
Citation: Roth, M.; Painsky, A.;

Bendory, T. Detecting

Non-Overlapping Signals with

Dynamic Programming. Entropy

2023, 25, 250. https://doi.org/

10.3390/e25020250

Academic Editor: Yuehua Wu

Received: 25 December 2022

Revised: 23 January 2023

Accepted: 27 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Detecting Non-Overlapping Signals with Dynamic Programming
Mordechai Roth 1, Amichai Painsky 2,* and Tamir Bendory 1

1 School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
2 The Industrial Engineering Department, Tel Aviv University, Tel Aviv 6997801, Israel
* Correspondence: amichaip@tauex.tau.ac.il

Abstract: This paper studies the classical problem of detecting the locations of signal occurrences in a
one-dimensional noisy measurement. Assuming the signal occurrences do not overlap, we formulate
the detection task as a constrained likelihood optimization problem and design a computationally
efficient dynamic program that attains its optimal solution. Our proposed framework is scalable,
simple to implement, and robust to model uncertainties. We show by extensive numerical experi-
ments that our algorithm accurately estimates the locations in dense and noisy environments, and
outperforms alternative methods.
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1. Introduction

This paper studies the classical problem of detecting signal occurrences in a one-
dimensional, noisy measurement. This detection problem appears in various signal-
processing applications, such as defects detection [1], radar detection [2], fluorescence
imaging [3], ultrasound imaging [4,5], signal synchronization for communication [6], and
GPS [7]. In particular, the main motivation of this paper arises from the task of particle
picking in single-particle cryo-electron microscopy (cryo-EM): a leading technology to con-
stitute the three-dimensional structure of biological molecules [8–10]. The goal of particle
picking is to detect the location of particle images in a noisy measurement. This problem is
especially challenging since the sought particle images might be densely packed and the
signal-to-noise ratio (SNR) is low [11–13]; our model can be viewed as a one-dimensional
version of this task. In particular, motivated by cryo-EM, we focus on detecting fixed and
non-overlapping signals, contaminated by additive Gaussian noise.

Let y ∈ RN be a measurement of the form

y[n] =
K

∑
k=1

x[n− nk] + ε[n], (1)

where n1, . . . , nK are the unknown locations we aim to estimate, x ∈ RL is the signal, and
ε[n] ∼ N (0, σ2) is i.i.d. Gaussian noise. In Section 2, we first assume that the signal x, the
noise level σ2, and the number of signal occurrences K are known. Later, in Section 3, we
extend the method to account for an unknown number of signal occurrences. In Section 4
we demonstrate numerically that the method is also robust to uncertainties in the signal’s
length. We allow the locations of the signal occurrences to be arbitrarily spread in the
measurement, with a single restriction: the signal occurrences do not overlap, namely,

|ni − nj| ≥ L for all i 6= j; (2)
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we refer to this restriction as the separation condition. We also define another separation
condition for well-separated signals, where the signals are spaced with a minimum distance
of a full signal length from each other, namely,

|ni − nj| ≥ 2L for all i 6= j. (3)

Assuming the noise level σ2, the signal x, and K are known, maximizing the likelihood
function of (1) is equivalent to the least squares problem:

arg min
n̂1,...,n̂K

∥∥∥∥∥y−
K

∑
k=1

x[n− n̂K]

∥∥∥∥∥
2

2

.

Thus, it can be readily seen that maximizing the likelihood function under the separa-
tion condition (2) is equivalent to the constrained optimization problem:

arg max
n̂1,...,n̂K

K

∑
k=1

N−1−L

∑
n=0

y[n]x[n− n̂K]

subject to |n̂i − n̂j| ≥ L for all i 6= j.

(4)

Solving this optimization problem accurately and efficiently is the main focus of
this paper.

Figure 1 demonstrates an example of a clean measurement (σ2 = 0) and a noisy
measurement with σ2 = 2. The clean measurement consists of six signal occurrences. Note
that the three signal occurrences on the left are well separated. In this regime, the detection
problem is rather easy. On the contrary, the three signal occurrences on the right are densely
packed, rendering the signal detection problem challenging. Our goal is to estimate the
locations of the signal occurrences accurately and efficiently in both regimes.

