the following elementary collision processes are essential to consider the rate equation
of the N2 vibrational levels. That is,(1) e-V process; electron collision excitation and de-
excitation, (2) V-V transfer; collisional energy transfer between two N2 molecules resulting
in vibrational single-quantum exchange, (3) V-T relaxation; collisional energy relaxation
of N2 vibrational single-quantum energy to the translational kinetic energy of anotherN2
molecules as a collision counterpart, and (4) V-limit dissociation; the dissociation through
the vibrational limit. When the discharge pressure is about 1 or several Torr, the wall
relaxation process of vibrational levels is almost negligible in comparison to the foregoing
V-V or V-T processes. Due to small dissociation degree of nitrogen molecule, which is
much smaller than that of oxygen indeed, the total number density of nitrogen molecules
is assumed to be constant, N(N2). The dissociated nitrogen atoms, in turn, are assumed to
associate into the v-th vibrational level of N2 immediately after the dissociation with the
same probability Rv = const [26].

Based on the above assumptions, the VDF of N2 X 1Σ+
g state is calculated from the

following rate equation as number density of the v-th vibrational level Nv:

dNv
dt = Ne

M
∑

w=0, 6=v
NwCv

w − NeNv
M
∑

w=0, 6=v
Cw

v

+Nv−1
M−1
∑

w=0, 6=v
Nw+1Qw+1,w

v−1,v + Nv+1
M−1
∑

w=0, 6=v
NwQw,w+1

v+1,v

−Nv

(
M−1
∑

w=0, 6=v
Nw+1Qw+1,w

v,v+1 +
M−1
∑

w=0, 6=v
NwQw,w+1

v,v−1

)
+N(N2)(Nv−1Pv−1,v + Nv+1Pv+1,v)

−N(N2)Nv(Pv,v−1 + Pv,v+1) + Rv = 0,

(32)

with

N(N2) =
M

∑
w=0

Nw = Const., (33)

where Ne is the electron density, Cw
v is the electron collision excitation or deexcitation from

v to w vibrational level, Qw1,w2
v1,v2 is the rate coefficient of V-V transfer for the reaction

N2(v1) + N2(w1)→ N2(v2) + N2(w2), (34)

Pv1,v2 is that of V-T relaxation for the reaction

N2(v1) + N2 → N2(v2) + N2, (35)

and Rv is that of atomic nitrogen recombination into the v-th vibrational level. In the
present treatment of vibrational kinetics, only a single-vibrational quantum transfer is taken
into account. That is, for Equations (34) and (35), reactions only with |v1 − v2| = 1 and
|w1 − w2| = 1 are considered, as with always assumed in this kind of nitrogen vibrational
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kinetics [7]. The upper limit of the summation in Equation (32) is set to be M = 46 as the
dissociation limit. Table 4 summarizes the reactions relevant to the vibrational kinetics
together with the list of references of the corresponding rate coefficients.

Table 4. List of collision processes relevant to the vibrational kinetics described in Equation (32).

Reaction Vibrational Collision Reactions of N2 References

e-V N2 (X 1Σ+
g ; v = 0− 8) + e− � N2 (X 1Σ+

g ; w = 0− 8 6= v) + e− [42]
V-V N2 (X 1Σ+

g ; v) + N2 (X 1Σ+
g ; w) � N2 (X 1Σ+

g ; v + 1) + N2 (X 1Σ+
g ; w− 1) [7]

V-T N2 (X 1Σ+
g ; v) + N2 � N2 (X 1Σ+

g ; v− 1) + N2 [7]
V-Diss. N2 (X 1Σ+

g ; v) + N2 (X 1Σ+
g ; w) → 2N(2p 4So) + N2 (X 1Σ+

g ; w− 1) [7]

The master vibrational Equation (32) is solved simultaneously with the Boltzmann
Equation (31) for the nitrogen discharge plasma, until the steady state is obtained together
with the self-consistent EEDF-VDF. However, when the Boltzmann equation is solved for
the nitrogen plasma, the variable s in Equation (31) is interpreted as the vibrational level
v. Additionally for electron elastic collision with N2 molecule, its cross section σv

c (ε) is
assumed to be the same function σc(ε) irrespective of the vibrational level v.

