
 
 

 

 
Entropy 2023, 25, 244. https://doi.org/10.3390/e25020244 www.mdpi.com/journal/entropy 

Article 

Covariant Lyapunov Vectors and Finite-Time Normal Modes 
for Geophysical Fluid Dynamical Systems 
Jorgen S. Frederiksen 

CSIRO Environment, Aspendale, Melbourne 3195, Australia; jorgen.frederiksen@csiro.au 

Abstract: Dynamical vectors characterizing instability and applicable as ensemble perturbations for 
prediction with geophysical fluid dynamical models are analysed. The relationships between covar-
iant Lyapunov vectors (CLVs), orthonormal Lyapunov vectors (OLVs), singular vectors (SVs), Flo-
quet vectors and finite-time normal modes (FTNMs) are examined for periodic and aperiodic sys-
tems. In the phase-space of FTNM coefficients, SVs are shown to equate with unit norm FTNMs at 
critical times. In the long-time limit, when SVs approach OLVs, the Oseledec theorem and the rela-
tionships between OLVs and CLVs are used to connect CLVs to FTNMs in this phase-space. The 
covariant properties of both the CLVs, and the FTNMs, together with their phase-space independ-
ence, and the norm independence of global Lyapunov exponents and FTNM growth rates, are used 
to establish their asymptotic convergence. Conditions on the dynamical systems for the validity of 
these results, particularly ergodicity, boundedness and non-singular FTNM characteristic matrix 
and propagator, are documented. The findings are deduced for systems with nondegenerate OLVs, 
and, as well, with degenerate Lyapunov spectrum as is the rule in the presence of waves such as 
Rossby waves. Efficient numerical methods for the calculation of leading CLVs are proposed. Norm 
independent finite-time versions of the Kolmogorov-Sinai entropy production and Kaplan-Yorke 
dimension are presented. 
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Oseledec theorem; entropy production; degeneracy; geophysical fluid dynamics; chaotic dynamics 
 

1. Introduction 
Instability, error growth, and entropy production are fundamental interrelated prop-

erties of the dynamics and predictability of chaotic systems. Canonical equilibrium states 
of maximum entropy are also nonlinearly stable states in the high-resolution limit when 
fluctuations vanish [1–5]. More generally, the Shannon entropy [6,7] can be used to estab-
lish the Kolmogorov-Sinai (KS) entropy production [8,9] that quantifies the chaotic nature 
of dynamical systems. A simple plausible measure of KS entropy production is given by 
Pesin’s formula [10] that expresses it as the sum of the positive Lyapunov exponents [11]. 
These exponents describe the long-term average growth rates of linear instabilities evolv-
ing on the time-varying flows. Associated local and finite-time analogues of KS entropy 
production have also been proposed by Wei [12] and Quinn et al. [13]. 

In the case of geophysical fluid dynamical systems, linear normal mode baroclinic 
instability theory, with simple stationary zonally symmetric basic states, was used by 
Charney, Eady, and Phillips [14–16] to explain the basic mechanism of extratropical storm 
formation. Frederiksen [17] developed a theory of localized cyclogenesis that explains the 
structures of storm tracks based on the instability of three-dimensional climatological 
basic states. Indeed, as reviewed in [18], three-dimensional instability theory yields ana-
logues of essentially all the major large-scale atmospheric disturbances in both hemi-
spheres including storms [19,20], blocks [19,20], teleconnection patterns [20–23], intrasea-
sonal oscillations [24] and the classes of convectively coupled tropical disturbances [25]. 
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These disturbances are largely propagating modes with complex conjugate eigenvalues 
and eigenvectors apart from some stationary teleconnection patterns. 

Three-dimensional instability theory also sheds light on the local growth of errors 
with basic states that are snapshots of the flow fields [26]. Indeed, as shown by Wei and 
Frederiksen [27], leading normal modes of local flow fields are reasonably successful in 
capturing the structures of error growth over the subsequent couple of days. In general, 
however, leading finite-time dynamical vectors provide more accurate predictors of the 
structures and amplitudes of evolved errors. 

A major motivation for studying the properties of finite-time dynamical vectors has 
been to understand error growth in weather prediction, and subsequently seasonal pre-
diction, and for ameliorating the effect of errors through ensemble prediction. Lorenz [28] 
first considered the growth of ensembles of small errors in a low order atmospheric model 
and showed it was related to the singular values of the tangent linear propagator. Finite-
time and local singular values, exponents, and singular vectors (SVs) were subsequently 
employed in many dynamical and predictability studies with relatively simple and inter-
mediate complexity models [13,26,29–36] as reviewed in [13,36]. 

In some studies finite-time singular value exponents are called finite-time Lyapunov 
exponents since they converge to the global Lyapunov exponents in the long-time limit. 
Indeed, since the 1990s Lyapunov exponents and orthonormal Lyapunov vectors (OLVs) 
have frequently been used in the analysis of predictability within simple and intermediate 
complexity models of geophysical flows [35,37–42], as reviewed in [41,42]. Increasingly, 
covariant Lyapunov vectors (CLVs) have also gained popularity [13] as will be discussed 
in more detail below. 

Toth and Kalnay [43,44] introduced a simple breeding method for ensemble pertur-
bation generation in a comprehensive weather forecasting model at National Centers for 
Environmental Prediction (NCEP) and likened the bred vectors to stochastically and non-
linearly modified leading Lyapunov vectors. These perturbations help ameliorate the ef-
fects of fast-growing instabilities that cause rapid loss of predictability particularly during 
flow regime transitions such as into and out of blocking states [45]. 

At the European Centre for Medium Range Forecasting (ECMWF), Molteni et al. [46] 
used ensemble perturbations consisting of mixtures of finite-time right (initial) and left 
(evolved) SVs of the propagator. The extensive development of the SV method for ensem-
ble perturbations is reviewed by Leutbecher and Palmer [47] and Quinn et al. [13]. The SV 
approach can induce non-modal perturbation growth even in overdamped systems [13]. 
Wei and Toth [48] found both the bred vector and SV schemes had similar performance 
in improving weather forecasts. 

Frederiksen [49,50] proposed finite-time normal modes (FTNMs) of the propagator 
as ensemble perturbations. FTNMs can be defined for any time-period of interest between 
an initial time 0t  and final time ft . They are eigenmodes of the propagator 

0 0 0( , ) ( ) ( ) ( )f ft t t t tλ= =G φ φ φ  where G  is the propagator, φ  is a FTNM and λ  is 

the eigenvalue. Because of the eigenvalue relationship 0( ) ( )ft tλ=φ φ  FTNMs have the 

remarkable property of having norm independent growth rate 1
0( ) lnft t λ−−  between 

0t  and ft  as well as norm independent structures. They are also covariant with the tan-

gent linear dynamics for 0ft t t≥ ≥  with 0 0( ) ( , ) ( )t t t t=Gφ φ . 
Wei and Frederiksen [27,41] found that leading FTNMs were better predictors of 

evolved error structure and amplitude than leading SVs, OLVs and local normal modes 
in barotropic forecasts perturbed by initial random errors. This is the case particularly 
over shorter time scales with the performance of leading Lyapunov vectors approaching 
that of FTNMs after about 14 days in tangent linear integrations [41]. It should be noted, 
however, that after about 3 days nonlinear effects start to affect error growth of atmos-
pheric synoptic scale disturbances [51]. 
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Interestingly, in coupled ocean-atmosphere seasonal hindcasts Frederiksen et al. [52] 
found that monthly optimized cyclic modes, essentially stochastically and nonlinear mod-
ified leading FTNMs, were much better ensemble perturbations than bred vectors [53]. 
Sandery and O’Kane [54] also found that cyclic modes were effective perturbations for the 
initialization and ensemble prediction in an ocean-atmosphere tropical cyclone prediction 
system. These results are of course consistent with the fact that local and finite-time insta-
bilities and growth rates are closer related to shorter time error growth and predictability 
than global instabilities and exponents [12,13,27,30–35,37,41]. 

FTNMs for a single time step reduce to normal modes and become Floquet vectors 
[55] if the flow is periodic, so that the initial and final basic states are the same. Frederiksen 
[50] found that the different structures of initial SVs, depending on field variables or norm, 
and their super exponential growth could be explained by their projection onto FTNMs. 
Super exponential growth of SVs is largely explained by their large projection onto the 
leading FTNMs and the interference effects of subdominant FTNMs reducing the norm to 
say unity. With time the interference effects of the subdominant FTNMs disappear leaving 
the leading FTNM with large magnitude. 

Wolfe and Samelson [56] have also emphasized the importance of norm-independ-
ence of dynamical vectors used to understand error growth and predictability. Their fo-
cus, like that of Ginelli et al. [57] has been to implement efficient algorithms for calculating 
covariant Lyapunov vectors (CLVs) for aperiodic systems from long-time SVs that ap-
proximate OLVs. These algorithms and subsequent variations [58–60] have allowed the 
practical calculation of CLVs for nondegenerate systems. CLVs have norm independent 
structures like normal modes, Floquet vectors and FTNMs. They are covariant with the 
tangent linear dynamics over the whole time-domain. However, their finite-time growth 
rates are norm dependent. The general properties of CLVs were discussed in the earlier 
works of Ruelle [61], Eckman and Ruelle [62], Vastano and Moser [63], Legras and Vau-
tard [64] and Trevisan and Pancotti [65]. 

The development of more efficient algorithms for the calculation of CLVs [56–60] for 
aperiodic systems has led to a flurry of activity in applications and further theoretical de-
velopments much of which has been reviewed by Quinn et al. [13]. For geophysical fluid 
dynamical systems, of primary interest here, although our results apply more generally, 
there have been developments and applications of CLVs in studies of the stability of at-
mospheric flows [66,67], of atmospheric blocking [68] and large-scale low frequency tele-
connection patterns [13,69] and of predictability and data assimilation in coupled ocean-
atmosphere systems [70,71]. 

In this article we make a detailed analysis of the relationships between CLVs, OLVs, 
SVs and Floquet vectors and FTNMs. The main goals are: 
1. To establish the relationships between long-time FTNMs and CLVs, and their growth 

rates, for aperiodic, as well as periodic, chaotic dynamical systems; 
2. To deduce these properties for systems with degenerate as well as nondegenerate 

Lyapunov spectra; 
3. To examine and propose methods for the calculation of CLVs and Lyapunov expo-

nents that allow for degenerate Lyapunov spectra. 
The article is organized in two parts. In the first part, (Sections 2 to 7, Appendices B 

and D) the properties of the dynamical vectors are summarized for dynamics in general 
phase-spaces. A notation is used that is suggestive of the relationships between the norm 
dependent orthonormal OLVs ( ,u v ) and SVs ( ,u v ), and the norm independent nonor-
thogonal CLVs (ψ ) and FTNMs (φ ), represented by Greek symbols, (and associated sub-

spaces and characteristic matrices). The eigenvalues or amplification factors ( λ σ, ,l ) 
are in lower case and exponents or growth rates ( Λ Σ, , L ) in corresponding capitals. In 
the second part (Sections 8 to 10, Section 11.4, Appendices A, B.5, C and E) the simplifica-
tions and connections between SVs, OLVs, CLVs and FTNMs and their exponents that 
occur when the tangent linear dynamics are analysed in FTNM-space are established. 
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These findings are then used to deduce the three main aims, 1 to 3 above, as well as other 
results. 

In detail, the structure of the article is as follows: The tangent linear equations for 
smooth ergodic dynamical systems with bounded attractors are summarised in Section 2 
where the propagator and its semi-group or cocycle properties are also documented. The 
FTNMs are defined in Section 3 as the eigenvectors of the propagator and their attributes 
as well as those of the eigenvalues and FTNM exponents presented. The finite-time adjoint 
modes are also described in this Section. Floquet vectors for periodic systems and their 
relationships to FTNMs are discussed in Section 4, and in Section 5, SVs and singular val-
ues and exponents are considered. Section 6 contains a brief outline of Lyapunov vectors 
and exponents and the Oseledec (also known as Oseledets) multiplicative ergodic theo-
rem [72–75] that governs their behaviour, with recent advances established and reviewed 
in [74,75]. The Gram-Smidt method for the construction of all OLVs from CLVs and the 
inverse method for the construction of all CLVs from OLVs are presented initially for 
nondegenerate OLVs in Section 7. There more efficient methods for calculation of just 
some of the leading CLVs from OLVs [56–60] are also mentioned. The case of degenerate 
Lyapunov spectrum is also discussed. 

In Section 8, the transformation of the dynamical equations, and particularly the tan-
gent linear equations and propagator, into the phase-space of FTNM coefficients is per-
formed. The eigenvalue-eigenvector equations for FTNMs and SVs are developed and the 
relationships between FTNMs and SVs and FTNM eigenvalues and singular values and 
exponents in this phase-space determined. The findings that, in FTNM-space, singular 
value exponents equal FTNM growth rates and SVs equate to unit norm FTNMs at critical 
times underpin the deductions in Sections 9 and 10. For periodic systems, the anchoring 
of SVs with FTNMs in FTNM-space establishes the connection of FTNMs, through SVs, to 
OLVs and CLVs, from the results in Section 7, and the equivalence of Floquet vectors and 
CLVs, including for degenerate Lyapunov spectra. Aperiodic systems are then analysed 
in Section 10 where it is shown that long-time SVs, essentially OLVs, equate, at certain 
times, to long-time FTNMs in the phase-space of FTNM coefficients. This, together with 
the expression for the construction of CLVs from OLVs in Section 7, and the covariant 
properties of both CLVs and FTNMs establishes the equivalence of CLVs with long-time 
FTNMs. These results are shown to hold for both the case of nondegenerate and degener-
ate Lyapunov spectra. 

In Section 11, current numerical methods for the calculation of leading CLVs, which 
have largely been applied in situations when the associated OLVs are nondegenerate, are 
briefly discussed. It is pointed out through specific examples that for geophysical fluid 
dynamical systems incorporating waves, such as Rossby waves, the SVs and OLVs are 
frequently degenerate and the related FTNMs, Floquet vectors and CLVs occur mainly in 
complex conjugate pairs. Efficient methods for the direct calculation of leading FTNMs, 
and Floquet vectors and CLVs as long-time FTNMs, are discussed. Norm independent 
versions of the Kolmogorov-Sinai entropy production and Kaplan-Yorke dimension are 
presented. In Section 12 the implications of the results deduced are discussed and sum-
marised and conclusions drawn. 

In Appendix A, the method of ordering the FTNM eigenvalues and eigenvectors 
when some of the eigenvalues are complex is presented. In Appendix B, the content of the 
Oseledec multiplicative ergodic theorem that governs the tangent linear dynamics is sum-
marised. This includes the Oseledec operators and their eigenvectors and associated Lya-
punov exponents, and the Oseledec subspaces in both the nondegenerate and degenerate 
cases. Here, the simplification that occurs when the phase-space is FTNM-space is also 
presented. Appendix C considers Lyapunov homologous transformations of the propa-
gator cocycle between FTNM phase-space and general phase-spaces. The equivalence of 
CLVs in different phase-spaces, or their norm independence, and that of the global Lya-
punov exponents, are summarised in Appendix D. There the norm dependence of finite-
time Lyapunov exponents is also recapped. In Appendix E, an alternative method to that 
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of Section 10, of relating long-time FTNMs and Lyapunov vectors is developed that leads 
to the same conclusion that long-time FTNMs converge to CLVs under the specified con-
ditions on the dynamical systems. 