50 100 150 200 250 300

-4

-2

0

2

4

6

8
clean measurement

noisy measurement

Figure 1. An example of a clean measurement (σ2 = 0) and a noisy measurement with σ2 = 2.

If the signal occurrences are well separated (the left end of Figure 1), the signal
locations may be detected using the following greedy approach. First, the measurement is
correlated with the signal x (assumed to be known) and the index corresponding to the
maximum of the correlation is chosen as the first estimator n̂1. Next, n̂2 is chosen as the
index corresponding to the maximum of the correlation, where the maximum is taken
among all entries which are separated by at least L entries from n̂1. The same strategy is
applied consecutively to estimate n̂3, . . . , n̂K. Hereafter, we refer to this algorithm as the
greedy algorithm. This algorithm is highly efficient, as the correlations may be executed with
only a few FFTs [14]. The greedy approach is a very popular scheme in many real-world
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applications [15,16]. However, this simple approach fails in cases where the signals are
close, as demonstrated in the right end of Figure 1.

The main contribution of this paper is an exact and efficient algorithm to maximize
the likelihood function (4). In Section 2, we describe how this maximum is attained by
utilizing dynamic programming. Based on the principle of gap statistics, Section 3 extends
the scope of our problem and studies the case where the number of signal occurrences
K is unknown. In Section 4, we conduct comprehensive numerical experiments to study
the performance of the proposed dynamic program, its robustness, and compare it to the
greedy algorithm. In Section 4.5, we also compare the dynamic program with a convex
program that was developed in the context of super-resolution [17–20]. Finally, we conduct
a few experiments on one-dimensional stripes of cryo-EM data (the original data is two-
dimensional), indicating that the dynamic program can estimate the locations of densely
packed particle images, while the greedy algorithm fails. We conclude the paper in Section 6
by discussing the challenges of extending this framework to two-dimensional data, such as
cryo-EM data sets.

2. Dynamic Programming for Signal Detection

Dynamic programming is a method for breaking down a problem into simpler sub-
problems and solving them recursively [21]. In particular, our proposed dynamic program
solution is based on the following procedure. Let g[n, j] be the maximum of (4), for j signal
occurrences, over indices 1, . . . , n. By definition, g[N, K] is the sought solution of (4). Our
proposed dynamic program rule is given by

g[n + 1,j] = max
{

g[n, j], g[n− d, j− 1] + f [n + 1]
}

, (5)

where

f [m] =
m+d

∑
i=m−d

y[i]x[i− (m− d)], (6)

is the correlation between the measurement y at the interval [m− d, m + d] and the signal x,
while d = bL/2c is half the length of the signal. In words, the maximal objective for locating
j signals over indices 1, . . . , n + 1, is the maximum between the following two options:

1. The best we can achieve for locating j signals over indices 1, . . . , n (namely, the solution
of the previous step);

2. The best we can achieve under the constraint that a signal is located at location n + 1.

The dynamic program rule introduces a simple bottom up routine for finding the
maximum of the objective g[N, K]. That is, we define a matrix g of dimensions N×K, where
each row corresponds to the indices of the measurement and each column is the number
of signal occurrences. Then, we iterate over j = 1, . . . , K and i = 1, . . . , N, and fill the
entries g[i, j] according to (5). Notice that for every g[i, j], we also store the corresponding
estimated signal locations n̂1, . . . , n̂j. Finally, we return g[N, K], and the corresponding
signal locations, as desired. Algorithm 1 summarizes our proposed scheme. Notice that a
signal cannot be located near the staring and end indices, namely, at i < L and i > N − L.
This means that g[i, j] = 0 for all i < L and g[i, j] = g[i− 1, j] for all i > N − L. We exclude
these cases from the description of Algorithm 1 for simplicity of presentation.

Algorithm 1 Signal detection using dynamic programming.

Input: y ∈ RN , x ∈ RL, and the number of signal occurrences K
1: for k = 1 to K do
2: for i = 1 to N do
3: compute g[i, k] according to (5)
4: end for
5: end for
6: return g[N, K] and estimates of the locations of the signal occurrences n̂1, . . . n̂K
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The computational complexity of our algorithm is O(N ·max{K, log N}), as follows.
Computing the cross correlation between y and x costs O(N log N) operations using the
FFT algorithm. Given the cross correlation values, every iteration of Algorithm 1 is of O(1).
Overall, we have O(NK) iterations, and thus the computational complexity of the entire
proposed scheme is O(N ·max{K, log N}).

