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Abstract: This study explains how the leader-follower relationship and turn-taking could develop
in a dyadic imitative interaction by conducting robotic simulation experiments based on the free
energy principle. Our prior study showed that introducing a parameter during the model training
phase can determine leader and follower roles for subsequent imitative interactions. The parameter is
defined as w, the so-called meta-prior, and is a weighting factor used to regulate the complexity term
versus the accuracy term when minimizing the free energy. This can be read as sensory attenuation,
in which the robot’s prior beliefs about action are less sensitive to sensory evidence. The current
extended study examines the possibility that the leader-follower relationship shifts depending on
changes in w during the interaction phase. We identified a phase space structure with three distinct
types of behavioral coordination using comprehensive simulation experiments with sweeps of w of
both robots during the interaction. Ignoring behavior in which the robots follow their own intention
was observed in the region in which both ws were set to large values. One robot leading, followed by
the other robot was observed when one w was set larger and the other was set smaller. Spontaneous,
random turn-taking between the leader and the follower was observed when both ws were set at
smaller or intermediate values. Finally, we examined a case of slowly oscillating w in anti-phase
between the two agents during the interaction. The simulation experiment resulted in turn-taking
in which the leader-follower relationship switched during determined sequences, accompanied by
periodic shifts of ws. An analysis using transfer entropy found that the direction of information flow
between the two agents also shifted along with turn-taking. Herein, we discuss qualitative differences
between random/spontaneous turn-taking and agreed-upon sequential turn-taking by reviewing
both synthetic and empirical studies.

Keywords: active inference; predictive coding; free energy minimization; synthetic social interaction;
humanoid robots; imitation; action-perception coupling

1. Introduction

Imitation is one of the driving forces behind cultural development due to its im-
portance in sharing and inheriting cultural knowledge [1]. For this reason, imitation is
ubiquitous in social interactions. It is not only important in learning from others, but also in
communicating with them. Nadel [2] observed that pairs of pre-verbal infants often exhibit
imitation of instrumental activity with synchrony between them in a natural social play
setting. They reported that when one infant demonstrated an unexpected use of objects
(carrying an upside-down chair on his head), the partner imitated this instrumental activ-
ity during imitative exchanges. Nadel [3] considers that imitation-based communication
occurs via two roles, imitating as a follower and being imitated as a leader. Partners can ex-
change these roles in turn-taking while they synchronize activities. These observations raise
interesting questions. How are these two roles assigned spontaneously during imitative
interaction and how does turn-taking arise between participants?
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Various studies have explored imitative interaction and turn-taking using human-robot
interaction platforms. Kose-Bagci et al. [4] investigated turn-taking by conducting imitative
interaction experiments between a humanoid, child-sized robot and adult participants
playing with drums. They implemented probabilistic computational models in the robot
such that the robot could start and stop its turn probabilistically using its observations of the
human partner. Although experimental results showed that human participants interacted
enthusiastically, the underlying mechanisms for turn-taking are not yet clear, since the
turn-taking mechanism was basically designed by experimenters using a probabilistic
computational program.

Thomaz and Chao [5] conducted human-robot interaction experiments to overcome
the commonly observed awkwardness when robots attempt to anticipate the right timing
for pausing or re-starting a turn during an interaction. Although the resultant human-robot
interactions demonstrated fluid interaction and turn-taking, the study did not address
how the floor-relinquishing scheme itself can be developed or learned through repeated
interactions. Although these studies demonstrated how turn-taking in imitative interaction
can emerge through human-robot interaction, they were unable to identify the underlying
cognitive neuronal mechanisms since they employed designed computer programs.

Some neural modeling studies using simulations or real robots exist. Arbib and
Oztop [6,7] indicated that mirror neurons [8], which are assumed to unify the generation
of own actions and the recognition of the same actions demonstrated by others, may
participate in imitative behaviors. They proposed a mirror neuron model using a layered
neural network. Billard and Mataric [9] showed that a predictive recurrent neural network
(RNN) that models mirror neurons can generate imitative behaviors in simple robotic
experiments. Ito and Tani [10] proposed that mirror neuron mechanisms could account for
their proposed RNN model, the mechanism of which is analogous to the predictive coding
framework [11–13]. This model was evaluated successfully using a real humanoid robot.
Although studies using neural network models inspired by mirror neurons suggested
possible mechanisms for imitation, underlying mechanisms for turn-taking in imitative
interaction were not examined closely.

Ikegami and colleagues [14,15] investigated the autonomous development of turn-
taking through the adaptation of interacting agents. They simulated turn-taking behavior
in coupled mobile agents in which each agent was equipped with a recurrent neural
network (RNN) to predict the other’s movements, as well as to generate their own motor
behavior, using both sensation and intrinsic dynamics. These agents were adapted using the
evolutionary algorithm applied to the RNNs such that each agent was able to lead/follow
the other with an equal probability. Ikegami et al. concluded that coupling of anticipatory
systems with intrinsic dynamics develops turn-taking. To our knowledge, their study was
the first to rigorously show how mechanisms for turn-taking in following and leading
can be developed through neuronal adaptation of interacting agents. One interesting
observation is that the generation of prediction errors during synchronized behaviors
of coupled mobile agents tends to initiate turn-taking. However, the exact mechanism
accounting for how prediction and the resulting prediction error contribute to turn-taking
has not been fully clarified yet.

Our group [16–18] has conducted synthetic robotic modeling studies on imitative
interaction by extending the frameworks of predictive coding (PC) and active inference
(AIF), based on the free energy principle (FEP) proposed by Friston [12]. PC provides a
formalism for how agents perceive incoming sensations. It suggests that the brain is more
than a passive engine that processes information, but rather that it actively predicts sensory
observations, while at the same time updating prior beliefs about those sensations whenever
errors arise between predictions and observations [11–13]. By updating prior beliefs in
the direction of minimizing errors, perceptual inference for the observed sensation can be
achieved. On the other hand, active inference (AIF) provides a theory for action generation
by assuming that the brain is embodied deeply and embedded in the environment, such
that acting on it changes future sensory observation. Then, AIF considers that actions
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should be selected such that the error between the desired and predicted sensations can be
minimized [19,20]. When perception and action generation are performed in probabilistic
domains, PC and AIF incorporated with a Bayesian probabilistic framework minimize the
free energy instead of just the prediction error [12,20].

The FEP, PC, and AIF allow us to model cognitive phenomena in a unified frame-
work, with broad application in cognitive modeling disciplines, including computational
psychology [21], philosophy [22,23], and artificial intelligence and robotics [24–28]. With
the latter focus, our group developed a variational recurrent neural network model (PV-
RNN) [29] that can learn, generate, and perceive continuous temporal patterns, based on
FEP. The underlying Bayesian probabilistic framework is beneficial for dealing with noisy
sensory inputs, which physical robots inevitably face. The PV-RNN architecture exploits
the minimization of free energy by considering two terms, the negative accuracy of sensory
observations, i.e., prediction error, and the complexity term, i.e., the divergence between
the prior and approximated posterior [30]. By introducing a parameter called meta-prior,
weighting of the complexity term versus the negative accuracy term can be controlled to
minimize the free energy.

Intuitively, placing more weight on the complexity term emphasises the role of im-
plicit prior beliefs when inferring the causes of exteroceptive and proprioceptive sensations.
Crucially, because we are simulating active inference, these sensations are generated by the
robots themselves. This means that increasing prior precision (by weighting the complexity)
can be regarded as affording more precision or confidence to prior intentions to act. Con-
versely, decreasing the meta-prior enables posterior beliefs to depart from prior beliefs to
better explain sensations. This could be regarded as an increase in the precision of sensory
prediction errors, which has often been interpreted in terms of sensory attention. In this
view, increasing the meta-prior can be regarded as sensory attenuation, i.e., attenuating the
influence of sensory prediction errors—thereby enabling the expression of self-generated
movements. For this reason, one can regard sensory attenuation as, effectively, ignoring
the sensory consequences of movement (either of the robot or its dyadic partner) [31–34].

