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Abstract: Privacy protection data processing has been critical in recent years when pervasively
equipped mobile devices could easily capture high-resolution personal images and videos that may
disclose personal information. We propose a new controllable and reversible privacy protection
system to address the concern in this work. The proposed scheme can automatically and stably
anonymize and de-anonymize face images with one neural network and provide strong security
protection with multi-factor identification solutions. Furthermore, users can include other attributes
as identification factors, such as passwords and specific facial attributes. Our solution lies in a
modified conditional-GAN-based training framework, the Multi-factor Modifier (MfM), to simul-
taneously accomplish the function of multi-factor facial anonymization and de-anonymization. It
can successfully anonymize face images while generating realistic faces satisfying the conditions
specified by the multi-factor features, such as gender, hair colors, and facial appearance. Furthermore,
MfM can also de-anonymize de-identified faces to their corresponding original ones. One crucial
part of our work is design of physically meaningful information-theory-based loss functions, which
include mutual information between authentic and de-identification images and mutual information
between original and re-identification images. Moreover, extensive experiments and analyses show
that, with the correct multi-factor feature information, the MfM can effectively achieve nearly perfect
reconstruction and generate high-fidelity and diverse anonymized faces to defend attacks from
hackers better than other methods with compatible functionalities. Finally, we justify the advantages
of this work through perceptual quality comparison experiments. Our experiments show that the
resulting LPIPS (with a value of 0.35), FID (with a value of 28), and SSIM (with a value of 0.95) of MfM
demonstrate significantly better de-identification effects than state-of-the-art works. Additionally, the
MfM we designed can achieve re-identification, which improves real-world practicability.

Keywords: anonymize (de-identification); de-anonymize (re-identification); generative adversarial
networks (GAN); mutual information

1. Introduction

Since people love to use photos to record many activities and highlight personal char-
acteristics, such as social media profiles, blog posts, vlogs, and Internet behavior, with the
help of the above-mentioned personal data, face recognition can easily identify individuals
and unearth personal information and then associate them with targeting individuals.
Despite the accuracy rate of face recognition being lower than other competing biometric
technologies, such as iris and fingerprints, due to its non-contact property, the public has
widely adopted face-image-based recognition technology. However, with development of
personal media and improvements in face recognition technology, a concerning situation
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has occurred: any random stranger can secretly collect and organize a unique identity,
then associate it with specific personal information of any individual captured by the face
recognition system, and then misuse or illegally sell the personal data. In 2018, the updated
version of the General Data Protection Regulation (GDPR) in Europe announced stricter
protection of personal data to reduce the risk of misuse of personal information, which
regulates collection, storage, and use of any personally identifiable (PII) data, such as facial
images, which must be carefully protected. Due to the maturity of facial recognition tech-
nology, more recently, facial photos have become the most widely used biometric feature for
verifying identity (ID). However, most intelligent services driven by face recognition, such
as face identity (faceID), require processing these sensitive data. There are two to-be-solved
tasks related to this challenging issue. The first is to anonymize any identifiable information
to protect them from abuse by malicious people, and the second is to recover them when
needed unambiguously. These conflicting requirements pose an exciting trade-off between
privacy and utility. Thus, to meet the goal, the design should contain two main components:
anonymity (or de-identification, shortened as de-ID) and de-anonymity (or re-identification,
abbreviated as re-ID).

Problems faced by de-ID and re-ID can further be addressed as follows. It is very
difficult to generate high-fidelity anonymized pictures for performing de-ID without alter-
ing the original data distribution. To anonymize face images more effectively, we require
a controllable and reversible system to generate a surrogate image and replace the origi-
nal face, which should be a realistic and natural-looking face with the background intact
while satisfying some specified conditions. In other words, the system has two preferable
properties in the de-ID scenario. First, the difference between the original image and
the anonymous face image should be maximized and the conversion process should be
seamless and simultaneous. Second, the system should robustly provide strong security
protection even when other desired features are specified forcedly. For example, users can
select their hair colors to be intact for the anonymized faces as one of the preset system
parameters (i.e., as part of the multi-factor features). We mainly categorize the facial at-
tributes used in the multi-factor feature vector into two types: one is more identity-related,
such as gender, age, and facial expression, and the other is more style-related, such as hair
color and skin color. We denote the first kind of features identity features and the second
style features.

In contrast, for completing re-ID, we also require a robust system to restore the original
facial images from the de-identified ones with multi-attribute feature information (such
as facial attributes and user-selected passwords). Thus, handling these specific features
smoothly and successfully poses several challenging issues to the system designer. This
write-up intends to address the above issues and design a reversible privacy protection
system for facial images with a single neural network capable of handling a user-specified
combination of features, such as passwords and facial-appearance-related attribute vectors.
We name this network Multi-factor Modifier (MfM). Once training of MfM is complete,
our system can fulfill the requirements of anonymization and de-anonymization at the
same time. The proposed MfM can efficiently deal with correct multi-factor combinations
and reconstruct near-original images. On the contrary, when receiving wrong multi-factor
combinations, MfM will communicate with the facial de-ID generator to generate photo-
realistic and diverse anonymized face images to prevent malicious attacks.

As shown in Figure 1, the lower portion shows the case of MfM receiving the pass-
words only (i.e., the single-factor case) from users to generate anonymized faces. When
MfM activates the de-ID procedures, users need to input the correct passwords. With the
help of a well-designed password scheme, MfM generates a near-original image. Otherwise,
MfM produces another anonymized image. The upper portion of Figure 1 shows the case
of MfM receiving a specific multi-factor combination as input via latent space manipulation.
For example, the first and second factors may function, respectively, as passwords and
face attributes, such as a female with black hair, for generating various anonymized faces.
When MfM activates the de-anonymization process, users must input the correct password
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and correct the multi-factor combination to obtain accurate results; MfM will successfully
reconstruct a near-original image with the designed password and multi-factor register
schemes. Moreover, suppose users only input the correct password while using an incor-
rect multi-factor combination; there is no way for our system to generate the near-original
image; instead, it will generate other anonymized pictures.
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In summary, the proposed MfM expands the original goals [1] and extends to the
following objectives—(1) maximizing feature distance between an anonymous face and
its corresponding de-anonymous counterpart when the given specific multi-factor fea-
tures are incorrect; (2) analyzing physical meanings of adopted cost functions based on
information theory.

To justify the functionality of the proposed system and check its system performance,
we train and examine the MfM work using the following datasets: FaceScrub [2], CASIA-
WebFace [3], and CelebA-HQ/CelebA [4]. In Section 5, after analyzing the experimental
results, we can prove that the MfM system can accomplish a multiple-task learning objective
to generate synthesis-realistic anonymous images. Moreover, the MFM system can retrieve
the original face images without sacrificing privacy protection performance compared with
existing advanced anonymization approaches [5]. Finally, to justify our system’s ability, we
investigate the quantitative and qualitative results of MfM and compare them with those
of the competing de-ID techniques.