In Sections 4 and 5, we compare Algorithm 1 against the greedy algorithm described
in Section 1. This algorithm chooses the peaks of the cross correlation between the signal
and the measurement, while forcing a separation. Thus, its computational complexity
is O(N log N + K). For small K, the complexities of both algorithms match. Algorithm 2
summarizes this method.

Algorithm 2 Signal detection using the greedy approach.

Input: y ∈ RN , x ∈ RL, and the number of signal occurrences K
1: compute f according to (6)
2: for i = 1 to K do
3: n̂i = arg max f subject to |n̂i − n̂j| ≥ L for all j < i
4: γK[i] = max f subject to |n̂i − n̂j| ≥ L for all j < i
5: end for
6: γK = ∑K

i=1 γK[i]
7: return Estimates of the locations of the signal occurrences n̂1, . . . n̂K, and γK

We mention in passing that our problem shares some similarities with the change
point detection problem—a well-studied problem in statistics. One popular solution to
change point detection is based on dynamic programming [22,23]. Yet, this algorithm is
significantly different from the dynamic program in Algorithm 1.

3. Estimating the Number of Signal Occurrences Using the Gap Statistics Principle

In many real-world applications, the number of signal occurrences K is unknown.
This problem is of special interest, as both the greedy algorithm and our proposed scheme
assume knowledge of K. The classical approach for finding K is based on finding a “knee”
behavior (also referred to as the elbow method). This heuristic suggests solving (4) for
different values of K, and returning the value that introduces the steepest decrease in the
objective value. This approach is perhaps the most popular framework in many related
applications, such as clustering [24], regularization [25] and others. It was extensively
studied and improved over the years, see for example [26–28].

In our work, we suggest using the principle of gap statistics: a statistically driven
modification of the knee approach, which was first introduced in [24] in the context of
estimating the optimal number of clusters in a data set. In their work, Tibshirani et al. [24]
showed that in standard clustering, the error measure monotonically decreases as the
number of clusters increases; however, from some value of K onward, the decrease flattens
markedly. This K is usually referred to as the “knee” of the plot, and is believed to indicate
the optimal number of clusters in the data set.

The gap statistic provides a statistical procedure to formulate the detection of this
knee. The key idea of this approach is to standardize the curve of the objective value by
comparing it with its expectation under an appropriate null reference. Formally, Tibshirani
et al. defined the gap statistic as

GapN(K) = E∗Nw(K)− w(K),

where w(K) is the objective value over K clusters, and E∗N denotes the expectation under
a sample of size N from a “null” reference distribution. By “null”, we mean a clustering
performed on noise. The estimate of the number of classes, denoted by K̂, is the value that
maximizes GapN(K). Intuitively, K̂ implies the “strongest” evidence against the null. The
gap statistic was extensively studied and applied to many applications [29–34].
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In this work, we take a similar approach, and suggest estimating the number of signal
occurrences based on the gap statistics principle. First, we observe that (4) is monotonically
increasing in K, where the steepest decrease is expected at the vicinity of the true value
of K. For a given measurement y and a range of values of K, we apply Algorithm 1 and
find the maximal objective value g(N, K). We note that no additional computations are
required at this stage since the dynamic program already computes g(N, j) for j = 1, . . . , K.
To apply the gap statistics procedure, we also need to evaluate E∗N g(N, K) for every K, that
is, the expected objective under the null. Here, we define the null as the case where no
signal is embedded in the measurement. Therefore, to approximate E∗N g(N, K) we simply
permute the vector y P times, drawn i.i.d. from a uniform distribution over all possible
permutations, and apply Algorithm 1 on the permuted measurements, ỹ1, . . . , ỹP. Notice
that by permuting the indices of y, we break the embedded signals (if such exist) and
attain a vector with K = 0 (henceforth, the null). Letting gi(N, K) be the value of (5) for
the permuted measurement ỹi, we have E∗N g(N, K) ≈ 1

P ∑P
i=1 gi(N, K) for large enough P.