On the other hand, the effect of excitation kinetics of electronically excited states on
the EEDF is considered to be rather minor to that of theN2 vibrational kinetics, because the
number density of the electronically excited states of N2 molecule or that of atomic nitrogen
is much smaller than that of vibrationally excited states of N2 (X 1Σ+

g ). Furthermore, owing
to the low dissociation degree of N2 molecule, in the calculation of EEDF of the nitrogen
plasma, neither the number densities of excited species nor those of atomic species are
not treated for the nitrogen plasma. Rather, the VDF should be essentially considered
throughout the present calculation.

Meanwhile, as the inelastic collisions of the collision term of the Boltzmann Equation (31)
of the nitrogen plasma, the reactions listed in Table 5 were considered. Just like the EEDF of the
oxygen plasma, that of the nitrogen plasma is similarly calculated from Equations (31) and (32).
The system also comes to the steady and self-consistent state with multiple iteration. Further
details for the calculation of self-consistent EEDF and VDF of the nitrogen plasma with its
discharge pressure of several Torr are specified in Sakamoto et al. [24].

Table 5. List of inelastic collision processes of electrons considered in the calculation of the Boltzmann
equation, Equation (31), for the nitrogen plasma.

Number Electron Inelastic Collision Reactions References

(1) N2 (X 1Σ+
g ) + e− → N2 (Y) + e− [7]

Y = A 3Σ+
u , B 3Πg, C 3Πu, a′ 1Σ−u , a 1Πg, w 1∆u, B′ 3Σ−u , W 3∆u

(2) N2 (X 1Σ+
g ) + e− → N+

2 (X 2Σ+
g ) + 2e− [7]

(3) N2 (X 1Σ+
g ; v) + e− � N2 (X 1Σ+

g ; w[ 6= v]) + e− [42]
(v, w = 0− 8)

(4) N2 (X 1Σ+
g ; v) + e− → 2N (2p 4So) + e− [43]

3. Results and Discussion
3.1. Oxygen Plasma

Based on the principle described in Section 2.3, the EEPF of oxygen plasma can be
obtained as a function of E/N as shown in Figure 1, where the gas temperature and the
electron density are fixed to be Tg = 0.15 eV and Ne = 2× 1011 cm−3, respectively, and the
calculation is performed within the range of the reduced electric field 90 ≤ E/N [Td] ≤ 170,
which fulfills realistic experimental conditions of oxygen plasma generated with common
discharge devices. Of course, since the electron density is dependent on the initial gas pressure,
the gas temperature is so adjusted to make the electron density becomes Ne = 2× 1011 cm−3

for each reduced electric field condition. As was described in Section 2.1, in the present
calculation, the electron density should be kept constant, and the calculation is conducted to
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fulfill this requirement, Ne = Const. The gas pressure was controlled to be 1 Torr by adjusting
the gas temperature over the range 1000 ≤ Tg [K] ≤ 2000, which gave a realistic discharge
condition in the lab-scale experiment.

Figure 1. The electron energy probabilistic function (EEPF) of the oxygen plasma obtained by the
method described in Section 2.3 with respect to reduced electric field E/N.

As is clear from Figure 1, the EEPF of the oxygen plasma of this study is not Maxwellian,
but is such that the high energy part is depleted more than Maxwellian EEDF [23]. That
is, the high energy tail portion is colder than the bulk portion. The energy that separates
the high-energy tail and the low-energy bulk part is found at approximately 7–8 eV, which
is considered to be due to the large cross section of inelastic collision to generate atomic
oxygen near this energy, which corresponds to reaction “35” in Table 3. In the electron
collisional dissociation reactions, the reaction “12” in Table 1, whose threshold energy is
ε = 8.4 eV, has larger cross section than the generation of two ground-state oxygen atoms
with lower threshold energy ε = 5.7 eV [40]. It can also be understood from Figure 1 that
the electron temperature defined as the slope of the EEPF hardly depends on the reduced
electric field for the bulk portion of the EEPF, which is found in the lower electron energy
region, ε . 8.4 eV. Hereafter, the boundary between the bulk and the tail is treated to be
8.4 eV.