Ahmadi and Tani [29] showed that such a regulation of the complexity term in the
learning phase strongly affects the network behavior in the post-learning phase. Configur-
ing the meta-prior with a small value decreases the optimization pressure on the complexity
term such that the prior belief can be updated and can deviate from the posterior. This
results in lower precision for the prior prediction. On the other hand, when the meta-prior
is configured with a large value, divergence between the prior and approximate posterior
is minimized, which develops high precision in the prior.

In a previous study [18], we equipped two simulated robots with the PV-RNN model
and examined their synchronized imitative interaction. Each robot had the cognitive com-
petency to generate a preferred movement sequence by AIF and to recognize movements
demonstrated by the other robot by PC, based on prior training. We examined the effects
of choosing a distinct set of meta-priors w for each robot on movement coordination in
the dyadic imitative interaction when both robots had conflicting movement preferences.
An analysis of the experiments showed that robots trained with larger w tended to lead
their counterparts by developing stronger top-down action intentions. This was associated
with the higher prior precision, such that the approximated posterior could not adapt
to the sensation, since it was strongly shifted to the prior. On the other hand, robots
trained with smaller meta-priors tended to follow their counterparts by developing weaker
top-down action intention with lower precision prior, whereby the approximate posterior
easily adapted to the sensation. When both robots were trained with larger w, each robot
generated its own preferred movement sequence by ignoring the counterpart with strong
top-down intentions. On the other hand, when two robots were trained with smaller w, the
interaction fluctuated more due to lower precision in the prior prediction in both robots.

One limitation of this study was that the behavioral characteristics of each robot, such
as leading with a strong top-down intention or following with a weaker top-down intention,
were determined in the learning phase, and cannot be changed during the interaction phase.
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Addressing this issue, Ohata and Tani [17] showed that such behavioral characteristics can
be modulated by using a different meta-prior value in the interaction phase than that is
used in prior learning.

The current study extends our prior work [18] by applying the aforementioned scheme
of changing the meta-prior during the interaction phase between two simulated robots.
By conducting comprehensive simulation experiments with sweeping w of both robots
independently during an interaction, we achieved a phase space structure of dyadic behav-
ior coordination. We computed a set of statistical measures including the distribution of
movement patterns generated by each robot, turn-taking frequency, and information flow
between two robots in each region of the two-dimensional meta-prior space. By analysing
the obtained phase space structure, the main contribution of the current study is identifying
underlying mechanisms accounting for the development of leading-following, ignoring,
and spontaneous turn-taking depending on meta-priors set during a dyadic interaction.
An additional simulation experiment was conducted to investigate how turn-taking could
be anticipated and generated by both agents while sharing a joint intention each turn rather
than spontaneously or randomly. This suggests that turn-taking can be generated with
intended turn sequences that are adopted deterministically when meta-priors of the two
robots are shifted slowly in anti-phase. We compare the characteristics of these two cases
of turn-taking both quantitatively and qualitatively.

2. Materials and Methods
2.1. Overview

In our synthetic robotic modeling approach, we employ the concepts of predictive
coding and active inference in order to study the behavioral coordination of two robots in
a synchronized imitative interaction under a conflicting movement preference condition.
Figure 1 illustrates the neurorobotic setup. Two robots, Robot 1 and Robot 2, are equipped
with a variational RNN model, the so-called PV-RNN model [29], to control their behavior
while interacting. Each robot has an individual movement preference that follows a
probabilistic finite state machine (Figure 1 next to each robot’s model) such that after
A movement patterns are generated deterministically, either B or C is generated with
different probabilistic preference. For Robot 1, the C movement has an 80% bias and B
has a lower bias of 20%. For Robot 2, this movement bias/preference alternates. The PV–
RNN generative process allows the robots to generate actions in terms of proprioceptive
output ¯Xpr and to predict the other robot’s action in terms of exteroceptive output X̄ex.
X̄pr

t represents the target joint angles of the robot and is fed into the PID controller to
generate predicted movements. After a kinematic transformation of X̄pr

t , movement is
observed by the other robot as an exteroceptive sensation Xex

t . The prediction error e
between prediction X̄ex and observation Xex is used in the inference process to modulate
latent states, more specifically, the approximate posterior zq. A key feature of the PV-RNN
model is a weighting parameter w for regulating the free energy complexity term, i.e., the
closeness of prior zp and approximate posterior zq, in the online inference process.

In the following section, we introduce the robot imitation task with conflicting move-
ment preferences (Section 2.2). Then, we explain a variational RNN model, the so-called
PV-RNN model [29], with a focus on a the meta-prior w for regulating the complexity term
in free energy (Section 2.3) and show how the model is applied to a synthesis of dyadic
imitative interaction (Section 2.4). The experimental design was adapted from our previous
work [18]. Therefore, for the sake of brevity, here, we simply highlight the key contributions
of this study.
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Figure 1. Schematic of synchronized imitative interaction of Robot 1 (left) and Robot 2 (right) under
the PV-RNN architecture. Both robots have individual, conflicting action preferences that follow a
probabilistic transition, as illustrated in terms of a probabilistic finite state machine shown next to
each robot model. Solid lines represent the PV-RNN generative process and dotted red lines show
the inference process that propagates the error e back to update the robots’ posterior belief given
meta-prior w.

2.2. Robot Imitation Task Design

For our neurorobotic study, we used two humanoid robots, Robot 1 and Robot 2,
and also a robot manipulator device for generating movement patterns for training. The
humanoid OP2, standard humanoid robot production, and Rakuda controllers, customized
for our research purposes were both manufactured by Robotis www.robotis.us (accessed
on 19 January 2023). In the initial training data generation phase, the movement trajectory
of each humanoid robot was generated by a human experimenter using a manipulator
device by following the corresponding probabilistic finite state machine shown in Figure 1
(Figure 2A).

(A) (B)

Figure 2. Robotic systems used for dyadic interaction experiments. (A) A human experimenter uses
a manipulator device to generate movement patterns of a humanoid robot to prepare training data.
(B) Two robots are controlled by the network without human intervention in the interaction experiment.

The task was designed as a synchronous imitative interaction in which two robots
attempt to generate their own preferred movement sequences while also attempting to
imitate movement patterns generated by the counterpart. Since both robots have conflicting
movement preferences (cf. movement bias Section 2.4), various dyadic behavior interactions
can emerge dynamically through optimization processes of free energy minimization in
situations involving conflict.

The training trajectory contains the own movement Xpr consisting of six joint an-
gles, and the exteroception Xex. The exteroception Xex represents the observation of xy-
coordinate positions of both hands of the counterpart in the interaction. In the independent
training phase, the xy-coordinate positions were computed from the mirrored image of its
own left and right hands through forward kinematics of movement trajectories Xpr using
joint angles at each time step. After training both robots on their individual movement
preferences, robots were set in dyadic interaction mode in which they were controlled
through a trained PV-RNN model (Figure 2B). In the interaction phase, observation Xex

https://www.robotis.us/
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was computed with an actual observation of the counterpart robot at each time step. Note,
due to performance limitations of real-time computations in the online posterior inference
process and the vast number of interaction experiments, robot experiments were conducted
in simulation. For demonstration and qualitative evaluation purposes, some simulation
results were played back on the physical robots using recorded joint angle sequences.

2.3. Predictive Coding Inspired Variational Model (PV-RNN)

PV-RNN was developed based on the free energy principle [12], which assumes that
learning and inference are performed by minimizing free energy (Equation (1)) following
Bayes’ theorem.

F = DKL[qφ(z|X)‖pθ(z)]︸ ︷︷ ︸
complexity

−Eqφ(z|X)[log pθ(X|z)]︸ ︷︷ ︸
accuracy

(1)

In a Bayesian sense, pθ(X) represents the marginal likelihood of the sensory observation
X given the generative model pθ parameterized by θ. z denotes latent variables of the model
and qφ is the inference model parameterized by φ. Maximizing the marginal likelihood, or
Bayesian model evidence, can be achieved by minimizing the free energy. This minimization
is induced by two terms, the accuracy of sensory observations, and the complexity, which is the
divergence between the prior and approximate posterior distribution [30].