Therefore, we approximate the statistical gap by

GapN(K) ≈
1
P

P

∑
i=1

gi(N, K)− g(N, K), (7)

for every K, and return the value of K which maximizes the gap (similarly to [24]). We
summarize our approach in Algorithm 3. Algorithm 4 shows the analog of the greedy
algorithm, Algorithm 2, in the case where the number of signal occurrences is unknown
and estimated using the gap statistic method.

Algorithm 3 Signal detection using dynamic programming with an unknown number of
signal occurrences.

Input: y ∈ RN , x ∈ RL, Kmax
1: for K = 1 to Kmax do
2: Compute g(N, K) with respect to y using Algorithm 1
3: for i = 1 to P do
4: Compute gi(N, K) with respect to yi (a permutation of y) using Algorithm 1
5: end for
6: Compute GapN(K) =

1
P ∑P

i=1 gi(N, k)− g(N, k)
7: end for
8: Compute K̂ = arg max GapN(K)
9: return K̂ (an estimate of the number of signal occurrence in the measurement), g(N, K̂),

and estimates of the locations of the signal occurrences n̂1, . . . , n̂K̂

Algorithm 4 Signal detection using the greedy approach with an unknown number of
signal occurrences.

Input: y ∈ RN , x ∈ RL, Kmax
1: for K = 1 to Kmax do
2: Evaluate γK with respect to y using Algorithm 2
3: for i = 1 to P do
4: Compute γ̃K,i with respect to ỹi (a permutation of y) using Algorithm 2
5: end for
6: Compute GapN(K) =

1
P ∑P

i=1 γ̃K,i − γK
7: end for
8: return K̂ (an estimate of the number of signal occurrence in the measurement), and

estimates of the locations of the signal occurrences n̂1, . . . , n̂K̂
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4. Numerical Experiments

In this section, we compare the proposed dynamic program with alternative methods.
We use the F1-score to evaluate the performance of the studied methods [35–37]. It is
formally defined as

F1 = 2× precision× TPR
precision + TPR

, (8)

where precision is the ratio of the true positives (correct detections) over all detections,
while TPR is the true positive rate, the ratio of true positives over all signal occurrences.
In addition, we also report the recall, the ratio of true positives over all positives, for
completion. In practice, we cannot expect an exact detection of a signal location. Therefore,
we follow [38] and declare a true detection if |n̂k − nk| < L/2. That is, we say that a signal
is correctly detected if its estimated location is within L/2 entries from the true location.
This convention is quite popular in relevant signal detection literature [38,39]. Further, it is
well motivated by our cryo-EM application. Specifically, in cryo-EM particle picking, the
displacements are not a big issue since the images are later aligned as part of the refinement
algorithm [9].

We begin with synthetic experiments. We generate a measurement y as follows.
First, we fix the measurement length N, the number of signal occurrences K, and signal
length L. Then, we place the first signal at a random location. Next, we draw a new
location; if the new location is eligible, then we place it, and if not, we draw a new
location. We repeat this process until we place all K signals. By eligible location, we
mean that the left-most point of the new signal is separated by at least L entries from
the left-most point of all previous signals for an arbitrary-spaced measurement (2) (so the
signal occurrences do not overlap) and 2L for a well-separated measurement (3). Finally,
we add independent and identically distributed white Gaussian noise with zero mean
and variance σ2. The code to reproduce all experiments is publicly available at https:
//github.com/MordechaiRoth1/Signal-detection-with-dynamic-programming (accessed
on 25 January 2023).

4.1. Performance for a Known Number of Signal Occurrences

First, we compare the the performance of our dynamic programming scheme (Algo-
rithm 1) with the greedy approach (Algorithm 2) in the ideal case, where the signal’s shape
and the number of signal occurrences are known. We use a rectangular signal of length
L = 30, where all of its entries are equal to one. We place them in a measurement of length
N = 300, as described above. For the well-separated setup, we set K = 3 signal occurrences
that satisfy the separation condition (3) and for the arbitrarily spaced case, we use K = 6
signal occurrences that only satisfy the L-separation condition (2). For each noise level σ2,
we conduct 3000 trials, each with a fresh measurement. As a baseline, we further compute
the F1-score of a random detection process, where K locations which satisfy (2) are chosen
at random. Figure 2 presents the results. First, it is evident that the performance of the
algorithms are comparable for the well separated case in Figure 2b. However, we observe
that the dynamic program outperforms the greedy algorithm in cases where the signals are
dense as in Figure 2a. The complementary recall charts are quite similar to the F1 scores
and are provided in the Appendix A.