Next, rather intuitively, it can be considered that the slope of EEPF shown in Figure 1
indicates the temperature at each electron energy ε. Therefore, this differential value is
referred to here as the “local electron temperature” Tloc, where the “local” means that this
temperature is defined at each local electron energy ε:

Tloc(ε) ≡ −
1
k

[
d ln f (ε)

dε

]−1

, (36)

which is shown in Figure 2. This figure indicates that the bulk component of electrons has
a local electron temperature of approximately Tloc= 1.4–5.5 eV, where the elastic collision
reaction is considered to be dominant among the collisional processes. The bulk component
seems to have a constant local electron temperature in Figure 1, however, Figure 2 shows
that it is not the case. It is found that the bulk component has a maximum at the electron
energy ε = 5 eV, and it is confirmed that the electrons are in the state of non-equilibrium in
any case. On the other hand, it can be seen that the local electron temperature in the high-
energy tail region does not change much. It is confirmed that the local electron temperature
of hight-energy tail region raises with increasing reduced electric field, however, it does
not change as much as the bulk component.
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Figure 2. Dependence of the local electron temperature in energy space Tloc of the oxygen plasma
as determined from Equation (36) with the data shown in Figure 1 for several values of the reduced
electric field.

Meanwhile, Figure 3 shows the results of the dissociation degree of oxygen molecules
in the oxygen plasma plotted against the reduced electric field, where it is shown that the
relative density of the atomic species among the heavy species increases almost linearly with
increasing the reduced electric field. This effect, that is, the oxygen molecular dissociation
into atoms was not included in the Alvarez et al.’s similar previous study [15], and the most
original improvement in the present study. The effect of the existence of atomic oxygen on
the EEPF should be confirmed, which was shown in Figure 4 for the reduced electric field
E/N = 110 Td as an example. Obviously, the discrepancy in the electron energy region
ε∼0–2 eV is remarkable in addition to that in the high-energy tail region ε ≥ 25 eV. In the
very low energy range, 0 ≤ ε [eV] . 2, when the existence of atomic oxygen is neglected
and all the heavy species are assumed to be oxygen molecules, the energy loss of electron
due to inelastic collision of rotational as well as vibrational excitation of O2 molecule is
much more exaggerated than the real situation. Since the behavior of the EEPF in the
low-energy region has strong impact on the calculation of the entropy by Equation (16),
the evaluation of the dissociation degree of oxygen is quite essential, which was confirmed
by the present calculation.

Figure 3. Dissociation degree of oxygen molecules in the oxygen plasma plotted against the reduced
electric field for constant electron density Ne = 2× 1011 cm−3.
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Figure 4. Comparison of the calculated electron energy probabilistic function (EEPF) f (ε) of the
oxygen plasma with and without the existence of the dissociated oxygen atoms in the Boltzmann
Equation (31), The number density of oxygen atoms is simultaneously solved by the method described
in Section 2.3.

Next, various temperatures are compared with each other. Particularly, the temper-
ature calculated by Equation (21) must be discussed in this study, which means that the
values of the entropy of electrons S and their internal energy U as the electron mean en-
ergy 〈ε〉, must be specified. Then, the entropy of the electrons S should be calculated by
Equation (16), which is shown in Figure 5, whereas the internal energy U = 〈ε〉 of the
electrons can be calculated by Equation (15) as illustrated in Figure 6. Therefore, the relation
between the values S and U is found as in Figure 7. And finally, the temperature defined
from the viewpoint of statistical thermodynamics can be calculated with Equation (2). Here-
after, the electron temperature calculated by Equation (2) will be referred to as “statistical
electron temperature”, Tst

e , which will be shown in Figure 8 with other temperatures which
will be specified later on.

Figure 5. Entropy of the electrons in the oxygen plasma calculated by Equation (16) for constant
electron density Ne = 2× 1011 cm−3.
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Figure 6. Internal energy of the electrons in the oxygen plasma as the electron mean energy U = 〈ε〉,
calculated by Equation (15) for constant electron density Ne = 2× 1011 cm−3.

Figure 7. Entropy of the electrons S plotted against the internal energy of the electrons in the oxygen
plasma for constant electron density Ne = 2× 1011 cm−3.

