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Abstract: This study presents a novel dual-polarized magnetoelectric dipole antenna and its array
with director and rectangular parasitic metal patches for LTE and 5G sub-6 GHz base station applica-
tions. This antenna is composed of L-shaped magnetic dipoles, planar electric dipoles, rectangular
director, rectangular parasitic metal patches, and η-shaped feed probes. The gain and bandwidth were
enhanced by using the director and parasitic metal patches. The measured impedance bandwidth of
the antenna was 82.8% (1.62–3.91 GHz, VSWR < 1.5), and its gain was 10 ± 0.5 dBi. The profile of
the antenna unit, operated at 1.7 GHz, was only 42 mm (0.227λ0, where λ0 represents the free space
wavelength corresponding to the lowest resonance frequency point). Subsequently, four antenna
units were arranged in a line array with 0.6λ0 spacing. Both the antenna and its array were fabricated
and measured. The measurement results show that the array has good radiation characteristics,
such as broad bandwidth covering 1.65–3.97 GHz (VSWR < 1.5), high gain (its gain was great than
15.2 dBi), and high radiation efficiency (>90%). Its HPBWs were 63◦ ± 4◦ and 15◦ ± 2◦ for H- and
E-planes, respectively. The design can cover TD-LTE and 5G sub-6 GHz NR n78 frequency bands
very well, meaning that this is a good candidate antenna for base station applications.

Keywords: dual-polarized; magnetoelectric dipole; base station antenna; antenna array

1. Introduction

Broadband dual-polarized antennas have been widely used in base stations due to
their merits, such as high channel capacity, superior resolution, and precise ranging [1].
With the rapid development of mobile communication technology, wideband antennas
are required to cover multiple communication bands such as GSM1800, CDMA1900, TD-
SCDMA, and LTE systems (1.71–2.69 GHz, 44.5%) [1–8]. In [1], the bandwidth, gain, and
dimensions of a magnetoelectric (ME) dipole antenna, a dipole antenna, and a microstrip
antenna are compared, and it is clear that the first kind of antenna has better characteristics.
In [3], bandwidth of the antenna is 1.32–2.74 GHz, covering 2G/3G/4G bands. In [4], a low-
profile dual-polarized omnidirectional antenna is designed, and the isolation of the antenna
is around 35 dB. In [5], the impedance bandwidth of the antenna covers 1.39–2.76 GHz,
and the side-lobe level is greater than 16 dB. In [8], the design is two bands working cover
0.69–0.96 GHz and 1.69–2.69 GHz, respectively.

Recently, the sub-6 GHz band (3.30–3.60 GHz) has received significant attention due
to its value to 5G services, which can support a faster communication rate. To support all
the systems mentioned above, its bandwidth must be more than 71.2% (i.e., 1.71–3.60 GHz).
Consequently, there is a need for dual-polarization base station antennas with good perfor-
mance in broadband [9–16].

In this paper we propose a dual-polarized magnetoelectric dipole antenna array
covering GSM1800, CDMA1900, TD-SCDMA, WIFI, WiMax, TD-LTE (2.3–2.7 GHz), and
5G sub-6 GHz NR n78 (3.3–3.8 GHz) frequency bands, realizing the more stable gain in a
wideband. Four antenna units are linearly arranged with a space of about 0.6λ0 between
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adjacent units. Four horizontal electric dipoles and four vertical magnetic dipoles are
arranged symmetrically around the z-axis and excited simultaneously by two η-shape
feeders to gain dual-polarized radiation for each unit. To stabilize the radiation pattern and
enhance its gain with a half-power beam width (HPBW) of 62◦ ± 4◦, a director and four
parasitic metal patches are introduced into the ME dipole antenna unit. The dimensions
and spacing of the director and parasitic metal patches provide more degrees of freedom
for gain adjustments. The gain is enhanced by using the director and parasitic patches.