PV-RNN consists of a generative model and an inference model. The generative
model in PV-RNN allows robots to predict future sensations by means of prior generation.
The predicted proprioception, in terms of joint angles of the robots, is fed into the PID
controller, where the prediction between predicted joint angles and sensed joint angles
is used to generate motor torques. This corresponds to AIF [35]. The inference model
allows robots to infer the approximate posterior from past observations of sensations,
especially exteroception for observing the movement of the counterpart. This posterior
inference is achieved by minimizing the variational free energy, analogous to Equation (1).
The PV-RNN architecture introduces a weighting factor w for regulating the complexity
term versus the accuracy term in minimizing the total free energy. The intuition about the
meta-prior is as follows. The PV-RNN is a variational model which implements prior and
approximate posterior as stochastic latent states, represented by their mean and variance.
With unlimited access to training data, the model could estimate the mean and variance
of the data in the generative process (assuming the Bayesian perspective on the brain).
Since the amount of training data is limited for computational models, minimizing the
original free energy formulation (Equation (1)) cannot guarantee sufficient generalization
to the data.

Below, we briefly describe the implementation of PV-RNN and the regulation of the
complexity term in free energy using the meta-prior w. For a comprehensive derivation of
the math and exact details of the implementation, please refer to our previous work [18,29].

2.3.1. Model Implementation

The free energy F̃ of the PV-RNN predicting a T time-step sequence is derived as

F =w
T

∑
t=1

Eqφ(z1:t−1|dt−1,Xt−1:T)

[
DKL[qφ(zt|dt−1, Xt:T)‖pθ(zt|dt−1)]

]
︸ ︷︷ ︸

complexity

−
T

∑
t=1

Eqφ(z1:t−1|dt−1,Xt:T)
[log pθ(Xt|dt)]︸ ︷︷ ︸

accuracy

(2)

We have a hyperparameter w, the so-called meta-prior, which weights the complexity
term and is unique to PV-RNN. The model is further composed of two kinds of variables,
namely z plus d, and their dependencies are visualized in Figure 3.
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Figure 3. An illustration of a hierarchical three-layer PV-RNN architecture used for this study. Solid
lines represent the generative process. Dotted red lines show the inference process that propagates
the error et back through all time steps t and layers of the regression window of length 2 (shaded red
area). w weights the complexity term in the inference process. This figure is adapted from Wirkuttis
and Tani [18] Figure 1.

z is a random variable following a Gaussian distribution, and d is assumed to follow a
Dirac delta distribution centered on d̃t that is deterministically computed. At time step t, d̃
in the lth layer of the network is recursively computed by

hl
t =

(
1− 1

τl

)
hl

t−1 +
1
τl

(
Wll

ddd̃l
t−1 + Wll

zdzl
t + Wll+1

dd d̃l+1
t−1 + Wll−1

dd d̃l−1
t−1 + bl

h

)
d̃l

t = tanh(hl
t)

(3)

where h denotes the internal state of d before applying the tanh activation function, and bh
is a bias term for h. The PV-RNN includes multiple layers of RNNs wherein the dynamics
of each layer are governed by time constant parameters τl [36]. This scheme supports
the development of hierarchical information processing [36–39]. The weight matrices W
mediate intra- and inter-layer connections inside the network. Here, l = 1 indicates the
layer closest to the network output, and the output is computed as a mapping from d̃1. At
t = 1, d is set to 0.

The prior zp
t is Gaussian distributed and it is assumed that each dimension of zp

t is
independent; thus, it is parameterized by the mean µ

p
t and standard deviation σ

p
t . At t = 1,
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the distribution of zp
1 is fixed as p(zp

1 ) = N (zp
1 ; 0, 1), and for subsequent time steps it is

recursively computed by d̃t−1, following the idea of a conditional prior [40].

µµµ
p
t = tanh(Wll

dµd̃t−1 + bp
µ)

σσσ
p
t = exp(Wll

dσd̃t−1 + bp
σ)

zp
t = µµµ

p
t + σσσ

p
t ∗ εεεt with εεεt ∼ N (0, I)

(4)

bp
µ and bp

σ are bias terms for µ
p
t and σ

p
t , respectively. ε is a noise sampled from

a standard normal distribution for the reparametrization trick [41]. Analogous to the
prior computation, the inference model qφ approximates the posterior zq

t as a Gaussian
distribution with mean µ

q
t and standard deviation σ

q
t .

µ
q
t = tanh(Wll

dµd̃t−1 + Aµ
t + bq

µ)

σ
q
t = exp(Wll

dσd̃t−1 + Aσ
t + bq

σ)

zq
t = µ

q
t + σ

q
t ∗ εt with εt ∼ N (0, I)

(5)

where bq
µ and bq

σ are bias terms for the computation of µ
q
t and σ

q
t , respectively. Aµ

t and Aσ
t

are adaptive variables optimized to infer the posterior parameterized by µ
q
t and σ

q
t .

Intuitively, one can regard the random variable zp as a time-dependent prior expecta-
tion about the robot’s movements. Similarly, the adaptive vector A (i.e., zq) can be regarded
as the approximate posterior that may or may not be close to the prior, depending upon
the meta-prior. zp and zq are used by the generative and inference model, respectively, to
compute the latent variable d. By introducing different time constants τ in the evolution
of d, we are effectively creating orbits (c.f., central pattern generators) that underwrite
movement relatives and their hierarchical nesting. Note that d and A are time-varying
quantities, unlike the parameters of the generative or inference model. Therefore, d and
A change dynamically to both generate and infer the latent (self generated) causes of
movement, which are the robots themselves. This is a key aspect of active inference, in
which movement is the fulfilment of predictions, and predictions rest upon prior beliefs
that generally have nested and complicated dynamics.

2.3.2. Computing Free Energy for Training and Online Inference

In this study, we compute the free energy F as follows, based on Equation (2). Given
a PV-RNN model with L layers, predicting a T time-step sequence, F can be written as

F =
T

∑
t=1

[
L

∑
l=1

w̃l DKL[qφ(zl
t|dl

t−1, Xt:T)‖pθ(zl
t|dl

t−1)]

]
−

T

∑
t=1
‖Xt − X̄t‖2

2 (6)

where w̃l is w specific to the lth layer, and X̄ denotes the network prediction. In
Equation (6), we approximate the expectation with respect to the approximate posterior by
iterative sampling. Additionally, the accuracy term is replaced by the squared error, which
can be considered a special case of computation of log-likelihood in which each dimension
of X and X̄ is independent and follows a Gaussian distribution with standard deviation
1. Since the Kullback-Leibler (KL) divergence between two one-dimensional Gaussian
distributions takes a simple expression, Equation (6) is reduced to

F =
T

∑
t=1

[
L

∑
l=1

w̃l
Rl

z

∑
r=1

δ(l, r, t)

]
−

T

∑
t=1
‖Xt − X̄t‖2

2 (7)

where

δ(l, r, t) = log
σ

p,l,r
t

σ
q,l,r
t

+
(µ

q,l,r
t − µ

p,l,r
t )2 + (σ

q,l,r
t )2

2(σp,l,r
t )2

− 1
2

(8)
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µ
p,l,r
t represents the rth element of µl

t of the prior, and the same notation is applied
to µ

q,l,r
t , σ

p,l,r
t , and σ

q,l,r
t . Rl

z indicates the dimension of zl
t. Given that the complexity term

is proportional to the dimension of z, which is arbitrary to the network design, and the
accuracy term is proportional to the data dimension, which varies among data, the free
energy is normalized with respect to the dimension of z and the data dimension. Therefore,
introducing such a normalization, the free energy of PV-RNN in the study is computed by

F =
T

∑
t=1

[
L

∑
l

wl

Rl
z

δ(l, r, t)

]
︸ ︷︷ ︸

complexity

− 1
RX

[
T

∑
t=1
‖Xt − X̄t‖2

2

]
︸ ︷︷ ︸

accuracy

(9)

where RX is the data dimension, Rl
z is the number of z variables in each layer, and

wl = Rl
zw̃l .

By minimizing Equation (9), the posterior inference is performed during network
learning and robot interaction phases. Figure 3 shows the posterior inference process of
a three-layer PV-RNN model used in dyadic interaction with an optimization window of
two-time steps. In the network learning phase, weights and bias parameters θ and φ of the
generative and inference models, including an adaptive variable A for the approximate
posterior zq are jointly optimized. Unlike in the learning phase, during online inference
in robot interaction experiments, network parameters θ and φ are fixed, and free energy
is minimized at each time step within a dedicated inference window by updating only
A parameterizing the approximate posterior.