Figure 8. Comparison between various electron temperatures of the oxygen plasma defined in the
present study. The electron density is set as Ne = 2× 1011 cm−3.
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In the meantime, Alvarez et al. [15] as well as other researchers referred the 2/(3k)
times of the electron mean energy 〈ε〉 as the kinetic temperature [13,22], and in this paper
also, this value is defined as the “kinetic electron temperature”, Tkin

e , which is of course,

Tkin
e ≡ 2

3k
〈ε〉. (37)

Moreover, in order to discuss the behavior of the electron temperatures a little more
quantitatively, the bulk temperature Te1 and the tail temperature Te2 are defined as follows.
Te1 is the maximum value of Tloc for each reduced electric field in the electron-energy
interval of 0 ≤ ε ≤ 8.4 eV, while Te2 is defined as the mean value of Tloc in the electron
energy range ε ≥ 8.4 eV. Consequently, Figure 8 summarizes the temperatures Te1, Te2, Tkin

e
and Tst

e , plotted against the reduced electric field E/N. From this figure, it is found that the
statistical electron temperature Tst

e defined by the thermodynamic relation and the kinetic
temperature Tkin

e can be interpreted as the weighted average electron temperature of the
bulk electron temperature Te1 and the tail electron temperature Te2. In any case, it can be
seen that these four temperatures have different values.

In the oxygen plasma in this study, all of the four electron temperatures, Te1, Te2, Tkin
e

and Tst
e , were found to be in the range of 1–5 eV, which is a reasonable temperature in a

low-temperature process plasma with its discharge pressure of approximately ∼1 Torr. In
any case, it was found for oxygen plasma that

Tkin
e ' (1.02–1.05)× Tst

e . (38)

Therefore, it should be concluded that the statistical temperature is considered to agree
rather precisely with the kinetic temperature, at least for the case of oxygen plasma, al-
though the agreement is not exact and Tkin

e is always larger than Tst
e by (2–5)%. It should be

also noted that the relationship between the entropy S of electrons and the electron mean
energy U = 〈ε〉 also approximately agrees with the one predicted by Equation (20), which
is shown in Figure 9. This one indicates that d(S/k)/d(ln U) ' 1.55–1.61 	 1.5. This fact
shows that the work of Alvarez et. al., can predict the relation between the entropy and the
electron mean energy with its accuracy less than 10% , nevertheless, the agreement is still
not perfect, probably due to the negligence of the dissociation of the oxygen molecule as
the collision counterpart.

Figure 9. Entropy of the electrons S plotted against the logarithms of the internal energy of the
electrons in the oxygen plasma ln U, i.e., the same one as Figure 7 but with the logarithmic scale of
the horizontal axis.
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3.2. Nitrogen Plasma

Just like Figure 1 for the oxygen plasma, the EEPF of the nitrogen plasma was calcu-
lated based on the method described in Section 2.4, which is shown in Figure 10, under the
condition of constant electron density Ne = 4× 1011 cm−3 and the total discharge pressure
1 Torr [24]. To keep this discharge condition, as was adopted in the calculation of the
oxygen plasma, the gas temperature of the nitrogen plasma was also adjusted within the
range of 1000 ≤ Tg [K] ≤ 2000 to keep the electron density constant, which is considered to
be realistic discharge condition.

Figure 10. The electron energy probabilistic function (EEPF) of the nitrogen plasma obtained by the
method described in Section 2.4 with respect to reduced electric field E/N. The electron density is set
to be constant, Ne = 4.0× 1011 cm−3.

The stepwise decrease in the energy range ε ' 2–3 eV is a typical characteristics of
the EEPF of the nitrogen plasma, which is attributed to the electron energy consumption
due to the inelastic collision to generate vibrationally excited levels of N2 molecule, which
corresponds to the reaction “e-V” described in Table 4 [42]. However, this stepwise energy
change is rather moderated in this figure due to the superelastic collisions to enhance the
electron energy from the vibrational energy of N2 molecule, which was incorporated in
the present calculation by the simultaneous calculation of the VDF, some of which are
illustrated in Figure 11. Although the dependence of the VDF on the reduced electric
field is rather minor in the lower-vibrational energy region, the effect of the VDF on the
EEPF is confirmed through these calculations. This is confirmed by the fact that the EEPF
cannot be calculated precisely without the effect of electron inelastic collisions as vibrational
excitation and deexcitation of N2 molecules. Figure 12 shows the comparison of the EEPFs
with and without the simultaneous calculation of the vibrational kinetics of N2 molecules
described as Equation (32), which indicates how essential the vibrational kinetics is in the
formation of EEPF in the nitrogen plasma. Hereafter, all the EEPFs of the nitrogen plasma
will be treated with superelastic collisions with N2 vibrational levels.
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Figure 11. The relative population density of the v-th Vibrational Level of N2 (X, v) state in the N2 (X)
state plotted against the reduced electric field E/N.