2. Topology and Design Strategy
2.1. Geometry of the Antenna and ME Dipoles

The 3D view, side view, and top view of the proposed ME dipole antenna unit are
shown in Figure 1 and the specific parameters are listed in Table 1. The designed unit
is symmetrically arranged around the z-axis and primarily consists of seven parts: four
horizontal electric dipoles, four vertical magnetic dipoles, a director, four square metal
parasitic patches, two η-shape feed probes, an open square box reflector, and plastic fasten-
ers. The exploded view of the proposed ME dipole antenna element and corresponding
parameters are shown in Figure 2. The ME dipole antenna elements, reflector, parasitic
patches, director, and η-shape feeders are made of 0.5 mm-thickness copper; therefore, the
antenna has a strong mechanical structure and is lightweight. To reduce assembly error
and reinforced antenna structure as much as possible, 3D printed plastic fasteners are used.
Their influence on the radiation characteristics of the antenna is negligible, therefore no
detailed parameter description is given for the sake of brevity.
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Figure 1. 3D configuration of proposed ME dipole antenna unit. (a) is a 3D view of the antenna 
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Figure 1. 3D configuration of proposed ME dipole antenna unit. (a) is a 3D view of the antenna unit,
and (b,c) are the side view and top view of the antenna unit without the reflector, respectively.
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Table 1. Geometric parameters optimized for the proposed ME antenna.

Parameter Value Parameter Value Parameter Value

d 26.0 d2 3.5 f 2x1 6.4
ex 14.0 r 1.0 f 2x2 3.6
ey 30.0 d1 8.0 f 2z1 24.5
H 12.0 f 1x1 6.4 f 2z2 22.0
my 10.0 f 1x2 3.6 f 2y 12.4
mz 30.0 f 1z1 28.0 R 130.0
d3 10.0 f 1z2 22.0 h 20.0
p 15.0 f 1y 12.4 d4 12.5
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Figure 2. Exploded view of proposed ME dipole antenna element and corresponding parameters. 
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Figure 2. Exploded view of proposed ME dipole antenna element and corresponding parameters.
(a) is the top view of the director; (b) is the top view of the parasitic patch; (c) is the top view of the
electric dipole unit, which are parallel to the x-z plane; (d,e) is the front and side view of feeder 1;
(f,g) are the front view and side view of the magnetic dipole unit; and (h,i) are the top and side
view of the reflectors. The structures of feeder 1 and feeder 2 are similar, so only feeder 1 is shown.
The thickness of all copper plates is 0.5 mm, so they are not marked one by one in the figure. The
coordinate system of each subgraph in Figure 2 is consistent with that in Figure 1.

In the simulations, plastic fasteners are modeled as white ABS-M30 cylinders with
different diameter settings (mounting parts are 1.0 mm, and conversion connection parts
are 3.0 mm). The positions of the mounting holes are shown in Figure 2. The total profile
of the unit is 0.227λ0 (42.0 mm), corresponding to the free space wavelength at 1.7 GHz.
The feeders are composed of one horizontal plane and two vertical planes, as shown in
Figure 2d,e. The longer part of Feeder 2 is shorter than the longer part of Feeder 1 by about
3.5 mm. The Feeders are perpendicular to the horizontal reflector and with a gap of 1.7 mm,
where the feed points are connected to the SMA connector.

The simulated current distributions on the radiation copper patch surfaces at 1.7, 2.4,
3.1, and 3.7 GHz are shown in Figure 3. The four patches on the top are working in the
same manner as electric dipoles. The L-shape patch and the top patch construct a special
structure and work similarly to an open loop; by doing so they form the magnetic dipoles
together. The combination of symmetrical magnetoelectric dipoles makes the element
obtain dual polarization characteristics. From Figure 3a, the length of the effective current
path should be ey + mz + my + p = 85 mm at 1.7 GHz, which is about half of the free space
wavelength (0.48λ0) corresponding to this frequency point. In other words, the actual
radiation unit is composed of a horizontal radiation patch, an L-shaped vertical radiation
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patch, and a parasitic patch. From Figure 3b, the length of the effective current path
should be ey = 30 mm at 2.4 GHz, which is about 1/4 (0.24λ0) of the free space wavelength
corresponding to this frequency point. According to the above analysis and the simulation
results in Figure 3, the maximum current distribution at 1.7 and 2.4 GHz appear on the
vertical and horizontal plane, respectively. Therefore, the antenna element at the low-
frequency points is similar to the traditional magnetoelectric dipole. At 3.1 and 3.7 GHz,
the nulls appear near the end of the horizontal patch and the current distributions on the
vertical plates are irregular. It can be seen that the magnetoelectric dipole antenna unit at
the high-frequency points works in the high-order mode, and the calculation results are
close to the simulation results, as shown in Figure 3.
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Figure 3. Current distributions on the radiation patches at (a) 1.7 GHz, (b) 2.4 GHz, (c) 3.1 GHz, and
(d) 3.7 GHz. The unit of surface current is A/m.