2. Related Work

In recent years, breakthrough of various deep generative learning models enables
better face de-ID and re-ID technologies. Therefore, this section fleetingly discusses the
state-of-the-art in the fields of (1) facial de-ID and facial re-ID and (2) deep face generation.

2.1. Facial Anonymizaiton and Facial De-Anonymization

To complete face de-ID, we must transfer various facial attributes among users, which
has motivated several exciting approaches. Initially, facial-de-ID-related research tried to
suppress privacy-sensitive information about a facial image by using typical image pro-
cessing operations, such as pixilation, blurring, and occlusion [6,7]. Although the privacy-
sensitive information did mask successfully, this approach yielded poorly anonymized
faces because one has altered the data distribution significantly [7]. However, they are not
widely adopted because of non-realistic anonymized quality, especially when an alteration
in data distribution is not allowed. Ref. [8] proposed the method of reconstructing faces by
combining a fraction of the eigenfaces to mask the ID information through the eigenvector.
Ref. [9] proposed a similar method with watermarking and hashing techniques and with
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the principal component analysis (PCA) data representations. Some other researchers [10]
used multi-factor models to unify pertinent data but needed an active appearance model
(AAM) to provide extra landmarks information.

Afterward, k-Same-based algorithms [10–12] became the most commonly used ap-
proach for face anonymization [13]. In addition, the k-Same-based algorithms have im-
plemented an effective k-Anonymity algorithm [14] to generate anonymous facial images.
Newton et al. [11] proposed that the work could remove all personal information but
generate anonymous images that are artifacts and blurring due to minor alignment er-
rors. Recently, as deep neural network (DNN)-based learning has been becoming popular,
Meden et al. [15] developed the k-Same-Net network to produce photo-realistic agent
faces. Ref. [11] integrated generative neural network (GNN) and the k-Anonymity algo-
rithm to generate high-quality images with confusion ability. Although the research is
advanced in this field, there are still some aspects for improvement. First, using tradi-
tional PCA [11] causes computation to be inevitable. Second, training the GNN model is
time-consuming. Finally, this research’s fatal weakness is executing down-sampling of the
input images; this method impairs the quality of surrogate images. Pan et al.’s work [16],
inspired by [15], proposed k-Same-Siamese-GAN to generate anonymous images without
input data down-sampling. Meanwhile, Pan et al. also applied mixed precision learning
to k-Same-Siamese-GAN. Therefore, k-Same-Siamese-GAN can generate high-resolution
output images successfully and quickly. However, the drawback of k-Same-Siamese-GAN
is that the appearance is artifactitious and unrealistic. Jeong et al. [17] resolved the unreal-
istic problem and provided a method with controllable features to achieve de-ID. Using
controllable features also inspired us and enabled MfM to produce more diverse de-ID
images through latent space manipulation.

As for de-anonymous, Yamac et al. [18] combined multi-level encryption with sensing
devices to propose a reversible privacy-preserving mechanism. The strengths are in provid-
ing semi- and fully authorized schemes for decryption and a progressive augmentation
learning strategy for unsupervised domain-adaptive person re-ID. The strengths above
inspire our work to design an effective MfM to enhance the system’s robustness.

Gu et al.’s work [19] also inspired our work in system construction. The most sig-
nificant difference between our MfM and Gu et al. is that we can complete de-ID and
re-ID works simultaneously through “one” network. Moreover, we found the facial fea-
tures’ choosability of [19], such as facial expression and hair color, is very limited; i.e.,
the resultant facial expression and hair color of the anonymized images are the same as
those of the input images. If other face attributes could be parameterized, they could
enhance our system’s security level. Of course, as expected, long-length passwords can
provide a certain degree of security; however, the longer the password length, the more
unstable and time-consuming the training process. As for diversity, Ref. [19] focused only
on generating diversified anonymized images if incorrect passwords were input. Gu et al.
did not discuss “controlling” the variety of generated images. Controlling diversity plays a
crucial role in real-world face de-ID and re-ID applications. As pre-described, we design a
single-network-based MfM to achieve anonymization and de-anonymization simultane-
ously. The structural and style facial image features are leveraged to enhance the system’s
security level. Finally, we group the passwords and the above-mentioned facial attributes
as hyperparameters to control the reconstructed images’ diversity.

In addition to the literature mentioned above, we also analyzed the state-of-the-art arti-
cles published in 2022. The more memorable part [20] achieves the effect of de-identification
by integrating a quantized codebook and VQGAN/BERT models. Its strength includes
dealing with integrating two large models. Still, its weakness is undeniable: the synthesized
face will have a ghost effect and unnatural state during the quantization process, and the
model stability is quite significant in the training challenge. On the contrary, the above prob-
lems are greatly improved in our proposed MfM. The method proposed by Yang et al. [21]
mainly uses the attention model to retain essential features and uses adversarial example
perturbation images to improve the diversity of anonymization images. Still, its method
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does not have a de-anonymization process, so it is rather limited in application. Next, the
method proposed by Zhai et al. [22] is to edit the original image through attribute-aware to
achieve the purpose of anonymization. However, its disadvantage is that it still needs to
use other methods, such as AdaIN, to accomplish mean and variance normalization. On
the one hand, it can improve the quality of image synthesis, but its disadvantage is that
it makes training more complicated. Khorzooghi et al. [23] proposed using StyleGAN2
for de-identification and feature preservation. The advantage is that the synthetic face
is very realistic but lacks restoration information, so there is almost no way to achieve
re-identification. Xue et al. [24] use adversarial perturbations to increase the diversity of
de-identification images in feature space; this article also inspired us to increase diversity
through latent space manipulation.

The articles, as mentioned earlier, are all discussed in a learning-based manner, re-
quiring more relevant theoretical analysis. In our work, we analyze and explain through
theoretical methods, which is also an essential feature of this article.

2.2. The Deep Face Generation

Many researchers have recently studied pixel-level synthesis and editing of realistic
human faces using GANs, such as [25–28]. In our work, GAN played an essential role in
face image synthesis. A series of studies for improving face image generation quality also
inspired our work, such as StarGAN [29] and domain-supervised GAN (DosGAN) [30]
especially. In reflecting on DNNs’ progress, we built our MfM based on an unpaired
image-to-image translation framework, DosGAN. DosGAN takes the first step towards
exploring direct domain supervision [31]. Furthermore, to extend the diversity and address
the defects of synthesized images, we include the function of StarGAN into MfM, adding
extra attributes to its encoder module [29].

We use a residual net to realize our MfM, in which the discriminator of PatchGAN
(D-PatchGAN) [32] is adopted to build the corresponding discriminator. PatchGAN helps
restrict the MfM discriminator’s attention to the structure of local image patches.