Figure 12. Comparison between the EEPF with and without superelastic collision for nitrogen plasma
with the reduced electric field E/N = 100 Td [26].

Thus, with the calculated EEPF shown in Figure 12, the local electron temperature Tloc
can be calculated in the same way as for the oxygen plasma in Figure 2, which is shown
in Figure 13. The dependence of Tloc of N2 plasma on the electron energy ε is completely
different from that of O2 plasma. The local temperature of N2 plasma has a deep minimum
at ε∼2.2 eV owing to the inelastic collision for N2 vibrational excitation, followed by a
broad maximum at ε∼4 eV, for any value of the reduced electric field considered in this
study. For the nitrogen plasma, the former minimum Tloc at ε∼2.2 eV is defined to be Te1 as
a representative minimum value, while the latter maximum value is Te2 as a representative
maximum value of the bulk-energy region. Concerning that of the tail region, Tloc(30 eV)
will be referred in the later discussion. Meanwhile, in the low-electron energy region,
the very high-Tloc can be found, which has a large influence on the temperature of the
low-energy bulk region. Therefore, for a reference, Te0 is defined as the average value of
Tloc over the electron energy range 1 ≤ ε [eV] ≤ 2 for the discussion of overall behavior of
electron temperature, which will be discussed later in Figure 14.



Entropy 2023, 25, 276 20 of 27

Figure 13. Dependence of the local electron temperature in energy space Tloc of the nitrogen plasma
as determined from Equation (36) with the data shown in Figure 10 for several values of the reduced
electric field.

Figure 14. Comparison between various electron temperatures of the nitrogen plasma defined in the
present study. The electron density is set as Ne = 4× 1011 cm−3.

In addition, to compare various electron temperatures of the N2 plasma as the O2
plasma in the previous section, the electron entropy of the N2 plasma must be calculated.
Figures 15 and 16 show the electron entropy S and the electron mean energy U of the N2
plasma plotted against the reduced electric field, respectively. Thus, the entropy S is related
with the electron internal energy U is shown in Figure 17, which gives Tst

e by Equation (2).
Finally, the comparison of various electron temperatures of nitrogen plasma is shown in
Figure 14.
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Figure 15. Entropy of the electrons in the nitrogen plasma calculated by Equation (16) for constant
electron density Ne = 4× 1011 cm−3.

Figure 16. Internal energy of the electrons in the nitrogen plasma as the electron mean energy U = 〈ε〉,
calculated by Equation (15) for constant electron density Ne = 4× 1011 cm−3.

Figure 17. Entropy of the electrons S plotted against the internal energy of the electrons in the
nitrogen plasma for constant electron density Ne = 4× 1011 cm−3.

Just like the oxygen plasma in the previous section, it is found that the statistical elec-
tron temperature Tst

e defined by the thermodynamic relation and the kinetic temperature
Tkin

e showed intermediate values, which can be interpreted as the weighted average of the
bulk electron temperature Te0 − Te2 and the tail electron temperature Tloc(30 eV). In any
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case, it can be seen that these temperatures have different values. For the nitrogen plasma
as well as for the oxygen plasma, it was found that

Tkin
e = (1.04–1.09)× Tst

e . (39)

Similarly to the oxygen plasma case in Equation (38), Tkin
e is always larger than Tst

e , and the
discrepancy is found to be approximately (4–9)% within the examined parameter range of
the reduced electric field.

In addition, it is confirmed that the relationship between S and ln U is also described
approximately by Equation (20) for the nitrogen plasma, which is shown in Figure 18.
This figure indicates that the entropy S increases almost linearly with increasing ln U,
d(S/k)/d(ln U) ' 1.53–1.58 	 1.50. Although the excellent linear relationship can be
confirmed between ln U and S, the proportional coefficient is found to be 1.53–1.58, which
is always larger than the value 1.50, predicted by Equation (20). At present, it is still difficult
to confirm the exact agreement, which will be further discussed in the next subsection.