2.2. Structure Evolution Process of the ME Dipole Antenna

The evolutionary process of the antenna element geometry is shown in Figure 4. The
simulated VSWRs and gains using HFSS 21.0 of different antennas are shown in Figure 5.
The maximum surface current distributions of different antennas at 1.7 GHz are shown in
Figure 6.
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(a) Case 1. (b) Case 2. (c) Case 3. The unit of surface current is A/m.

Case 1: The VSWR is almost greater than 2 in the 1.69–3.81 GHz band, and the gain
fluctuates greatly at the same time.

Case 2: The impedance matching is better when the director is used, and the VSWR is
less than 1.5 from 2.4 to 3.9 GHz. However, the gain is smaller and fluctuates greatly.

Case 3: The VSWR is less than 1.5 from 1.6 to 3.9 GHz, its impedance bandwidth
covers the design goals very well, and its gain is more stable. The variation range of gain
is 0.7 dB in the 1.71–2.69 GHz frequency band, and 1.0 dB in the 3.3–3.6 GHz frequency
band, respectively.

From Figure 6, we can see that the maximum surface current of Case 2 is greater than
Case 1 when the director is used in the antenna unit. Additionally, the maximum surface
current of Case 3 is the greatest of the aforementioned cases, due to both the director and
parasitic metal patches being used. This phenomenon shows that the proposed antenna
structure can enhance the gain of the antenna element and improve the radiation efficiency
of the antenna by concentrating more energy in the ME dipoles.

The simulated input impedance and S21 of the three cases are shown in Figure 7. Both
the real and imaginary parts of Case 3 are more stable than the other two cases by using
the proposed geometry. The three lines without symbols at the bottom of Figure 7 are
simulated S21. It is clear that the proposed antenna with good isolation is between ports 1
and 2, and there is less than −27 dB in the whole operating frequency band.
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2.3. Working Principle of the Magnetoelectric Dipole Antenna Unit

It can be seen from Figure 1 that the magnetoelectric dipole antenna unit consists
of a reflector, excitation source, radiation patches, parasitic patches, and a director from
bottom to top. Therefore, its structure is similar to the Yagi antenna. A director (square
copper patch) is installed above the horizontal copper patches (radiation patches and
parasitic patches). The horizontal copper patches work as a driven system and will excite
the director within the LTE and 5G Sub-6 GHz frequency bands. Since the working mode
of the magnetoelectric dipole antenna unit is similar to a quasi-Yagi antenna, its analysis
method can refer to Reference [1]. Next, we will focus on the influence of parasitic patches
on the radiation performance of the antenna unit. The current distribution of radiation
and parasitic patches simulations at 1.7 GHz is shown in Figure 8. The components of
the current vectors on the x and y axes of the parasitic patches are consistent with the
components of the current vectors on the x and y axes of the radiation patches, respectively.
Therefore, the electric field strength on the radiation patches is enhanced after adding
the parasitic patches. There are similar trends at other frequency points. For further
explanation, the variation trends of electric field components on the x-axis and y-axis under
different conditions are shown in Figure 9, wherein solid lines correspond to Case 2, and
signed lines correspond to Case 3. The electric field strength of the radiation patches has
been enhanced, which means that the antenna gain and VSWR are improved, as shown in
Figure 5.
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2.4. Simulation Analysis of Key Parameters of the ME Dipole Antenna