Deep-learning-based models extract the features of the local area of the dataset image
through convolution operation, so the change in the surrounding pixels will have a particu-
lar impact on the central pixel. Both will decrease the fineness of face restoration and recon-
struction, which were used in past methods. The parameterization methods of image statis-
tics include the Wallis filter algorithm, histogram normalization/matching/equalization
algorithms, and the linear Monge–Kantorovich (MKL) linear color mapping algorithm,
which are used to correct the pictures in the dataset. Among them, through the article
of Finlayson et al. [33], we can better understand that color acts as an essential helpful
information provider, especially in related applications such as tracking, object detection,
and image segmentation. Its purpose is to achieve illumination invariance through his-
togram equalization. To understand Finlayson et al.’s work, consider using an illuminant
parameter to record the RGB image through a single channel. Although the above tradi-
tional algorithms have achieved significant results, their implementation is based on the
underlying low-frequency features of the image. Therefore, when the image coverage is
comprehensive and the color and texture are complex, the color consistency results are
more prone to color cast.

On the issue of facial alignment, and in the following research by Cao et al. [34], it
is also mentioned that the more popular and successful methods are active shape model
(ASM) and principal component analysis (PCA) within the active appearance model (AAM);
the advantage of such methods is to minimize model parameter errors in training, making
the training very efficient. However, this kind of practice has critical problems with different
image orientation and creating sub-optimization. Rehman et al. [35] observed this problem
and proposed using PCA to reduce the dimensionality of prominent facial features to
complete facial image alignment. The central concept of [35] is to design an algorithm
based on PCA and assign assignment rules inferred through the eigenvectors utilizing a
two-stage approach to automate face alignment. The first stage is to segment meaningful
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regions according to the threshold. The second stage is to process the non-zero pixels in
the binary image through PCA to determine the object rotation around the average value
of the target pixels. We used MTCNN [36] and affine matrix in this study to address the
above problems of facial alignment.

Therefore, this work directly uses the PatchGAN discriminator to solve the problem
of high-frequency information loss so that, after being reconstructed through the MfM
model, the face images taken from different light sources and angles reduce loss of useful
low-frequency features in color, which better minimize the color distribution difference
between the source image and the target image. Visually, the discriminator served by
PathGAN can make a face synthesized by the MfM model have similar color constancy
and reduce the state of color cast.

We then add several loss functions to DosGAN for constructing our MfM to conduct
de-ID and re-ID processes. Meanwhile, inspired by [37], latent space-based modeling is
taken for building our MfM to add the system’s diversity.

3. The Proposed Approach

We aim to develop a single MfM neural network to achieve a series of anonymizing
and de-anonymizing processes simultaneously. With the help of latent space manipulation,
users specify the password and multi-factor attributes. Then, the MfM system can generate
anonymized faces when anonymization is the target. When performing de-anonymization,
the MfM system receives the correct password and correct multi-factor attributes from users,
then reconstructs a de-anonymized image. However, if the MfM system receives incorrect
or multi-factor attributes, it will generate another agent facial image associated with a
distinct identity from the original. Moreover, MfM will generate various anonymized faces
without repetition in this situation. Further, the related prior knowledge can be learned
from [1].

Figure 2 sketches the functional descriptions of MfM model. Recall that, in this work,
we conduct the anonymization and de-anonymization procedures with the help of one
single neural network. When activating de-ID, users need to take the hyperparameters and
the original image as inputs to MfM; it generates anonymization images accordingly. When
activating re-ID, users need to input correct hyperparameters to MfM again; then, it will
create a re-ID face image that is near-original. Otherwise, if the received password or multi-
factor combination is incorrect, MfM will change the anonymized identity into a different
one and generate anonymized images that are photo-realistic and with no repetition.
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3.1. Neural Network Architecture of Multi-Factor Modifier

Figure 3 details the neural network architecture of the MfM model for both anonymiza-
tion and de-anonymization processes. As the feature shows, MfM incorporates two encoders
and one decoder. One of the two encoders is the style encoder, which is the pre-trained face
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recognition network. The other is the content encoder, which extracts the facial-content-
related features. The face IDs and face images are the inputs of the style encoder, and then
the input information is fed into the so-called classification network consisting of six con-
volutional and three residual layers. The content encoder outputs the facial-content-related
features if the classification network completes its training process. Then, MfM proceeds its
operation with its two encoders and one decoder. The style encoder communicates with
MfM by inputting the obtained face images and the target multi-factor combination to it.
At the same time, the content encoder behaves like a residual net, which is responsible for
extracting the domain identity from the outputs of the encoder’s bottleneck layer. After
leveraging the style classifier’s results, MfM transmits the combination of domain identity
and domain features with an extra password and multi-factor attributes. Then, the decoder
generates the desired anonymous images.
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The detailed operations of the proposed work can be understood as follows. The
system, functional blockwise, mainly consists of the MfM and the style classifier modules.
For convenience, we call the processes executed by the style classifier the phase-1 proce-
dure of the proposed system and the MfM the phase-2. Recall that the style classifier in
charge of the classification task is realized based on the multi-task D-patchGAN. First,
the learned style classifier classifies the input face images into different classes according
to the associated latent spaces’ features and passwords. Its output is a 1024-dimension
floating-point vector, which denotes the concatenation of the latent space’s features and the
user-selected passwords. Then, we go into phase-2 to generate de-identified face images
satisfying the constraints guided by the pre-selected attributes.

As shown in Figure 3, the encoder of MfM model aims to reduce the dimension of
the involved feature space (e.g., converting the 128 × 128 × 3 color image to 32 × 32 × 1
patches as the units for training) and then recover the domain identity (i.e., the identity
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associated with the de-identified image or the corresponding latent vector). In our sys-
tem, the latent vector associated with the domain identity is of dimension 256 × 32 × 32.
Meanwhile, the MfM’s style encoder cascades the domain features and passwords, yield-
ing a 1024-dimension style-related latent vector. To combine both the style-related and
identity-related effects, we extend the style-related latent space by repeating it 256 times
and then proceeding with element-to-element-wise additions with the identity-related
latent vector. Finally, we send the added results to the MfM decoder. The main task of
the MfM decoder is to recover the dimension of attributes (e.g., enlarging the 32 × 32 × 1
patch image space to the original 128 × 128 × 3 color image space). Then, MfM leverages
the power of D-patchGAN to judge the correctness of the input face image classification
and the user pre-selected attributes. Figure 3a describes the anonymous process; when the
anonymous process is completed, the discriminator will take over to calculate the local loss
(the first term of Equation (1)) and turns to execute the total loss in Equation (1), as shown
in Figure 3b. Thus, our proposed method just has only trained one neural network stably.
Algorithm 1 addresses the detailed execution procedures of MfM.

