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Abstract: Early embryonic development involves forming all specialized cells from a fluid-like mass
of identical stem cells. The differentiation process consists of a series of symmetry-breaking events,
starting from a high-symmetry state (stem cells) to a low-symmetry state (specialized cells). This
scenario closely resembles phase transitions in statistical mechanics. To theoretically study this
hypothesis, we model embryonic stem cell (ESC) populations through a coupled Boolean network
(BN) model. The interaction is applied using a multilayer Ising model that considers paracrine and
autocrine signaling, along with external interventions. It is demonstrated that cell-to-cell variability
can be interpreted as a mixture of steady-state probability distributions. Simulations have revealed
that such models can undergo a series of first- and second-order phase transitions as a function
of the system parameters that describe gene expression noise and interaction strengths. These
phase transitions result in spontaneous symmetry-breaking events that generate new types of cells
characterized by various steady-state distributions. Coupled BNs have also been shown to self-
organize in states that allow spontaneous cell differentiation.

Keywords: coupled Boolean networks; multilayer Ising model; cell differentiation; symmetry breaking;
self-tuned criticality

1. Introduction

The development of multicellular organisms depends largely on the ability of stem
cells to self-replicate indefinitely (proliferation) and differentiate into specialized cells
(pluripotency). Macroscopically, the outcome of this process is predictable in an almost
deterministic fashion, i.e., they are almost always primed to functional cells in their lineage.
Microscopically, stem cell dynamics appear to be stochastic due to the molecular nature of
gene expression. The intrinsic noise causes noticeable cell-to-cell variability in stem cell
populations [1]. Although the functional role of gene expression noise and cell variability
remains elusive, many have suggested that gene expression noise and cell variability are
integral to stem cell pluripotency. Huang et al. proposed that pluripotent (multipotent) stem
cells are a “balanced, undecided state” of multiple gene expression patterns [2,3]. Noise and
environmental signaling simply destabilize this state and force stem cells to overexpress
only in certain genes, thus acquiring a new type of cell with specialized functions. Others
have argued that this transition may only emerge or, at least, is significantly amplified in
stem cell populations due to the interplay between cell–cell interaction, gene expression
noise, and environmental signals [4–6]. Irrespective of the detailed mechanism, the general
theory states that pluripotency is a state of higher symmetry (i.e., a higher amount of
coexpressed genes), while differentiation leads to states of lower symmetry (lower amount
of similarly expressed genes).

Symmetry breaking is the hallmark of disorder–order phase transitions in large phys-
ical systems of interacting agents [7]. The system transitions from a state of higher sym-
metry (disorder) to a state of lower symmetry (order) by reducing the intrinsic noise
(control parameter) below a critical point. Examples of this type of phase transition include
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paramagnetic–ferromagnetic or liquid–solid phase transitions. In general, the symmetry
breaks spontaneously at the critical value of a control parameter. Below the critical value,
the system becomes non-ergodic, and the ordered state of the system is perfectly stabilized.
The parameter that measures the order of the system (order parameter) may change con-
tinuously (second order) or discontinuously (first order) [7–9]. At the critical point, and
depending on the order of the phase transition, the system possesses intriguing dynamic
properties, such as strong spatiotemporal correlations, maximum susceptibility to external
stimuli, optimal information transfer, robustness to random perturbations, coexistence
of phases, memory effects, etc. It is important to note that the results mentioned above
are applicable only within the thermodynamic limit (infinitely large systems). There is
no strong ergodicity breaking for small systems, and, as a consequence, the system may
fluctuate between different states. This fluctuation in states might also be a theoretical
interpretation of the important cell-to-cell variability observed in small stem cell colonies.
The essential hypothesis put forward is [10] could the stem cells possibly embrace and
properly buffer the intrinsic noise to drive the system through its critical point?