2. Dynamical Equations 
In this study, we consider smooth ergodic dynamical systems with bounded attrac-

tors that generate well defined statistics [30,72,76,77]. We write the nonlinear evolution 
equations for vector fields ( )tX  in the form 

( ) ( ( ))d t t
dt

=X XN  (1)

where ( ( ))tXN  is a smooth nonlinear matrix operator. Here 1 2( , ,.., )TNX X X=X  is 

the column vector of dynamical fields with N  components and T  denotes transpose. 
We suppose that ( )tX  is perturbed by a disturbance ( )tx  which is sufficiently small 
that it satisfies a linearized equation about the trajectory ( )tX  for the time interval of 
interest. Linearization of Equation (1) about the trajectory ( )tX  yields the tangent linear 

equation for the perturbation 1 2( ) ( ( ), ( ),..., ( ))TNt x t x t x t=x : 

( ) ( ) ( )d t t t
dt

=x M x  (2)

where the Jacobian dynamical matrix ( ) ( ;{ ( )})t t t≡M M X , taken to be nonsingular, de-
pends on the trajectory ( )tX . In physical space the vector fields belong to the real N -

dimensional space N . It is often convenient to perform associated or intermediary dy-
namical and instability calculations and their analysis in other spaces and then transform 
back to physical space [72] (see also Appendix C). For example, calculations are often per-
formed in Fourier [1] or spherical harmonic space [3,17], and in empirical orthogonal func-
tion space [71]. The results in [50] where SVs were projected in terms of FTNMs also sug-
gests that analyzing the dynamics in FTNM-space would be insightful. For this reason, in 
the following analysis we formulate definitions of the dynamical matrices and their rela-
tionships in ways where they also apply to complex fields. For example, we employ the 
Hermitian conjugate denoted by superscript †  which reduces to the transpose T  for 
real matrices. Of course, one can always revert to the real domain by writing the complex 
expressions in terms of their real and imaginary parts [61,78] (see also Appendix C) or 
directly transform back to physical space; however, the complex representation may 
sometimes be more convenient or elegant. 

The solution of Equation (2) is 

0 0( ) ( , ) ( )t t t t=x G x  (3)

where 

0 0 0( , ) ( , ;{ ( ) ( )}).t t t t t t←≡G G X X  (4)

Here, 0( , )t tG  is the propagator or cocycle from the initial time 0t  to time t  that de-

pends on the whole trajectory between these times denoted by 0{ ( ) ( )}t t←X X . We use 
the notation where the time flows from right to left in the propagators as for the standard 
retarded propagators [49]. 

We see from Equations (2) and (3) that 0( , )t tG  satisfies the differential equation 
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0
0

( , ) ( ) ( , ).d t t t t t
dt

=G M G  (5)

The formal solution to Equation (5) is 

0
0( , ) exp ( )

t

t
t t ds s =   G T M   (6)

where T  is the chronological time-ordering operator [30,49]. Here 0( , )t tG  satisfies 
the semi-group or multiplicative cocycle properties 

0 0 0 0( , ) ( , ) ( , )   ;   ( , )t t t t t tτ τ= =G G G G I   (7)

and the propagators are assumed to be nonsingular with inverse [ ] 1
0( , )t t −G  describing 

the reverse propagation from t  to 0t  as in Oseledec [72]. Here, diag(1,1,...,1)=I  is 
the unit matrix with diagonal elements of 1 and the off-diagonal elements are zero. 

For simple and intermediate complexity systems [79,80], the propagator may be cal-
culated by using its cocycle properties 

 0 1 1 2 2 1 1 0( , ) ( , ) ( , )... ( , ) ( , )j j jt t t t t t t t t t− − −=G G G G G  (8)

as in Refs. [72,80], Equation (2.8b) or as described in [49]. Here jt t=  and the constituent 

propagators are for short time steps 1k kt t tδ −= −  between 1kt −  and kt . Using a predic-
tor-corrector time step the short-time propagators take the form 

2 21 11
1 2( , ) ( )

2 2
k k k k

k k
t t t tt t t tδ δ− −

−
+ +   = + +   

   
G I M M   (9)

as shown in [80], Equation (2.8a). This is the second order truncation of the associated ex-
ponential form as in Equation (6). For more complex models, the leading FTNMs can be 
obtained using the method of Wei and Frederiksen [27] (Appendix) that is discussed in 
Section 11.3. 

3. Eigenvectors and Eigenvalues of the Propagator 
Next, we examine the eigenvectors of the propagator, termed finite-time normal 

modes (FTNMs), and the associated adjoint modes [49], as well as their eigenvalues. 

3.1. Finite-Time Normal Modes 
In this study, we consider the dynamical equations, the propagator and eigenvalues 

and eigenvectors of a number of matrices over various time intervals T  between 0t  

and ft . Here, 

0 0 0( , ) [ ] ,f f fT T t t t t t t−= = = −   (10)

and 0ft t>  so that 0T > . It is convenient to represent the dependence of these quanti-

ties on different optimization time intervals by the notation 0[ ]ft t− . This is also a re-
minder that time flows from right to left in the propagators. 

The FTNMs are the eigenvectors of the propagator 

0 0 0 0 0 0 0( , ) ( ;[ ]) ( , ) ( ;[ ]) ( ;[ ])n n n n
f f f f f ft t t t t t t t t t t t tλ− − −= =G φ φ φ   (11)

where the eigenvalues are ordered so that 
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1 2 ... Nλ λ λ≥ ≥ ≥   (12)

and 1, 2,...,n N= . The in general complex eigenvalue 0( , )n
ft tλ  can be written in 

terms of the real and imaginary parts as 

0 0 0 0( , ) exp ( , )( ) exp{ }( ).n n n n n n
f r i f f r i ft t i t t t t i t tλ λ λ= + = Λ − = Λ + Λ −  (13) 

Here, 

 1 1
0 0( , ) ( ) ln lnn n n

r f ft t t t Tλ λ− −Λ = − =  (14)

and 

1 1
0 0( , ) ( ) arctan arctan .

n n
n i i
i f f n n

r r

t t t t Tλ λ
λ λ

− −   
Λ = − =   

   
  (15)

From Equation (12), the real parts of the exponents are ordered such that 
1 2 ... .Nr r rΛ ≥ Λ ≥ ≥ Λ   (16)

We note that 0( , )n
r ft tΛ  is the average growth rate and 0( , )n

i ft t−Λ  is the average 

phase frequency [49], Equation (4.5). We assume that the possibly complex nλ  are dis-
tinct and the associated eigenvectors are nondegenerate, which appears to be the generic 
case based on our previous studies [27,41,49,50,79,80]. In this case, when some of the ei-
genvalues are complex, we order them and the associated exponents and FTNM eigen-
vectors as described in Appendix A. In fact, our results would also be valid for different 
orderings that are consistent between the FTNMs and other dynamical vectors considered 
in this article. 

The FTNMs have the important property of being norm independent, unlike SVs, 
and, when nondegenerate, can be used as a basis for representing any initial vector and 
its evolution. Thus, with 

0 0
1

( ) ( )
N

n
n

n
t tκ

=

=x φ   (17)

where nκ  are the expansion coefficients in terms of FTNMs we find that 

0 0
1

( ) ( , ) ( ).
N

n n
f f n

n
t t t tλ κ

=

=x φ   (18)

Equation (18) illustrates another important property of FTNMs and that is that any initial 
disturbance is filtered by the dynamics in favor of the faster growing FTNMs with larger 
amplification factors nλ  or growth rates n

rΛ . The FTNMs for 0ft t t≥ ≥  are defined 

by forward propagation through 

0 0 0 0( ;[ ]) ( , ) ( ;[ ])n n
f ft t t t t t t t− −=Gφ φ   (19)

and hence the FTNMs are covariant with the dynamics over this interval. 
The two definitions in Equations (11) and (19) only involve forward integrations of 

the dynamical equations or their associated propagators. However, based on these two 
definitions further properties of ( )n tφ  may be established. Firstly, for 0ft t t≥ ≥ , 

0( ;[ ])n
ft t t−φ  satisfies the eigenvalue equation 
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0 0 0 0( ) ( , ) ( ) ( , ) ( ) ( , ) ( , ) ( ).n n n n n n
f ft t t t t t t t t t t tλ λ= = =G G G Gφ φ φ φ   (20)

Equivalently, taking time to be increasing through the recycling step (discussed in more 
detail in Section 11.3) such that t t T→ +  and 0 0t t T→ +  in the propagator 0( , )t tG  
we have 

0 0( , ) ( , ) ( ) ( ).n n nt T t T t T t t t+ + + =G G φ λ φ   (21)

Here, 0( , )n n
ft tλ λ=  and 

0 0( , ) ( , ).t T t T t t+ + ≡G G   (22)

Thus, one can also regard the FTNMs, ( )n tφ , at time t  as the solution of the eigenvalue-
eigenvector equations in Equation (21) that involve a recycling of the disturbances. These 
relationships are consistent with the FTNMs being calculated by the algorithms that in-
volve the recycling of initial perturbations as discussed in Section 11.3. 

From Equation (11) we also see that 
1

0 0 0 0 0 0 0 0( ;[ ]) ( , ) ( ;[ ]);  ( , ) ( ;[ ]) ( ;[ ])f f f f f f f ft t t t t t t t t t t t t t t t−
− − − −= =G GΦ Φ Φ Φ  (23) 

and 
1

0 0 0 0 0 0 0 0 0 0 0 0( , ) ( ;[ ]) ( ;[ ]) ( , );   ( , ) ( ;[ ]) ( , ) ( ;[ ])f f f f f f f ft t t t t t t t t t t t t t t t t t t tλ λ
−

− − − −= =G D G DΦ Φ Φ Φ  (24) 

with 
1 2

0( , ) diag( , ,..., ).N
ft tλ λ λ λ=D   (25)

Here, the characteristic matrix of the FTNMs 
1 2

0 0 0 0( ;[ ]) ( ( ;[ ]), ( ;[ ]),..., ( ;[ ])).N
f f f ft t t t t t t t t t t t− − − −= φ φ φΦ   (26)

We assume that the FTNMs are nondegenerate and that ( )tΦ  is nonsingular with the 

inverse 1( )t−Φ  well defined. This then ensures that 1( , ) ( ) ( )t t t t−′ ′=G Φ Φ  is 

nonsingular with well-defined inverse [ ] 1( , )t t −′G  as in Oseledec [72]. 

3.2. Finite-Time Adjoint Modes 
We consider next the adjoint equation corresponding to Equation (2) 

†( ) ( ) ( )d t t t
dt

− =a M a   (27)

as in Ref. [49] where the propagator for backwards integration satisfies 

0 0( ) ( , ) ( )t t t t=a H a   (28)

and 
†

0 0( , ) ( , ).t t t t=H G   (29)

Here, we also note that the Hermitian conjugate reverses the time integration as does the 
inverse operation. 

From Equation (24) we note that 
1 ? † †

0 0 0 0 0 0( , ) ( , ) ( , ) ;  ( , ) ( , ) ( , )f f f f f ft t t t t t t t t t t tλ λ λ∗
−= = = =G D D A G H ADΦ Φ Φ Φ  (30) 

with 
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† 1
0 0( ;[ ]).ft t t−

−=A Φ   (31)

The matrix A  consists of the columns of adjoint eigenvectors 
1 2( , ,..., )N=A α α α   (32)

that are determined by 
†

0( , ) n n n
ft t λ ∗=G α α   (33)

where *  denotes complex conjugate. The FTNM eigenvectors and adjoint eigenvectors 
form a biorthogonal system with the adjoint eigenmodes normalized such that the Euclid-
ean inner product 

( ) †, ( )m n m n
mnδ= =α φ α φ   (34)

with mnδ  the Kronecker delta function that is unity when m n=  and zero otherwise. 

4. Floquet Vectors 
We consider here the case when the stability matrix ( ) ( ;[ ( )])t t t≡M M X  is peri-

odic due to the periodicity of the trajectory ( )tX . Then the tangent linear equations for 
the dynamical systems considered in Section 2 satisfy the conditions for Floquet theory 
[55,65,79–85]. Thus, if the dynamical system is periodic so that 

( ) ( )t T t+ =M M   (35)

then Equation (21), which applies to FTNMs, becomes 

0( , ) ( ) ( , ) ( ).n n n
ft T t t t t tλ+ =G φ φ   (36)

For the periodic system the difference is that Equation (35) means that there is no discon-
tinuity at 0ft t T= +  and therefore 

0 0( , ) ( , ) ( , ).t T t T t T t t T t+ + + = +G G G   (37)

Moreover, we have 

[ ]( , ) ( , ) Kt KT t t T t+ = +G G   (38)

where K  is a positive integer and 

0 0 0 0 0 0

0

( , ) ( ;[ ]) ( , ) ( , ) ( ;[ ])

( , ) ( ) ( , ) ( ).

n n
f f

Kn n n
f

t KT t t t t t KT t t t t t t

t KT t t t t tλ

− −+ = +

 = + =  

G G G

G

φ φ

φ φ
  (39)

Here, Equation (19) has been used for the last two equalities. 