Many key parameters influence the proposed ME antenna performance greatly. We
give some simulated results of reflection coefficients in the following section for further ex-
planation. The simulated reflect coefficients are shown in Figure 10, when ME dipole width
(ex, lines with hollow symbols), magnetic dipole height (mz, lines with solid symbols), or
electric dipole length (ey, lines without symbols) are with different sizes. The simulated S11
of the proposed ME dipole antenna has 3 operating frequency points as shown in Figure 10,
and they are 1.7, 2.4, and 3.7 GHz; their corresponding λ0/4 wavelengths are 44.1, 31.2, and
20.1 mm, respectively. The sum of magnetic or electric dipole width and length is 44.0 mm,
the lengths of them are 30.0 mm, and the widths of them are 14.0 mm, corresponding to
3 operating frequency points. Therefore, all the changes in the above-mentioned parameters
have a great influence on the S11 in the whole operating frequency band. We obtain the
desired operating frequency by adjusting the size of these parameters in the design stage.
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The simulated S11 when the size of feeder 1’s width (f 1x1, f 1x2), or spacing between
director and electric dipoles (H) is changed, is shown in Figure 11. It is clear that the
size change of these parameters has little influence on the bandwidth of the ME antenna;
however, this can affect the input impedance greatly. Thus, we can gain good input
impedance by changing these sizes.
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3. Measurement Results of the Antenna Unit

We use an Agilent vector network analyzer (PNA-X) and a microwave anechoic
chamber (OBT-6) to measure the proposed ME antenna unit. The measured and simulated
reflect coefficients are shown in Figure 12. When the S11 < −15 dB, the simulated S11
covers 1.57–3.94 GHz frequency bands and the fractional bandwidth is 86.0%; when the
measured S11 covers 1.62–3.91 GHz frequency bands, the fractional bandwidth is 82.8%.
The results show that the proposed antenna has wide bandwidth and covers the design
goals very well. The simulated and measured port-to-port isolations are greater than
27.2 dB, and the experimental results are consistent with the simulation results. The
simulated and measured radiation patterns at 1.7, 2.4, 3.2, and 3.7 GHz are shown in
Figure 13. The radiation patterns have good symmetry in the whole operating frequency
band due to the antenna unit being symmetrical about the z-axis. The HPBW is from −35◦

to 30◦ for port 1, and from −30◦ to 34◦ for port 2, at 1.7, 2.4, and 3.1 GHz. The HPBW is
from −29◦ to 33◦ for port 1, and from −33◦ to 31◦ for port 2, at 3.7 GHz. In addition, the
front-to-back ratio (FBR) is greater than 20 dB in the entire operating frequency band. The
simulated and measured gain is shown in Figure 14. The antenna unit has stable gain in the
whole frequency band, and the gain is great than 9.5 dBi. The measured radiation efficiency
is also shown in Figure 14, and it is greater than 91% in the operating frequency band.
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The changes in other parameters have little effect on the antenna reflection coefficient,
therefore they are not listed for the sake of brevity.