Here, we attempt to address this question theoretically in terms of standard statistical
mechanics [4,5,11]. Every cell in the population is modeled by isogenic Boolean networks
(BNs), while the cell–cell interaction is governed by a multilayer Ising type of Hamiltonian
that accounts for paracrine and autocrine signaling, as well as external interventions. The
system’s evolution is given by a hybrid Monte Carlo (MC) method and synchronous
BN dynamics. We illustrate that time-dependent mixtures of steady-state distributions
can effectively represent the collective dynamics of BNs. This problem can be solved
numerically by implementing standard optimization approaches, spectral decomposition
methods, or unsupervised machine learning algorithms based on non-negative matrix
factorization (NNMF). Statistical analysis reveals that coupled BNs exhibit signatures of
first- and second-order phase transition. These transitions are accompanied by spontaneous
symmetry-breaking events that can be interpreted as cell differentiation. Due to strong
fluctuations in the cellular state close to the critical points, the system may exhibit significant
heterogeneity [12]. Coupled BNs can efficiently tune themselves to a critical state of
spontaneous symmetry breaking through a feedback differential equation that modulates
the system’s intrinsic noise.

This paper is organized as follows. Section 2 describes the model and the methods
applied in this work. Specifically, Section 2.1 briefly presents the Boolean network ap-
proach and introduces the concept of a dynamic control kernel. Section 2.3 introduces
the multilayer Ising model and discusses the simulation approach. The various methods
used to detect different types of cells are presented in Section 2.4. Section 3 is devoted
to numerical analysis and the proposed equation for a self-tuning mechanism. Finally,
Section 4 concludes the findings and discusses future directions.

2. Models and Methods
2.1. Boolean Networks

In this work, we model the gene regulations of a cell as a Boolean network (BN) subject
to intrinsic noise. BNs consider each molecular regulator as a binary node that can be “on”
(active) or “off” (inactive). Each node of the network regulates neighboring nodes through
predefined deterministic rules. As a finite deterministic system, BNs can have different
attractors, commonly interpreted as possible functions of the cell. However, introducing
random perturbations that mimic gene expression noise makes the dynamics ergodic, and
all BNs have their own steady-state distribution peaked around the attractors [13]. Such
distributions can be used to explore the complexity of BN dynamics. Depending on the
statistics of the predefined deterministic rules, BNs can exhibit order, critical, or chaotic
dynamics. Despite its simplistic nature, BNs have been used to effectively model various
experimental observations, such as the yeast transcriptional network [14,15], the wild-type
gene expression patterns (segment-polarity) of Drosophila melanogaster [16], the signaling
system within capillary endothelial cells [17], and the T-cell signaling pathway [18].
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A Boolean network is defined on a set of n interacting nodes N = {1, . . . , n} repre-
senting regulatory genes. Each node i is assigned a Boolean value xi ∈ {0, 1} (inactive and
active, respectively). Each gene i is regulated by ki ≤ n genes Ji = {j1, . . . , jki

} ⊆ N. A
synchronous update of the state vector x(t) = {xi(t)}i∈N at discrete time t is given by

x(t) = { fi(yi(t− 1))}i∈N, (1)

where yi(t− 1) = {xj(t− 1)}j∈Ji is the state vector of the interacting nodes at the previous
time and fi : {0, 1}ki → {0, 1} is the Boolean function. At any given time t, the state
of BN is defined by the state vector x(t) or the decimal-encoded state, s(t) ∈ S, of x(t).
Here, S = {1, . . . , 2n} is the decimal representation of the states indexed from 1 to N = 2n

possible configurations of the state space.
In reality, it is uncommon to have full knowledge of the specific gene connectivity and

Boolean functions of a GRN. For this purpose, Kaufmann proposed an ensemble approach
to study GRNs, where statistical averages of random Boolean networks (RBNs) are taken.
In an RBN, for all i ∈ N (a), the number of connections is the same (that is, ki = k), (b) the
interacting nodes are randomly chosen, and (c) for any input yi, fi(yi) = 1 with probability
bias of p and fi(yi) = 0, otherwise. By varying the control parameters k and p, RBNs
undergo a phase transition between order and chaotic network dynamics. The edge of chaos
exists at the critical connectivity kc = 1/[2p(1− p)] [19,20].