2.3.3. Regulating the Complexity Term in the Online Inference during Dyadic Interaction

In our previous study [18], the free energy was minimized using the same w in the
learning and interaction phases. However, this approach has limitations since once the
prior dynamic structures of the network are developed in the learning phase, they cannot
be changed in the dyadic interaction phase. In the current study, we examine how dyadic
interaction characteristics vary when the meta-prior wt set in the learning phase is changed
to various wi in the dyadic interaction phase by following the scheme proposed in [17].

In [17], experimental results on a simulated robot acting with static target sensory
sequences showed that when a robot trained with a particular medium meta-prior value wt

was reset with smaller wi in the later interaction phase, the approximate posterior shifted
away from the prior and the robot tended to adapt to the target sequence. The top-down
projection of action intention on the sensory outcome weakens in this case. With larger wi,
the robot tended to ignore the target sequence and the approximate posterior and prior were
similar. In this case, the top-down projection becomes strong. This experimental design
does not change network dynamics developed during the learning phase, i.e., dynamic
structure of the top-down prior prediction. It only regulates dynamics of the approximated
posterior given the prior dynamics, i.e., the approximated posterior approached or deviated
from the prior given wi.

2.4. Model in Dyadic Robot Interaction

Figure 4 illustrates the information exchange between two robots for investigating
dyadic robot interaction under the PV-RNN architecture. At every time step t, the approxi-
mate posterior zq

t is used to compute the proprioceptive output X̄ pr
t and the exteroceptive

prediction X̄ex
t . In the inference process, the approximate posterior is updated so as to

minimize the error e generated between the observation Xex and prediction X̄ex, which
corresponds to the accuracy maximization shown in Equation (9).

While in the training phase, error signals are computed between the proprioceptive
and exteroceptive output targets and their predictions. In the interaction phase, the error
signal is computed only between the exteroceptive observation Xex

t and prediction X̄ex
t . This

model configuration assumes that the PID controller generates only negligible position
errors for a robot’s own body movement. Robots perform posterior inference in a window
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of 70 time steps (cf. Figure 4 dotted red lines where a regression window of 2 time step
is shown). Prediction errors are propagated bottom-up throughout all layers, as well as
time steps in the posterior inference window. After latent variables zq

t are optimized, they
are used to generate the robot’s next action and prediction. This action-perception step is
repeated for all time steps in the robot interaction.
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Figure 4. An illustration of one-step time shift of the past regression window. Robot 1 (top) and
Robot 2 (bottom) interact in time steps t = 3 (A) and t = 4 (B) using an exemplary, one-layer PV-RNN
architecture for simplicity. Solid lines represent the robot’s generative process. Dotted red lines
show the inference process that propagates the error e back through all time steps and layers of the
regression window of length 2 (shaded red area).

3. Experiments and Results
3.1. Preparatory Model Training and Configuration
3.1.1. Model Training

We trained 25 PV-RNN models prior to the dyadic robot interaction experiments. The
training data consisted of 20 trajectories with 400 time steps. Each trajectory contained a
continuous pattern of movement primitive sequences that followed the individual proba-
bilistic movement preference of each robot (see probabilistic finite state machine in Figure 1
bottom corner of each robot’s model). The training parameters are listed in Table 1. For
t = 1, the meta-prior was set to 1.0 in all layers. This ensured that, after training, the
sensitivity in the initial time step was retained, i.e., sequences can be generated only by
using the latent state in the initial time step. Through insights gained from our previous
study [18], the meta-prior in the first network layer was set to wt = 3.5, and it increased by
a factor of 10 with each increasing layer. For all individual networks, all PV-RNN training
parameters were kept the same except the fixed seed for random number generation, such
that each training started with a different set of connectivity weights.

Table 1. PV-RNN training and robot interaction parameters.

#d #z τ wt wi

layer 1 40 4 2 3.5 [0.001, . . . , 5.0] log scale
layer 2 20 2 4 layer 1 wt × 10 layer 1 wi × 10
layer 3 10 1 8 layer 1 wt × 100 layer 1 wi × 100

Networks were trained for 70, 000 epochs minimizing free energy in Equation (9) using
the Adam optimizer [42] and back-propagation through time [43] with learning rate 0.001
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until all network parameters of θ and φ of the generative and inference model, and the
adaptive variable A were optimized.

3.1.2. Target Movement Preference Evaluation

Once PV-RNNs were trained with the training meta-prior wt, five PV-RNN con-
nectivity weights that best generated the target movement preferences were selected for
subsequent dyadic robot interaction experiments. Performance was evaluated based upon
how well probabilistic transitions of B and C movements were reflected in the PV-RNN
generative process, the so-called prior-generation of the PV-RNN, which is conducted
without sensorimotor interactions. In prior-generation, the prior distribution zp

1 was ini-
tialized with a unit Gaussian (Equation (4)) and thereafter, latent states were recursively
computed to generate network output X1:1000 for T = 1000 time steps. Figure 4A illustrates
this generative process for two time steps after t = 3.

Output trajectories were converted into sequences of A, B, and C movement pattern
class labels using an Echo State Network (ESN) for multivariate time series classification [44]
of each segment of trajectories. The ESN was configured with reservoir size N = 25, 25%
connectivity, and 60% leakage. The ESN created a class label for a sliding window of 12
time steps for robot movement trajectories Xpr

1:1000, so that 1000 time-step prior generation
resulted in 1000− 12 = 988 class labels. To calculate the probability of generating each
movement pattern, we counted the number of A, B, and C label occurrences and normalized
those by the total number of generated classes. Ten movement trajectories were generated
for each trained network to calculate the movement percentage for the three movements.
Networks that were trained with a movement preference toward C generated A, B, and
C at a rate of 46%, 12%, and 42% on average, respectively. Networks with B movement
preference generated A, B, and C at a rate of 46%, 42%, and 12%, respectively. Of all
the evaluated networks, the five that showed the best performance in generating target
movement preferences of the training data were selected for use in experiments of the
dyadic interaction.

Table 2 shows the average of movement percentages of those five networks. These
results confirm that PV-RNN models captured the probabilistic structure of the training
data successfully such that the model for Robot 1 demonstrated a movement preference
toward C movement and Robot 2 toward B.

Table 2. Comparison of movement preference (%) for movement primitives A, B, and C between
movements represented in the training target data (top) and movements generated by the five best
performing PV-RNN networks (bottom).

Movement Preference [%]

A B C

Training Data Robot 1 50 10 40
Robot 2 50 40 10

PV-RNN Robot 1 49 10.5 40.5
Robot 2 49 40.5 10.5

3.1.3. Dyadic Interaction Experiments and Analysis in Two-Dimensional Phase Space

Dyadic interaction experiments were repeated five times for statistical reasons, using
five pre-selected networks that were embedded in the two robots. For each robot equipped
with each pre-selected network, the meta-prior was changed with 50 values from 0.001 to 5,
equally spaced on a logarithmic scale. In the following, we refer to the interaction meta-
prior of Robots 1 and 2 as wR1

idx and wR2
idx, respectively. The subscript idx refers to the index

and ranges from 1 to 50 where an increasing index denotes increasing meta-prior values.
We performed dyadic robot interaction experiments for every possible meta-prior pair wR1

idx
and wR2

idx. Interactions lasted for T = 1000 time steps, where both robots performed an
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online inference with a regression window of 70 time steps by minimizing the free energy
shown in Equation (9) (cf. Section 2.3.3) through 50 iterations.

To conduct an in-depth analysis of the interaction, we calculated a set of numerical
measures and plotted those for every meta-prior pair (wR1

idx, wR2
idx) as a heat map in a two-

dimensional phase plot (Figure 5). The 50× 50 interaction phase space plot visualizes
behavior of each wR1

idx and wR2
idx as an average among five pre-selected networks.