Figure 18. Entropy of the electrons S plotted against the logarithms of the internal energy of the
electrons in the nitrogen plasma ln U, i.e., the same one as Figure 17 but with the logarithmic scale of
the horizontal axis.

3.3. Mathematical Discussion on the Results of the Relation Between S and ln U from
Alvarez et al.’s Theory

In short, both for the oxygen and the nitrogen plasmas, the statistical electron temper-
ature Tst

e approximately agrees but not exactly, with the kinetic electron temperature Tkin
e .

In addition, although the relationship between the electron entropy S and the logarithm
of the electron energy ln U was found to be approximately linear, the coefficient did not
agree with the one analyzed by Alvarez et al. [15]. Namely, the following equation was
confirmed through this study:

S = S0 + C1k ln U, (40)

where C1 is the constant found for each discharge plasma, C1 = 1.55–1.61 for oxygen
plasma and C1 = 1.53–1.58 for nitrogen plasma, while it had been predicted to be exactly
C1 = 1.50 for any discharge species based on the calculation by using BOLSIG+ software
(Ver. 06/2013) [15].

As a small discussion on the implications of the obtained results, a comparison with a
simplified model should be useful. In this paragraph, the electron mean energy U = 〈ε〉
is assumed to increase by a factor exp(δ) in comparison with the original one due to the
increase in the reduced electric field E/N, where the parameter δ is a constant with |δ| � 1.
The original EEDF F(ε) is also assumed to satisfy Equations (15) and (16) for the mean
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energy and the entropy. The resultant change in the original EEDF F(ε) is assumed to be
the following in a self-similar manner;

F(ε)→ F′(ε) = exp(−δ)F[exp(−δ)ε]. (41)

At this transformation, the EEPF f (ε) should be carefully treated according to its definition
as follows:

f (ε)→ f ′(ε) = F′(ε)√
ε

= exp(−δ)
F[exp(−δ)ε]√

ε

= exp(− 3
2 δ)

F[exp(−δ)ε]√
exp(−δ)ε

= exp(− 3
2 δ) f [exp(−δ)ε].

(42)

Then, its normalization can be confirmed by the energy transform with ε′ ≡ exp(−δ)ε,∫ ∞

0
F′(ε)dε =

∫ ∞

0
exp(−δ)F[exp(−δ)ε]dε =

∫ ∞

0
F(ε′)dε′ = 1, (43)

this resultant electron mean energy U′ is confirmed as

U′ =
∫ ∞

0 εF′(ε)dε =
∫ ∞

0 ε exp(−δ)F[exp(−δ)ε]dε

= exp(δ)
∫ ∞

0 ε′F(ε′)dε′ = exp(δ)U,
(44)

which, indeed, supports the first assumption, i.e., the mean energy increase by a factor
exp(δ). In the meantime, the resultant entropy S′ is found as .

S′ = −k
∫ ∞

0 F′(ε) ln[ f ′(ε)]dε

= −k
∫ ∞

0 exp(−δ)F[exp(−δ)ε]
{
− 3

2 δ + ln f [exp(−δ)ε]
}

dε

= −k
∫ ∞

0 F(ε′)
[
− 3

2 δ + ln f (ε′)
]
dε′ = S + 3

2 kδ

(45)

consequently, by this small variation in the EEDF with a self-similar condition,
Equations (44) and (45) yield the following:

S′ = S +
3
2

k ln
(

U′

U

)
. (46)

Therefore, the statistical electron temperature T′st
e after the increase in the reduced electric

field is calculated as

T′st
e =

(
dS′

dU′

)−1

= exp(δ)
(

dS
dU

)−1
= exp(δ)Tst

e , (47)

hence, the electron temperature also increases by a factor exp(δ), which is quantitatively
consistent with Equation (44). Or, more analytically with Equations (44) and (45), the statis-
tical temperature can directly obtained as follows:

1
Tst

e
=

dS
dU

= lim
δ→0

S′ − S
U′ −U

= lim
δ→0

(3/2)δk
U[exp(δ)− 1]

=
3k
2U

=
1

Tkin
e

. (48)

Thus, the equation U = (3/2)kTst
e , or Tst

e = Tkin
e is proved exactly for the EEDF variation

formulated in Equation (41), whatever the EEDF is, for example any non-Maxwellian
function. On the other hand, if some disagreement between them is detected, the EEDF
considerably changes its dependence on the electron energy, at least into non-similar
distribution. In the present study, minor difference between Tst

e and Tkin
e , ∼2–9%, was

detected. This indicates that the EEDF of these molecular discharge plasmas changes their
energy dependence in the E/N-range surveyed in the present study.