Algorithm 1. Multi-factor Modifier

Input : a set of face images I with face domain identity FaceIDk and face attributes Ak ,
∀k ∈ Φ. Each target face (de-identified face) Fp has one password Pt, ∀t ∈ Φ. Training iteration Jk
Output: Multi-factor modifier M and Discriminator V

1. for i = 1 to Jk do
2. Randomly select images Ii with face domain identity FaceIDi and randomly

select image It with face domain label FaceIDt. Besides, FaceIDi is different
from FaceIDt, ∀i, t ∈ Φ

3. Update Discriminator V with the following objective function:
4. Ldiscriminator = Ladv + Lrec_cls
5. if (i + 1) mod 5 = 0 then
6. Update Modifier M with the following objective function:
7.

L f = λbLb + λattr_clsLattr_cls + λadvLadv + λ f eatL f eat + λrecLrec + λdomain_clsLdomain_cls
Where L f defined in Equation (12), respectively.

8. end if
9. end for
10. Repeat step 1 to step 10 until convergence
11. return M and V

Next, let us focus on the calculations of the involved loss functions. First, the loss
for keeping the facial image’s appearance: we calculate the L1 distances between the de-
anonymized and the anonymized facial images with the original counterpart, where Lb
stands for the sum of the distances mentioned in the above paragraph. Mathematically,
we have

Lb = ||Fd − I||1+||Fr − I||1 (1)

where I means the original input image, Fr denotes the reconstructed re-identification
images, and Fd denotes the de-identification images.

The second one is the attribute classification loss, denoted as Lattr_cls. Lattr_cls is the
attribute distance. That is

Lattr_cls = EFp̂1 ,At [−log Vcls(At|Fp̂1)]+EFr ,Ai [−log Vcls(Ai|Fr)], (2)

where the cross-entropy is represented by E, and Vcls(At|Fp̂1) stands for conditional proba-
bility with the domain attribute labels under the given proxy image Fp̂1 . V stands for the
discriminator, which learns to classify the surrogate image Fp̂1 to its corresponding target
classification domain At by minimizing the objective. EFr ,Ai [−log Vcls(Ai|Fr)] denotes
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the domain classification loss function, where Ai denotes the original attribute domain.
Mathematically, we have

Ladv = EFr ,FaceIDi [−logCid(FaceIDi|Fr)]+EFp̂1 ,FaceIDt [− logCid(FaceIDt| Fp̂1)]

+EFwp̂1 ,FaceIDk [−log Cid(FaceIDk| Fwp̂1)],
(3)

where Cid(FaceIDi|Fr) stands for the probability distribution over domain identity labels
computed by Cid. Let Fr denote the reconstructed image with inputting the correct password
and FaceIDi represent the ID label of the selected face image taken from the benchmark
dataset. In Equation (3), we assume that the pair

(
FaceIDt, Fp̂1

)
represents the agent face

generated by password p1 (which is denoted as Fp̂1), and FaceIDt stands for the ID label
of the generated agent face. Similarly, the pair

(
FaceIDk, Fwp̂1

)
represents the proxy face

generated by giving the wrong password wp1 (which is denoted as Fwp̂1), and FaceIDk is
the ID label of the proxy face generated by using the wrong password wp̂1.

Moreover, we design loss functions for measuring the dissimilarity between images
in the following situation: (i) with different passwords situation, (ii) with wrong given
passwords situation, and (iii) the de-ID face and the other de-ID face with wrong password
situation. Mathematically, we have

L f eat = Ldis

(
C f eat

(
Fp̂1

)
, C f eat

(
Fp̂2

))
+ Ldis

(
C f eat

(
Fp̂1

)
, C f eat

(
Fwp̂1

))
+Ldis

(
C f eat

(
Fp̂1

)
, C f eat

(
Fwp̂2

))
,

(4a)

where
Ldis

(
C f eat

(
Fp̂1

)
, C f eat

(
Fp̂2

))
= max

(
0, cos

(
C f eat

(
Fp̂1

)
, C f eat

(
Fp̂2

)))
. (4b)

In Equation (4), ‘cos (x, y)’ denotes the cosine similarity between two vectors x and
y, and C f eat

(
Fp̂1

)
and C f eat

(
Fp̂2

)
are two transformed face images associated with two

different passwords p1 and p2, respectively.
Mathematically, the corresponding reconstruction loss is shown as following

Lrec = ||C f eat(I)− C f eat(Fr)||1 (5)

We use the L1 distance to calculate the domain classification loss, which is Ldomain_cls. It
is obtained through the discriminator Vid and obtained through the Cid (also called identity
extractor). Thus, we have

Ldomain_cls = ||Vid
(

Fp̂1

)
− Cid

(
Fp̂1

)
||1 (6)

Finally, the total objective loss can be written as:

L f = λbLb + λattr_clsLattr_cls + λadvLadv + λ f eatL f eat + λrecLrec + λdomain_clsLdomain_cls (7)

The following parameter settings are used in this work, including λfeat = 10, λadv = 1,
and λb = λattr cls = λrec = λdomain cls = 20.

3.2. The Related Schemes—Password and Multi-Factor Register

We designed the password scheme to associate the face ID in datasets with an N-bit
password (p ∈ (0,1)N). Our password scheme is inherited from [19], but we change the
implementation using the following combination of latent codes. That is

1. Ĉ(Fr, Ai) ≡ C(Fr, Ai)
⊙

Pt, where C(Fr, Ai) ∈ R1024 denotes the outputs of the latent
codes of the content encoder and

⊙
denotes the Concatenate operation.

2. Pt is binary string and enables 2N unique passwords.

The other is the multi-factor register scheme. It is responsible for recoding identity-
related face attributes and style-related (non-identity-related) face attributes.
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Similar to the anonymization scenario, our system needs two more steps to activate
the de-anonymization processes. The first step is using a lookup table to record the specific
password and multi-factor attributes from users’ inputs. The second step is applying a
neural-network-based training process to include the selected features’ effects in our system
and proceed with the final reconstruction step.

4. Information-Theoretic-Based Analyses and Discussions of MfM
4.1. Physical Meanings of the Adopted Cost Functions

There are two specific cost functions to guide the learning of MfM, which, respectively,
take our system’s visual acceptability and recovery radiality into consideration. The
following minimax game is the visual acceptability regularization function. That is

minMmaxDVI(D, M) = V(D, M)− λ1 I(c; M(P, c)), (8)

where I(x, y) is the mutual information to measure the relationship of two random variables x
and y, D is the discriminator, M denotes the MfM model, λ1 is a hyperparameter, c stands for
the latent codes of the original face image, and P =

{
p1:password, p2:multi−factor combinations

}
(, {p1, p2} for short) is the set of embedding information that consists of the given pass-
word p1 and the given multi-factor combinations p2. Then, we can form the affinity between
the original face image c and the anonymous image Znid into I(c; Znid) = I(c; M(P, c))
after processing through the MfM model.

