
Citation: Ren, J.; Song, D.; Wu, H.;

Wang, L. Lossy P-LDPC Codes for

Compressing General Sources Using

Neural Networks. Entropy 2023, 25,

252. https://doi.org/10.3390/

e25020252

Academic Editors: T. Aaron Gulliver,

Jun Chen and Sadaf Salehkalaibar

Received: 28 November 2022

Revised: 14 January 2023

Accepted: 29 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Lossy P-LDPC Codes for Compressing General Sources Using
Neural Networks
Jinkai Ren 1 , Dan Song 1 , Huihui Wu 2 and Lin Wang 1,*

1 Department of Information and Communication Engineering, Xiamen University, Xiamen 361005, China
2 Department of Electrical and Computer Engineering, McGill University, Montreal, QC H4H 1R3, Canada
* Correspondence: wanglin@xmu.edu.cn

Abstract: It is challenging to design an efficient lossy compression scheme for complicated sources
based on block codes, especially to approach the theoretical distortion-rate limit. In this paper, a
lossy compression scheme is proposed for Gaussian and Laplacian sources. In this scheme, a new
route using “transformation-quantization” was designed to replace the conventional “quantization-
compression”. The proposed scheme utilizes neural networks for transformation and lossy pro-
tograph low-density parity-check codes for quantization. To ensure the system’s feasibility, some
problems existing in the neural networks were resolved, including parameter updating and the
propagation optimization. Simulation results demonstrated good distortion-rate performance.

Keywords: lossy compression; neural networks; general sources; P-LDPC codes; distortion-rate
performance

1. Introduction

It is known that low-density parity-check (LDPC) codes have capacity-approaching
performance as channel codes [1,2]. As a consequence, LDPC codes have been widely
used in modern communication standards and in industrial applications. To simplify the
structure, more constructive protograph LDPC (P-LDPC) codes are introduced with lower
decoding complexity [3]. Furthermore, P-LDPC codes have good coding properties, and
they can be easily optimized by convergence analysis of mutual information [4].

The duality between the lossy source coding and channel decoding is found with the
compression of the Bernoulli sources [5,6]. Existing works show that LDPC codes have
been developed for compressing the binary symmetric sources [7,8]. For instance, the belief
propagation (BP) and its modifications are employed to be good candidates for lossy source
coding [9,10].

Following this fact, more constructive P-LDPC code was introduced to replace the
LDPC code. In [11], the BP algorithm based on the P-LDPC code was firstly proposed to
compress the binary source with good performance. Then, Ref. [12] demonstrated the
P-LDPC-based encoding algorithm can simultaneously overcome the source-compression
distortion and channel-noise impact. Furthermore, the BP based on the P-LDPC code was
firstly used for Gaussian source compression in [13]. In these cases, one P-LDPC code
could be used simultaneously in source coding and channel coding to implement different
functions. This is friendly to hardware manufacturing by reusing the P-LDPC decoding
chip.

However, the aforementioned conventional algorithms and methods are complicated
and time-consuming. It should be noted that the BP algorithm needs more iterations in
the coding procedure. Moreover, the “quantization-compression” scheme is complicated,
including two steps; see [13]. First, the Gaussian source is quantized to a binary sequence
by using a high rate quantizer. Then, the binary sequence is compressed by P-LDPC codes.

It should be noted that the lossy compression inevitably brings bit errors, and each
quantized bit contains different information. This uneven distribution of bit information

Entropy 2023, 25, 252. https://doi.org/10.3390/e25020252 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020252
https://doi.org/10.3390/e25020252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5374-2476
https://orcid.org/0000-0002-4096-3333
https://orcid.org/0000-0002-1097-3792
https://orcid.org/0000-0002-6698-129X
https://doi.org/10.3390/e25020252
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020252?type=check_update&version=2

Entropy 2023, 25, 252 2 of 15

results in large distortion in the source reconstruction. One solution is to use the multilevel
coding (MLC) with set partitioning and rate allocation at different levels to homogenize
distortions [13]. However, the MLC still has some problems. First, the MLC is more complex
than the single-level coding structure. Second, the set partitioning cannot completely
homogenize distortions by increasing coding levels. Third, it is difficult to find an optimal
rate-allocation scheme. Table 1 briefly describes the mentioned literature, and Table 2
compares the methods and sources of the literature.

Table 1. Literature description.

Literature Main Contribution

Braunstein [9]
Lossy compression of binary sources using

reinforced belief propagation decoding
algorithm of LDPC

Fang [10]
Lossy compression of binary source using
sliding-window BP decoding algorithm of

LDPC

Liu [11] Use P-LDPC code for binary source
compression

Wang [12] Performance of binary source lossy
compression using P-LDPC in AWGN channel

Deng [13] Use P-LDPC code for Gaussian source
compression

Proposed scheme

Designed the RMD algorithm, combining the
neural network with P-LDPC, and realized the

lossy compression of general information
sources

Table 2. Literature comparison.