Meanwhile, in the present study, the proportional constant C1 in Equation (40) is found
to be C1 =1.55–1.61 for the oxygen plasma and C1 = 1.53–1.58 for the nitrogen plasma,
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both of which could be considered a little larger than the value C1 = 1.50 predicted by
Alvarez et al. [15], although the discrepancy is small indeed. Therefore, it is concluded that
this discrepancy is attributed to the change in the EEDF as shown in Figures 1 and 10.

It is considered that this discrepancy is originated from the difference in the governing
equation to calculate the EEPF f . Of course, the EEPF, or the EEDF, is calculated from
the Boltzmann equation, Equation (26). In this formulation, the Coulomb collision term is
neglected owing to the low-ionization degree of the simulated plasmas, and consequently,
the non-linear term due to the electron-electron collisions is ignored, although BOLSIG+
includes the Coulomb collisions as an option [14]. Unfortunately, the non-linear electron-
electron collision processes cannot be treated in the present analysis. Concerning high-
electron density limit, it is already found by many researchers that the EEDF becomes the
Maxwellian, Equation (12) [3,9,28].

However, when the number densities of the target molecules are assumed to be
constant and the chemical changing such as the oxygen dissociation or nitrogen vibrational
excitation is neglected, this equation becomes linear with respect to the unknown function
f by neglecting the Coulomb collision terms. That is, if the superelastic collision processes
are ignored and the composition and density of the target molecules are fixed, Equation (31)
becomes a homogeneous second-order linear ordinary differential equation as

d2 f (ε)
dε2 + a(ε)

d f (ε)
dε

+ b(ε) f (ε) = 0, (49)

where a(ε) and b(ε) are functions of electron energy ε. They are dependent on cross sections,
number density of the target, and the reduced electric field, however, independent of the
EEPF f , in traditional modelings [44]. Then, at least one of its solutions could be expressed
as a power series, whereas another solution may require the Frobenius method to treat the
regular singular point [45]. However for any situation, if Equation (49) should be adopted
to calculate the EEPF, the Gibbs entropy, Equation (16), could have its corresponding
physical meaning.

However, the real situation is much more complicated. If the variation of the target
composition is introduced into the governing equations, i.e., if the dissociation of oxygen
molecules with increasing reduced electric field is taken into account, the terms a(ε) and
b(ε) should be dependent on the EEPF f , and what is more complicated, the dependence is
naturally non-linear. This is also common for the nitrogen discharge where the superelastic
collisions are introduced with the varying VDF of N2 X state according to the value of
E/N. These conditions make the system of electron energy determination non-linear even
when the two-term approximated Boltzmann equation is adopted to describe the EEPF.
Consequently, the EEPF of such plasmas will not be an exponential function. Rather, it
will be described by a power-law distribution [46]. For this type of distribution function,
the corresponding entropy has been discussed well in the field of statistical and mathe-
matical physics. For example, if the probability density function is given in terms of the
q-exponential distribution [46,47] as

F(x) = (2− q)λeq(−λx), (50)

where eq is the q-exponential [48]

eq(x) ≡ [1 + (1− q)x]
1

1−q , (51)

the corresponding entropy is already found as the Tsallis entropy Sq [48–50]:

Sq = − k
1− q

[
1−

∫ ∞

0
F(x)qdx

]
. (52)

In short, the validity to calculate the entropy of the system should be reconsidered from
the fundamental viewpoint for the applications to non-equilibrium plasmas kinetics, just
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like the discussion with Tsallis entropy for the analysis of energy distribution of cosmic
rays [51]. That is, for the non-equilibrium system, it is concluded that the formulation of
the entropy with the distribution function should be reconsidered from the viewpoint of
statistical physics based on non-linear entropy, instead of the Gibbs entropy, Equation (16),
which remains as an avenue future work.