4. Antenna Array

The photo of the fabricated prototype of the proposed antenna array is shown in
Figure 15. The antenna elements in the presented antenna array seem to be twisted slightly
for a few degrees, due to the parasitic copper sheets being clamped between the upper and
lower plastic fasteners and installed on the antenna unit. The plastic fasteners made by 3D
printing technology are only 0.5 mm thick, therefore, the rigidity of the plastic support is
limited, making its surface not flat, and causing some distortion of the antenna unit. The
comparison between the measured data and the simulation data in the following section
shows that the radiation characteristics of the antenna array will not change significantly
due to this deformation. From another point of view, this antenna array structure has high
robustness. The antenna array is composed of four ME antenna units, and the spacing
between two adjacent units is 0.594λ0 (110 mm). The measured reflect coefficients and gain
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are shown in Figure 16. Both the S11 and S22 cover the 1.65–3.97 GHz, fractional bandwidth
is 82.7%, and this matches our design goals very well, as mentioned above. The measured
S21 is less than −30 dB in the entire operating frequency band, due to the optimized spacing
between adjacent units. The measured and simulated normalized radiation patterns of
the antenna array at 1.7, 2.4, 3.2, and 3.7 GHz are shown in Figure 17. The FBR is greater
than 20 dB at 1.7 GHz, and is greater than 25 dB at 2.4, 3.2, and 3.7 GHz. In addition,
the radiation patterns of the proposed antenna array have good symmetry in the whole
operating frequency band. For phi = 0◦, the HPBWs are 66.6◦, 65.6◦, 59.8◦, and 64.6◦ at 1.7,
2.4, 3.2, and 3.7 GHz, respectively. For phi = 90◦, the HPBWs are 19.4◦, 14.2◦, 11.1◦, and
9.4◦ at 1.7, 2.4, 3.2, and 3.7 GHz, respectively. The co-polarization is 25 dB larger than the
cross-polarization in the entire operating frequency band.
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Figure 16. Measured reflect coefficients and gain of the proposed ME antenna array.

To better address the advantages of the proposed ME antenna unit, comparisons with
references are listed in Table 2, including dimensions, bandwidth, radiation efficiency, and
gain. The gain of our design is the best one. We use the higher standard of −15 dB, and
the bandwidth reaches 82.8%. Although the size of the antenna we designed is not the
smallest, there is little difference compared with the design in the references. The proposed
antenna is a competitive candidate for base-station applications due to its merits, such as
stable radiation patterns, flat gain, and high FBR.
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Table 2. Comparison of the proposed antenna and references.

Ref. Size (λ0
3) Bandwidth (%, GHz) RL or VSWR RE (%) Gain (dBi)

[1] 0.68 × 0.68 × 0.17 76, 1.7–3.8 RL > 10 dB >85 8.1
[2] 0.34 × 0.34 × 0.25 56, 1.62–2.87 VSWR < 1.5 >75 7.4
[3] 0.89 × 0.66 × 0.21 67, 1.39–2.8 RL > 15 dB N.A. >9
[9] 0.91 × 0.91 × 0.24 74, 1.7–2.7 and 3.3–3.7 RL > 10 dB N.A. >8.3

[10] 0.79 × 0.79 × 0.24 71.7, 1.7–2.7 and 3.4–3.6 <1.5 N.A. 8.1 ± 0.4, 6.6 ± 0.5

[15] 0.375 × 0.316 × 0.0016
9.6 (2.37–2.61), 28.8
(3.30–4.41), and 16.9

(4.98–5.90)
RL > 10 dB >80 4.0

[16] 0.26 × 0.21 × 0.017 46.3, 3.12–5.0 RL > 10 dB >70 2.5

Prop. 0.7 × 0.7 × 0.23 82.8, 1.62–3.91 RL > 15 dB >90 >9.5

Return Loss (RL); Radiation Efficiency (RE).

5. Conclusions

In this paper, a broadband dual-polarized ME dipole antenna and a 4-units array have
been proposed and fabricated for LTE and 5G sub-6 GHz applications. A broadband ME
dipole antenna is obtained by using director and parasitic metal patches. Moreover, the
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magnetoelectric dipole elements are placed symmetrically about the z-axis, and a symmetri-
cal radiation pattern is obtained. As the measured results indicate, the antenna unit has an
operating bandwidth from 1.62 to 3.91 GHz (82.8%) with VSWR < 1.5 and isolation > 27 dB.
The antenna has an HPBW within 63◦ ± 2◦ and a gain within 10.0 ± 0.5 dBi in the entire
operating frequency band. As the measured results indicate, the antenna array has an
operating bandwidth from 1.65 to 3.97 GHz (82.7%) with VSWR < 1.5 and isolation > 32 dB.
The array has an HPBW within 63◦ ± 4◦ and a gain greater than 15.2 dBi in the entire
operating frequency band. They are good candidates for base station use.
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