We regularize the above minimax game by maximizing the mutual information (MI)
between our model representations of the original face image and the de-ID image to
bound the tolerable visual difference between them. We treat P as a random variable in the
following discussions. From the fundamental relations between MI and entropy, we have

I(X; Y) = H(X)− H(X|Y) = H(Y)− H(Y|X). (9)

We expressed I(c; Znid) = I(c; M(P, c)) as the distribution distance, which is measured
between the original facial images and the anonymous images. Due to a deterministic and
invertible encoding function, M(.), relates c and Znid, and the maximal value of I(c; Znid) can
be derived. That means the cost function can be constrained because the visual difference
between c and Znid is controlled within an acceptable range. This property is an essential
requirement for privacy protection. The above interpretation also represents latent code (c)
containing meaningful information, and the latent code will not be lost too much during
the MfM model training. According to Equation (9), I (c; Znid) is denoted:

I(c; Znid) = I(c; M(P, c)) = H(c)− H(c|M(P, c)). (10)

M(.) is complicated to find the maximal value of Equation (10) because of needing to
capture the posterior p(c|M(P, c)). information; even M(.) is deterministic and invertible.
With the help of using a variational approximation as follows, we can solve the computation
difficulty of encoder mutual information.

The distribution of data x is p(x), and the following question is how to bound
H(c|M(P, c)) suitably. We use the positive property of the Kullback–Leibler (KL) divergence:

∑
c

p(c|M(P, c))log p(c|M(P, c))− p(c|M(P, c))log q(c|M(P, c)) ≥ 0, (11)

where the arbitrary obtainable variational distribution is expressed as q(c|M(P, c)). Thus,

I(c; M(P, c)) = H(c)− H(c|M(P, c)) ≥ H(c) + 〈logq(c|M(P, c))〉p(c,M(P,c)) , Ĩ(c; M(P, c)), (12)

where H(c) = −〈logp(c)〉p(c), H(c|M(P, c)) = −〈logp(c|M(P, c))〉p(c,M(P,c)), and

Ĩ(c; M(P, c)) is an approximation of I(c; M(P, c)) based on q(c|M(P, c)). The relation
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indicated in Equation (12) is equivalent to describing a moment-matching approximation
of p(c|M(P, c)) by q(c|M(P, c)).

M(P, c) is as an information channel. The inputs of M(P, c) are P and c. The output
of M(P, c) is Znid. The conditional probability of constructing Znid under given c can be
expressed as:

logp(Znid|c) = log
∫

M(P,c)
p(Znid|M(P, c))p(M(P, c)|c) ≥ 〈log p(Znid|M(P, c))〉p(M(P,c)|c). (13)

After averaging Equation (13) over all possible c and combining with the approxima-
tion results obtained from Equation (11), we have

∑
c

p(c)logp(Znid|c) ≥ ∑
c
〈log p(Znid|M(P, c))〉p(c,M(P,c)) ≈ 〈log q(c|M(P, c))〉p(c,M(P,c)) (14)

By exchanging the terms on the different sides of Equation (12), it is:

H(c|M(P, c)) ≥ H(c)− Ĩ(c; M(P, c)) (15)

When giving M(P, c) measured based on q(c|M(P, c)), we can derive the lower bound
of the latent code c’s perdition error according to Equation (15). If fixed p(c), we can find the
maximization of I(c; M(P, c)) measured based on q(c|M(P, c)) is equivalent to computing
the desired lower bound. Therefore, we obtained the visual acceptability cost function,
as shown in Equation (8). Similarly, we can write the recovery radiality cost function as
another minimax game. That is vspace-3pt

minMmaxDVI(D, M) = V(D, M)− λ2 I
(
c; M

(
Znid, P̂

))
, (16)

where λ2 is a hyperparameter and P̂ stands for the input password and multi-factor
combinations from users or hackers.

For the case P̂ = P, according to Cheng, et al. [38] and with the aid of a variational
marginal approximation r(M(Znid, P)), which is a standard normal distribution for build-
ing the variational upper bound, we have

I(c; Zid) = I(c; M(Znid, P))
= Ep(c, M(Znid , P))

[
log p(M(Znid ,P)|c)

p(M(Znid ,P))

]
= Ep(c, M(Znid , P))

[
log p(M(Znid ,P)|c)

r(M(Znid ,P))

]
− KL(p(M(Znid, P))||r(M(Znid, P)))

≤ Ep(c, M(Znid , P))

[
log p(M(Znid ,P)|c)

r(M(Znid ,P))

]
= KL(p(M(Znid, P)|c)|

∣∣∣r(M(Znid, P))
)

.

(17)

Now, assume the designed regulation function constrains the KL(p(M(Znid, P))||
r(M(Znid, P))) to become very small, which means the learning process will force
r(M(Znid, P)) to become a well-density approximation of p(M(Znid, P)). In other words,
such a regulation function will help complete the re-ID process very positively. Similar
arguments hold for the case of P̂ 6= P; we now want to bound H

(
c|M

(
Znid, P̂

))
. With

the definition of mutual information and the positive property of the Kullback–Leibler
divergence, we have:

I
(
c; M

(
Znid, P̂

))
= H(c)− H

(
c|M

(
Znid, P̂

))
≥ H(c) +

〈
logq

(
c|M

(
Znid, P̂

))〉
p(c,M(Znid ,P̂)) , Ĩ

(
c; M

(
Znid, P̂

))
, (18)

where q
(
c|M

(
Znid, P̂

))
is another obtainable variational distribution. Once again, our

well-designed regulation function will lead the learned q
(
c|M

(
Znid, P̂

))
approximating to

p
(
c|M

(
Znid, P̂

))
closely, which means the relation indicated in Equation (18) is equivalent

to a moment matching approximation of p
(
c|M

(
Znid, P̂

))
by q

(
c|M

(
Znid, P̂

))
. Through

the discussions presented above, we expect to give readers a better understanding of the
cost functions we used in the proposed MfM scheme.
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4.2. Latent Space Manipulation for MfM

To demonstrate the ability of the claimed control diversity, we proceed with the
analysis in latent space. As Figure 3 illustrates, the style encoder generates the domain-
feature-specific latent space (the green region in Figure 3a). In contrast, the content encoder
creates the domain-identity-specific latent space (the blue region in Figure 3a). That is, we
represent the identity-related and style-related features of a given face image by using their
corresponding latent codes in the domain-specific latent space.

We include the concept of clustering in our latent space analytics. Moreover, to
increase the variety of the generated agent faces, it is critical to have both clustering and
interpolation abilities. We use the MfM model to achieve the goals for clustering the latent
space. Since we already knew that the style encoder’s outputs do affect the identity of the
de-ID images, we, therefore, add a controlling factor for changing the grouping conditions
for generating the specific features. It depicts the proposed controller-added clustering
network (Figure 4).
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We apply the PCA to the benchmarking dataset (with 6000 identities originally) to
perform feature extraction, dimension reduction, and effective cluster grouping. With the
benefit of PCA, we can guide the direction of attributes distribution and avoid attributes
entanglement. We use t-SNE (t-distributed stochastic neighbor embedding) to implement
the PCA efficiently. Algorithms such as t-SNE only care about pairwise distances between
points. The t-SNE tries to position the points on a plane such that the pairwise distances
between them would minimize a particular criterion. Thus, to see the effectiveness of clus-
tering, we designed the following three testing cases with different attribute (or equivalently
the labeled feature) numbers for further analyses:

1. We select only four style-related features to group the dataset for a chosen identity.
2. We increase the number of features from four to twenty, in which fifteen style-related

(i.e., homogeneous) and five identity-related (i.e., inhomogeneous) attributes associate
with five selected identities.