Interaction analysis

wR2
idx

wR1
idx

Robot 2 
Interaction meta-prior  for Robot 2 
changes along the x-axis includes 50 values  
from 0.001 to 5.0 with logarithmic growth.

wR2
idx

( , )wR11 wR250

Meta-prior index ranges from 1:50. 
Increasing index denotes increasing meta-prior values. 

50
49
48
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45
44
43

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 43 44 45 46 47 48 49 50

Each matrix entry refers to  
robot interaction with a  
meta-prior pair ( , ). wR1

idx wR2
idx

Robot 1 
Interaction meta-prior  for Robot 1 
changes along the y-axis includes 50 values  
from 0.001 to 5.0 with logarithmic growth.

wR1
idx

idx w1

50 5.0
49 4.2022
48 3.5318
47 2.9683
46 2.4947
45 2.0966
44 1.7621
43 1.481
42 1.2447
41 1.0461
40 0.8792
39 0.7389
38 0.621
37 0.5219
36 0.4387
35 0.3687
34 0.3098
33 0.2604
32 0.2189
31 0.1839
30 0.1546
29 0.1299
28 0.1092
27 0.0918
26 0.0771

idx w1

25 0.0648
24 0.0545
23 0.0458
22 0.0385
21 0.0323
20 0.0272
19 0.0228
18 0.0192
17 0.0161
16 0.0136
15 0.0114
14 0.0096
13 0.0081
12 0.0068
11 0.0057
10 0.0048
9 0.004
8 0.0034
7 0.0028
6 0.0024
5 0.002
4 0.0017
3 0.0014
2 0.0012
1 0.001

A

C ( , )wR111 wR211

D ( , )wR136 wR236

B ( , )wR150 wR250

Figure 5. Schematic of two-dimensional phase plot analysis for dyadic robot interaction experiments.
Phase plots visualize statistically measured values for each interaction of Robot 1 and Robot 2, set
with meta-prior pair (wR1

idx, wR2
idx). Meta-priors increase on a logarithmic scale, as shown in the right

table. For simplicity, only layer 1 values are shown. Meta-prior values are indexed by idx, and
increasing index denotes increasing meta-prior values. Black squares labeled with (A–D) refer to four
distinct dyadic interaction pairs, which will be introduced in Section 3.2.

3.2. Selected Examples of Leading, Following, and Turn-Taking

Before delving into a detailed analysis, we show selected examples of robot interactions
that demonstrate how different types of dyadic behavior coordination emerge depending
on meta-prior pairs (wR1

idx, wR2
idx). The plots compare movement trajectories, the mean of

prior µp and posterior µq of the latent states in the first layer, and free energy F (Equation (9))
of both robots at each time step during the interaction. Each panel contains a table showing
the average free energy and KL divergence during the generation of each individual
movement pattern.

Figure 6 shows four distinct dyadic interaction behavior coordination types. In the in-
teraction in which Robot 1 is configured with a small meta-prior wR1

1 and Robot 2 with a
large one wR2

50 , Robot 2 led in generating its preferred movement pattern B after A, which
was mostly followed by Robot 1 (Figure 6 A). When both robots are configured with large
meta-priors (wR1

50 ,wR2
50 ), each robot generates its own preferred movement pattern B or C

by ignoring the movement pattern generated by the counterpart after jointly generating A
(Figure 6B). By setting the meta-priors for both robots to small values (wR1

10 , wR2
10 ), the robots

synchronized while generating preferred movement patterns B or C after jointly generat-
ing A (Figure 6C). In this case, synchronization with either B or C switched often and
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showed rather noisy movement pattern generation. Finally, medium meta-priors settings
(wR1

35 , wR1
35 ) made the synchronization with either B or C after A more stable (Figure 6D),

compared to the noisy switching behavior shown previously. Both interactions in which
switching between synchronized movements of B and C were observed, are regarded as
turn-taking (Figure 6 C,D). We provide a supplementary movie for each dyadic interaction (A-D)
in https://figshare.com/articles/media/Supplementary_Data_for_Turn-Taking_Mechanisms_
in_Imitative_Interaction_Robotic_Social_Interaction_Based_on_the_Free_Energy_Principle_/2
1674246 (accessed on 19 January 2023).
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Figure 6. Four examples of robot interactions (A–D) showing movement trajectories (six joint angles),
the mean of prior µp (black line) and posterior µq (red line) of the latent state during interaction
(Equations (4) and (5)), as well as free energy for Robot 1 (top three panels) and Robot 2 (bottom three
panels). For brevity, only 600 of 1000 time steps and neural activity for one representative neuron in
layer 1 are shown. Tables in free energy panels show the average F and the KL1-divergence in the
first network layer during each movement pattern for each robot.

These types of behavioral coordination emerged dynamically through different set-
tings of meta-prior pairs in free energy minimization processes during robot interactions.
The approximate posterior is inferred as being close to the prior when the meta-prior is
set to a large value. On the other hand, when the meta-prior is set to a small value, the
inferred posterior tends to differ from the prior (see the KL divergence shown in each table
in Figure 6).

Consequently, a robot set with a large meta-prior (wR2
50 ) tends to lead the counterpart

by following its own top-down prior intention, when the counterpart is configured with a

https://figshare.com/articles/media/Supplementary_Data_for_Turn-Taking_Mechanisms_in_Imitative_Interaction_Robotic_Social_Interaction_Based_on_the_Free_Energy_Principle_/21674246
https://figshare.com/articles/media/Supplementary_Data_for_Turn-Taking_Mechanisms_in_Imitative_Interaction_Robotic_Social_Interaction_Based_on_the_Free_Energy_Principle_/21674246
https://figshare.com/articles/media/Supplementary_Data_for_Turn-Taking_Mechanisms_in_Imitative_Interaction_Robotic_Social_Interaction_Based_on_the_Free_Energy_Principle_/21674246
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small meta-prior (wR1
1 ). Therefore, the counterpart follows the sensory observation rather

than its own prior intention and turn-taking between the robots (and B and C) hardly takes
place. Figure 6A upper panel shows how the inferred posterior deviates from the prior in
Robot 1 due to the small meta-prior used. This deviation is larger for the probabilistically
generated B and C movements than for A since joint generation of B or C is conflictive.

While individual meta-prior settings determine the balance between top-down prior
expectation and bottom-up posterior inference of sensation in each robot, behavior coor-
dination also depends on the meta-prior pair, which determines the relative strength for
projecting individual action intention on the actual action outcome between two robots.
When two robots with large meta-prior settings (wR1

50 , wR2
50 ) interact, an equally strong

projection of top-down intention for its own preferred movements B or C results in the
generation of preferred movements by each robot without synchronization. Figure 6B
shows how the inferred posterior is close to the prior for both robots (black lines represent-
ing the prior µp are overlapped by red lines representing the inferred posterior µq). After
jointly generating A both robots generated the preferred B or C while ignoring sensory
observation of the counterpart.

With decreasing meta-priors, sensitivity to external sensations increases. In addition,
through training of the probabilistic generation of B and C, the networks projected weaker
top-down intention and lower prior precision for B and C movements than for A (see the
KL divergence in tables in Figure 6A–D). This allows robots to increase their flexibility in
adapting their movements even to non-preferred movements. Figure 6C,D shows when two
robots are configured with equally small (wR1

11 ,wR2
11 ) or medium (wR1

36 ,wR2
36 ) values for the

meta-priors, they tend to switch between two movements frequently because the top-down
projection for preferred movements becomes weaker in both robots. Finally, with small
meta-prior settings, the robots become very sensitive to sensory observations as shown in
Figure 6C. It can be seen that the robots constantly adjust their own actions where the prior
and approximate posterior deviate not only for B and C but also for the A movements.
Given the interaction examples above, the free energy indicates the extent to which network
states are in conflict in a given situation. FR1 and FR2 for all four interaction examples are
lower when jointly generating A than when generating B or C, either synchronized or not
(see F in all tables in Figure 6). This observation is reasonable because A is equally shared
by both robots while B and C are not. In addition, we observe a decreasing KL divergence
between priors and posteriors in the first network layer KL1 with increasing meta-priors.
Here, it can be seen that the robots have a tendency to perform intended actions as a result
of a strong adaptation of the approximate posterior to the prior in which flexibility to adjust
to conflicting movements demonstrated by the counterpart is reduced.