Literature LDPC Type Method Sources

Braunstein [9] LDPC RBP Binary source

Fang [10] LDPC sliding-window BP Binary source

Liu [11], Wang [12] P-LDPC RBP Bianry source

Deng [13] P-LDPC MLC and RBP Gaussian source

Proposed scheme P-LDPC Tranformation and
RMD General source

To conquer the aforementioned problems, a new route of “transformation-quantization”
is proposed to design an efficient lossy compression based on P-LDPC codes. With the rapid
development of deep learning, neural networks are used in a variety of tasks due to their
excellent ability for information extraction, and they are used in data compression fields
such as image and video compression [14–16]. The authors of [17] optimized autoencoders
for lossy image compression, and the paper [18] presents a learned image compression
system based on generative adversarial networks. Moreover, the paper [19] proposes an
enhanced invertible encoding network with invertible neural networks to mitigate the
information-loss problem for better compression. Recently, the diffusion model is also used
in image compression fields [20]. In the aforementioned papers, the image data are modeled
as the Gaussian source. To extend the source properties, the general source is considered to
be compressed by the neural networks in this work. Here, the “transformation-quantization”
scheme combines neural networks and lossy P-LDPC (NN-LP-LDPC) codes, as shown in
Figure 1, where the transformation using neural networks and quantization using lossy
P-LDPC codes modules are unified to be the encoder.

Entropy 2023, 25, 252 3 of 15

Transformation Quantization
𝒔

Feedback

Reconstruction
𝒔′ 𝒒

𝒒

ො𝒔

Encoder Decoder

Figure 1. The “transformation-quantization” route based on the NN-LP-LDPC system.

In Figure 1, the encoder includes the transformation and quantization, and there is
feedback from quantization module to transformation module. The decoder contains the
source reconstruction. Here, the neural networks are employed in the transformation
and reconstruction modules, and the quantization is designed with a restrict minimum
distortion (RMD) algorithm based on the P-LDPC code. In this encoder, the transformation
performs a nonlinear conversion on the continuous sequences, and the quantization con-
verts the continuous sequences into binary sequences. In the decoder, the binary sequences
are reconstructed as continuous sequences.

Some key issues are resolved by the NN-LP-LDPC system. First, the conventional
BP algorithm cannot be directly used for compressing continuous sources, since it will
bring larger distortion. The RMD algorithm is proposed to improve the quantizer. Second,
neither the BP nor the RMD has an index; thus, the source is restored without reference.
The powerful function-fitting ability of the neural networks serves for the reconstruction
to overcome this problem. Third, the quantization function is difficult to be implemented
by the neural networks. Since the derivative function of the quantizer is almost zero,
the gradient backpropagation is interrupted, and the coefficients of the neural networks
cannot be updated. To address the problem, a new derivative function is evaluated to
successfully realize the gradient backpropagation from the previous layer. Finally, the
adaptation of the compression rate between the quantization and transformation modules
is also important. A multi-level feedback mechanism is designed to provide the prior
output as the input of the next quantizer. In this way, the sequence length increases with
the growing number of quantizers. In addition, the compression rates can be changed by
the mask in the RMD algorithm.

The main contributions are summarized as follows.
(1) The NN-LP-LDPC system is proposed for compressing general continuous sources,

which complements the vacancy of continuous source compression based on binary LDPC
codes. Furthermore, the proposed system is robust to different source distributions.

(2) A new route of “transform-quantization” is designed for the NN-LP-LDPC sys-
tem, which efficiently replaces the conventional “quantization-compression” scheme. The
simulation results validate the usefulness of new route. In addition, they provide a good
reference to diversely process different kinds of sources.

(3) The P-LDPC code was efficiently combined with the neural networks, by which
the emerging technical problems were successfully resolved. This enormously enriches the
designing methodology for the source coding based on the P-LDPC code.

The rest of this paper is organized as follows: Section 2 introduces the proposed
scheme. Some key techniques and system optimization are discussed in Section 3. The
simulation results and analyses are shown in Section 4. Section 5 concludes this work.

2. NN-LP-LDPC System

As shown in Figure 1, a memoryless continuous sequence s of length n is input into the
transformation module, and its output is s′ of length mn, where m and n are integers. Then,
the continuous sequence s′ is quantized as a binary sequence q with the same length mn. It
should be noted that the quantized q is also the feedback information to transformation
module. Next, the updated q seves as the output of the encoder, and it is used to reconstruct
the source ŝ.

Entropy 2023, 25, 252 4 of 15

2.1. Transformation Module

The encoder consists of the transformation and quantization modules that are detailed
in Figure 2. First, the continuous sequence s = {s1, s2, . . . , sn} is input, and it is transformed
as s′i = {s′i,1, s′i,2, . . . , s′i,n}, where i ∈ [1, m], and [a, b] represents the set of integer numbers
from a to b. The sequence s′i is sent to the ith quantizer Qi. Then, the continuous sequence
s′i is quantized as a binary sequence qi = {qi,1, qi,2, . . . , qi,n}. For i ∈ [1, m− 1], each qi is fed
back to the MLP of the transformation module, and q′i is the result. The consolidated s and
q′i are as the input of the CNN, and the output s′i+1 is as the input of i + 1th quantizer Qi+1.