3. We mixed the style-related and identity-related features for grouping the dataset.

Case 1. We obtained four clusters according to the four selected homogeneous features
(with labels for training)—black hair, brown hair, gray hair, and blond hair, as illustrated in
Figure 5. It displays the steady state of the whole group evolution. To visualize the effect of
PCA-based clustering, we also snapshot the hair-color-changing evolution by showing the
photos associated with each of the four groups’ cluster centers in Figure 6. The generated
agent faces’ hair colors gradually change from black to blond from left to right.
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Case 2. We now use twenty attributes, including identity-related and style-related
attributes, to group datasets. In other words, we perform PCA-based dimension reduction
on the tested dataset and achieve twenty clusters via the twenty labeled features listed
in Table 1. Similar to Figure 5, we depict the grouping with twenty mixed attributes in
Figure 7. Since both identity- and style-related attributes are considered, the figure displays
the steady-state of the whole group evolution. Moreover, we also illustrate the evolution of
agent faces’ changing via snapshotting the twenty group-centric face images. As shown in
Figure 8, the beards on faces of the same identity in the first row grow thicker from left to
right, and those in the second row are getting thinner. In the third row, the mouths change
from open to closed, and those in the fourth row change from happier to neutral. Most
interestingly, the faces in the fifth row switch gender gradually.

Table 1. The identity-related and style-related attributes involved in our testing case 2.

Attribute Classifications Detail Attributes

ID-related attributes (labeled features) Race; Age- {Old, Young}; Gender- {Male, Female}

Style-related attributes (labeled features)

Eyebrow {Arched_Eyebrows, Bushy_Eyebrows};
Eyeglasses; Bags_Under_Eyes; Big_Nose;
Hair-Color {Black_Hair, Blond_Hair, Brown_Hair,
Gray_Hair}; Beard {With_Mustache, No_Beard};
Mouth_Slightly_Open; Thick_Lips: Expression
{Smiling; Expressionless}
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To better analyze and view various attributes’ effects on the clustering process, we
redraw Figure 7 according to the correlation of different labeled features in Figure 9. ‘X1’
and ‘X2’ axes of Figure 9, respectively, denote the distributions of pairwise distances
between points (in the PCA space) of different identity-related and style-related attributes.
At the same time, the ‘X3’ axis represents the feature’s correlation strength. Therefore, the
five clearly grouped clusters in the figure indicate there are five identities with various
degree style-related characteristics. Let us explore the results of Figure 9 in a bit more
detail. The colors associated with the five clusters imply that each identity has a dominant
representative hair color, that is, blue, green, orange, purple, and red for identity 1, 2, 3, 4,
and 5, respectively. Figure 9 also reflects that each cluster has an apparent trait that affects
the appearance of the generated agent face. Moreover, the tighter the clustering density,
the stronger the effect is. Thus, the evolution processes converge to five identities with
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different facial appearances, which matches the results demonstrated in Figure 8. Let us
take the blue- and green-colored groups as examples; since the X1-axis’s standard deviation
of these two groups is relatively less significant than that of the other groups, there are no
gender changes, as shown in the top two rows of Figure 8.
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To further illustrate the effects of various attributes on the generated agent faces,
we also snapshot the results of testing case 3 in Figure 10, where many style-related and
identity-related features are mixed for a selected identity. For example, from left to right,
as shown in Figure 10, the agent faces change from old to young, genders from male
to female, and hair colors from gray to black. After analyzing the above three testing
cases, we find that the degree of effect on the final agent’s appearance of an attribute is
inversely proportional to the absolute value of its variance. This observation implies that
developing effective and efficient face-image editing mechanisms in the latent space by
adequately combining the selected attributes with robust machine learning schemes is
worthy of completing.
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Figure 10. Using multiple attributes to generate agent faces: gender: from female to male; age: from
young to old; mustache: from no mustache to mustache.

We try to find the bottleneck features and fit them into image manipulations in the
latent space by taking MfM as the pre-trained model. The controller-added clustering
network encodes the original image into intermediate features. Next, we execute the
element-wised addition of the features by using the guidance vectors, which are generated
based on the given operating (manipulation) conditions. At last, the modified bottleneck
features can influence the decoder to generate the manipulated images. The following
experiments prove the proposed scheme is still workable when we add some constraints to
bound the latent space. The experimental results also justify that the designed regulations
directly manipulate images in the latent space.

It takes the MfM as an encoder and performs well in facial-related images. The reason
is that it is more likely to preserve high-frequency facial information when using the
MfM model as the encoder, even if we perform the image’s compression to a certain level.
From the snapshots presented in Figures 11–13, there is not much difference between the
manipulated images and their original counterparts since they are rebuilt by decompressing
the shifting guidance-added and MfM-generated bottleneck features.
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5. Experimental Results

To demonstrate the proposed approach’s effectiveness, we conduct quantitative and
qualitative experiments and compare them with other existing works.
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5.1. The Training Datasets, Testing Datasets, and Evaluation Metrics

We used the face verification toolkits [39,40] to measure the distance between de-
ID images and the original face images. Meanwhile, we also used Facenet, insightface,
insightface-ir50_Asia, and insightface-ir50_ms1m networks for testing. On the other hand,
we also applied the face recognition toolkit [41] to compare the similarity of re-ID images
to the original face images.

In training, we individually use 85% of the FaceScrub, CASIA-WebFace, and CelebA-
HQ/CelebA datasets. The remaining 10% of the above datasets are used for testing, and the
last 5% for validation. FaceScrub is one of the most extensive public facial datasets, which
contains 530 male and female celebrities; each person has 200 images, and the total number
is 106,863 facial images. Since each person has about 200 pictures, the MfM model can
learn face attributes with more diversity and more easily apply them to different datasets.
Further, the CASIA-WebFace dataset has more than 453,453 facial images of 10,575 people,
and the CelebA-HQ/CelebA has more than 30,000 facial images of 10,177 people.

After collecting the required datasets, next, we need to discuss the pre-processing of
facial images in the datasets. Especially with the MfM model, we designed deals with
new data, such as video screenshots or CASIA-WebFace; alignment is also a critical key
point that affects the quality of the training model, and face alignment is necessary pre-
processing in many face applications. Its purpose is to reduce loss of accuracy caused by
the input image’s rotation, translation, and scale. Furthermore, in practice, the better the
face alignment is, the more direct and intuitive the impact on the quality of image synthesis
performed by our MfM model. Since the data are screenshots from videos or the CASIA-
WebFace, there will be images with different angles or occluded facial features in datasets.
We can use PCA to reduce the datasets’ dimensionality, project it to 2D coordinates, and
perform the grouping action on similar coordinates to filter out faces from different angles
or occluded faces. Taking facial orientation as an example, random facial orientation can
be filtered into standard facial orientation. Facial orientation alignment can be completed
through practice of this part.