5. Singular Vectors 
The propagator can also be presented through a singular value decomposition as 

† † †
0 0( , )  ; ( , )f ft t t tσ σ= =G UD V G VD U   (40)

with U  and V  unitary matrices and 
1 2

0 0 0 0( , ) diag( ( , ), ( , ),..., ( , ))N
f f f ft t t t t t t tσ σ σ σ=D   (41)
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is a diagonal matrix of singular values with 1 2 ... Nσ σ σ≥ ≥ ≥ . The matrices U  and 
V  consist of the columns of the left SVs 

1 2( , ,..., )N=U u u u   (42)

and right SVs 

 1 2( , ,..., ).N=V v v v  (43)

Here, nu  are the left orthonormal SVs that appear on the left in the first expression in 
Equation (40) and nv  the right SVs. From Equation (40) we have 

0 0 0 0( , ) ( ;[ ]) ( ;[ ])n n n
f f f ft t t t t t t tσ− −=G v u   (44)

and 
†

0 0 0 0 0 0( , ) ( ;[ ]) ( , ) ( ;[ ]) ( ;[ ]).n n n n
f f f f f f ft t t t t t t t t t t t tσ− − −= =G u H u v   (45)

Thus, 
† 2

0 0 0 0 0 0 0( , ) ( , ) ( ;[ ]) ( , ) ( , ) ( ;[ ]) ( ) ( ;[ ])n n n n
f f f f f f f f f ft t t t t t t t t t t t t t t t tσ− − −= =G G u G H u u  (46) 

and 
† 2

0 0 0 0 0 0 0 0 0 0( , ) ( , ) ( ;[ ]) ( , ) ( , ) ( ;[ ]) ( ) ( ;[ ]).n n n n
f f f f f f ft t t t t t t t t t t t t t t t tσ− − −= =G G v H G v v  (47) 

Equation (46) can also be written in the form: 
1 1† 2

0 0 0 0 0( , ) ( , ) ( ;[ ]) ( ( , )) ( ;[ ]).n n n
f f f f f f ft t t t t t t t t t t tσ

− − −
− −    =  G G u u (48)

The singular values and exponents are related through 

0 0 0( , ) exp ( , )( )n n n
f f ft t t t t tσ σ= = Σ −   (49)

with 
1 1

0 0 0 0( , ) ( ) ln( ( , )) ln( ( , )).n n n
f f f ft t t t t t T t tσ σ− −Σ = − =   (50)

The 0( , )n
ft tΣ  are the average growth rates over the time interval T  between 0t  and 

ft . 
The SVs, unlike the FTNMs and CLVs, depend on the field variables, such as stream-

function, velocity or vorticity, defining the phase-space or norm, for which they are cal-
culated. Transformation between two such field variables denoted x  and y  can be 
achieved through 

=y xΓ   (51)

where Γ  is the transformation matrix. The general inner product and norm are defined 
by 

2† † † †[ , ] ( , ) ;  [ , ] .′ ′ ′= = = =x x y y x x x x y x xΓ Γ Γ Γ   (52)

Here, ( , )y y  is the Euclidean inner product and y  the 2L  norm [80], (Equations 

(3.6) and (3.7)). 
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6. Lyapunov Vectors and Exponents and the Oseledec Theorem 

Lyapunov exponents, which we denote by nL  for 1,2,...n N= , characterize the 
long-time amplification and decay of linear perturbations to dynamical systems and are 
fundamental properties of these systems. The growth rate, nL , depends on whether the 
perturbation is in, or can be constrained to, a subspace of N  [72,86,87]. Associated with 
each Lyapunov exponent, nL , there is a left or backward OLV, 

( ) lim( ) ( ;[ ])n nt t tτ τ−− −= → −∞ uu , and a right or forward OLV, 

( ) lim( ) ( ;[ ])n nt t tτ τ −+ += → ∞ vv , that are the asymptotic limits of respective SVs, as 

detailed in Appendix B. In the long-time limits, the singular value exponents, nΣ , con-
verge to Lyapunov exponents nL . 

From the norm dependent OLVs it is possible to construct nonorthogonal but norm 
independent Lyapunov vectors, ( )n tψ , that are propagated forward or backward in time 
by multiplying by the propagator or its inverse respectively [57–60]. These vectors, 

( )n tψ , that covary with the dynamics are commonly known as covariant Lyapunov vec-

tors (CLVs) in the terminology of Ginelli et al. [57]. The CLVs, ( )n tψ , also grow and con-
tract on average in the forward and backward time directions with the global Lyapunov 
growth rates nL . These important aspects of the behaviour of linear disturbances to dy-
namical systems are governed by the Oseledec [72] multiplicative ergodic theorem out-
lined in Appendix B. 

7. Relationships between Covariant Lyapunov Vectors and Orthogonal Lyapunov 
Vectors 

The relationships between long-time SVs, OLVs and CLVs are summarized in Ap-
pendix B based on subspaces of N . Both the case of nondegenerate Lyapunov vectors, 
with distinct Lyapunov exponents, 1 2 ... N> > >L L L , and the degenerate case, where 
some exponents are equal, 1 2 ... N≥ ≥ ≥L L L , and there are just N<M  distinct 
Lyapunov exponents, 1 2 ...> > >L L LM , are considered. 

In this Section, we consider the construction of CLVs from OLVs as well as the con-
struction of OLVs from CLVs. We focus in the next two Subsections on the nondegenerate 
case, which has mainly been considered in the literature, and in Section 7.3 we discuss the 
degenerate case. The relationships between the left and right orthonormal Lyapunov vec-
tors (OLVs) and CLVs have been discussed by many authors [56–65]. A primary aim of 
much of this work has been the construction of CLVs from long-time SVs that approxi-
mate OLVs. 

7.1. Construction of Orthonormal Lyapunov Vectors from Covariant Lyapunov Vectors 
Here we summarize some of the underpinning mathematical relationships between 

CLVs and OLVs starting with the construction of OLVs from CLVs. We consider the case 
of nondegenerate real Lyapunov exponents so that the OLVs as well as CLVs are 
nondegenerate. The left OLVs, ( ) lim( ) ( ;[ ])n nt t tτ τ−− −= → −∞ uu , may then be ob-

tained by Gram-Smidt orthonormalization of the CLVs, ( )n tψ , through the following 
relationship: 

1

1lim
1

1

( ) ( ( ), ( )) ( )
( ) ( ;[ ])  

( ) ( ( ), ( )) ( )

n
n j n j

jn n
n

n j n j

j

t t t t
t t t

t t t t
τ

τ
−

−

=
− −→−∞ −

=

−
= =

−




u

ψ ψ

ψ ψ

u u
u

u u
  (53)
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for 1, 2,...,n N= and where ( ),⋅ ⋅  is the Euclidean inner product defined by Equation 

(52) with ⋅  the associated 2L  norm. Similarly, the right OLVs, 

( ) lim( ) ( ;[ ])n nt t tτ τ −+ += → ∞ vv , may be determined by orthonormalization of the 

CLVs, ( )n tψ , through 

1lim

1

( ) ( ( ), ( )) ( )
( ) ( ;[ ]) .

( ) ( ( ), ( )) ( )

N
n j n j

j nn n
N

n j n j

j n

t t t t
t t t

t t t t
τ

τ
+

= +
−+→∞

= +

−
= =

−




v

ψ ψ

ψ ψ

v v
v

v v
  (54)

We note from these relationships that the first CLV and first left OLV are equivalent and 
the last CLV and last right OLV are equivalent. Given that all the CLVs are norm inde-
pendent then so are the first left OLV and the last right OLV but the other OLVs are norm 
dependent. We also see that ( )n tu  only depends on the first 1,...,j n=  CLVs, 

( )j tψ , while ( )n tv  only depends on the last ,...,j n N=  CLVs. These relationships 
can be written in matrix form: 

;   B BU VU= V =Ψ Ψ   (55)

where 
1 2( , ,..., )N= ψ ψ ψΨ   (56)

is the matrix consisting of column vectors ( )n tψ  for 1, 2,...,n N= , and U  and V
are corresponding matrices of ( )n tu  and ( )n tv . We note that the transformation ma-

trices BU  and BV  are respectively upper triangular and lower triangular with non-
zero elements on the diagonal. They are thus nonsingular with corresponding inverses 

( ) 1−
C BU U=  and ( ) 1−

C BV V=  that are respectively upper triangular and lower tri-

angular. That is, inverting the two relationships in Equation (55) we have 

( ) ( ) 11
;   .

−−
= ≡ = ≡C B C BU U V VU U V VΨ Ψ   (57)

7.2. Construction of Covariant Lyapunov Vectors from Orthonormal Lyapunov Vectors 
There are of course efficient methods for constructing the OLVs directly 

[30,41,63,86,87] and the more difficult task is generally to construct the CLVs efficiently 
[56–60]. The matrix relationships in Equation (57) can be written in terms of the Lyapunov 
vectors as follows: 

1
( ) ( ) ( ( ), ( )) ( )

n
n n j n j

j
t t t t t

=

= ≡ψ ψ ψu u u   (58)

and 

( ) ( ) ( ( ), ( )) ( ).
N

n n j n j

j n
t t t t t

=

= ≡ψ ψ ψv v v   (59)

These relationships state that, as expected, ( )n tψ  only depends on the first 1,...,j n=  

left OLVs ( )n tu  and only depends on the last ,...,j n N=  right OLVs ( )n tv . The 
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restricted ranges of the sums of course also reflect the triangular nature of the transfor-
mation matrices and the subspace relationships in Appendix B.3. 

The above formulae for constructing CLVs from OLVs require N  OLVs where N  
may be very large. A more efficient method was developed by Wolfe and Samelson [56] 
for determining the leading n  CLVs, ( )n tψ , from the leading n  left (backward) 

OLVs, ( )n tu , and 1n−  right (forward) OLVs, ( )n tv . Another efficient algorithm 
was proposed independently by Ginelli et al. [57] and there have been subsequent varia-
tions and improvements by several authors [58–60]. 

7.3. Degenerate Orthonormal Lyapunov Vectors 
The above results on the relationships between SVs over sufficiently long-time inter-

vals, or OLVs, and CLVs, may be established most directly when the OLVs are nondegen-
erate and the Oseledec subspaces (Appendix B.3) are one-dimensional. As noted by 
Kuptsov and Parlitz [58], if the CLVs have been determined, then the left and right OLVs 
can still be calculated through Equations (53) and (54). If, on the other hand, we wish to 
determine the CLVs from the OLVs then Equations (58) and (59) do not determine the 
CLVs uniquely. This is because the CLVs can have arbitrary orientation in the subspaces 
associated with identical Lyapunov exponents nL . However, the subspaces can be de-
fined by any linearly independent set of vectors and the set determined by Equations (58) 
and (59) will suffice, as will be shown for dynamics in FTNM-space. 

In the subsequent Sections, we shall primarily use Equations (53) to (59) in FTNM-
space where they simplify at critical times. As noted in Section 3 and Appendix A, we 
consider nonsingular propagators (as in Oseledec [72]) for which the FTNMs, ( )n tφ , are 
nondegenerate with distinct but possibly complex eigenvalues and exponents
n n n

r iiΛ = Λ + Λ . This means that not all the real parts of the eigenvalue exponents n
rΛ  

are distinct. As consequence, in FTNM-space, some of the singular value exponents, 
(Equation (76)), n n

rΣ = Λ , are not distinct and the SVs are degenerate. As noted above 
and in Section 8, this is not a problem since we can always choose the SVs to be ordered 
in the same way as the FTNMs. Furthermore, this also applies in the long-time limits when 
the SVs approach the OLVs and some of the Lyapunov exponents nL  are identical (Ap-
pendices A and B with M=M  and ( ) ( )m md=d ), as detailed in the following Sec-
tions. 

8. Dynamics in FTNM-Space 
The evolution of SVs in physical space can be highly complex and very different de-

pending on the norm or field variables for which they are defined [50]. Much of this com-
plicated behaviour can be understood in terms of the projection of SVs in terms of the 
norm independent FTNMs [50]. In this Section, we consider the relationships between SVs 
and FTNMs when the dynamical equations are transformed to the space spanned by 
FTNMs. 

Tangent Linear Equation and Propagator in FTNM-Space 
We underline the variables, vectors, and matrices in FTNM-space to distinguish them 

from the corresponding quantities in the original x -space: 

0 0( ) ( ;[ ]) ( )ft t t t t−=x xΦ  (60)

and 
1 2

0 0 0 0 0 0 0 0( ;[ ]) ( ( ;[ ]), ( ;[ ]),..., ( ;[ ]))N
f f f ft t t t t t t t t t t t− − − −= φ φ φΦ  (61)
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where 0( )n tφ  are the FTNMs of Section 3. From Equation (17) we see that the compo-

nents of 0( )tx  are related to the projection coefficients in terms of FTNMs through 

0( )n nx t κ=  for 1,..., .n N=  In FTNM-space the prognostic equation for ( )tx  becomes 

( ) ( ) ( )d t t t
dt

=x M x  (62)

where the dynamical matrix ( )tM  is given by 

1
0 0 0 0( ) ( ;[ ]) ( ) ( ;[ ]).f ft t t t t t t t−

− −=M MΦ Φ  (63)

As noted in Section 3, we assume that Φ  is non-singular so that 1−Φ  is well defined. 
Again 

0 0( ) ( , ) ( )t t t t=x G x  (64)

where 0( , )t tG  is the propagator from the initial time 0t  to time t  in FTNM-space. 
The propagator in FTNM-space also satisfies Equations (5) to (9), including the central 
cocycle properties, for the corresponding underlined matrices. Importantly, 

1 1 2
0 0 0 0 0 0( , ) ( , ) ( , )=diag( ( , ), ( , ),..., ( , ))N

f f f f f ft t t t t t t t t t t tλ λ λ λ−= =G G DΦ Φ  (65) 

and 
† † † 1 ? 1 ?

0 0 0

1 2
0 0 0 0

( , ) ( , )( ) ( , )

( , )=diag( ( , ), ( , ),..., ( , )).
f f f

N
f f f f

t t t t t t

t t t t t t t t
λ

λ λ λ∗

− −

∗ ∗ ∗

= =

=

G G A G A

D

Φ Φ
 (66)

We also have 

2
† †

0 0 0 0 * 0 0 0

1 1 2 2 1 2 2 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

=diag( , ,..., ) diag(( ) , ( ) ,..., ( ) )
f f f f f f f

N N N

t t t t t t t t t t t t t tλ λ σ

λ λ λ λ λ λ σ σ σ∗ ∗ ∗

= = =

=

G G G G D D D
 (67)

where 0( , )n n n
ft tλ λ λ≡ =  and 0 0( , ) ( , )n n n

f ft t t tσ σ λ= = . 