Having developed the aforementioned qualitative understanding of mechanisms un-
derlying distinct types of behavior coordination through the observation of the selected
interaction pairs, we then attempted to comprehensively understand the emergent struc-
ture by performing extended, two-dimensional (wR1

idx,wR2
idx) phase space analyses on the

dyadic interactions.

3.3. Frequency of Generating Movement Preferences in Dyadic Robot Interactions

Figure 7 shows the phase space analysis for the probability of generating A, B, and C
movements for individual robots during a dyadic interaction. This represents the proba-
bility of generating individual movements by each robot in the dyadic interaction under
various meta-prior pairs. The percentage was calculated using the Echo State Network
(ESN) as shown in the training evaluation (Section 3.1.2). We see that regulating the
complexity term through different settings of meta-prior has almost no effect on the de-
terministically generated movement A. For all possible interaction pairs of wR1

idx for Robot
1 and wR2

idx for Robot 2, the A movement frequency was on average 49%. For B and C
movements, however, the movement frequency changed for both robots depending on
the meta-prior pair wR1

idx and wR2
idx. In interactions in which the meta-prior of Robot 1 was

set smaller than that of Robot 2 wR1
idx < wR2

idx, Robot 2 generated the preferred movement
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B more and Robot 1 generated the less preferred movement B more frequently and the
preferred C movement less frequently. For a meta-prior pair with wR1

idx > wR2
idx, this obser-

vation was reversed such that Robot 1 generated C more frequently, which reflected the
training bias, and Robot 2 generated C more frequently.

The phase space analysis for movement probability for B and C in Figure 7 shows
that our findings are symmetric for Robots 1 and 2. The diagonal line of the phase space,
described by wR1

idx = wR2
idx, divides two regions where the robots generate their preferred

movements above and below the diagonal and the less preferred movement on the other
side. There is one exception to this observation. In regions where both robots are configured
with small meta-priors, preferred as well as less preferred movements were generated at
similar rates (the bottom left of the phase plots in B and C in Figure 7). Additionally, when
both robots are configured with large meta-priors (passing a certain threshold), each robot
generates its own preferred movement more frequently (by ignoring movement generated
by its counterpart).

dynamic interac,on 
percentage of movements of 
robot 1 and robot 2  
(1000 time steps)
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Figure 7. Phase plots showing the probability of generating each movement A, B, and C for Robot
1 (top) and Robot 2 (bottom). Colors correspond to the overall percentage for individual primitive
movements that were performed during one interaction, ranging from 0% to 50%.

3.4. Synchronization in Dyadic Robot Interaction

In order to examine to which extent changes in rates for generating preferred move-
ments are a consequence of adaptation to the counterpart by imitative synchronization, we
analyzed the movement synchronization percentage between two robots for each move-
ment. When conflicting movement preferences are present between two interacting robots,
the synchronization rate between the two robots for those movements provides a measure
of how much each robot can follow the counterpart’s movements by adapting its own
posterior belief against its prior belief.

For calculating the synchronization rate, both robot movements were converted into
sequences of movement class labels A, B, and C using the ESN (Section 3.1.2). The syn-
chronization rate of all movements was computed by comparing converted class labels
of both robots for every time step in the interaction. Time segments showing the same
movement classes were summed and then normalized by the total length. To calculate
the synchronization rate of individual movement A, B, and C, we counted time segments
in which either Robot 1 or Robot 2 performed a particular movement and normalized by
the sum of individual movements identified by the ESN, but not by the entire interaction
length. As a result, the synchronization was measured between 0%, when movements were
unsynchronized, and 100%, when movements for all time segments were synchronized.
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Figure 8 shows the phase space analysis of the synchronization rate for A, B, C, and all
movements combined in dyadic robot interaction experiments. In the case of all movements,
we find that when both robots have small to medium meta-prior settings up to w43 = 1.481,
i.e., 80% of the bottom left phase space, the robots are synchronized above 80% on average.
Above this threshold, the robots synchronize at the chance level only (Figure 8 top right of
phase plot all). To calculate the chance level synchronization, we assumed that generating
A, B, and C are independent probabilistic events A⊥ B⊥ C. We consider the probability for
Robot 1 to generate an A movement as P(AR1) = 0.5, the probability for B as P(BR1) = 0.1
and that for C as P(CR1) = 0.4. The same consideration applies to Robot 2, which is
indicated by superscript R2. Synchronization by chance over all movements can then be
calculated as follows.

P(AR1 ∩ AR2) + P(BR1 ∩ BR2) + P(CR1 ∩ CR2) =

P(AR1)× P(AR2) + P(BR1)× P(BR2) + P(CR1)× P(CR2) =

0.5× 0.5 + 0.1× 0.4 + 0.4× 0.1 = 0.57

(10)
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Figure 8. Phase plots showing the synchronization rates of Robot 1 and Robot 2 for A, B, C, and all
actions combined.

By looking at synchronization rates for probabilistically generated movements B and
C, it can be seen again that the diagonal line in the phase space appears to divide the
interaction behavior patterns into roughly two types. In settings in which wR1

idx > wR2
idx, the

robots synchronize more on C, the movement preferred by Robot 1, and de-synchronize on
Robot 1’s less preferred movement B (Figure 8 upper triangles in the phase plots B and
C). This observation is symmetric with that in the region wR1

idx < wR2
idx such that frequent

synchronization is observed with movement B preferred by Robot 2 and de-synchronization
with C (Figure 8 lower triangle in the phase plots B and C). There are two exceptions to this
observation. First, synchronization is lowest at an average 15% when both robots have large
meta-priors that strongly affect action intention, indicating that the robots are ignoring
each other (Figure 8 B and C top right of phase plots). Second, in the case in which both
robots were set with equally small to medium meta-prior values, the robots synchronized
in generating movements B and C nearly equal (Figure 8 bottom left of phase plot B and C),
despite having conflicting training biases for those movements. In this region, it seems that
both robots interact by taking turns leading and following. To confirm this assumption, we
examine turn-taking in generating B or C after generating A in the following subsection.

3.5. Frequency of Turn-Taking between Two Preferred Movements

In dyads in which two robots with equally small or medium meta-priors interact,
the movement percentage analysis (Section 3.3) indicated the mostly equal probability in
generating B and C movements for both robots. In addition, the synchronization analysis
(Section 3.4) showed an equally high synchronization rate for B and C in these regions.
From this, we deduce that, in these regions, after jointly generating A, the robots frequently
switch synchronizations between carrying out B and C movement. We call this phenomena
turn-taking. To evaluate this idea, we calculate how often the robots take turns, between
generating B and C movements after generating an A movement during the interaction.
To compute the frequency of turn-taking, when synchronization occurred with these two
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movements and then the synchrony switched from one movement to the other, this was
counted as one turn-taking.

Figure 9 shows the phase space analysis of the frequency of turn-taking between B
and C movements. As we presumed, turn-taking became most frequent during interactions
when both robots were set with equally small to medium values for the meta-prior. This
is because the top-down projection for own preferred movements are weakened in both
robots (cf. Figure 6C,D for strength of top-down action intention). In other regions of the
phase space, the turn-taking frequency was significantly lower. Those regions include when
both meta-priors wR1

idx and wR2
idx were configured with large values. With such settings,

the robots demonstrated an ignoring behavior because of the strong competition with
an equally strong projection for their own preferred movements (cf. Figure 6B). Other
regions with low turn-taking frequencies were observed when one robot set with a small
meta-prior value interacted with a robot with a large meta-prior. In those interactions the
robots developed a leader-follower relationship (cf. Figure 6A). Next, we further quantified
coordination of the dyadic behavior, especially for turn-taking, by measuring the transfer
entropy between two robots.

dynamic interac,on 
turn taking 
 of robot 1 and robot 2  
(1000 time steps)

B and C switch [#] 50 

40 

30 

20 

10 

1
wR1

idx

wR2
idx

50 

40 

30 

20 

10 

1

Figure 9. Phase space analysis of the frequency of turn-taking between preferred movements of B
and C.