Considering the above discussion, go through the following steps to process the
normalization of the facial images:

Step 1. Dealing with Bounding Box: This part aims to extract the face.
Step 2. Creating Landmarks: We use the MTCNN [36] network to locate facial features

and generate landmarks.
Step3. Using Affine Matrix to normalize the facial images: it aims to rotate, translate,

and scale in on facial images and then crop the raw facial images into facial images with
the size of 256 × 256.

After completing the above steps, the designed MfM model can start training.
In the evaluation part, we used perceptual-based image quality metrics: learned

perceptual image patch similarity (LPIPS), Frechét inception distance (FID), and structural
similarity index measure (SSIM). LPIPS is used to assess image patches’ distance. Higher
LPIPS means further/more different and vice versa. FID is a measure of similarity between
two datasets of images. Meanwhile, it was shown to correlate well with human judgment of
visual quality and is most often used to evaluate quality of samples of GANs. On the other
hand, we also use SSIM as a performance index for measuring similarity of two images.

5.2. Quantitative Results and Discussion of the Proposed Multi-Factor Modifier

At first, we referred to the experiments conducted on StarGAN v2 [42] and imple-
mented the works of Gu et al. [19], Maximov et al. [43], and Cao et al. [44] for broadening
our comparison targets. Then, we compared the outcomes of [16,19,43] and [44] with that
of our work.

According to Table 2, the proposed MfM system performs better than state-of-the-art
works. In addition, because of the higher value in LPIPS, it means a higher diversity degree
of generated images. This is also the essential property of anonymization. Furthermore, our
system’s super performance in FID is the most crucial observation. In general, the lower
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the FID value the better because FID indicates the distance between two distributions of
the real and the generated images. Further, we also compare SSIM and the results show the
de-ID image quality of the MfM model is relatively good.

Table 2. Perceptual quality comparisons: anonymization.

Method LPIPS FID SSIM

k-Same-Siamese-GAN [16] 0.176 70.1 0.78
Password-conditional [19] 0.17 110 0.87
FaceBERT [20] 0.15 123 0.83
Yang et al. [21] 0.12 144 0.81
A3GAN [22] 0.29 93 0.87
Khorzooghi et al. [23] 0.288 101 0.86
Xue et al. [24] 0.16 127 0.83
CIAGAN [43] 0.281 108 0.85
Cao et al. [44] 0.29 43 0.93
Ours 0.35 28 0.95
Real Images - 15.1 1

Following, let us compare the proposed work with the anonymization performance of
other de-ID-related works, including CIAGAN, k-Same-Net, and k-Same-Siamese-GAN.

We focus on comparison between CIAGAN and MfM. In Figure 14, the odd-numbered
rows are the surrogate faces generated by CIAGAN, and the even-numbered rows are the
surrogate faces generated by MfM. Through experiments, it can be found that the surrogate
faces generated by CIAGAN have abnormal states, among which eye angle and lips are
the most eccentric and unrealistic. For example, analyzing the synthesized eye angles,
we can find that the eye angles will be affected by the closed hair, so the synthesis of the
right eye will be skewed, and these anonymous images generated by CIAGAN are very
different from the original ones. Therefore, this kind of state can be confirmed on the MfM
model that there is no such situation. Furthermore, in the third row of Figure 14, the lips
synthesized by CIAGAN also show an extremely unnatural state, which shows a thick red
lip. Similarly, we also confirmed that the surrogate faces generated by the MfM model
appear more natural in the partial effect of lips.
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To check the de-ID performance of the MfM model, we compare the de-ID images’
quality generated by k-Same-M, k-Same-Net, k-Same-Siamese-GAN, and MfM. In Figure 15,
the row from top to bottom represents the original image and rendered k-Same-M, k-Same-
Net, k-Same-Siamese-GAN, and MfM, respectively. Due to the different schemes, the
information content will also be different, and the visual quality of the generated images
will also be various. Among them, the surrogate face generated by the MfM model is more
natural and smoother, which means that its high-frequency facial information is better
preserved, and such characteristics will also assist image quality after re-ID.
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GAN, and MfM.

As shown in Figure 15, MfM provides the best result in terms of image quality. Fur-
thermore, its de-anonymous capability has also been implemented, which is very different
from the three k-Same series works. As shown at the bottom of Figure 15, the proposed
approach provides realistic and high-quality synthesis images and supports an anonymity
and de-anonymity guarantee.

We then compared the original images with both the anonymous images and the
de- anonymous images using the face recognition methods, including insightface, insight-
face_ir50 ms1m, and Facenet. If the generated de-anonymous image is consistent with the
original, we indicate in this case a score of 0. On the other hand, if the generated de-ID im-
age is inconsistent with the original, we provide a score of 1. In Figure 16, we found that the
three networks showed 100% on the successful de-ID images, which means that the de-ID
images generated by MfM with a pre-specified similarity threshold of 0.5 were successfully
identified differently from the original images. Under the de-anonymization situation, the
MfM system’s outputs achieved a relatively positive gain in insightface (91.3%). That is,
the proposed MfM produces the best de-ID and re-ID results when using the insightface
model. We also report that the RMSE value is 0.353, and the accuracy value is 0.875.

Last, we also added the confusion matrix to evaluate the validity of the MfM model
during the de-anonymous process. In Figure 17, the normalized confusion matrix shows
that the proposed method performs exceptionally well on the three networks.
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5.3. Qualitative Results of the Proposed Multi-Factor Modifier

This sub-section presents more qualitative evaluation results of MfM concerning
utility-related experiments.

First, we take facial expressions and mustache into account. In Figure 18, the first
column shows the input images, and the second column includes one identity-related facial
attribute, i.e., smile facial expression; thus, the generated surrogates are with smiles. The
snapshots shown in the third column reflect the effects of another identity-related facial
attribute, mustache. Notice that our system also detects the attribute gender of the input
image, and, since the detected gender is female, our system is reluctant to include the
mustache attribute in the generated surrogate; when the chosen attributes conflict with
each other, our system will generate a less unreasonable anonymized face.

Now, let us examine the effect of using style-related face attributes, such as password
and hair color. In Figure 19, the first column shows the input images, and the second to
fourth columns show the resultant surrogates corresponding to different passwords with
various numbers of bits. The fifth to seventh columns show the de-ID images obtained
using the multi-factor combination scheme that jointly takes password and hair color into
account. Finally, the eighth column depicts the excellent picture quality of re-ID results. In
other words, the results also prove that we can reconstruct good de-anonymized pictures.
Furthermore, leveraging the facial recognition tool and the proposed MfM system, the
distances between the anonymized images and the input images are very far, as shown in
Figure 19, which means the quality of anonymized images will be excellent.
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Figure 19. The agent faces generated using style-related face attributes, such as password and
hair color.