4. Conclusions

The EEDF F(ε) of the weakly-ionized oxygen and nitrogen plasmas was calculated as
a function of the reduced electric field E/N by solving the two-term approximated Boltz-
mann equation. In this study, the changes in the composition of neutral particles as collision
counterparts of electrons were taken into account, and the Boltzmann equation was simul-
taneously solved with the changes in the chemical composition of the discharge media, so
that it would be self-consistent as an electronic simulation of discharge plasma by solving
the chemical kinetics of some essential heavy species in the discharge plasma. That is, in the
oxygen plasma, the increase in the dissociation degree of the oxygen molecules was also
considered with the increase in the reduced electric field. On the other hand, in the nitrogen
plasma, the vibrational distribution function, VDF, N2 was solved simultaneously. In addi-
tion to the vibrational excitation as an electron inelastic collision, vibrational deexcitation
as an electron superelastic collision was also incorporated into the Boltzmann equation.

Using the EEDF F(ε) obtained as described above, the electron mean energy
U = 〈ε〉 =

∫ ∞
0 εF(ε)dε and the Gibbs entropy S = −k

∫ ∞
0 F(ε) ln[ f (ε)]dε were calcu-

lated with the EEPF f (ε) ≡ F(ε)/
√

ε. Then, the temperature determined in a statistical-
thermodynamic way was calculated from the relationship between U and S as
Tst

e = (∂S/∂U)−1. Other possible candidates of the electron temperature were also calcu-
lated, such as the electron kinetic temperature Tkin

e defined as 2/(3k) times the average
electron energy 〈ε〉, or the “local temperature” Tloc given as the slope of the EEPF f (ε) at a
local electron energy ε.

For the oxygen plasma, two characteristic local electron temperatures were chosen
to be Te1 and Te2, which were defined to be the maximum of Tloc and its mean value in
the energy range ε ≥ 8.4 eV, respectively. It was found that Te1 > Tkin

e > Tst
e > Te2, which

showed that Tst
e and Tkin

e are some kind of weighted average electron temperatures.
Meanwhile for the nitrogen plasma, as the local temperatures, Te0, Te1 and Te2 were

defined to be the average Tloc for 1–2 eV, the minimum at approximately ε 2.2 eV due to the
N2 vibrational excitation and the maximum of the bulk electron energy region, respectively.
It was found that Te0 > Te2 > Tkin

e > Tst
e > Te1 > Tloc(30 eV), which also indicated that

Tst
e and Tkin

e are weighted average electron temperatures.
For both plasmas, although the good linear relationship between the entropy S and the

logarithm of the electron energy ln U was confirmed, it was found that
d(S/k)d(ln U) ' 1.55–1.61 for the oxygen plasma and ∼1.53–1.58 for the nitrogen plasma,
which agreed approximately with the predicted value by Alvarez et al., as 1.50, but not
exactly. It was also found that the statistical-thermodynamic electron temperature Tst

e ,
which is calculated from the relation between the entropy and the mean energy, approxi-
mately agrees with the electron kinetic temperature Tkin

e , but not exactly. This was different
from the result of Alvarez et al., who concluded Tst

e = Tkin
e , which was also proved in

the present at least for the case where the EEDF changes in a self-similar manner. On
the other hand, the non-self-similar variation in the EEDF could cause the discrepancy
from the results found by Alvarez et al., where they did not consider the variation in
the chemical composition of the target molecules. Namely, they considered neither the
dissociation of oxygen molecules into oxygen atoms, nor the energy exchange with the
vibrational levels of nitrogen molecules by inelastic and superelastic collisions. The major
difference in this study lies in the fact that the dissociation or the chemical variation of
the target molecules are included in the calculation of the EEDF. That is, when solving
the Boltzmann equation to obtain EEDF, the influence of EEDF should be appropriately
incorporated into the collision term of the Boltzmann equation and the change in electron
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energy should be examined. It was discussed that by doing so, the two-term approximated
Boltzmann equation, which was linear with respect to the unknown function EEPF by
ignoring electron-electron collisions, f (ε), becomes non-linear. Consequently, it was also
confirmed that the corresponding entropy is not necessarily the Gibbs entropy treated in
this study, other type of non-equilibrated entropy should be also discussed, which should
be further examined in the future.
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