4.2. Performance for an Unknown Number of Signal Occurrences

Next, we repeat the previous experiment while dropping the known K assumption
(yet, the signal’s shape is still assumed to be known). In this case, we apply the gap statistic
principle to evaluate the number of signal occurrences, while estimating their locations
as described in Algorithms 3 and 4. The results are presented in Figure 3. As in the
previous example, the performance of both algorithms is comparable for the well-separated
case (Figure 3b), while the dynamic program is clearly superior in the arbitrarily spaced
(henceforth, dense) setup (Figure 3a). As expected, the performance of the algorithms

https://github.com/MordechaiRoth1/Signal-detection-with-dynamic-programming
https://github.com/MordechaiRoth1/Signal-detection-with-dynamic-programming
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deteriorates compared to Figure 2. Once again, we report the recall in the Appendix A, as it
demonstrates quite a similar behavior.
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(b)
Figure 2. F1-score for Algorithms 1 and 2 for the arbitrarily spaced and well-separated setups,
assuming the signal’s shape and the number of occurrences are known (a) Arbitrarily spaced setup.
(b) Well-separated setup.
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(b)
Figure 3. F1-score for Algorithm 3 and for Algorithm 4 for the arbitrarily spaced and well-separated
setups, assuming the signal’s shape is known but the number of signal occurrences K is unknown.
(a) Arbitrarily spaced setup. (b) well separated setup.

Further, we illustrate our proposed gap statistic scheme in Figure 4. Here, we set the
(unknown) number of occurrences as K = 6. The blue curve corresponds to the objective
value, while the red curve is the approximated null (see (7)). The yellow line corresponds
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to the maximum gap between the two curves, which is the estimated K. As we can see,
the gap statistic demonstrates a relatively accurate estimate of the true number of signal
occurrences in both algorithms.

1 2 3 4 5 6 7 8

K

50
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150

200

g

(a)

0 2 4 6 8 10

K

50

100

150

(b)
Figure 4. An illustration of the gap statistic principle. The blue curve is the measured objective, while
the red curve corresponds to the approximated null. The yellow line is the maximal gap between the
two and, henceforth the estimated K. (a) Gap found by Algorithm 3. (b) Gap found by Algorithm 4.

4.3. Performance with Unknown Signal Length

Further, we study the robustness of our proposed scheme, as we focus on the case
where the length of the signal L is not precisely known. Let L̂ denote the approximated
signal length. We examine two cases: L̂/L = 0.8 (the true signal’s length is greater than its
approximation) and L̂/L = 1.3. We study the performance of our suggested framework in
cases where K is either known or unknown. The F1 results are presented in Figures 5 and 6
for the arbitrarily spaced and well-separated cases, respectively. The complementary recall
charts are again reported in the Appendix A.

In the arbitrarily spaced setup, we observe a similar behavior for L̂/L = 0.8 (Figure 5a,b),
while our proposed method outperforms the greedy algorithm for L̂/L = 1.3 (Figure 5c,d).
The reason for this phenomenon can be explained as follows. When L̂/L = 1.3, the true
signal is shorter than assumed. Thus, the greedy algorithm declares close signals as a
single realization. For L̂/L = 0.8, both algorithms perform quite similarly, as our proposed
algorithm does not impose a strong enough separation constraint.

Figure 6 shows the F1-score for the well-separated setup. Here, the performance of the
greedy algorithm is comparable to the dynamic program in all the examined setups. This
behavior is not surprising. In the well-separated regime, the separation constraint is less
effective, and both algorithms perform quite similarly, regardless of the accuracy of L̂.
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(d)
Figure 5. F1-score for the arbitrarily spaced model, where the signal length is unknown. Here, L̂
denotes the assumed length of the signal. (a) L̂/L = 0.8, known K. (b) L̂/L = 0.8, unknown K.
(c) L̂/L = 1.3, known K. (d) L̂/L = 1.3, unknown K.
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Figure 6. F1-score for the well separated model where the signal length is unknown. (a) L̂/L = 0.8,
known K. (b) L̂/L = 0.8, unknown K. (c) L̂/L = 1.3, known K. (d) L̂/L = 1.3, unknown K.
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4.4. Performance as a Function of the Measurement Length