𝒔 𝒒1

𝒒2

𝒒𝑚

… …
𝒒

Quantization

𝒔′1

𝒔′2

𝒔′𝑚

𝑄1

𝑄2

𝑄𝑚

Transform

MLP

CNN

CNN

Encoder

… …

MLP

MLP+

+
𝒒′1

𝒒′2

Figure 2. The encoder of proposed scheme: the transformation module contains MLP and CNN
networks, and the quantization module consists of multiple quantizers.

The transformation module contains the multi-layer perceptron (MLP) and the convo-
lutional neural network (CNN). An MLP provides a nonlinear transformation to change
s into s′i, and the quantization function Qi obtains the corresponding qi. After that, qi is
returned to another MLP and transformed to q′i, and then it is appended on the s, which is
presented as:

s ⊕ q′i ⇒


s

q′1
...

q′i

, (1)

Then, the appended result increases one dimension of the channel, and it is sent to CNN as
the input. The resulting s′i+1 is as the input of Qi+1, and qi+1 is acquired.

As shown in Figure 3, the MLP is the structure of the fully-connected (FC) layer,
including an input layer, an output layer and a hidden layer. The FC layer is expressed as:

Y = XWh + bh, (2)

where X ∈ Rp×n is a small batch of inputs; p represents the batch size; the dimensions of
the input are n; Y ∈ Rp×k is the output of dimension k; Wh ∈ Rn×k and bh ∈ R1×k are the
weight and bias parameters, respectively; and R indicates the set of real numbers. It should
be noted that X and Y refer to the input and output variables in general, respectively.

The activation functions are used to implement nonlinear transformations in the
hidden layers. For the MLPs, the active function of the hidden layer is ReLU, which is
shown as follows:

ReLU(x) = max(x, 0) (3)

Generally, the CNN contains several convolution layers. It is commonly used in the
field of computer vision with a 2D stride and kernels [21,22], and the 1D convolution
is confronted with the sequence data [23]. Furthermore, the convolution kernel larger
than one is designed to increase the receptive field [24,25]. However, the memoryless
continuous source has no spatial locality; hence, a larger field is unnecessary. In addition, it

Entropy 2023, 25, 252 5 of 15

is convenient that the CNN in the transformation module processes multi-channel data,
where the kernel size is one and the pooling layer is not needed.

…

…

Input layer Hidden layer

𝑠1

𝑠2

𝑠𝑛−1

𝑠𝑛

ℎ2

ℎ3

ℎ𝑘−1

ℎ𝑘

ℎ1

…

𝑠′1,1

𝑠′1,2

𝑠′1,𝑛−1

𝑠′1,𝑛

Output layer

MLP

𝒔 𝒔’1

Figure 3. The MLP with the structure of the FC layer.

Considering the aforementioned facts, the CNN only has a 1D convolutional layer
with kernel size one, as shown in Figure 4. Similarly to the MLP, the CNN has one hidden
layer and uses ReLU as the active function. Actually, for each yl,i ∈ y, the convolution layer
with kernel size one is calculated as:

yi,l =
c

∑
j=1

kl xi,j + bl , (4)

where y is the output, yi,l is the ith y in the lth out-channel, x is the input with channel
c, xi,j is the ith x in the jth in-channel, k represents the convolution kernel, kl is the lth
channel of k and bl is the bias. This function can be seen as a FC layer operation in the
channel dimension. Thus, in the transformation module, it is more convenient for the CNN
to process the multi-channel data with fewer parameters and lower complexity than the
FC layer.

Convolution

kernel

CNN

𝒔
𝒒1
′

⋮
𝒒𝑘−1
′

𝒔𝑘
′

Convolution

kernel

Figure 4. The CNN with 1D convolution layer, and its kernel size is 1.

Entropy 2023, 25, 252 6 of 15

2.2. Quantization

For a binary source, the BP algorithm is usually employed as the quantization for
source compression. The principle of the BP quantization is based on the LDPC codebook
satisfying HCT = 0 in GF(2), where C is the correct result, and the codebook H is the parity
check matrix of the LDPC code.

However, the continuous source is quite different from the codebook of GF(2). If the
continuous sequence is directly compressed by the BP based LDPC code, it will generate a
larger distortion. Hence, a new quantizer based on the RMD strategy is designed to replace
the BP. The RMD strategy is described in Algorithm 1. In this condition, the compression
distortion is minimized to satisfy HCT = 0.