In FTNM-space Equation (11) again holds for the associated underlined variables: 

0 0 0 0 0 0 0 0 0

0

( , ) ( ;[ ]) ( , ) ( ;[ ]) ( , ) ( ;[ ])

( ;[ ])

n n n n
f f f f f f

n
f f

t t t t t t t t t t t t t t t

t t t
λ λ− − −

−

= =

=

G Dφ φ φ

φ
 (68)

with 1, 2,...,n N= . Because 0 0( , ) ( , )f ft t t tλ=G D  is now a normal matrix, in fact a di-
agonal matrix, the FTNMs can be taken to be proportional to the standard unit basis vec-
tors: 

0 0 0 0( ;[ ]) ( )  ; ( ;[ ]) ( ) .n n n n n n
n nf f f ft t t t t t t tφ φ− −= =e eφ φ  (69)

Indeed, the eigenmodes nφ , adjoint eigenmodes nα , and left nu  and right nv  SVs 

can all be taken to be proportional to the standard unit basis vectors ne . Here the compo-
nents n

me  of ne  are the Kronecker delta function 

1 if 
0 otherwise.

n
m mn

m n
e δ

=
= = 


 (70)

In FTNM-space Equations (46) and (47) become 
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2

†
0 0 0 0 0 0

2
0 0 0 0

( , ) ( , ) ( ;[ ]) ( , ) ( , ) ( ;[ ])

( , ) ( ;[ ]) ( ( , )) ( ;[ ])

n n
f f f f f f f f

n n n
f f f f f f

t t t t t t t t t t t t t t

t t t t t t t t t t
λ λ

σ σ
∗− −

− −

=

= =

G G u D D u

D u u
 (71)

and 

2

†
0 0 0 0 0 0 0 0

2
0 0 0 0 0 0

( , ) ( , ) ( ;[ ]) ( , ) ( , ) ( ;[ ])

( , ) ( ;[ ]) ( ( , )) ( ;[ ]).

n n
f f f f f f

n n n
f f f f

t t t t t t t t t t t t t t

t t t t t t t t t t
λλ

σ σ
∗− −

− −

=

= =

G G v D D v

D v v
 (72)

Thus, we can take 

0
0 0 0

0

( ;[ ])
( ;[ ]) ( ;[ ]) ( ;[ ])    

( ;[ ])

n n
n f fn n n n n

f f n f f n f fn
n f f

t t t
t t t t t t u t t t

t t t
φ

φ
φ

−
− − −

−
= ≡ =

e
u e e  (73) 

with 0 0( ;[ ]) 1 ( ;[ ])n n
n f f n f ft t t u t t tφ − −= =  for 1, 2,...,n N= . As well, 

0 0
0 0 0 0 0 0

0 0

( ;[ ])
( ;[ ]) ( ;[ ]) ( ;[ ])

( ;[ ])

n n
n fn n n n n

f n f n fn
n f

t t t
t t t t t t v t t t

t t t
φ

φ
φ

−
− − −

−
= ≡ =

e
v e e (74)

with 0 0 0 0( ;[ ]) 1 ( ;[ ])n n
n f n ft t t v t t tφ − −= = . Here it is important to note from Equation 

(67) that 

0 0( , ) ( , )n n
f ft t t tσ λ=  (75)

and from Equations (14) and (50) 

0 0( , ) ( , ).n n
rf ft t t tΣ = Λ  (76)

As noted in Section 2, we assume that the in general complex eigenvalues, nλ , are 
unique while the real singular values nσ  may be degenerate, as they would be, for ex-

ample, when 1n nλ λ+ ∗= . Note that the possible degeneracy of the SVs does not affect the 
ability to choose the basis vectors as in Equations (73) and (74). Indeed, irrespective of the 
degeneracy of the SVs and multiplicity of the singular values, and corresponding expo-
nents, we can always choose the ordering to be the same as for the FTNMs and their ei-
genvalues and exponents detailed in Appendix A. This also applies when the time spans 
considered are sufficiently long for the SVs to approach the orthonormal Lyapunov vec-
tors as seen from Appendix A and Appendix B.4 (with M=M  and ( ) ( )m d m=d ). 

9. Covariant Lyapunov Vectors for Periodic Systems 
In this section we explore the relationship between OLVs and CLVs for periodic sys-

tems in FTNM-space before studying aperiodic systems in the next Section. The simplifi-
cations that occur in FTNM-space at critical times straightforwardly allows the direct de-
termination of these relationships, from Equations (53) to (59), and the equivalence of Flo-
quet vectors [55] and CLVs [65,88]. Because of the anchoring of SVs with FTNMs at critical 
times, these links are simply established for degenerate as well as nondegenerate Lya-
punov spectra. We consider the case when the FTNMs are defined on the basic period of 
the Floquet vectors. 

9.1. Dynamics of SVs and OLVs in FTNM-Space 
We start by considering the relationships between SVs and FTNMs in FTNM-space 

for periodic systems where the analysis is simplified by using the results established in 
Section 5. Over the basic period 0 0( , ) [ ]f fT T t t t t−= =  in Equation (10), FTNMs are 
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eigenvectors of the propagator as in Equation (68) and the FTNMs are proportional to the 
standard unit basis vectors (Equation (70)) through the relationships in Equation (69). The 
same is true for periods that are multiples of the basic period. We define 

0 0ˆ ˆ ˆ ˆ( )   for  or ft t KT t t t t t Tτ± = ± = = = +  (77)

where K  is a positive integer. Consider the propagator over longer time intervals: 

0 0

† †
0 0

ˆ ˆ( , ( )) ( , ) ( , ),

ˆ ˆ( ( ), ) ( , ) ( , ).

K K
f f

K K
f f

t t t t t t

t t t t t t

λ

λ

τ

τ ∗

−

+

 → = 

 → = 

G G D

G G D
 (78)

Then 

0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ( )) ( ( );[ ( )]) ( , ) ( ( );[ ( )])

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ( );[ ( )]) ( ;[ ( )])

n K n
f

Kn n n
f

t t t t t t t t t t

t t t t t t t t

λτ τ τ τ τ

λ τ τ τ

− −− − − − −

− −− − −

=

 = = 

G Dφ φ

φ φ
 (79)

and 

0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( ), ) ( ;[ ( ) ]) ( , ) ( ;[ ( ) ])

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ;[ ( ) ]) ( ( );[ ( ) ]).

n K n
f

Kn n n
f

t t t t t t t t t t

t t t t t t t t

λτ τ τ

λ τ τ τ

− −+ + +

− −+ + +

=

 = = 

G Dφ φ

φ φ
 (80)

Again, the initial and final FTNMs are proportional to the standard unit basis vectors and, 
in particular 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ;[ ( )]) ( )  ; ( ;[ ( ) ]) ( ) .n n n n n n
n nt t t t t t t tτ φ τ φ− −− += =e eφ φ  (81)

We consider next the SVs over the longer time intervals. We see from Equations (46) 
and (47) but for the more general times in Equation (77) that 

2
†

0

2 2
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ( )) ( , ( )) ( ;[ ( )]) ( , ) ( ;[ ( )])

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ;[ ( )]) ( ( , ( )) ( ;[ ( )])

n K n
f

Kn n n n
f

t t t t t t t t t t t t

t t t t t t t t t t

στ τ τ τ

σ τ σ τ τ

− −− − − −

− −− − −

=

 = = 

G G u D u

u u
 (82)

and 

2
†

0

2 2
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( ), ) ( ( ), ) ( ;[ ( ) ]) ( , ) ( ;[ ( ) ])

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ;[ ( ) ]) ( ( ( ), )) ( ;[ ( ) ])

n K n
f

Kn n n n
f

t t t t t t t t t t t t

t t t t t t t t t t

στ τ τ τ

σ τ σ τ τ

− −+ + + +

− −+ + +

=

 = = 

G G v D v

v v
 (83)

with 

20 0 0( , ) ( , ) ( , ).K K K
f f ft t t t t tλλ σ∗ =D D D  (84)

As noted in Section 8, Equations (73) and (74), because λ=G D  over any multiple of the 

basic period 0 0( , ) [ ]f fT T t t t t−= =  is a normal matrix, in fact diagonal, the left and 

right SVs are also proportional to standard unit basis vectors ne  of Equation (70). Thus, 
for 0ˆ ˆ or ft t t t= = , 

ˆ ˆ ˆ( ;[ ( )])ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ;[ ( )]) ( ;[ ( )]) ( ;[ ( )]) ,
ˆ ˆ ˆ( ;[ ( )])

n n
nn n n n n

n nn
n

t t t
t t t t t t u t t t

t t t
φ τ

τ φ τ τ
φ τ

− −
− − −− − −

− −

= ≡ =
e

u e e  (85) 
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with unit norm FTNMs (and CLV vectors) and components denoted by   so that 
ˆ ˆ ˆ ˆ ˆ ˆ( ;[ ( )]) 1 = ( ;[ ( )])n n

n nt t t u t t tφ τ τ− −− −= . Similarly, 

ˆ ˆ ˆ( ;[ ( ) ])ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ;[ ( ) ]) ( ;[ ( ) ]) ( ;[ ( ) ])  
ˆ ˆ ˆ( ;[ ( ) ])

n n
nn n n n n

n nn
n

t t t
t t t t t t v t t t

t t t
φ τ

τ φ τ τ
φ τ

−+
− − −+ + +

−+

= ≡ =
e

v e e  (86) 

where ˆ ˆ ˆ ˆ ˆ ˆ ( ;[ ( ) ]) 1 ( ;[ ( ) ])n n
n nt t t v t t tφ τ τ− −+ += = . Also, from Equations (39), (75), (82) 

and (83) it follows that 

0 0 0 0 0 0( , ( )) ( , ( )) ( ( ), ) ( ( ), ) ( ( , )) ( , ) .
Kn n n n n K n

f f f f f ft t t t t t t t t t t tσ τ σ τ σ τ σ τ σ λ− − + += = = = =  (87) 

Now, with t′  denoting any of the above initial times and t  any of the above final times 
we have 

( , ) exp ( , )( ) exp{ ( , ) ( , )}( )n n n n n n
r i r it t i t t t t t t i t t t tλ λ λ′ ′ ′ ′ ′ ′= + = Λ − = Λ + Λ −  (88) 

and 

( , ) exp ( , )( ).n nt t t t t tσ ′ ′ ′= Σ −  (89)

Of course, the above relationships also apply in the limit where K → ∞ , so that the left 
OLV 

ˆ ˆ( ) ( )ˆ ˆ ˆ ˆ( ) ( ; ) ( ) ( )
ˆ ˆ( ) ( )

n n n
nn n n n n n

n nn n
n

t t
t t t t

t t
φ

φ
φ

= −∞ = = ≡ =
e

u e e
φ
φ

 uu  (90)

with ˆ ˆ( ) 1 = ( )n n
n nt tφ = u  for 1, 2,...,n N= and 0ˆ ˆ or ft t t t= = . Also, the right 

OLV 

ˆ ˆ( ) ( )ˆ ˆ ˆ ˆ( ) ( ; ) ( ) ( )
ˆ ˆ( ) ( )

n n n
nn n n n n n

n nn n
n

t t
t t t t

t t
φ

φ
φ

= ∞ = = ≡ =
e

v e e
φ
φ

v v  (91)

with ˆ ˆ( ) 1 = ( )n n
n nt tφ = v . As well the Lyapunov exponent 

0 0 0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , ).n n n n n n n
r f f f ft t t t t t t t= Λ = Σ = Σ −∞ = Σ −∞ = Σ ∞ = Σ ∞L  (92) 

Here, we note that 0
ˆ ˆ ˆ ˆ( ) ( ; ) ( ; ) ( ;[ ])n n n n

ft t t t t t−= ∞ = −∞ =φ φ φ φ  for 1, 2,...,n N=  

and 0ˆ ˆ or ft t t t= = . In the above analysis we have not used Equations (53) and (54) but 

just relied on the long-time behaviour of SVs in FTNM-space. 

9.2. Construction of CLVs from OLVs in FTNM-Space 
Next, we use the results in Section 7.2 to construct the CLVs from the OLVs in FTNM-

space. From Equations (53) and (90) we have 

1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( ) , ( )) ( ) ( )
n n

n n j j n j j n j
j j j

j j
t t t t t tψ

= =

= = = e e eψ ψ ψu u u  (93)

and from Equations (54) and (91) 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( ) , ( )) ( ) ( ) .
N N

n n j j n j j n j
j j j

j n j n
t t t t t tψ

= =

= = = e e eψ ψ ψv v v  (94)

These results then mean that the only nonvanishing elements are ˆ( )n
n tψ  and that 
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( ), ( )) ( ) ( ( ) , ( ) ) ( ) ( )n n n n n n n n n n n n n
n n n nt t t t t t t t tφ ψ φ ψ= = = =e e e eψ ψ ψ  u u u (95) 

with unit norm FTNM and CLV vectors and components denoted by   so that 
ˆ ˆ ˆ( ) ( ) ( )n n n

n n nt t tφ φ φ=  and 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( ), ( )) ( ) ( ( ) , ( ) ) ( ) ( ) .n n n n n n n n n n n n n
n n n nt t t t t t t t tφ ψ φ ψ= = = =e e e eψ ψ ψ  v v v  (96

) 
Moreover, from Equations (95) and (96) we can choose the orientations and amplitudes so 
that 

ˆ ˆ ˆ ˆ( ) ( ) = ( ) ( )n n n n n n
n nt t t tψ φ= =e eψ φ  (97)

for 0
ˆ  t t=  or ˆ ft t=  and 1, 2,...,n N= . 

Of course, both the CLVs and FTNMs covary with the tangent linear dynamics so 
that they can be obtained at any future time t  or past time t′  through 

ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( ) ( , ) ( )n n n nt t t t t t t t= = =G Gψ ψ φ φ  (98)

and 
1 1

.ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( ) ( , ) ( )n n n nt t t t t t t t
− −

      ′ ′ ′ ′= = =G Gψ ψ φ φ  (99)

The real Lyapunov exponents are independent of finite time t  or t′  and, as in Equation 
(92), are given by 0 0( , ) ( , )n n n

f r ft t t t= Σ = ΛL . The CLV exponents are in general com-

plex and equal to the FTNM exponents 0 0 0( , ) ( , ) ( , )n n n
f r f i ft t t t i t tΛ = Λ + Λ  for 

1, 2,...,n N= . These results are valid for both degenerate and nondegenerate Lyapunov 
spectra as follows simply from the anchoring of the SVs with FTNMs at critical times in 
FTNM-space. In the original x -space ( ) ( )n nt t=ψ φ , as expected and detailed in Ap-
pendices C and D (see also Section 10.2). 

9.3. Construction of OLVs from CLVs in FTNM-Space 
As noted in the Introduction and in Section 7.2, there are efficient methods for deter-

mining OLVs directly and for the periodic problem this can be done very simply in FTNM-
space, at critical times, as shown in Section 9.1. Here, we also show that the general results 
between CLVs and OLVs in Section 7 simplify in FTNM-space to construct OLVs from 
CLVs. 

In FTNM-space Equation (53) reduces to 

ˆ ˆ ˆ( ) ( ) ( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

n n n n n
n nn n n n n n n

n n nn n n
n n

t t t
t t t t

t t t
ψ φ

ψ φ
ψ φ

= = ≡ = ≡ =
e e

e e e
ψ
ψ

u u  (100) 

with ˆ ˆ ˆ( ) 1 ( ) ( )n n n
n n nt t tφ ψ= = =  u  and for 0

ˆ  t t=  or 0ˆ ft t t T= = +  and 

1, 2,...,n N=  where we have used the relationships in Equation (97). As well, for these 

values of t̂  and n , Equation (54) simplifies to 

ˆ ˆ ˆ( ) ( ) ( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

n n n n n
n nn n n n n n n

n n nn n n
n n

t t t
t t t t

t t t
ψ φ

ψ φ
ψ φ

= = ≡ = ≡ =
e e

e e e
ψ
ψ

v v  (101)

with ˆ ˆ ˆ( ) 1 ( ) ( )n n n
n n nt t tφ ψ= = =  v . These results of course agree with those established 

directly in Section 9.1. 
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The above analysis establishes the left and right OLVs based on the CLVs with Equa-
tion (53) reducing to Equation (100) and Equation (54) to Equation (101). We shall not need 
the expressions for OLVs at other times than those considered here and in Section 9.1 since 
our primary interest is the construction of CLVs. 