Next, we study the performance of the dynamic program as the length of the mea-
surement N increases. Here, we set L = 20, and fix the density of the signals, so that
KL/N = 0.6. We further assume that K is unknown. In addition to the F1-score and the
recall, we also measure the accuracy of estimating K using the measure |K̂/K − 1|. The
results are presented in Figure 7.
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Algorithm 3

Algorithm 4

(c)
Figure 7. The effect of the measurement length N on the estimation accuracy. (a) F1-score as a function
of N. (b) Recall as a function of N. (c) The error in estimating the number of signal occurrences K̂,
|K̂/K− 1|, as a function of N.

Evidently, Algorithm 3 outperforms Algorithm 4 in terms of F1-score, recall and the
error of estimating K. Note that our proposed scheme is not only robust to the number of
signal occurrences as N grows, but it also slightly improves.
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4.5. Comparison with a Convex Optimization Approach

An additional approach to detect signal occurrences is using a convex optimization
framework, which was originally developed in the context of super-resolution [17,18]. Here,
the underlying idea is to denoise the measurement using a convex program, and then apply
a detection algorithm to the denoised measurement.

Here, we describe the noiseless measurement by a matrix-vector multiplication z = Gs,
where the i-th row of the circulant matrix G ∈ RN×N is x, padded with zeros and shifted
by i entries, and s ∈ [0, 1]N is a binary signal containing ones at the left-most entry of the
signal occurrences and zeros otherwise. The measurement is given by y = z + ε, where ε is
i.i.d. white Gaussian noise with zero mean and variance of σ2. Consequently, the detection
problem is to estimate the binary, sparse vector s from the measurement y.

Following [18], we suggest estimating s by minimizing its `1 norm subject to the
constraint y ≈ Gs. In addition, we relax the binary constraint to a “box constraint,”
resulting in the following convex program:

min
s∈RN

||s||1 subject to ||y− Gs||22 ≤ δ

0 ≤ s[i] ≤ 1, i = 0, . . . , N − 1.
(9)

We set δ = 1.2Nσ2.
We solve the convex program (9) using CVX [40], resulting in a denoised measurement.

Then, similarly to the procedure of Algorithm 2, we chose to K greatest peaks, while
enforcing a separation of L entries.

Figure 8 compares the F1-score of the convex program with the dynamic program
(Algorithm 1) and the greedy algorithm (Algorithm 2) for different noise levels. The recall
is again left for the Appendix A. We set L = 15, N = 75, and K = 3 in the arbitrarily spaced
setup. The dimension of the problem is relatively low because of the high computational
burden of the convex approach. Evidently, both Algorithms 1 and 2 outperform the convex
approach.
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2

85

90

95

100

F
1

Algorithm 1

Algorithm 2

Convex optimization

Figure 8. F1-score for the arbitrarily spaced model as a function of the noise level for Algorithm 1,
Algorithm 2, and the convex program (9).

5. Cryo-EM Numerical Experiment

In the cryo-EM experiment, biological macromolecules suspended in a liquid solu-
tion are rapidly frozen into a thin ice layer. An electron beam then passes through the
sample, producing a 2D tomographic projection, called a micrograph. The first step in the
algorithmic pipeline is detecting the projection images in the micrograph; this process is
called particle picking [11–13]. Particle picking is particularly challenging since the SNR of
cryo-EM is rather low due to the absence of contrast enhancement agents and the low doses
of electrons. The detected projection images are later used to reconstruct the 3D structure
of the sought molecule [9,10]. The problem studied in this paper may be viewed as a 1D
version of the cryo-EM particle-picking process.

To test our approach, we used a micrograph that contains tomographic projections of
the Plasmodium Falciparum 80S ribosome [41]. This data set is publicly available at the
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EMPIAR repository [42] as EMPIAR 10028. The micrograph is presented in Figure 9. We
arbitrarily chose 1D stripes (columns or rows) of the micrograph, on which we can apply
our 1D detection algorithm. We note that the particle projections along the 1D stripes are
not identical, which is a more complicated regime than the one considered in Section 4.