3.6. Information Flow Supports Leading, Following, and Turn-Taking Behaviors

To further quantify behavior coordination, we measured information flow between
the two robots during dyadic interactions. Information flow was measured using transfer
entropy (TE). TE is an information-theoretical concept that was initially introduced by
Schreiber [45]. It allows for an estimation of the direction of influence between two time
series by measuring how past information of source X reduces the uncertainty about the
future of target Y. The TE method found broad application in various research disciplines
to study cognitive phenomena, including neuroscience [46], social sciences [47], and HRI
studies [48].

In order to estimate how the behavior of one robot affects the behavior of the other
during the interaction, or in other words determining whether a robot causes the behavior
of the other robot, we used Equation (11) to calculate transfer entropy TEX→Y as follows.

TEX→Y =
T

∑
t=1

p(Yt+1, Y(k)
t , X(l)

t ) log
p(Yt+1|Y

(k)
t , X(l)

t )

p(Yt+1|Y
(k)
t )

(11)

Xt and Yt represent the values of source X and target Y at time t, and Yt+1 represent
the value at time step t + 1 respectively. l and k are parameters used to configure past
time steps of a time series to estimate TE. To measure how movements of Robot 1 affect
movements of Robot 2, we calculated TER1→R2 by replacing the source and target processes
X and Y with movement class trajectories (generated by the ESN) of Robot 1 (R1) and
Robot 2 (R2) respectively. The information flow of Robot 2 toward Robot 1 TER2→R1 was
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measured analogously. To compute TE, we used the Python library pyinform [49] and
configured parameters l and k with 1.

Figure 10 shows the information flow TER1→R2 and TER2→R1 plotted in the meta-prior
pair phase space using all robot interaction experiment results. Consistent with behavioral
observations in previous sections, with wR1 > wR2 the movements of Robot 1 show causal
effects on the behavior of Robot 2, whereas in the interaction with the meta-prior pair set
as wR1

idx < wR2
idx, Robot 2 influences Robot 1. In regions with large meta-prior values set

for both robots, both directions of information flow between two robots approach 0. This
means that with equally strong top-down projection of individual action intention, the
robots do not influence each other.

dynamic interac,on 
transfer entropy 
robot 1 and robot 2  
(1000 time steps)

transfer entropy TER1→R2 TER2→R1
50 

40 

30 

20 

10 

1
wR1

idx

wR2
idx

50 

40 

30 

20 

10 

1

Figure 10. Dyadic robot interaction phase spaces showing transfer entropy TER1→R2 from Robot 1 to
Robot 2 (left) and TER2→R1 from Robot 2 to Robot 1 (right).

On the other hand, when meta-priors are set to small to medium values, TER1→R2
and TER2→R1 show mostly equal magnitude. This suggests that each robot almost equally
influences, or causes, the behavior of the other, throughout the interaction at this setting.

3.7. Phase Space Structure of Dyadic Behavior Coordination

In the phase space analyses above, we found that dyadic interaction behaviors in
a wide range of meta-prior interaction pairs (wR1

idx,wR2
idx) for Robot 1 and Robot 2 can

be categorized mainly into three distinct types. To identify such phase space structure,
synchronization analyses of B and C movements were used as a basis (Figure 8).

First, we considered B and C synchronization and plotted only those regions where
the synchronization frequency was higher than the chance level (shown in Appendix A
Figure A1). Those two resulting phase space regions overlapped. The region that was
neither for B or C synchronized above the chance level was extracted as the ignoring
region. Next, the overlapping region where B and C were synchronized above the chance
level, was extracted as the turn-taking region. Finally, regions where only B or C was
synchronized above the chance level, were extracted as leading regions for Robot 1 and
Robot 2, respectively. Figure 11 shows the resultant phase space structure representing the
emergent dyadic behavior coordination.

The obtained phase space structure suggests that, when a behavior is synchronized at
more than chance level for either a B or C movement in the region where one Robot has a
stronger top-down projection of action intention, then this robot then becomes the leader.
In particular, in interactions in which wR1

idx > wR2
idx, Robot 1 led the interaction, and Robot 2

followed (Figure 11 light gray area top left), and vice versa, Robot 2 led when wR1
idx < wR2

idx
(Figure 11 medium gray area bottom right). In regions in which both robots have large
meta-prior settings, they ignored each other (Figure 11 white area top right).
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Figure 11. Schematic of phase space structure indicating four distinct types of behavior coordination
in dyadic robot interaction context.

Finally, with equally small to medium meta-prior settings, the robots demonstrated
turn-taking behavior by switching between leading and following (Figure 11 in the dark
gray area in the bottom left and along diagonal). The region of high-frequency turn-taking
shown previously overlaps with the obtained turn-taking region. The transfer entropy
analysis showed that there is positive information flow in both directions in this region.
Figure 10 (bottom left with small meta-prior and medium meta-prior along the diagonal
wR1

idx = wR2
idx) shows that information flow (the causal relationship between the robot

behaviors) is equally strong for small and medium meta-prior settings. We suggest that
turn-taking emerged dynamically through the optimization of free energy minimization
in conflicting situations during the imitative interaction. We conceptualize this as co-
regulation of the optimization process, i.e., competing strength in projecting own action
intention within the coupled action-perception loop, leads to spontaneous or random
turn-taking of leader and follower roles by the two robots.

3.8. Turn-Taking by Joint Intention

Turn-taking observed so far in our experiment is generated by noise perturbation
in two robots that are coupled with an action-perception loop with equally competing
action intentions. Therefore, spontaneous turn-taking occurs accidentally or randomly.
This type of turn-taking may be qualitatively different from that developed by both agents
with joint intention. This idea of more or less mutually agreed upon turn-taking in the
subsequent turn was first proposed by [50] and further supported by studies investigating
conversational turn-taking in biological agents [51,52].

In considering possible mechanisms for turn-taking with such a joint intention, we
hypothesize that turn-taking could take place if the meta-priors of two agents oscillate
slowly in anti-phase. Following Friston and Frith [32], we hoped to simulate turn-taking
with a precise meta-prior in which the precision of prior beliefs relative to sensory predic-
tion errors (i.e., accuracy) varied periodically in anti-phase. In other words, when ‘you’
are attending to our co-constructed sensations, ‘I’ attenuate them; therefore, my prior
beliefs about movement or communication are realised. Conversely, when ‘I’ am attend-
ing, ‘you’ are attenuated and generating sensory evidence for our joint beliefs about the
dyadic interaction.

It is presumed that when the relationship of a low vs. high interaction meta-prior pairs
switches to high vs. low, turn-taking between two agents should occur, as a consequence
of switching the strength of action intention. The following experiment confirms this
idea. In this experiment, meta-priors of two robots (wR1,wR2) were designed to oscillate
sinusoidally in anti-phase between thresholds 0.0048 and 1.0461. These thresholds were
designed to comprise small meta-prior values that result in weak action intention and large
values which lead to strong action intention. At the onset of an interaction, both meta-priors
in the first network layer were set equal to 0.5255. The values of meta-priors in the second
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and third layers were increased by a factor of 10 (analogous to the previous interaction
experiments). The interaction lasted for three periods of oscillation, every 1280 time steps
in length, plus an 80 time steps onset at the beginning of the interaction, with a total of
T = 3× 1280 + 80 = 3920 time steps.

Figure 12 shows an example of the resultant dyadic interaction. A supplementary
robot interaction movie can be seen in (E) in https://figshare.com/articles/media/
Supplementary_Data_for_Turn-Taking_Mechanisms_in_Imitative_Interaction_Robotic_
Social_Interaction_Based_on_the_Free_Energy_Principle_/21674246 (accessed on 19
January 2023). In this interaction profile, stable turn-taking emerged, accompanied
by oscillation of meta-priors. In time segments in which wR1 > wR2, Robot 1 led the
interaction by stably generating its preferred C movement, which was followed by Robot
2 (Figure 12 time segments [1360:2000] and [2640:3280]). When the pair of meta-priors
shifted to wR1 < wR2, Robot 2 started to lead the interaction by generating its preferred B
movement after A, which was followed by Robot 1 (Figure 12 time segments [2000:2640]
and [3280:3920]).
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Figure 12. Dyadic robot interaction profile with meta-priors wR1 and wR2 oscillated in anti-phase.
The first and third panel show robot movements in terms of joint angle trajectories for Robot 1 (top)
and Robot 2 (bottom). The middle panel shows how the meta-prior oscillates in anti-phase for
the two robots. Along with the meta-prior, the middle panel shows information flow in terms of
transfer entropy TER1→R2 and TER2→R1 over a sliding window of 320 time steps, i.e., 1

4 of the sine
wave period.