10. Covariant Lyapunov Vectors for Aperiodic Systems 
Next, we consider the determination of Lyapunov exponents and vectors for the case 

of aperiodic flows under the conditions, described in Section 2 and Appendices B and C, 
when the Oseledec [72] theorem holds. We consider both the theoretical principles and 
the practical numerical calculation of these instability properties. The numerical calcula-
tion of Lyapunov exponents and vectors in practice involves the determination of approx-
imations to these dynamical quantities over a finite time interval and with finite accuracy 
of the propagators. However, we assume the propagators to be accurate for the purpose 
of establishing theoretical results. Our primary interest is again the determination of CLVs 
that we want to establish in a time interval tτ τ+ + − −> Δ ≥ ≥ Δ > . For numerical studies 
this time interval is determined through experimentation. For our theoretical results it is 
sufficient to take γ τ± ± ±Δ =  with 1 0γ ±> >  for τ± → ±∞  although practical conver-

gence is likely faster with 1 0γ ± >? . 
We suppose that we have established, to within the errors that we can tolerate, that 

in the space of field variables and for the norm of interest, the long time left, and right SVs 
are suitable approximations to the left and right OLVs. As well, the associated singular 
value exponents should have closely approached the Lyapunov exponents. Thus, for 

1, 2,...,n N=  we have 

( ) ( ;[ ])n nt t t τ− −uBu  (102)

for tτ+ −≥ ≥ Δ  and 

( ) ( ;[ ])n nt t tτ −+vBv  (103)

for t τ+ −Δ ≥ ≥ . Here, we suppose that τ τ± ±= ±  and we expect convergence for 

large τ± . 

10.1. Dynamics in FTNM-Space 
We suppose that the convergence of the SVs to the OLVs applies for dynamics in 

FTNM-space with time interval [ ]τ τ−+ −  and, to be specific, for the Euclidean inner 

product and 2L  norm. Again, from the development in Section 8, and particularly Equa-

tions (65) to (70), (with 0t τ−→  and ft τ +→ ) so that ( ;[ ])τ τ τ−− + −Φ = Φ  we see 
that 

( ;[ ]) ( ) ,n n n
nφτ τ τ τ−− + − −= eφ  (104)

and 

( ;[ ]) ( )n n n
nφτ τ τ τ−+ + − += eφ  (105)

where the FTNMs at the end points are proportional to the standard unit basis vectors. Of 
course, if [ ]τ τ−+ −  should correspond to a sufficiently long period, or multiple periods, 
of a periodic orbit very close to the aperiodic trajectory then we would be back to the 
situation in Section 9. 
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As noted by Poincare [89] and recounted by many subsequent researchers [65,90,91] 
there are always periodic orbits that are very close to aperiodic trajectories. Van Veen et 
al. [91] translate Poincare’s insight as: “Given the equations … and a particular solution 
one can always find a periodic solution (of which the period may indeed be very long) 
such that the difference between the two remains as small as one likes for as long as one 
likes”. Our aim here has just been to note that there are situations for aperiodic flows 
where one might expect to be able to approximate CLVs by FTNMs and where the rela-
tionships between OLVs and FTNMs simplify (at critical times) in FTNM-space. 

Next, we approach the problem of determining approximations to CLVs from long 
time left and right SVs in FTNM-space that in turn are estimates of the OLVs, Thus, from 
Equations (73) and (102) the left or backward OLVs are determined by 

( ;[ ])
( ) ( ;[ ]) ( ;[ ]) ( )  

( ;[ ])

n n
nn n n n n n

n nn
n

φ
φ

φ
τ τ τ

τ τ τ τ τ τ τ τ
τ τ τ

−+ + −
− −+ + + − + + − +

−+ + −

= ≡
e

u e e u u  
 
(106
) 

with ( ) 1 ( )  n n
n nφ τ τ+ += = u for 1, 2,...,n N= . Similarly, from Equations (74) and 

(103), the right or forward OLVs are given by 

( ;[ ])
( ) ( ;[ ]) ( ;[ ]) ( )  

( ;[ ])

n n
nn n n n n n

n nn
n

φ
φ

φ
τ τ τ

τ τ τ τ τ τ τ τ
τ τ τ

−− + −
− −− − + − − + − −

−− + −

= ≡
e

v e e v v  (107) 

with ( ) 1 ( )n n
n nφ τ τ− −= = v . Now, Equation (58) for the CLVs simplifies to 

1 1 1
( ) ( ) ( ( ), ( )) ( ) ( ( ) , ( )) ( ) ( )

n n n
n n j n j j j n j j n j

j j j
j j j

φ φ ψτ τ τ τ τ τ τ τ τ+ + + + + + + + +
= = =

= ≡  e e eψ ψ ψ ψ  u u u  (108) 

and Equation (59) reduces to 

( ) ( ) ( ( ), ( )) ( ) ( ( ) , ( )) ( ) ( ) .
N N N

n n j n j j j n j j n j
j j j

j n j n j n
φ φ ψτ τ τ τ τ τ τ τ τ− − − − − − − − −

= = =

= ≡  e e eψ ψ ψ ψ  v v v  (109) 

More generally, with both right and left OLVs approximated sufficiently accurately 
by the corresponding SVs, as in Equations (102) and (103), for t+ −Δ ≥ ≥ Δ , we can de-
termine estimations for the CLVs from Equations (58) and (59) in this time interval. Equiv-
alently, because of the covariant properties of ( )n tψ , the two expressions in Equations 

(108) and (109) can be propagated into the time interval t+ −Δ ≥ ≥ Δ  and related as 

[ ]

[ ]

1

1 1

1 1

    ( ) ( , ) ( ) ( , ) ( )

 ( , ) ( ) ( , ) ( ) ( , ) ( ) ( ) .

n n n

N n n
n j n j j n j
j j j

j n j j

t t t

t t tλψ ψ λ ψ

τ τ τ τ

τ τ τ τ τ

−
− − + +

− −
− − − + − +

= = =

=  

G G

G e G D e G e

B B

B B

ψ ψ ψ

τ

v u

 (110) 

Here, ( , )j jλ λ τ τ+ −= , and we have used the fact that, as noted in Section 2, the propa-

gator is assumed to be nonsingular so that both ( , )t t′G  and [ ] 1( , )t t −′G  are well de-

fined [72] for t tτ τ+ −′≥ ≥ ≥ . Now, the coefficients multiplying je  in Equation (110) 
must equate and thus the only non-zero terms are for j n=  : 

[ ] 1( ) ( , ) ( ) ( , ) ( )n n n n n
n nt t tτ τ τ τψ ψ−

− − + +G e G eB Bψ  (111)

for 1, 2,...,n N=  and t+ −Δ ≥ ≥ Δ . The above relationships are the same as satisfied 
by the FTNMs. In particular, 
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( ) ( , ) ( ) ( , )( ( ) , ( ) ) ( )

        ( ( ) , ( ) ) ( )

n n n n n n n n n
n n n n

n n n n n
n n

t t t

t

τ τ τ τ τ τ

τ τ

ψ φ ψ φ

φ ψ
− − − − − −

− −=

G e G e e e

e e

ψ

φ

  
  (112) 

where ( ) ( ) ( )n n nt t t=φ φ φ . Thus, we can choose the orientations and amplitudes in 

Equation (112) so that ( ) ( ).n n
n nt tψ φB  

10.2. Transformation to the Original Phase-Space 
The results in Equation (112) and following translate into near equivalence in the 

original x -space (Appendices C and D) for t+ −Δ ≥ ≥ Δ : 

( ) ( ) ( ) ( )n n n nt t t t= =Bψ ψ φ φΦ Φ  (113)

where ( ;[ ])τ τ τ−− + −Φ = Φ  is the characteristic matrix. 
Eichhorn et al. [76] note that the boundedness for all time of the nonsingular trans-

formation matrices 
1±Φ , which depend on the reference trajectory and time, is sufficient 

for the convergence of the Lyapunov exponents (Appendix D, Equations (A73) to (A75)). 
The proof of the Oseledec Theorem 4 [72], which establishes the Lyapunov exponents and 
Oseledec subspaces, also uses a diagonalization of the propagator cocycle for dynamics in 
the subspaces. Oseledec used a homologous transformation of the propagator cocycle 

with the transformation matrices 
1±Φ  satisfying the Lyapunov condition (Appendix C, 

Equations (A54) and (A55)). The Lyapunov condition in Equation (A55), which means that 
1±Φ  have no asymptotic exponential growth, is slightly less stringent than the bounded-

ness constraint in Equation (A73). With either condition, the relationship in Equation 
(113), between ( )n tψ  and ( )n tφ  becomes equality for ± → ±∞τ . As noted, 

± ± ±Δ = γ τ  and 1 0±> >γ , so that ±Δ → ±∞  and we also have 

( , ) ( , )n n n
r τ τ τ τ+ − + −Λ = Σ → L . 

For numerical calculations one can estimate the expansion of the CLVs by the FTNM 
exponents 

( , ) ( , ) ( , )n n n
r iiτ τ τ τ τ τ+ − + − + −Λ = Λ + Λ  (114)

where the Lyapunov exponents, that are independent of finite time, are estimated by 

( , ) ( , )n n n
rτ τ τ τ+ − + −Σ = ΛBL  (115)

for 1, 2,...,n N= . Given the FTNMs between τ−  and τ+ , the exponent in Equation 
(114) can also be calculated using 

( )1( , ) ln
( )

n
nn

r n
n

τ
τ τ

τ τ τ
φ
φ

+
+ −

+ − −

Λ =
−

 (116)

and 

( )
Im

( )1( , ) arctan
( )

Re
( )

n
n
n
nn

i n
n
n
n

τ
τ

τ τ
τ τ τ

τ

φ
φ
φ
φ

+

−
+ −

+ − +

−

  
     Λ =  −        

 (117)
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One can also use Equations (116) and (117) with the replacements n n
n nφ ψ→  and 

τ± ±→ Δ  to estimate nL  by ( , )n
r + −Λ Δ Δ  directly from the converged CLV in the in-

terval t+ −Δ ≥ ≥ Δ  in numerical calculations. 
Appendix E presents a complementary way of analyzing the relationships between 

FTNMs and SVs in the long-time limits and OLVs and CLVs. 

11. Calculation of Dynamical Vectors and Metric Entropy Production 
Next, we briefly discuss some of the methods for efficient construction of dynamical 

instability vectors and propose a norm-independent finite-time measure of metric entropy 
production that characterizes instability and chaos. 

11.1. Lyapunov Vectors 
Efficient algorithms for the calculation of Lyapunov exponents and OLVs were ini-

tially proposed by Shimada and Nagashima [86] and Benetin et al. [87] and variations and 
improvements have been proposed in subsequent works [30,62,63]. The efficient numeri-
cal calculation CLVs has proved to be more difficult. As discussed in Section 7, the rela-
tionships between norm-dependent OLVs and norm-independent CLVs were presented 
in the early works of Ruelle [61], Eckmann and Ruelle [62], Legras and Vautard [64] and 
Trevisan and Pancotti [65]. More efficient methods of constructing leading CLVs, from 
long-time SVs that approximate OLVs, were initially developed by Ginelli et al. [57] and 
Wolf and Samelson [56] and several variants have subsequently been developed [58–60]. 
For example, the method of Wolfe and Samelson [56] determines the leading n  CLVs in 
terms of the leading n  left OLVs, ( )n tu , and 1n −  right OLVs, ( )n tv . 

Wolfe and Samelson [56] emphasize important properties of CLVs including their 
norm-independence and the fact that if CLVs have been calculated at a particular time 
then in principle they can be obtained at all future times through propagation with the 
tangent linear equation and at earlier times with its inverse. In practice, however, as they 
also note in an example, it can be difficult to calculate the Lyapunov vectors with sufficient 
accuracy, even for low-order systems. In that case, CLVs can only be calculated by their 
method for a finite time before they tend towards the leading Lyapunov vector. Im-
portantly, for aperiodic systems, the current methods of calculating CLVs from OLVs have 
largely been restricted to cases for which the Lyapunov exponents are distinct [56]. 

11.2. Degeneracy and Nondegeneracy 
Unfortunately, for geophysical fluid dynamical systems where waves, such as 

Rossby waves, are prevalent the instability matrices generally result in complex conjugate 
eigenvalues [17–27] as do the propagators [27,49,50,79,80]. This has been the case for all 
the instability processes discussed in the Introduction from realistic storms to the large-
scale low frequency disturbances with just a few stationary teleconnection patterns having 
real eigenvalues. For example, Floquet problems were considered by Frederiksen and 
Branstator [79,80] in which the propagator was calculated for the whole annual cycle for 
matrices of size 495 495× . In the first study of the intra-annual variability of barotropic 
modes [79] there were just 55 distinct real Floquet eigenvalues and 440 complex eigenval-
ues in 220 distinct pairs. Thus, while the CLVs in this study are nondegenerate because 
the complex exponents are distinct, by far the majority of the real Lyapunov exponents 
have multiplicity 2 and the associated OLVs are degenerate. This is also the case in the 
Floquet studies of teleconnection patterns by Frederiksen and Branstator [80] using em-
pirically determined propagators. 

Frederiksen and Branstator [79] also considered the separable Floquet problem 
where the dynamical stability matrix ( ) ( ) at c t=M M  with  aM  a constant matrix 
characteristic of a typical annual average basic state and ( ) ( )c t c t T= +  represents the 
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time varying strength of the matrix through the annual cycle T . Again, the eigenvalues 
and exponents of the annual dynamical matrix   aM , and the propagator derived from 

( ) ( ) at c t=M M , mainly occur in distinct complex conjugate pairs with just a handful of 
distinct real exponents. One can of course also consider the corresponding separable ape-
riodic problem where ( )c t  is not periodic so that the real Lyapunov exponents are again 
mainly degenerate. This would also be the case with any of the three-dimensional insta-
bility matrices for synoptic disturbances from storms to teleconnection patterns discussed 
in the Introduction [17–27]. 

11.3. Finite-time Normal Modes and Arnoldi Methods 
As noted above, Frederiksen and Branstator [79,80] considered Floquet problems 

over a complete year. They generated sets of 12 monthly averaged dynamical matrices 
from which the propagator over a year was constructed as in Equation (8) with the short-
time propagators calculated as in Equation (9) with a time step of half an hour. All the 
495  eigenvalues and eigenvectors were calculated directly using LAPACK routines [92]. 
More generally, efficient algorithms have been developed for calculating just some of the 
leading fast-growing modes. Wei and Frederiksen [27], (Appendix), describe a very effi-
cient algorithm for calculating some of the leading FTNMs that caters for aperiodic prob-
lems, as well as periodic problems. They used an Arnoldi iterative method [23,93–96] 
based on recycling perturbations [27] from an initial time 0t  to a final time ft  with the 

tangent linear equation. The consequent FTNMs calculated at the initial time 0t  are then 

obtained at later times up to ft  by forward propagation with the tangent linear equa-

tions. 
Wei and Frederiksen [27] checked their results against calculations with the LAPACK 

routines [92] for systems with again 495  modes. However, the iterative method is appli-
cable to complex high-dimensional systems since only a low-dimensional approximation 
to the propagator is needed, which is obtained from integrations of the tangent linear dy-
namical equations. 

From the above examples it is evident that there are methods for computing FTNMs 
efficiently. In particular, the long-time FTNMs are computable for typical smooth systems 
with reasonably high numbers of degrees of freedom. Importantly, these methods are ap-
plicable to systems with complex FTNM exponents and associated degenerate SVs and 
OLVs. 