Firstly, the symbols in Algorithm 1 are defined as follows:
s : the input source data;
iter: the maximum number of iterations;
λ : the allocation of cost weight between variable and check nodes;
m : the mask vector, for which the masked nodes are set to zero;
q : the quantized s, and also the output of the RMD algorithm;
(·)v, (·)c : the subscripts represent variable and check parts of symbol (·), respectively;
g(·) : the generation function of the LDPC code;
coe, map: the coefficients of the RMD algorithm, and map contains map0 and map1;
fc: the cost vector of each node, and it contains fcs and fct;
V , C : the sets of variable and check nodes, respectively;
V (k) : the variable nodes connected with the k-th check node;
C (k) : the check nodes connected with the k-th variable node;
lr: the learning rate of the training stage;
[·|·] : merging of two variables;
argmin(·) : the positioning function of the minimum element.
In addition, the map(·) function is calculated by

map(q[i]) =
{

map0[i], q[i] = 0,
map1[i], q[i] = 1.

(5)

where map0[i], map1[i] and q[i] represent the ith element of map0, map1 and q, respectively.
In Algorithm 1, the variables q and map are initialized from lines 1 to 6. The variable

coe is initialized according to map and the input mask m from lines 7 to 12. fcs and fct are
calculated from lines 13 to 17. In the while loop, qc[k] is flipped, and it is determined by
the minimum fct

c[k]. If fct
c[i] < 0, the flipping will reduce the distortion; then, qv, fcs and

fct need to be updated. From lines 29 to 31, map is updated by using the gradient descent
with learning rate lr, and it is saved for the next use at line 33. When the RDM algorithm
is not implemented at the training stage, lines 5 and 6 will be replaced by loading map,
and lines 29 to 32 will be removed. Algorithm 2 presents the cost function of the RMD
algorithm, which calculates the flip cost of each nodes and assigns them to fcs according to
coe. The flow chart of Algorithm 1 is shown in Figure 5.

Entropy 2023, 25, 252 7 of 15

Algorithm 1 RMD algorithm.

Input: H, s, iter, λ, m
Output: q
1: sv, sc ← s
2: qc ← sign(sc)
3: qv ← g(qc)
4: q← [qv|qc]
5: map← 0
6: map1 ← map1 + 1
7: coe← 1/(map0 −map1)2

8: for i in m do
9: if m[i] = 0 then

10: coe[i]← 0
11: end if
12: end for
13: fcs ← cost(q, s, coe)
14: fcs

v, fcs
c ←fcs

15: for i in C do
16: fct

c[i]← λfcs
c[i] + (1− λ)∑j∈V (i)fcs

v[j]
17: end for
18: n← 0
19: while n < iter do
20: n← n + 1
21: k← argmin(fct

c)
22: if fct

c[k] < 0 then
23: qc[k]← 1− qc[k]
24: qv, fcs, fct ← update(sv, qv, k, fcs, fct)
25: else
26: break
27: end if
28: end while
29: ŝ← map(q)
30: gradient← 2(s− ŝ)
31: map← map + gradient · lr
32: save map
33: return q

Algorithm 2 fcs = cost(q, s, coe).

Input: q, s, coe
Output: fcs

1: fcs ← 0
2: for i in q do
3: fcs[i]← coe[i] · ((s−map(1− q[i]))2 − (s−map(q[i]))2)
4: end for
5: return fcs

In the RMD algorithm, q is flipped with the minimum fct in each iteration satisfying
qH = 0. Here, the minimum fct indicates the maximum quantization error between itself
and the associated variable node; therefore, the flipping will effectively reduce the total
quantization distortion. In the training process, coe and map are updated by gradient
descent. With coe and map updating, the fct will be calculated more accurately.

Algorithm 3 presents a quick way to update qv, fcs and fct. Only if qv[i] satisfying
i ∈ V (k) is flipped, the corresponding fcs

v[i] can be updated. Then, the corresponding fct
c[j]

is refreshed by calculating fct
c[j] = fct

c[j] + (1− λ)(fcs
v[i]− t). In this case, it does not need

to recalculate qv, fcs and fct. The flow chart of Algorithm 3 is shown in Figure 6.

Entropy 2023, 25, 252 8 of 15

Start

Initialize

𝒒, map, coe, 𝑛

Calculate

fcs , fct

𝑛< iter
Choose minimum fct

𝑘 ← argmin(fct）

Update 𝒒𝑐[𝑘]
𝒒𝑐 𝑘 ← 1 − 𝒒𝑐[𝑘]

Update 𝒒𝑣, map, coe

𝑛 = 𝑛 + 1

Update map

Save map
Return 𝒒

End

Yes

No

Start

𝑖 ∈ 𝒱(𝑘)

Set

𝑖 = 0

Update 𝒒𝑣[𝑖]
𝒒𝑣 𝑖 ← 1 − 𝒒𝑣[𝑖]

Record f𝒄𝒗
𝑠 [𝑖]

𝑡 ← f𝒄𝒗
𝑠 [𝑖]

Update f𝒄𝒗
𝑠 [𝑖]

Update f𝒄𝒄
𝑡[𝑗] which

𝑗 ∈ ℓ 𝑖
𝑖 = 𝑖 + 1

Return 𝒒𝑣, fcs , fct End

Yes

No

Figure 5. The flow chart of Algorithm 1.

Algorithm 3 qv, fcs, fct = update(sv, qv, k, fcs, fct).