To investigate how information flow develops in the current experiment, we computed
transfer entropy TER1→R2 and TER2→R1 (Equation (11)) over a sliding window of 320 time
steps, i.e., 1

4 of one period sine wave oscillation. Specifically, these plots show the transfer
entropy for a sliding window [t− 320 : t] at every time step t, until the last time step T with
[T− 320 : T]. Figure 12 (middle panel) confirms that the direction of information transfer
shifts while the meta-priors mutually oscillate in anti-phase. Information tends to flow
from the robot with a larger meta-prior to the robot with a smaller meta-prior.

In summary, turn-taking between the two robots and their preferred movements
B and C was generated periodically along with meta-prior values that slowly oscillated
in anti-phase. Periodic turn-taking furthermore coincided with switching the direction of
information flow. However, one essential question remains. How can the joint oscillation of
meta-priors in two robots autonomously develop through mutual adaptation rather than
being pre-designed by experimenters?

4. Discussion

This study investigated how a leader-follower relationship and turn-taking can de-
velop in social interaction. In particular, we asked how the roles of leader and follower are
dynamically assigned and how they switch during the imitative interaction. We approached
this question by using neurorobotic experiments based on the free energy principle. We

https://figshare.com/articles/media/Supplementary_Data_for_Turn-Taking_Mechanisms_in_Imitative_Interaction_Robotic_Social_Interaction_Based_on_the_Free_Energy_Principle_/21674246
https://figshare.com/articles/media/Supplementary_Data_for_Turn-Taking_Mechanisms_in_Imitative_Interaction_Robotic_Social_Interaction_Based_on_the_Free_Energy_Principle_/21674246
https://figshare.com/articles/media/Supplementary_Data_for_Turn-Taking_Mechanisms_in_Imitative_Interaction_Robotic_Social_Interaction_Based_on_the_Free_Energy_Principle_/21674246
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investigated how regulating the free energy complexity term during online inference (us-
ing a so-called meta-prior, w) affects behavioral coordination in synchronized imitative
interactions of two robots. Our simulation experiments showed that diverse interactive
behaviors can emerge through the co-regulated optimization of free energy minimization
achieved through an action-perception loop coupled in two robots.

Our comprehensive phase space analysis of more than 12.500 synthetic social interac-
tion experiments showed that dyadic behavior coordination varies depending on the setting
of meta-prior pairs, which determine the effective strength of top-down intention projected
on bottom-up inference of sensation. Given a wide range of individual robot dynamics, we
identified a phase space structure with three distinct types of dyadic behavior coordination.

When one robot was configured with a large meta-prior and its counterpart with a
small one, the former tended to lead the interaction by projecting its preferred movement
strongly to determine future outcomes. The counterpart, on the other hand, just followed it,
since its preferred movement was only weakly projected. In the analysis of information flow
using transfer entropy, we confirmed that information flows from the leader to the follower.
When both robots were configured with large meta-priors, they ignored each other and
followed their own prior intentions. This is because the prior intention of generating the
preferred movement is strongly projected in both robots. Finally, with equally small or
medium meta-prior configurations in both robots, imitative interaction took turns between
two preferred movements as synchronized between the robots. The individual robot
behavior showed a rather noisy pattern when the meta-prior was set with a small value for
both robots. However, when the meta-priors were increased to a medium value in both
robots, turn-taking tended to switch with more stable movement patterns, because the
top-down prior intention regulated the bottom-up inference more strongly. This type of
stable turn-taking is the result of co-regulation by two interacting robots in their online
inference processes. Our analysis using the transfer entropy indicated that equally positive
information flows exist in both directions between the robots. Here, noise perturbation of
both robots with equally competing action intentions results in rather random switching of
leader and follower roles.

Masumori et al. [48] found a similar type of spontaneous turn-taking behavior in
human-robot imitative interactions. Those authors showed that humans or robots adapted
to unexpected changes in the behavior of the imitating counterpart by spontaneously
switching roles of leader and follower by analyzing the direction of influence (measured
as transfer entropy) throughout the interaction. Similar spontaneous turn-taking was
observed in social interaction studies in which behavior coordination emerged through
spontaneous adaptation of human interactants [47] as well as simulated agents [15].

Beyond random, spontaneous turn-taking behavior, we further showed that turn-
taking of leader-followers with joint intentions becomes possible when the meta-priors of
both robots are designed to oscillate slowly in anti-phase. In such interactions, a shift in
information flow (and causality) during robot interactions went along with shifting meta-
priors and their effects on the strength of action intention projected. Therefore, turn-taking
of leaders-followers between two robots became sequential rather than random.

While most turn-taking literature involving human agents has investigated the timing
of stopping and starting in verbal conversations [50–52], Mlakar et al. [53] highlighted
the importance of non-verbal behavioral cues that accompany those conversations. In
particular, the possibility of two different types of turn-taking mechanisms, either by
random perturbation or by sequential switching enabled by joint intention, is further
supported by Riest et al. [51], who suggested that there are two possible ways to assign
and switch roles in a turn-taking context. Roles are assigned either based on anticipation,
where the follower makes predictions about the length of the turn in order to take the
lead (anticipatory approach) or alternatively based on reaction, such that the follower
does not anticipate, but reacts to signals from the leader (signaling approach). While
the random/spontaneous turn-taking shown in our earlier experiments might be close
to the signaling approach, the role switching by joint intention suggested in the second
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experiment using slowly oscillating meta-priors might be close to the anticipatory approach,
in which two agents agree upon taking turns in leading and following.

In the introduction, we introduced the notion of sensory attenuation as the neuro-
biological homologue of increasing prior precision (i.e., the meta-prior). Fluctuations in
sensory attenuation can therefore be seen as essential for turn-taking, namely, attending
and then ignoring the sensory consequences of co-constructed action is required. It is
interesting to note that periodic fluctuations in sensory attenuation may also be essential
for active sensing in general. A key example here is saccadic suppression [54–56]. Saccadic
suppression can be read as the suspension of sensory precision during eye movements
that enable prior expectations about saccades to be realised by the oculomotor system.
Following each saccade, sensory attenuation is reversed enabling the foveal visual input to
drive belief-updating in the visual hierarchy.

This interpretation of the meta-prior—as mediating sensory attenuation—is potentially
important in translational neurorobotics. This is because a failure of sensory attenuation
has been posited for many psychiatric conditions [57–60]. Perhaps the best example here
is autism. In severe cases of this condition, it may be that there is a failure to modulate
the meta-prior; leading to a persistent failure of sensory attenuation and an inability to
disengage from the sensorium [61–63]. This suggests that people with severe autism may
find it very difficult to engage in turn-taking and, indeed, resort to avoidance behaviours
that render self generated input highly predictable—because they cannot attenuate or
ignore the proprioceptive consequences of their action. This may be an explanation for the
self stimulation (stimming) behaviour characteristic of some patients with severe autism.

One crucial limitation in the current study is that the settings of meta-prior pairs for
both robots were provided by the experimenters. Future studies should investigate possible
adaptation mechanisms for meta-priors during interactions that can achieve an optimal
balance between the top-down prior projection and the bottom-up posterior inference of
sensory reality, depending on the assigned tasks. In particular, it is worth considering
adaptation mechanisms that could develop leader-follower turn-taking with joint intention
or mutual agreement. One plausible approach is to extend the current free energy formula,
such that extended free energy can be minimized when turn-taking with joint intention
is developed, so that the meta-priors of two robots will be treated as learnable variables.
Such investigation is left for future studies.
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Appendix A

Deriving the Phase Space Structure of Dyadic Behavior Coordinationresults appendix
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Figure A1. Phase plots where B and C movements are synchronized between two robots above
chance level. Overlapping the resulting plots allows to derive a phase space structure indicating
distinct types of behavior coordination in dyadic robot interaction context.
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