In Figure 20, the first column shows the input images and the rest of the columns show
the agent faces generated using the multi-factor combinations with a fixed password and
different hair colors. The second and third columns’ hair colors are dark, while the hair
colors of the fourth and the fifth columns are progressively becoming brown. Finally, the
hair colors of the sixth and the seventh columns are near to blond.

Figure 21 illustrates the utility analysis results, including using a multi-factor combi-
nation with non-identity face attributes and passwords for generating de-ID images. For
example, the second column shows the aggregating result of mustache and password, and
the third column illustrates the results of smile plus password. The fourth column shows
the generated de-ID images using various passwords only. The fifth column pitches the de-
ID images using multi-factor combinations with identity-related face attributes (changing
hair colors) and passwords. Notice that the last column presents the reconstructed images.
Finally, leveraging the available facial recognition tools (as mentioned in Section 5.1) for
evaluating our utility quality, Table 3 reports the distances between the anonymized im-
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ages and the input images are rather far, especially when the multi-factor combination
is involved.
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Figure 21. The results about the utility analysis with various combinations of face attributes and
passwords for conducting the re-ID task.

Table 3. The distances between the de-ID faces generated by the multi-factor combination scheme
and their re-ID counterparts associated with the test shown in Figure 21.

Images from Figure 20 Mustache Smile Only de-ID Hair re-ID

Top Input Image 0.581 0.553 0.543 0.571 0.216
Middle Input Image 0.510 0.490 0.459 0.494 0.195
Bottom Input Image 0.504 0.499 0.453 0.522 0.234

The following experiment examines the impacts of similar passwords on a given anonymized
image. Under this testing situation, our system randomly selects some input images from the
benchmark datasets and generates anonymized images by inputting different passwords with a 1-
bit difference each. Figure 22 illustrates the outcomes of this experimental setting. The first column
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shows the input images, and the second to seventh columns are the generated anonymized images
concerning different 1-bit difference passwords.
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Figure 22. The impacts of similar passwords on a given anonymized image. The first column shows
the input images and the second to seventh columns are the generated anonymized images with
different passwords (from left to right, there is a 1-bit difference between the passwords used for
input image ai and ai+1).

Using the face recognition tool [41], this test can be viewed as the objective counterpart
associated with analyzing results, as presented in Figure 22. Table 4 lists the corresponding
results. In the test, the default upper bound tolerance value is 0.6 [41], and, the smaller the
value, the closer the faces are compared. As indicated in Table 4, the generated anonymized
images are not so similar to each other if the password scheme is considered only. Even
though two out of twenty-four values are smaller than 0.4, as indicated in Table 4, the overall
performance is rather good (the successful recognition rate = overall average/0.6 = 0.499/0.6
> 83%). This good behavior comes from the fact that we dynamically generate sets of similar-
feature-image groups concerning each labeled attribute in our original algorithm design.
Thus, passwords have much less effect on quality of generated images than other facial
features. In other words, we can treat the password as an additional feature for training
the dataset.

Table 4. The objective distances between the anonymized images and the original inputs measured
by using the well-performed face recognition tool presented in [41], associated with test given inputs
from Figure 22.

Inputs from Figure 21 a1 a2 a3 a4 a5 a6

The 1st Input 0.554 0.517 0.560 0.532 0.453 0.485
The 2nd Input 0.510 0.512 0.551 0.427 0.389 0.575
The 3rd Input 0.557 0.387 0.555 0.524 0.498 0.459
The 4th Input 0.406 0.527 0.467 0.558 0.519 0.445

Last, let us discuss the complexity and effects of password length. Intuitively, we
think the performance (in terms of the successful recognition rate or, equivalently, the
degree of security level) of passwords with 2-bit or many-bit differentials would be better
than passwords with a 1-bit differential, which means the resultant distance should be
closer to the upper bound (0.6). Figure 23 shows that passwords’ complexity and bit length
can only have a limited effect on degree of security, so verification through multi-factor
combinations has higher priority in providing security guarantees.
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6. Conclusions

We propose a new controllable and reversible Multi-factor Modifier (MfM) system
to protect sensitive personal information. Unlike most related works, the proposed work
anonymizes images and de-anonymizes images stably with a single neural network based
on DosGAN and provides a security guarantee. Moreover, users can input the other face
attributes as a multi-factor combination besides their passwords.

Justified by a series of experiments, the proposed reversible privacy protection system
can precisely achieve facial anonymization and de-anonymization with the aid of the
enhanced Multi-factor Modifier. According to the experiment, we can conclude that the
LPIPS, FID, and SSIM values of MfM work have significantly better de-identification
effects than the state-of-the-art methods through quantitative results. Furthermore, we also
compare the proposed work with the anonymization performance of other de-ID-related
works, including CIAGAN, k-Same-Net, and k-Same-Siamese-GAN. The performance of
the proposed MfM is relatively good, and the synthesized agent face is also more realistic.
This part is also in line with the inferences of our theoretical analysis through MI. In the
face verification part, we compared the original images with the de-ID images and the re-ID
images using state-of-the-art face recognition methods insightface, insightface_ir50 ms1m,
and Facenet. The three networks showed 100% on the successful de-ID facial pictures.
Under the de-anonymization situation, the MfM system’s outputs achieved a relatively
positive gain in insightface (91.3%). The proposed MfM produces the best de-ID and re-ID
results using the insightface model. We also report that the RMSE value is 0.353 and the
accuracy value is 0.875.

On the other hand, we use qualitative evaluation results of MfM concerning utility-
related experiments, including the effects of using the multi-factor registration scheme
with face-identity-related attributes, style-related attributes, and a mixed scheme. Based
on the above qualitative evaluation results, the designed MfM has very positive markings.
Experiments have shown that specific features can be easily adjusted through latent space
manipulation, and multi-factor security can be achieved by setting passwords. It is worth
mentioning that, even if the designed password is only 1 bit different, the degree of
difference between the generated proxy faces is substantial, which also echoes that we can
maximize the dissimilarity anonymization images.

Moreover, we show that our system can successfully anonymize images in many cases,
create photo-realistic faces satisfying the given conditions, and de-anonymize face images
with the help of multi-factor attributes, as demonstrated by extensive experiments and
comparisons with other competing methods as well. The superior performance of the
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proposed work results from including newly designed MI-based cost functions. Finally,
information-theoretic-based mathematical derivations are presented in detail to enunciate
our design insights and provide a better explanation to the readers.

Aside from MI, there are other helpful information-theoretic quantities, such as rate-
distortion measures and channel capacity. How to incorporate those physically meaningful
measures to polish further the effectiveness and efficiency of a de-ID and re-ID system is,
of course, one of our future research directions.
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