Input: sv, qv, k, fcs, fct

Output: qv, fcs, fct

1: for i in V (k) do
2: qv[i] = 1− qv[i]
3: t← fcs

v[i]
4: fcs

v[i] = cost(qv[i], sv[i])
5: for j in C (i) do
6: fct

c[j] = fct
c[j] + (1− λ)(fcs

v[i]− t)
7: end for
8: end for
9: return qv, fcs, fct

Start

Initial

𝒒, map, coe, 𝑛

Calculate

fcs , fct

𝑛< iter
Choose minimum fct

𝑘 ← argmin(fct）

Update 𝒒𝑐[𝑘]
𝒒𝑐 𝑘 ← 1 − 𝒒𝑐[𝑘]

Update 𝒒𝑣, map, coe

𝑛 = 𝑛 + 1

Update map

Save map
Return 𝒒

End

Yes

No

Start

𝑖 ∈ 𝒱(𝑘)

Set

𝑖 = 0

Update 𝒒𝑣[𝑖]
𝒒𝑣 𝑖 ← 1 − 𝒒𝑣[𝑖]

Record f𝒄𝒗
𝑠 [𝑖]

𝑡 ← f𝒄𝒗
𝑠 [𝑖]

Update f𝒄𝒗
𝑠 [𝑖]

Update f𝒄𝒄
𝑡[𝑗]

𝑗 ∈ ℓ 𝑖
𝑖 = 𝑖 + 1

Return 𝒒𝑣, fcs , fct End

Yes

No

Figure 6. The flow chart of Algorithm 3.

Entropy 2023, 25, 252 9 of 15

Each node i in the check matrix of the LDPC code with mask vector m[i] = 1 is filled
with s′m[i] before the RMD training. The output q is compressed as qc following qH = 0,
and it can be reconstructed by q = g(qc), where g(·) is the generation function of LDPC
code. This allows the rate r = n−k

n−m′ to be changed from (n− k)/n to 1 according to the
variable m′, where n and k are the code length and numbers of variable nodes, respectively,
and m′ represents the number of element 1 in mask vector m.

The computational complexity of the proposed RMD algorithm is

ORMD = Oinitial + Oiterate

= O(n× dv× dc) + O(t× dv× dc)

= O(n× dv× dc),

(6)

where n is the number of check nodes; t is the number of iterations satisfying t < n; and
dv and dc are the degrees of the variable and check nodes, respectively. In addition, the
number of iterations is limited to 30 in the RMD algorithm, and the BP algorithm needs
over 100 iterations. Overall, the computational and time complexities of the RMD algorithm
are both lower than those of the BP algorithm.

2.3. Decoder

The decoder structure is shown in Figure 7. Referring to the encoding scheme, q is
divided into q1 ∼ qm, and they are input into the MLP. After that, q′1 ∼ q′m are unified as
a matrix:

q′1 ⊕ q′2 ⊕ · · · ⊕ q′m ⇒


q′1
q′2
...

q′m

. (7)

Then, the joint result is sent to the CNN and reconstructs ŝ. The corresponding parameters
and structure of the CNN can be referred to from Figure 4.

MLP

MLP

MLP
𝒒

𝒒1

𝒒2

𝒒𝑚

…

+

…

CNN

Reconstruction

ො𝒔

𝒒′1

𝒒′2

𝒒′𝑚

…

Figure 7. The decoder of the proposed scheme.

3. System Optimization and Technical Details
3.1. Gradient Backpropagation

In this section, the non-differentiability problems in the RMD algorithm and the neural
network are resolved. Since the RMD algorithm is used as one layer of the neural networks,
the backpropagation of this layer needs to provide the effective gradients. In this case, the
coefficients of the neural networks are updated before the quantization according to the
gradients, so that the loss function can be minimized.

However, in the quantization procedure, the values of the derivative function are
mostly zeros. In this case, the gradient backpropagation of the neural network will be
terminated [26]. To solve this problem, an existing work considers adding random noise
to the quantization for training [14]. However, there is a larger discrepancy between the
testing and training procedures, which significantly affects the quantization results.

Entropy 2023, 25, 252 10 of 15

According to [27], a gradient expectation is theoretically computed with the finite
difference; i.e.,

d
ds

E[Q(s + u)] =
d
ds

∫ t/2

−t/2
Q(s + v)dv

= Q(s + t/2)−Q(s− t/2),
(8)

where Q(·) is the quantization function, E(·) is the expectation calculation, t is the length of
granular cells of the quantizer and the distribution follows u ∼ U (−t/2, t/2). Equation (8)
allows one to evaluate the derivative even if Q is non-differentiable. By extending the Q
function to a vector s + u, where u ∼ U (−t/2, t/2)D, and the superscript D represents the
dimension of the input vector, it has

∂

∂si
E[(Q(sss + uuu))]

= E
[

∂

∂zi
(ZZZ)|ZZZ=Q(sss+uuu)·

∂

∂si
Q(si + ui)

]
,

≈ E
[

∂

∂zi
(ZZZ)|ZZZ=Q(sss+uuu)

]
·E
[

∂

∂si
Q(si + ui)

]
.