Figure 9. A micrograph from the EMPIAR 10028 data set. The three marked lines are used as inputs
for Algorithms 3 and 4. The red and blue lines are columns 1324 and 1697, respectively, and the
yellow line is row 2952.

As a prepossessing step, we whiten the noise, a standard step in many cryo-EM
algorithmic pipelines. This is done in the following manner. First, we manually find a region
in the measurement with no signal. Using this “noise-only” data, we approximate the power
spectral density of the noise. Then, we multiple the entire measurement by the inverse
of the approximated power spectrum. We are now ready to apply Algorithms 3 and 4 to
1D measurements, after whitening. We assumed that the shape of the signal is a square
pulse whose length is chosen manually. To evaluate the results, we manually tagged the
true locations of the particles (namely, signal occurrences). Figures 10 and 11 illustrate the
results. While both algorithms are fairly similar in the more sparse environments, the
dynamic program approach succeeds in identifying densely packed particles (highlighted
with arrows), while the greedy method fails. This indicates that extension of our scheme
to 2D images may be helpful to locating densely packed particle images in cryo-EM data
sets. In addition, we illustrate 1D projections of our results in Figure 12. As we can
see, our proposed scheme successfully detects the particles, while the greedy algorithm
demonstrates inferior results.
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Particles

(a)

Particles

(b)
Figure 10. Detection using Algorithms 1 and 2 for row 2952 (yellow line in Figure 9). The arrows
point to two particle projections, which are detected using Algorithm 3 but not by Algorithm 4.
(a) Algorithm 3. (b) Algorithm 4.

Algorithm 3

Algorithm 4

Particles

(a)

Algorithm 3

Algorithm 4

Particles

(b)
Figure 11. Detection using Algorithms 3 and 4. The arrows point to particle projections, which are
detected by Algorithm 3, while Algorithms 4 fails. (a) Column 1324 (red line in Figure 9). (b) Column
1697 (blue line in Figure 9).
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Figure 12. Detection using Algorithms 1 and 2 for row 2952 (yellow line in Figure 9). The arrows point
to two particle projections, which are detected by Algorithm 3 and not by Algorithm 4. (a) Algorithm 3.
(b) Algorithm 4.

6. Discussion

This papers introduces a novel scheme for signal detection based on a dynamic
program that maximizes a constrained likelihood function. We apply the gap statistic
principle to estimate the number of signal occurrences, and provide an end-to-end solution
to the problem. We demonstrate our proposed method in a series of experiments. Our
suggested scheme demonstrates improved performance over popular alternatives in dense
environments, while attaining similar results in sparse regimes. This makes it a robust
approach in many practical setups.

Our work is motivated by the cryo-EM technology. Typically, particle pickers are based
on cross correlating the micrograph with different templates. This approach performs well
in cases where the particles are well separated but fails in dense regimes. We show that
by imposing a separation constraint, we improve upon currently known schemes in the
1D regime. This motivates our future work, generalizing our results to 2D images, and
provides an efficient solution to the cryo-EM particle picking problem.
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Appendix A
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Figure A1. Recall for Algorithms 1 and 2 for the arbitrarily spaced and well-separated setups,
assuming the signal’s shape and the number of occurrences are known. (a) Arbitrarily spaced setup.
(b) Well-separated setup.
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(b)
Figure A2. Recall for Algorithm 3 and for Algorithm 4 for the arbitrarily spaced and well-separated
setups, assuming the signal’s shape is known but the number of signal occurrences K is unknown.
(a) Arbitrarily spaced setup. (b) Well-separated setup.
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(d)
Figure A3. Recall for the arbitrarily spaced model where the signal length is unknown. Here, L̂
denotes the assumed length of the signal. (a) L̂/L = 0.8, known K. (b) L̂/L = 0.8, unknown K.
(c) L̂/L = 1.3, known K. (d) L̂/L = 1.3, unknown K.
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Figure A4. Recall for the well-separated model where the signal length is unknown. (a) L̂/L = 0.8,
known K. (b) L̂/L = 0.8, unknown K. (c) L̂/L = 1.3, known K. (d) L̂/L = 1.3, unknown K.
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Figure A5. Recall for the arbitrarily spaced model as a function of the noise level for Algorithm 1,
Algorithm 2, and the convex program (9).
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