11.4. Metric Entropy Production 
Next, we consider measures of the chaotic nature of dynamical systems. The Kolmo-

gorov-Sinai (KS) entropy production [8,9] may be approximated by Pesin’s formula [10] 
that expresses it as the sum of the positive Lyapunov exponents [11]: 

1
.

Pn
n

KS
n

S
=

∂ =L  (118)

Here, Pn  is the largest index such that 0Pn >L . Another measure is the Hausdorff di-
mension of the phase-space which by the Kaplan-Yorke (KY) conjecture [7,97] is given by 

1
1

S

S

n
n

n
KY S n
D n =

+
= +

L

L
 (119)
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where Sn  is the largest index such that the sum 
1

0
Sn

n

n=

>L . 

As discussed in the Introduction, the local and finite-time growth rates of disturb-
ances are more directly related to predictability than the long-time or global Lyapunov 
exponents [12,13,27,30–35,37,41]. Wei [12] proposed a local metric entropy (production) 
measure where the local Lyapunov exponent ( , )n t t t+ ΔL  replaces the global Lya-
punov exponent in Equation (118). One can also generalize this to finite times with 

0( , )n
ft tL  replacing the global Lyapunov exponent. Unlike the global Lyapunov expo-

nents there are several ways of defining the finite-time Lyapunov exponents [12,13,34,41]. 
They can be defined as the singular value exponents 0( , )n

ft tΣ  in Equation (50) for the 
forward and back ward problems or based on CLV norm expansion rates as in Equation 
(A69) of Appendix D. They can also be calculated using the standard method of Gram-
Smidt orthogonalization [12,41,86,87]. 

As well as these different definitions and calculation methods there are two further 
issues with measures based on the finite-time Lyapunov growth rates. The first is that 
they are all norm dependent unlike the global Lyapunov exponents or FTNM growth 
rates. The second is that particularly for short times they express possible super exponen-
tial growth [41,50] while FTNM exponents represent exponential growth. The evidence 
from comprehensive weather forecast models [98,99], (see also [27,41]), is that errors con-
form closely with the 1982 Lorenz model [100] of exponential growth followed by nonlin-
ear saturation. For these reasons, it is proposed that suitable finite-time generalizations of 
the Kolmogorov-Sinai entropy production and the Kaplan-Yorke conjectured Hausdorff 
dimension are the metric entropy production 

0
1

( , )
Pn

n
FT r f

n
S t t

=

∂ = Λ  (120)

where Pn  is the largest index such that 0( , ) 0Pn
r ft tΛ >  and the dimension, 

0
1

1
0

( , )

( , )

S

S

n
n
r f

n
FT S n

r f

t t
D n

t t
=

+

Λ
= +

Λ


 (121) 

where Sn  is the largest integer such that the sum 0
1

( , ) 0
Sn

n
r f

n
t t

=

Λ > . Here, 0( , )n
r ft tΛ  

is the FTNM growth rate defined in Equation (14). The proposed predictability time [12] is 
then 

.FT
P

FT

DT
S

=
∂

 (122)

The finite-time metric entropy production in Equation (120) and dimension in Equation 
(121) of course become the KS entropy production and KY dimension respectively in the 
long time limits for the periodic systems of Section 9 as seen from Equation (92). Similarly, 
under the conditions on aperiodic systems described in Sections 2 and 10, we expect the 
same convergence in the long time limit as seen from Equation (115). 

12. Discussion and Conclusions 
This study has examined the interrelated properties of dynamical instability vectors 

and exponents that have been, or may be, useful for understanding error growth and en-
tropy production in geophysical fluid dynamical systems. A very practical application of 
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such dynamical vectors is for ensemble perturbations in weather and seasonal climate 
prediction. A focus has been on the relationships between the norm independent CLVs 
and FTNMs and the norm dependent OLVs and SVs. 

The Oseledec theorem [62,72–75] relates the long-time behaviour of SVs and singular 
value exponents to OLVs and Lyapunov exponents and in turn to CLVs. In the absence of 
a similar theorem between FTNMs and OLVs and CLVs their relationships to have not 
been at all clear. However, the Lyapunov exponents and Oseledec subspaces within which 
the Lyapunov vectors reside (see Appendix B) can be calculated in μ -almost any phase-
space or norm [62,72] (see Appendices C and D). This result has been used here to examine 
the properties of dynamical instability vectors in FTNM-space. In FTNM-space the rela-
tionships between dynamical vectors simplify. In particular, the propagator between the 
initial time 0t  and final time ft  becomes diagonal with the right, or initial, SVs and the 

left, or final, SVs as well as the initial and final FTNMs all proportional to the standard 
unit vectors. This means that at these critical times we can uniquely anchor FTNMs to SVs 
and use the Oseledec theorem to relate long-time FTNMs to OLVs and importantly to 
CLVs. Moreover, provided the FTNMs are nondegenerate, with generally complex FTNM 
exponents, the analysis can cater for associated degenerate SVs and OLVs that have mul-
tiple equal real exponents. 

As noted in Section 2, the results of this study, particularly the equality of Lyapunov 
exponents with long-time instability growth rates of the propagator and the relationships 
between CLVs and FTNMs, depend on the properties of the dynamical system under con-
sideration. Smooth ergodic dynamical systems are studied with bounded attractors for 
which the statistics are well defined [30,72–76] as these conditions underpin the proof of 
the multiplicative ergodic theorem by Oseledec for Lyapunov exponents and Oseledec 
subspaces. Oseledec [72] also assumed that the propagators are well defined and 
nonsingular. He proved his main theorem 4 by means of a diagonalization of the cocycle 
for dynamics in the subspaces ([72], p. 219). His Lyapunov conditions (Equation (A55)) on 
the homologous transformation matrix and its inverse also need to apply in the long-time 
limits to our characteristic matrices 1±Φ  of Equation (26). In our study, it is, in addition, 
assumed that the FTNMs are nondegenerate. If these conditions are not satisfied, at least 
for sufficiently large 0fT t t= − , then it is possible to construct analytical counter exam-
ples where, for example, the stability spectrum becomes degenerate at some times, and 
the long-time stability growth rates and Lyapunov exponents are not the same [30]. How-
ever, in studies of systems with nondegenerate real stability exponents and Lyapunov 
exponents, associated with backward Lyapunov vectors, Goldhirsch et al. [30] present nu-
merical evidence for their equality which they argue is the generic case. 

Some of the main findings established in this study are: 

1. The covariant properties of FTNMs, ( )n tφ , in the time interval 0ft t t≥ ≥  are 

known and determined by 0 0( ) ( , ) ( )n nt t t t= Gφ φ , as in Equation (19). We show 
that they also satisfy the eigenvalue problem 

0 0( , ) ( , ) ( ) ( )n n nt T t T t T t t t+ + + =G G φ λ φ  in Equation (21) where 

0 0( , ) ( , )t T t T t t+ + ≡G G  by definition as noted in Equation (22). The propagator 

is in general discontinuous at 0 ft T t+ = . In the case where it is continuous the 
FTNMs become Floquet vectors as noted in Equation (37). Indeed, in the efficient 
Arnoldi algorithm of Wei and Frederiksen [27], discussed in Section 11, the leading 
FTNMs are constructed by recycling perturbations from 0ft t T= +  to 0t . 

2. In FTNM-space, the right, or initial, SVs 0( )n tv  and left, or final, SVs ( )n
ftu , for 

1,2,...,n N= , are, like the FTNMs, 0( )n tφ  and ( )n
ftφ , proportional to the unit 
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vectors ne  as shown in Equations (73) and (74). This is because the propagator be-
tween 0t  and ft  in FTNM-space is normal, in fact diagonal (Equation (65)). A par-

ticular consequence is that in FTNM-space the singular value exponents are equal to 
the real part of the FTNM exponents: 0 0( , ) ( , )n n

f r ft t t tΣ = Λ  as noted in Equation 
(76). 

3. The relationships, based on the Oseledec theorem [72], for the construction of OLVs 
from CLVs (Equations (53) and (54)) and importantly the determination of CLVs 
from OLVs (Equations (58) and (59)) and their approximations by long-time SVs in 
Section 7 greatly simplify at critical times in FTNM-space as shown in Sections 9 and 
10. This is because of the diagonalization of the propagator in result 2 above. 

4. In Appendix C, the propagator 0( , )ft tG  in the original x -space and the propaga-

tor 0( , )ft tG  in FTNM-space have both been shown to be homologous to the 

stretching propagator 0( , )ft tG%  with the transformation matrices subject to the 
Lyapunov condition in Equation (A55). This ensures that if the results of Oseledec’s 
[72] four theorems, including his multiplicative ergodic theorem 4, apply for a prop-
agator in any of the phase-spaces then they hold for all these cohomologous propa-
gator cocycles. 

5. For periodic systems, the results 3 and 4 above have been used in Section 9 to deduce 
the links of FTNMs to OLVs and CLVs, from Equations (53) to (59), and the equiva-
lence of Floquet vectors and CLVs. Moreover, the Lyapunov exponents 

0 0 0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , )n n n n n n n
r f f f ft t t t t t t t= Λ = Σ = Σ −∞ = Σ −∞ = Σ ∞ = Σ ∞L , 

as given in Equation (92). This applies for systems with both real and complex Flo-
quet exponents and nondegenerate and degenerate Lyapunov spectra. 

6. In the case of aperiodic systems, including with degenerate Lyapunov spectra, the 
results 3 and 4 above have been used in Section 10 to show that in the interval 

tτ τ+ + − −> Δ ≥ ≥ Δ > , CLVs are closely approximated by FTNMs, ( ) ( )n nt t≈ψ φ , 

for large τ±  with equality as τ± → ±∞ . Moreover, in FTNM-space the singular 

value exponent and FTNM growth rates are equal and approximate the Lyapunov 
exponent ( , ) ( , )n n n

rτ τ τ τ+ − + −Σ = Λ BL  with equality as τ± → ±∞ . 
7. An alternative way of establishing the results in 5 and 6 is presented in Appendix E 

where FTNMs are orthogonalized using the Gram-Smidt method and the long-time 
limits of the orthonormal vectors are considered particularly in FTNM phase-space. 

8. Finite-time generalizations of the Kolmogorov-Sinai entropy production [8,9] and the 
Kaplan-Yorke conjectured Hausdorff dimension [97] have been proposed based on 
the FTNM exponents. The expressions, like the FTNMs, are norm-independent and 
may be reasonably accurate for ensembles of perturbations as noted in Section 11 
although it is possible that intramodal and intermodal interference effects could con-
tribute to individual perturbation growth [79,80]. 
In summary, CLVs have important theoretical characteristics for portraying the 

growth and nature of small amplitude perturbation evolution through the tangent linear 
equation. CLVs are norm independent [56,57] and so describe the same physics irrespec-
tive of whether the phase-space is described by the streamfunction, velocity or another 
commonly used variable or, for example, by empirical orthogonal functions or FTNMs. 
The CLVs are covariant with the tangent linear dynamics so if they are known at any one 
time can be obtained at any other time by propagation with the tangent linear propagator 
[56,57]. These properties of CLVs, for general aperiodic systems, also apply to Floquet 
vectors, and to FTNMs between the initial 0t  and final ft  times for which they are de-

fined. The finite time Lyapunov exponents, between 0t  and ft , are however norm and 
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formulation dependent (Section 11.4 and Appendix D) unlike the FTNM average growth 
rates, as discussed in the Introduction. 

The numerical methods of Wolfe and Samelson [56] and Ginelli et al. [57], and sub-
sequent refinements [58–60], have allowed more efficient calculation of the leading CLVs 
if the Lyapunov spectrum is nondegenerate [56]. The theoretical ideal of obtaining the 
future structures of CLVs from the current CLVs is in practice only possible for a finite 
time, even for relatively simple systems, before they tend towards the leading Lyapunov 
vector due to numerical errors [56]. 

For geophysical fluid dynamical systems with waves, such as Rossby waves, the Lya-
punov spectrum is usually degenerate [79,80], and appropriate methods for the calcula-
tion of CLVs need to be explored. In this article we have shown that under suitable con-
ditions the long-time FTNMs become CLVs and suggest that they be calculated as such. 
The convergence of any such approach will of course depend on the dimensionality of the 
system, the separation of the eigenvalues and the precision of the calculations. As a guide, 
the intermediate complexity atmospheric quasigeostrophic model studies of Reynolds 
and Errico [40] and Wei and Frederiksen [41] resolved some of the leading Lyapunov vec-
tors on time scales of 30 to 40 days. From these investigations, and other works 
[27,49,50,79,80], it seems very likely that it should be possible to approximate leading 
CLVs, for simple, and even for intermediate complexity models, like barotropic [27,41,79] 
and baroclinic two- and three-level models [40,49,50]. Certainly, for these quasigeo-
strophic models that capture synoptic scale disturbances, calculating leading FTNMs over 
several months should be very achievable. We have also noted that for very smooth sys-
tems it is possible to calculate FTNMs and Floquet vectors for a whole year at reasonable 
resolution for barotropic systems [79,80]. Furthermore, efficient Arnoldi methods exist for 
the calculation of leading FTNMs by recycling perturbations with the tangent linear dy-
namical equations [27,41] and parallel algorithms can speed up the Arnoldi process [96] 
and may cater for more modes and higher dimensional systems. These methods should 
allow further exploration of the properties of FTNMs, including over long-time intervals, 
and determine their convergence to CLVs even when the Lyapunov spectrum is degener-
ate. 
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Appendix A. Ordering of Eigenvalues and Eigenvectors 
In this Appendix we document our choice of the order 1, 2,...,n N=  of the FTNM 

eigenvalues and eigenvectors when some of the eigenvalues and associated exponents are 
complex. In that case, some of the equalities in Equations (12) and (16) hold. We suppose 
that there are just M N<  distinct FTNM exponents 

1 2 ... M
r r rΛ > Λ > > Λ  (A1)

Moreover, suppose that the FTNM exponent m rΛ , for 1, 2,...,m M= , has multiplicity 

( )d m  so that the total dimension is 
1

( ).
M

m

N d m
=

=   The relationships between n
rΛ  for 

1, 2,...,n N=  and m rΛ  for 1,2,...,m M=  and between the associated FTNMs may 
be established as follows. We determine 

1

0
( , ) ( )  ; 1, 2,..., ( )

m

m m m
l

n n m k k d l k d m
−

=
= = + =  (A2)
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and with (0) : 0.d =  The multiplicity ( )d m  of the m rΛ  depends on the number of as-
sociated imaginary parts. For each fixed m  we order the imaginary parts by descending 
values: 

( ,1) ( ,2) ( , ( ))... .n m n m n m d m
i i iΛ > Λ > > Λ  (A3)

Thus, 

( , ) ( , ) ; m mn m k n m kn m n m
r r r λ λ λΛ = Λ = Λ = =  (A4)

and 
( , )( ) ( )mn m kn t t=φ φ  (A5)

for 1,2,...,m M=  and 1,2,..., ( )mk d m=  and with 1, 2,...,n N=  determined by 
Equation (A2). 