(9)

Here, Z is an independent variable at the next layer. From Equation (8), the derivative of
the backpropagation is replaced by the following expectation:

E
[

∂

∂si
Q(si + ui)

]
= Q(si + t/2)−Q(si − t/2). (10)

By replacing the original derivative function with the expectation value, the gradi-
ents from the next layer can correctly calculate the quantization output. In this way, the
compression rate is converted in a larger interval before the quantization.

3.2. Training the Network

The proposed scheme can be seen as an end-to-end network, where the labels should
be the input continuous sequences themselves, the mean square error (MSE) loss is selected
as the loss function and Adam is the optimizer. In the network, the learning rate is set to
0.005, and the batch size is 1024; see Table 3 for details. However, if the MSE loss is only
used on the output of the total system, the network is hard to converge. It is recommended
to add the loss function to each q′i after the MLP in the transformation module, which can
speed up the network’s convergence.

Table 3. Training parameters.

Loss Learning Rate Optimizer Batch Size Number of
Epochs

MSE 5× 10−3 Adam 1024 1000

4. Simulation Results and Discussions

In this section, we take Gaussian sources following the distribution N (0, 1) as an
example. By using the MSE measurement, the distortion-rate limit [28] is expressed as

d = 2−2r, (11)

where d is the theoretical distortion, and r represents the compression rate in bits/symbol.
The check matrix of the P-LDPC code is extended by using the progressive edge-

growth algorithm [29], and the compression rate r is calculated by

r = m− 1 +
n− k

n−m′
, (12)

Entropy 2023, 25, 252 11 of 15

where m− 1 indicates that there are m− 1 quantizers, Q1 ∼ Qm−1, which are set as the
sign functions of rates 1, and the rate of Qm is n−k

n−m′ .
In Figure 8, the distortion-rate performances are analyzed based on different bench-

mark P-LDPC codes in [30], including AR3A, AR4JA and ARA codes. The extending times
were 5 and 20. It can be seen that he code after extending five times had a better distortion-
rate performance than the 20-times-extended code. That is, the fewer dimensions the check
matrix uses, the more the system’s distortion is reduced. Note that the dimensions of the
check matrix significantly increase the time consumption of the proposed scheme. Hence,
the proposed system has lower complexity by employing less P-LDPC code.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Rate(bits/symbol)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

D
is

to
rt

io
n

(M
S

E
)

Distortion-rate limit

AR4JA code with extending 5 times

AR3A code with extending 5 times

ARA code with extending 5 times

AR4JA code with extending 20 times

AR3A code with extending 20 times

ARA code with extending 20 times

Figure 8. The distortion-rate analyses based on different P-LDPC codes and extending times.

In Figure 9, the distortion-rate performance is compared for the BP and the RMD
algorithms. Three benchmark P-LDPC codes [30] were used for simulations. It is clear that
the AR3A code achieved better results, approaching the distortion-rate limit. Furthermore,
instead of the BP algorithm, the RMD algorithm using AR3A code was closer to the
distortion-rate limit. Hence, the RMD algorithm is more efficient than the BP algorithm.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Rate(bits/symbol)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

D
is

to
rt

io
n

(M
S

E
)

Distortion-rate limit

BP algorithm with using AR4JA code of extending 5 times

BP algorithm with using ARA code of extending 5 times

BP algorithm with using AR3A code of extending 5 times

BP algorithm with using AR4JA code of extending 20 times

BP algorithm with using ARA code of extending 20 times

BP algorithm with using AR3A code of extending 20 times

RMD algorithm with using AR3A code of extending 5 times

Figure 9. The distortion-rate comparison between the BP and RMD algorithms.

In Figure 10, the distortion-rate performance is shown at the high-rate regime. When
the original derivative function is replaced by the new one, the neural network obtains
correct gradients to update the coefficients. In this case, it is obvious that the simulation
with the new derivative function is closer to the distortion-rate limit. In the rate interval
from 0 to 1, these two curves approach one another, since the feedback mechanism does not

Entropy 2023, 25, 252 12 of 15

need to work. Overall, the replaced derivative function and feedback mechanism ensure
the system to work well when the rate goes higher.

0.5 1 1.5 2 2.5 3

Rate(bits/symbol)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is

to
rt

io
n

(M
S

E
)

Distortion-rate limit

NN-LP-LDPC with the replaced derivative function

NN-LP-LDPC with the original derivative function

Figure 10. The distortion-rate analyses of the proposed scheme based on the distinct derivative
functions.

In Figure 11, the proposed scheme, is further compared with the MLC system [13].
By using the AR3A code, it is clear that the proposed system brings a performance im-
provement over the MLC scheme. Even though an optimally-designed code in [13] is
implemented by the MLC system, its performance is still worse than the NN-LP-LDPC.
Therefore, the NN-LP-LDPC code is not only an efficient system for the lossy compression,
but it also has simpler structure than the MLC system.

0.5 1 1.5 2 2.5 3

Rate(bits/symbol)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

to
rt

io
n

(M
S

E
)

Distortion-rate limit

NN-LP-LDPC with AR3A codes

MLC with [13]'s codes

MLC with AR3A codes

Figure 11. The distortion-rate comparison between the NN-LP-LDPC and MLC [13] systems.

In addition, since the proposed scheme was designed based on neural networks, it
is demonstrated that the system input is applicable to a general source—for example, the
continuous sequences following Gaussian, Laplacian and other distributions. The related
simulations are shown in Figure 12. The Laplacian source follows f (x) = λ

2 e−λ|x|, and the
distortion-rate limit of the Laplacian source with the MSE distortion is [31]:

Dδ =
2

λ2 −
∆
λ

(
1 + coth

λ∆
2

)
e−

λ∆
2 , (13)

Rδ = −p′(0) log2 p′(0)− e−
λ∆
2 log2 sinh

λ∆
2

+
λ

log 2
S, (14)

Entropy 2023, 25, 252 13 of 15

where the distortion-rate limit is expressed as a parametric equation, the parametric is ∆,
∆ ∈ (0,+∞), p′(0) = 1− e−

λ∆
2 , and S is calculated by

S = 2∆ · sinh
λ∆
2

n

∑
i=0

ie−iλ∆. (15)

In our system simulation, the variance of the Laplacian source is given as 2
λ2 = 1, and λ is

set to
√

2.

0.5 1 1.5 2 2.5 3

Rate(bit/symbol)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is

to
rt

io
n

(M
S

E
)

Gaussian source distortion-rate limit

Laplacian source distortion-rate limit

NN-LP-LDPC with Gaussian source

NN-LP-LDPC with Laplacian source

Figure 12. The distortion-rate analyses of the general source, including the Gaussian and the Lapla-
cian sources.

It is clear that both the Gaussian and the Laplace sources have good performances
to approach the distortion-rate limit. Furthermore, the simulating performances of the
two types of sources were similar, which indicates that the proposed scheme has good
robustness for different source distributions.

5. Conclusions

In this paper, it is demonstrated that the new route of “transform-quantization” sig-
nificantly outperforms the conventional “quantization-compression” by using the neural
networks. This provides a different method with which to design the lossy compression
system. In addition, the P-LDPC codes were inserted into the neural networks as the NN-
LP-LDPC system, which is obviously different from the existing work. The effectiveness
of the proposed scheme was verified by simulation results. Compared with the existing
works, the proposed scheme achieved both better performance and lower complexity.
Furthermore, it has versatility and is suitable for compressing different sources. However,
due to its simple structure, one drawback is that the current scheme may not work well
for image/video compression, which is left as future work. In addition, the P-LDPC codes
used in this paper are not optimized for lossy compression. Our future work will focus on
the system optimizations, including the design of P-LDPC codebooks, the improvement of
the RMD algorithm and the design of practical neural networks.

Author Contributions: Conceptualization, D.S. and L.W.; Methodology, J.R.; Software, J.R.; Valida-
tion, D.S. and H.W.; Formal analysis, J.R.; Investigation, D.S.; Resources, L.W.; Data curation, J.R.;
Writing—original draft, J.R.; Writing—review & editing, H.W.; Visualization, D.S.; Supervision, H.W.
and L.W.; Funding acquisition, L.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number
61671395.

Conflicts of Interest: The authors declare no conflict of interest.

Entropy 2023, 25, 252 14 of 15

References
1. Gallager, R. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 21–28. [CrossRef]
2. MacKay, D.J. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 1999, 45, 399–431. [CrossRef]
3. Thorpe, J. Low-density parity-check (LDPC) codes constructed from protographs. IPN Prog. Rep. 2003, 42, 42–154.
4. Liva, G.; Chiani, M. Protograph LDPC Codes Design Based on EXIT Analysis. In Proceedings of the IEEE GLOBECOM

2007—IEEE Global Telecommunications Conference, Washington, DC, USA, 26–30 November 2007; pp. 3250–3254.
5. Gupta, A.; Verdú, S. Operational duality between lossy compression and channel coding. IEEE Trans. Inf. Theory 2011,

57, 3171–3179. [CrossRef]
6. Wainwright, M.J.; Maneva, E.; Martinian, E. Lossy Source Compression Using Low-Density Generator Matrix Codes: Analysis

and Algorithms. IEEE Trans. Inf. Theory 2010, 56, 1351–1368. [CrossRef]
7. Liveris, A.; Xiong, Z.; Georghiades, C. Compression of binary sources with side information at the decoder using LDPC codes.