Appendix B. The Oseledec Multiplicative Ergodic Theorem 
The Oseledec multiplicative ergodic theorem [72–75] establishes the long-time be-

haviour of the singular values and vectors of the products of the cocycles or propagators 
G  and †G  in Equations (47) and (48) where these are real N N×  matrices for which 
the Hermitian conjugate †  becomes the transpose T . The theorem applies to smooth 
ergodic (or metrically transitive) dynamical systems with bounded attractors and well-
defined statistics. An important constraint is that the matrix norms of the cocycles or prop-
agators are bounded by constant exponential growth (corresponding essentially to the 
largest exponent) in the long-time limits (Oseledec [72], Equations (5) and (6) of Section 
2). The systems must be ergodic since this allows long-time averages to be calculated more 
easily by phase-space averages, or ensemble averages. The ergodic hypothesis forms the 
basis of the equilibrium statistical mechanics theory of molecular dynamics developed by 
Boltzmann, Maxwell, and Gibbs [101]. This theory has also been extensively applied to 
fluid dynamical systems [4,5] and there is a clear connection between statistical mechanics 
theory and nonlinear stability theory [1–3]. The Birkhoff [102] ergodic theorem, and the 
related von Neumann [103] quasi-ergodic theorem, provide the justification for the er-
godic hypothesis of statistical mechanics. The Oseledec theorem can be viewed as being 
underpinned by the Birkhoff [102] additive ergodic theorem and the ergodic theorems of 
Furstenberg and Kesten [104] on the asymptotic behaviour of the product of random ma-
trices.  

Appendix B.1. Lyapunov Exponents  
Under the conditions on the dynamical system outlined above and in Section 2, and 

for μ -almost any trajectory ( )tX  in N  satisfying the dynamical system in Equation 
(1) and almost any scalar product [61,72] the following limit exists: 

lim ( , )1( ) ln .
( )

t
tτ τ+

+
→∞

+

=
−

G x
x

x
τ

L  (A6)

This is the case for μ -almost any vector x  in N  with ( )xL  independent of time 

t  and having at most N  values 1 2 ... N> > >L L L  if the system is nondegenerate. In 
the degenerate case, 1 2 ... N≥ ≥ ≥L L L  , where some of these Lyapunov exponents are 
equal, ( )xL   has N<M  distinct values which we denote by pre-superscripts 
1 2 ...> > >L L LM . 
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Appendix B.2. Oseledec Operators  
The content of Equation (47) can also be established with the matrix operator 

†1( , ) ln ( , ) ( , )
2( )

t t t
t

τ τ τ
τ

+
+ + +

+

 =  −
O G G  (A7)

so that 

( , ) ( ;[ ]) ( , ) ( ;[ ])n n nt t t t t tτ τ τ τ+
− −+ + + += ΣO v v  (A8)

where the right SV is the same as in Equation (47) and 1,2,...n N= . The corresponding 
Oseledec matrix is  

lim( ) ( , )t t
τ

τ
+

+ +
+→∞

=O O  (A9)

with eigenvalues the Lyapunov exponents nL  and eigenvectors 
( ) lim( ) ( ;[ ])n nt t tτ τ −+ += → ∞ vv the right or forward orthonormal Lyapunov vectors 

(OLVs): 

( ) ( ) ( ).n n nt t t+ =O v vL  (A10)

Here, ( ) ( ;[ ( )])t t t+ +≡O O X  depends on the trajectory at time t . One can also de-
fine the matrix 

1
( 2( ))†( , ) exp ( , ) ( , ) ( , ) tt t t t ττ τ τ τ −++ +

+ + + + = =  Q O G G  (A11)

and corresponding Oseledec matrix 

lim( ) ( , ).t t
τ

τ
+

+ +
+→∞

=Q Q  (A12)

Thus, we also have that 

( ) ( ) exp( ) ( ).n n nt t t+ =Q v vL  (A13)

Consistent with Equation (48) one can also define the matrix operator 

( ) ( )1 1†1( , ) ln ( , ) ( , )
2( )

t t t
t

τ τ τ
τ

− −−
− − −

−

 =   −
O G G  (A14)

so that 

( , ) ( ;[ ]) ( , ) ( ;[ ]).n n nt t t t t tτ τ τ τ−
− −− − − −= −ΣO u u  (A15)

Here, the left SV is the same as in Equation (48) and 1, 2,...,n N= . The correspond-
ing Oseledec matrix is  

lim( ) ( , )t t
τ

τ
−

− −
−→−∞

=O O  (A16)

with eigenvalues the Lyapunov exponents n−L  and eigenvectors 
( ) lim( ) ( ;[ ])n nt t tτ τ−− −= → −∞ uu the left or backward OLVs that satisfy 

( ) ( ) ( ).n n nt t t− = −O u uL  (A17)

The exponential of ( , )t τ−
−O  is 
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( ) ( )
1

( 2( ))1 1†( , ) exp ( , ) ( , ) ( , )
t

t t t t
τ

τ τ τ τ
− −− −− −

− − − −
 = =   

Q O G G  (A18)

and corresponding Oseledec matrix 

lim( ) ( , ).t t
τ

τ
−

− −
−→−∞

=Q Q  (A19)

Again, 

( ) ( ) exp( ) ( ).n n nt t t− = −Q u uL  (A20)

Appendix B.3. Oseledec Subspaces—Nondegenerate Case 
The average Lyapunov growth of a disturbance depends on whether it is or can be 

constrained to a subspace of N  [72,86,87]. We consider first the case of distinct Lya-
punov exponents associated with nondegenerate Lyapunov vectors for which 

1 2 ... .N> > >L L L  (A21)

Then as noted by Oseledec [72] there is a sequence of embedded subspaces 

1 1( ) ( ) ... ( ) N
N NS t S t S t+ + +

−⊂ ⊂ ⊂ =   (A22)

such in that the complement 1 1( ) \ ( ) :n n n nS t S t S S+ + + +
+ += − , the set theoretic difference be-

tween ( )nS t+  and 1( )nS t+
+ , the average growth rate is given by the Lyapunov exponent 

nL  in the forward time direction (and n−L  in the reverse direction). Also, 

1( ) ( )   ;  ( )
N

n j Nj n
S t V t S t+ +

+=
= ⊕ = ∅  (A23)

and for the case of nondegenerate right or forward OLVs 

{ }( ) span ( ) .  n
nV t t= v  (A24)

Similarly, there is a set of subspaces spanned by the left or backward OLVs for which 

1 2( ) ( ) ... ( ) N
NS t S t S t− − −⊂ ⊂ ⊂ =   (A25)

and in the complement 1 1( ) \ ( ) : ( ) ( )n n n nS t S t S t S t− − − −
− −= − , the set theoretic difference be-

tween ( )nS t−  and 1( )nS t−
− , the average growth rate is given by the Lyapunov exponent 

n−L  in the reverse time direction. Also 

01
( ) ( )   ;  ( )

n

n jj
S t U t S t− −

=
= ⊕ = ∅  (A26)

and, for the case of nondegenerate OLVs, 

{ }( ) span ( ) .n
nU t t= u  (A27)

Covariant Lyapunov vectors ( )n tψ  reside in the intersection of the ( )nS t+  and 

( )nS t−  subspaces:  

( ) ( ) ( )n n nt S t S tΨ + −= ∩  (A28)

as in Refs. [61,62,64] with 
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{ }( ) span ( )n
n t tΨ = ψ  (A29)

and we have the Oseledec splitting 

1
( ).

N
N

nn
tΨ

=
= ⊕  (A30)

The Lyapunov exponents are determined by 

lim lim
( , ) ( )1 1ln ln ( , ) ( )

( )

n
n n

n

t t
t t

t ttτ τ

τ
τ

τ τ± ±

±
±→±∞ →±∞

± ±

= ± = ±
− −

G
G %

ψ
ψ

ψ
L  (A31)

for 1, 2,...,n N=  [58,64] where n n n=%ψ ψ ψ  is the unit norm CLV. From Equation 

(54) we see that the Lyapunov exponents can also be determined by  

lim 1 ln ( , ) ( ) .
( )

n nt t
tτ

τ
τ+

+→∞
+

=
−

G vL  (A32)

Moreover, from Equation (53) we have 

[ ] 1lim 1 ln ( , ) ( ) .
( )

n nt t
tτ

τ
τ−

−
−→−∞

−

= −
−

G uL  (A33)

Appendix B.4. Oseledec Subspaces—Degenerate Case 
Next, we consider the case of degenerate Lyapunov vectors some of which have the 

same Lyapunov exponents. Thus, instead of the strict inequality in Equation (A21) the 
Lyapunov exponents are ordered such that 

1 2 ... N≥ ≥ ≥L L L  (A34)

and there are just N<M  distinct Lyapunov exponents  
1 2 ... .> > >L L LM  (A35)

We suppose that the Lyapunov exponent mL , for 1,2,...,m = M , has degeneracy or 

multiplicity ( )md  so that the total dimension is 
1

( ).
m

N m
=

=
M

d  The relationships 

between nL  for 1, 2,...,n N=  and mL  for 1,2,...,m = M  and between the associ-
ated Lyapunov vectors may be established as follows. We determine 

1

0
( , ) ( )  ; 1, 2,..., ( )

m

m m m
l

n m k k l k m
−

=

= = + =n d d  (A36)

and with (0) : 0.=d  Thus, 

( , )mm kn m= =L L Ln  (A37)

and 
( , ) ( , ) ( , )( ) ( )  ;  ( ) ( )  ;  ( ) ( )m m mm k m k m kn n nt t t t t t= = =ψ ψu u v vn n n  (A38)

for 1,2,...,m = M  and 1, 2,..., ( )mk m= d  and with 1, 2,...,n N=  determined by 
Equation (A36). 

For the degenerate case, there is the sequence of embedded subspaces 
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11( ) ( ) ... ( ) NS t S t S t+ + +
−⊂ ⊂ ⊂ = M M  (A39)

such that in the complement 1 1( ) \ ( ) :m m m mS t S t S S+ + + +
+ += − , the set theoretic difference be-

tween ( )mS t+  and 1( )mS t+
+ , the average growth rate is given by the Lyapunov exponent 

mL  in the forward time direction (and m− L  in the reverse direction). Also, 

1( ) ( )   ;  ( )m jj m
S t V t S t+ +

+=
= ⊕ = ∅

M

M  (A40)

and 

{ }( , )( ) span ( ) | 1, 2,..., ( ) .  mm k
m mV t t k m= =vn d  (A41)

Similarly, there is a set of subspaces spanned by the left or backward orthonormal 
Lyapunov vectors for which 

1 2( ) ( ) ... ( ) NS t S t S t− − −⊂ ⊂ ⊂ = M  (A42)

and in the complement 1 1( ) \ ( ) : ( ) ( )m m m mS t S t S t S t− − − −
− −= − , the set theoretic difference be-

tween ( )mS t−  and 1( )mS t−
− , the average growth rate is given by the Lyapunov exponent 

m− L  in the reverse time direction. Also 

01
( ) ( )   ;  ( )

m

m jj
S t U t S t− −

=
= ⊕ = ∅  (A43)

and 

{ }( , )( ) span ( ) | 1,2,..., ( ) . mm k
m mU t t k m= =u n d  (A44)

Covariant Lyapunov vectors ( , ) ( )mm k tψn  for 1,2,...,m = M  and 

1, 2,..., ( )mk m= d  reside in the intersection of the ( )mS t+  and ( )mS t−  subspaces:  

( ) ( ) ( )m m mt S t S tΨ + −= ∩  (A45)

as in Refs. [61,62] with 

{ }( , )( ) span ( ) | 1,2,..., ( )mm k
m mt t k mΨ = =ψn d  (A46)

and 

1
( ).

M
N

mm
tΨ

=
= ⊕  (A47)

Appendix B.5. Oseledec Operators in FTNM-Space 

In FTNM-space for [ ]tτ −+  the operator in Equation (A7) becomes diagonal 

†

1 2

1( , ) ln ( , ) ( , )
2( )

              diag( ( , ), ( , ),..., ( , ))N

t t t
t

t t t

τ τ τ
τ

τ τ τ

+
+ + +

+

+ + +

 =  −

= Σ Σ Σ

O G G
 (A48)

and for sufficiently large τ+  we have ( , ) ( , )n n n
rt tτ τ+ +Σ = ΛBL  so that 
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1 2( ) ( , ) diag( ,..., )Nt tτ+ +
+O OB B L ,L L  (A49)

and 
1 2( ) ( , ) diag(exp ,exp ,..., exp ).Nt tτ+ +

+Q QB B L L L  (A50)

These results also apply in FTNM-space for [ ]τ τ−+ −  with t τ−→ . Also, 

( ) ( )1 1†

1 2

1( , ) ln ( , ) ( , )
2( )

              diag( ( , ), ( , ),..., ( , ))N

t t t
t

t t t

τ τ τ
τ

τ τ τ

− −−
− − −

−

− − −

 =   −

= −Σ −Σ −Σ

O G G
 (A51)

so that for sufficiently negative τ−  we have ( , ) ( , )n n n
rt tτ τ− −Σ = ΛBL  and  

1 2( ) ( , ) diag( , ,..., ).Nt t τ− −
− − − −O OB B L L L  (A52)

Thus, 
1 2( ) ( , ) diag(exp( ),exp( ),..., exp( )).Nt t τ− −

− − − −Q QB B L L L  (A53)

Again, these results apply in FTNM-space for [ ]τ τ−+ −  with t τ+→ . 

Appendix C. Lyapunov Homologous Propagator Cocycles 
Oseledec [72] notes that if the results of his four theorems, including the multiplica-

tive ergodic theorem 4 (see Appendix B), apply for a propagator in a particular phase-
space then they also hold for every propagator cocycle which is homologous to it by a 
transformation that satisfies a Lyapunov condition. Here we relate our transformation 
into FTNM-space to the form used by Oseledec. From Equations (23) to (26) we have 

1 1

1 1

1

   ( , ) ( ;[ ]) ( ;[ ]) ( ;[ ]) ( ;[ ])
= ( ;[ ]) ( , ) ( ;[ ])= ( ;[ ]) ( , ) ( ;[ ])
= ( ;[ ]) ( , ) ( ;[ ])= ( ;

λ

τ τ τ τ τ τ τ τ τ τ τ τ τ τ
τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ
τ τ τ τ τ τ τ τ τ

− −
− − − −+ − + + − − + − + + − − + −

− −
− − − −− + − + − − + − − + − + − − + −

−
− −+ + − + − − + − +

= =G
G D
G



   

  

Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ 1[ ]) ( , ) ( ;[ ])λτ τ τ τ τ τ τ−
− −+ − + − − + −D Φ

 (A54) 

where we have chosen to normalize the FTNMs to unit norm at t τ−=  with 
1 2( ,..., )N= φ , φ φ  Φ  and n n n≡φ φ φ . Here, the diagonal matrix of the eigenvalues,

( , )λ τ τ+ −D , is given in Equation (65) . In Equation (A54), the last two equalities separate 

the stretching into the diagonal matrix ( , )λ τ τ+ −D  and the rotation into 

( ;[ ])τ τ τ−+ + −
Φ . Note that ( ) ( ) ( , )λτ τ τ τ+ − + −= D 

 Φ Φ  where 

exp ( )( )n n n n
iiλ λ λ τ ,τ τ τ+ − + −= = Λ −  corresponds to a rotation. This transformation 

makes the proof of the Oseledec theorem simpler because the focus can be on the stretch-
ing term. In the case when the FTNM and Lyapunov eigen-spectra are real and nondegen-
erate, the rotation matrix is the identity. Thus, ( ;[ ])τ τ τ−+ + −

Φ = ( ;[ ])τ τ τ−− + −
Φ , 

( , )τ τ+ −G = ( , )τ τ+ −G , and the three matrices ( , )τ τ+ −G , ( , )τ τ+ −G , and ( , )τ τ+ −G  
are homologous.  