IEEE Commun. Lett. 2002, 6, 440–442. [CrossRef]
8. Matsunaga, Y.; Yamamoto, H. A coding theorem for lossy data compression by LDPC codes. IEEE Trans. Inf. Theory 2003,

49, 2225–2229. [CrossRef]
9. Braunstein, A.; Kayhan, F.; Zecchina, R. Efficient LDPC codes over GF (q) for lossy data compression. In Proceedings of the 2009

IEEE International Symposium on Information Theory, Seoul, Republic of Korea, 28 June–3 July 2009; pp. 1978–1982.
10. Fang, Y. LDPC-Based Lossless Compression of Nonstationary Binary Sources Using Sliding-Window Belief Propagation. IEEE

Trans. Commun. 2012, 60, 3161–3166. [CrossRef]
11. Liu, Y.; Wang, L.; Wu, H.; Liu, S. Performance of lossy P-LDPC codes over GF (2). In Proceedings of the 2020 IEEE 14th

International Conference on Signal Processing and Communication Systems (ICSPCS), Adelaide, SA, Australia, 14–16 December
2020; pp. 1–5.

12. Wang, R.; Liu, S.; Wu, H.; Wang, L. The Efficient Design of Lossy P-LDPC Codes over AWGN Channels. Electronics 2022, 11, 3337.
[CrossRef]

13. Deng, H.; Song, D.; Miao, M.; Wang, L. Design of Lossy Compression of the Gaussian Source with Protograph LDPC Codes. In
Proceedings of the 2021 IEEE 15th International Conference on Signal Processing and Communication Systems (ICSPCS), Sydney,
Australia, 13–15 December 2021; pp. 1–6.

14. Ballé, J.; Laparra, V.; Simoncelli, E.P. End-to-end optimization of nonlinear transform codes for perceptual quality. In Proceedings
of the 2016 IEEE Picture Coding Symposium (PCS), Nuremberg, Germany, 4–7 December 2016; pp. 1–5.

15. Toderici, G.; Vincent, D.; Johnston, N.; Jin Hwang, S.; Minnen, D.; Shor, J.; Covell, M. Full resolution image compression with
recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017; pp. 5306–5314.

16. Zhang, Z.T.; Yeh, C.H.; Kang, L.W.; Lin, M.H. Efficient CTU-based intra frame coding for HEVC based on deep learning. In
Proceedings of the 2017 IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC), Kuala Lumpur, Malaysia, 12–15 December 2017; pp. 661–664.

17. Theis, L.; Shi, W.; Cunningham, A.; Huszár, F. Lossy image compression with compressive autoencoders. arXiv 2017,
arXiv:1703.00395.

18. Choi, Y.; El-Khamy, M.; Lee, J. Variable Rate Deep Image Compression With a Conditional Autoencoder. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

19. Xie, Y.; Cheng, K.L.; Chen, Q. Enhanced invertible encoding for learned image compression. In Proceedings of the 29th ACM
International Conference on Multimedia, Virtual Event China, 20–24 October 2021; pp. 162–170.

20. Yang, R.; Mandt, S. Lossy image compression with conditional diffusion models. arXiv 2022, arXiv:2209.06950.
21. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
23. Dewantara, D.S.; Budi, I.; Ibrohim, M.O. 3218IR at SemEval-2020 Task 11: Conv1D and word embedding in propaganda span

identification at news articles. In Proceedings of the Fourteenth Workshop on Semantic Evaluation, Barcelona, Spain (Online),
12 December 2020; pp. 1716–1721.

24. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
25. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

26. Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard
University, Cambridge, MA, USA, 1974.

27. Agustsson, E.; Theis, L. Universally quantized neural compression. Adv. Neural Inf. Process. Syst. 2020, 33, 12367–12376.
28. Thomas, M.; Joy, A.T. Elements of Information Theory; Wiley-Interscience: Hoboken, NJ, USA, 2006; pp. 463–508.

http://doi.org/10.1109/TIT.1962.1057683
http://dx.doi.org/10.1109/18.748992
http://dx.doi.org/10.1109/TIT.2011.2136910
http://dx.doi.org/10.1109/TIT.2009.2039160
http://dx.doi.org/10.1109/LCOMM.2002.804244
http://dx.doi.org/10.1109/TIT.2003.815805
http://dx.doi.org/10.1109/TCOMM.2012.080212.110108A
http://dx.doi.org/10.3390/electronics11203337
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386

Entropy 2023, 25, 252 15 of 15

29. Hu, X.Y.; Eleftheriou, E.; Arnold, D.M. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inf. Theory
2005, 51, 386–398. [CrossRef]

30. Divsalar, D.; Dolinar, S.; Jones, C.R.; Andrews, K. Capacity-approaching protograph codes. IEEE J. Sel. Areas Commun. 2009,
27, 876–888. [CrossRef]

31. Rajpoot, N.M. Simulation of the Rate-Distortion Behaviour of a Memoryless Laplacian Source. In Proceedings of the 4th Middle
Eastern Symposium on Simulation and Modelling (MESM 2002), Sharjah, United Arab Emirates, 28–30 October 2002.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIT.2004.839541
http://dx.doi.org/10.1109/JSAC.2009.090806

	Introduction
	NN-LP-LDPC System
	Transformation Module
	Quantization
	Decoder

	System Optimization and Technical Details
	Gradient Backpropagation
	Training the Network

	Simulation Results and Discussions
	Conclusions
	References