If the FTNM eigen-spectrum is complex and nondegenerate, and the Lyapunov 
eigen-spectrum is degenerate, then it is necessary to convert from complex to real space 
for ergodic theorems based on measures as in statistical mechanics [1–5,101]. In that case 
the diagonal complex eigenvalues in ( , )λ τ τ+ −D , associated with complex conjugate ei-

genvectors, become two by two matrices with rλ  on the diagonal and iλ±  on the off-



Entropy 2023, 25, 244 34 of 42 
 

diagonals related to the real and imaginary parts of the eigenvectors. The Oseledec proof 
uses the matrix norm G , defined as the largest singular value of G . Of course G  

and G  have identical singular values, singular vectors and transformation matrix 

( ;[ ])τ τ τ−− + −
Φ  from FTNM-space back to the original x -space and in fact are homolo-

gous. The homologous transformation is 1( , ) ( ) ( , ) ( )τ τ τ τ τ τ−
+ − + + − −=G GD D  where 

( )tD  is a diagonal matrix with elements exp ( )( )n
ii tτ ,τ τ+ − −Λ −  so that ( )τ− = ID  

the unit matrix. We also have 1( , ) ( ) ( , ) ( )τ τ τ τ τ τ−
+ − + + − −=G G Φ Φ , where Φ =D  is 

the characteristic matrix of eigenvectors in FTNM-space, with ( )τ− = IΦ  consisting of 

the standard unit basis vectors ne  for 1, 2,...,n N= . Again, ( ) ( )τ τ+ += D Φ  can be 
converted to the corresponding real matrix as noted above. 

In his proof, Oseledec does the transformation subject to the propagator cocycles car-
rying the full Lyapunov exponential growth and the transformation matrices 

1( ;[ ];{ ( )})τ τ τ τ±
−± + − ±XΦ  having no asymptotic exponential growth. Thus, the meas-

urable transformation matrices 1( ;[ ];{ ( )})τ τ τ τ±
−± + − ±XΦ  are required to satisfy the 

Lyapunov condition as τ± → ±∞  for μ -almost all X :  

1lim 1 ln ( ;[ ];{ ( )}) 0.
τ

τ τ τ τ
τ±

±
−± + − ±→±∞

±

=XΦ  (A55)

This condition, which our characteristic matrices need to satisfy, is slightly weaker than 
that deduced by Eichhorn et al. [76], and shown in our Equation (A73) in Appendix D, 
based on bounded phase-space and invertible reference trajectory. 

The above results on the cohomology of ( , )τ τ+ −G , ( , )τ τ+ −G , and ( , )τ τ+ −G  are 
sufficient for the requirements in Sections 9 and 10 where the relationships between CLVs 
and FTNMs are formulated. However, it may be insightful to outline some further prop-
erties of the homologous transformations. For illustration we first consider dynamics for 
the time-span [ ]tτ −+  with τ−  replaced by t  in the above analysis. Now, for 

tτ τ τ+ ′≥ ≥ ≥  we have 

1( , ) ( ;[ ]) ( , ) ( ;[ ]).t tτ τ τ τ τ τ τ τ−
− −+ +′ ′ ′=G G Φ Φ  (A56)

Then, from the semi-group or cocycle properties of ( , )τ τ ′G  in Equation (7) we have 

1 1

1 1 1

( , ) ( ) ( , ) ( ) ( ) ( , ) ( , ) ( )
( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( , ).

t t t t t
t t t

t

τ τ τ τ τ τ τ
τ τ τ τ τ τ τ

τ τ τ

− −
+ + + + +

− − −
+ + +

+

= =

=

=

G G G G
G G

G G

    

      

 

Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ  (A57)

This shows that ( , )tτ+G  also satisfies the cocycle properties. Moreover, with the 
amplification factor 

( ) ( , ) ( ) ( ) ( ) ( )n n n n nη τ,τ τ τ τ τ τ τ′ ′ ′ ′ ′= =G φ φ φ φ  (A58)

for 1, 2,...,n N= , ( , ) ( , )ητ τ τ τ′ ′=G D , where the diagonal matrix D  is given in 
Equation (25). Because of this diagonal representation and the cocycle properties of 

( , )tτ+G  



Entropy 2023, 25, 244 35 of 42 
 

( ) = ( ) ( ) = ( ) ( ).n n n n nt t t tη τ , η τ , τ η τ, λ τ , σ τ , + + + +=  (A59)

In general, 

( ) ( ) ( ) ( )n n nτ τ τ η τ τ τ′ ′ ′, = ,G φ φ  (A60)

and taking ( ) ( )n nt t= φ φ , without loss of generality, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).n n n n n n nt t t t t tτ η τ τ λ τ τ λ τ+ + + + + +, = , = , = ,G    φ φ φ φ  (A61)

Thus, 

( ) ( ) ( ) ( ) ( )n n n nt t t t tτ η τ λ τ σ τ+ + + +, = , = , = ,G φ  (A62)

and the Lyapunov exponents 

lim lim lim1 1 1ln ( ) ( ) ( ).
( ) ( ) ( )

n n n nt t t
t t tτ τ τ

η τ λ τ σ τ
τ τ τ+ + +

+ + +→∞ →∞ →∞
+ + +

= , = , = ,
− − −

L  (A63) 

The last two relationships become ( , ) ( , )n n n
r t t= Λ ∞ = Σ ∞L  as in Equation (A48) 

and following. 
We can of course develop the corresponding results for the time spans [ ]t τ− −  and 

[ ]τ τ−+ −  that are consistent with our findings in Section 10 and Appendix B.  

Appendix D. Phase-Space Transformation of CLVs and Lyapunov Exponents 
In this Appendix we summarize the properties of CLVs and both finite-time and 

global Lyapunov exponents under phase-space or coordinate transformations [76] and 
discuss their dependence on norm. We consider, as in Section 8, a transformation between 
two phase-spaces of the form 

( ) ( )t t=x xΦ  (A64)

where Φ  is a nonsingular transformation matrix and the CLVs in x -space satisfy the 
tangent linear propagator equation 

( , ) ( ) ( )n nt t t t′ ′ =G ψ ψ  (A65)

for 1, 2,...,n N= . Then, since 

1 1( , ) ( , )   ;  ( , ) ( , )t t t t t t t t− −′ ′ ′ ′= =G G G GΦ Φ Φ Φ  (A66)

we have 

( , ) ( ) ( )  ; ( , ) ( ) ( ).n n n nt t t t t t t t′ ′ ′ ′= =G Gψ ψ ψ ψΦ Φ  (A67)

Thus, the CLVs are covariant with the dynamics, give equivalent results under phase-
space transformations, and are described as norm independent.  

However, finite-time Lyapunov exponents measure norm amplification and unsur-
prisingly depend on norm. This may be seen as follows. Suppose without loss of general-
ity, we start with the unit norm CLV ( ) ( ) ( )n n nt t t′ ′ ′≡ψ ψ ψ  at t′  then 

( , ) ( ) ( ) ( , ) ( ).n n n nt t t t t t t′ ′ ′= =G ψ ψ ψ l  (A68)

Here ⋅  is, for example, the 2L  norm and ( , )n t t′l  is the finite-time amplifica-
tion factor. The corresponding finite time Lyapunov exponent is 
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( ) ( )1 1( , ) ( ) ln ( , ) ( ) ( ) ( ) ln ( , )n n n n
CLV t t t t t t t t t t t t− −′ ′ ′ ′ ′ ′ ′= − = −G ψ ψ L l  (A69)

Transforming Equation (A68) to x -space gives 

( )
( , ) ( ) ( , ) ( ) ( , ) ( )

( )

n
n n n n n

n

t
t t t t t t t t t

t
′ ′ ′ ′= =

′
G

ψ
ψ ψ ψ

ψ


  


l l

Φ

Φ
 (A70)

where ( ) ( ) ( )n n nt t t=ψ ψ ψ  Φ Φ  and  

( )
( , ) ( , ) .

( )

n
n n

n

t
t t t t

t
′ ′=

′

ψ
ψ





Φ

Φ
l l  (A71)

Thus, the corresponding finite time Lyapunov exponents are related by 

( )1 1
( )

( , ) ( ) ln ( , ) ( , ) ( ) ln .
( )

n
n n n
CLV CLV n

t
t t t t t t t t t t

t
− −

 
 ′ ′ ′ ′ ′= − = + −
 ′ 

ψ
ψ




L l L

Φ

Φ
 (A72) 

One can consider the case where Φ  is a constant matrix or where it depends on the 
trajectory ( )tX  and thus time. Eichhorn et al. [76] study the case where transformation 
of the reference trajectory is invertible, and the trajectory is bounded in phase-space. Un-
der these conditions they note that ( )}tXΦ{  is bounded and nonsingular with bounded 

inverse 1{ ( )}t− XΦ . Then nψΦ  is bounded such that 

n n nC C− +≤ ≤ψ ψ ψ  Φ  (A73)

where 0 C C− +< ≤ < ∞  and the scalars C −  and C +  are constants in time 
[75,76,105]. Thus, 

lim
( )1 ln 0

( ) ( )

n

nt

t
t t t→∞

 
  =
 ′− ′ 

ψ
ψ





Φ

Φ
 (A74)

and 

lim lim( , ) ( , )n n n
CLV CLVt t

t t t t
→∞ →∞

′ ′= =L L L  (A75)

for 1, 2,...,n N= . That is, the finite-time Lyapunov exponents in the different phase- 
spaces still converge to the unique global exponents [72].  

Appendix E. Orthogonalization of FTNMs and Asymptotic Behaviour 

The amplitudes of FTNMs, nφ , grow or decay with exponents n
rΛ . From the 

FTNMs we can also construct sets of orthonormal vectors through Gram-Smidt orthogo-
nalization [27,30,65,86,87] as in Equations (53) and (54) for CLVs. We consider first the 
case of non-degenerate orthonormal vectors and real FTNM exponents with 

1 2 ... N
r r rΛ > Λ > > Λ  as in Sections 7.1 and 7.2. Thus, we construct the sets of orthonormal 

vectors through 
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1

1

1

1

( ) ( ( ), ( )) ( )
( )  

( ) ( ( ), ( )) ( )

n
n j n j

jn

n
n j n j

j

t t t t
t

t t t t

−

=

−

=

−
=

−





φ υ φ υ
υ

φ υ φ υ
 (A76) 

and 

1

1

( ) ( ( ), ( )) ( )
( )  

( ) ( ( ), ( )) ( )

N
n j n j

j nn

N
n j n j

j n

t t t t
t

t t t t

= +

= +

−
=

−





φ ω φ ω
ω

φ ω φ ω
 (A77) 

for 1, 2,...,n N= . Here, we have left open the time domains over which the FTNMs and 
orthonormal vectors are defined. Matrix equations corresponding to Equations (A76) and 
(A77) can also be formulated by analogy with Equation (55): 

;   = = = =B B B B   ϒ ϒ Ω Ωϒ Φ Φ Ω Φ Φ  (A78)

where again 
1 2 1 2( ,..., );   ( ,..., ).N N= =φ , φ φ φ , φ φ  Φ Φ  (A79)

Here, n n n≡φ φ φ , and ϒ  and Ω  are the analogous matrices with columns of 
nυ  and nω  respectively. As in Subsection 7.1, the matrices Bϒ  and B ϒ  are upper 

triangular and the matrices BΩ  and BΩ  are lower triangular with non-zero diagonal 
elements. 

Now, for sufficiently large positive τ+ , 

( , ) ( ;[ ]) ( , ) ( ;[ ]) exp ( , )   n n n
rt t t t t t tτ τ τ τ τ τ− −+ + + + + +≈ ΛG Gω φ   (A80) 

with time-span [ ]tτ −+  since the other contributions in Equation (A77) will fade in rela-

tive terms for large positive evolved times. Similarly, for sufficiently negative τ τ− −= −
and time span [ ]t τ− − ,    

1 1( , ) ( ;[ ]) ( , ) ( ;[ ]) exp ( , ) .n n n
rt t t t t t tτ τ τ τ τ τ− −

− −− − − − − −≈ − ΛG Gυ φ   (A81) 

We see that in the long-time limits the orthonormal vectors nω  (respectively nυ ) 
behave like the right singular vectors nv  and OLVs nv  (respectively left singular vec-
tors nu  and OLVs  nu ) but with long-time FTNM exponent n

rΛ  instead of the Lya-

punov exponent nL . For the periodic system in Section 9 these vectors and exponents 
are of course equivalent.  

For the aperiodic system of Section 10, we consider the problem again in FTNM-space 
over the time span [ ]τ τ−+ −  as in Section 10. Then, from Equations (A76) and (106) we 
have  

( ;[ ]) ( ;[ ]) ( ;[ ]) ( ;[ ])n n n n n
nτ τ τ τ τ τ φ τ τ τ τ τ τ− − − −+ + − + + − + + − + + −= = =e uυ φ   (A82)

Similarly, from Equations (A77) and (107) we have 

( ;[ ]) ( ;[ ]) ( ;[ ]) ( ;[ ]).n n n n n
nτ τ τ τ τ τ φ τ τ τ τ τ τ− − − −− + − − + − − + − − + −= = =e vω φ   (A83)
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Thus, nυ  and nω  are the left and right singular vectors in FTNM-space with sin-

gular value exponents n n
rΣ = Λ . The analyses in Sections 9 and 10 again apply with 

n n→u υ  and n n→v ω  and, in particular,  

( , ) ( , )n n n
rτ τ τ τ+ − + −Σ = ΛBL  (A84)

as in Equation (115) with equality as τ± → ±∞ . 

Systems involving some complex exponents n n n
r iiΛ = Λ + Λ  and associated degen-

erate SVs and OLVs can be handled simply in FTNM-space, where the relationships in 
Equations (A76) and (A77) simplify (see Section 7.3) at the crucial times. Thus, at time τ+

, B ϒ  is the unit matrix I  and at time τ− , BΩ  is the unit matrix. This makes the an-

choring of possibly degenerate nυ  with nondegenerate nφ  and of possibly degenerate 
nω  with nondegenerate nφ  unique and the order the orthonormalized vectors then fol-

lows that for the FTNMs in Appendix A. 
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