As the dynamics of a BN are deterministic in finite space, the network eventually
entails repetition of gene states. These dynamical attractors are an important feature of
complex systems and have long been established as gene expression patterns that char-
acterize cell types [21–23]. One way to observe attractors of networks with a reasonably
small number of genes is to numerically approximate the steady-state distribution through
model simulations [24–26]. In a BN, Monte Carlo simulations can approximate the steady-
state probability distribution of gene states by introducing a random perturbation to the
synchronous update of the network [13]. A possible BN realization with perturbation is
to update gene states according to Equation (1) with probability 1− (1− q)n and update
with xi(t) = γi, otherwise, where i ∈ N, γi ∈ {0, 1} and q = P{γi = 1}. We note that the
original formulation of random perturbation in [13] is a binary “flip” of a randomly selected
gene. Here, we perturb by updating the entire gene set x with a random vector of binary
values {γ1, . . . , γn}. With perturbation, there is a nonzero probability of arriving at any
state, and thus the Boolean network is an ergodic Markov chain where the states converge
given sufficient time [27]. We note that, although random perturbation is used here to
require ergodicity of the dynamics, it also mimics the gene expression noise observed in
biological systems. For example, in Escherichia coli, the gene expression noise modeled as
stochastic dynamics has been well studied to be necessary for its regulation, fluctuation of
transcription rate, and cell division [28–31].

Figure 1 shows the wiring diagram, truth table, state transition diagram, and steady-
state distribution of a 6-gene Boolean network with connectivity of k = 2 and bias p = 0.5
with the perturbation probability of q = 0.1. Throughout this work, we use this model
6-gene network for demonstration.
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Figure 1. A 6-gene network with k = 2, and the bias of p = 0.5. (a) Wiring diagram of the network.
(b) Truth table of Boolean functions. (c) State transition diagram. (d) Steady-state distribution, g0(s),
with perturbation q = 0.1.

2.2. Dynamic Control Kernel

The control of gene expression is a highly desirable action in many areas of molecular
biology. For example, targeted drug delivery or the knockdown effect in gene therapy
requires persistent external influence on a cell to achieve desired gene expression. In the
context of BNs, there are numerous different control strategies. Shmulevich et al. initially
proposed the optimal intervention strategy of probabilistic Boolean networks by altering
Boolean functions [13]. For this type of intervention, one is often interested in finding the
best candidate genes to intervene by minimizing the mean first-passage time. However,
in recent work, direct modification of gene states to drive the dynamics to the desired
attractors has been proposed [32]. Here, we focus on a specific notion of control, pinning,
also known as node-state override, where the gene state is permanently fixed. Pinning
differs from the original formulation of intervention in that Boolean functions are preserved
for all genes except those that are kept static. This concept was first introduced by Serra
et al. and was described as the knock-out of genes with an avalanche effect [33]. Kim et al.
formalized the control kernel (CK) of a network as the minimal set of genes whose pinning
reshapes the dynamics such that the basin of the attractor becomes the entire configuration
space [34]. In a pinned network, only a small fraction of the total number of network nodes
depends on the topological and logical characteristics of the network. Experimentally, Joo
et al. have explored the control of a single gene as an external input for a 5-gene network
that captures the molecular mechanisms and the cell-state transition from an epithelial to a
mesenchymal stem cell [35].

Let r ≤ n be the cardinality of a CK set. Without loss of generality, we can assume that
the CK nodes are the first r nodes of a BN. We define the state vector of the CK and the
remainder network as xc = {x1, . . . , xr} and xo = x− xc, respectively. The set of decimal-
encoded 2r states of CK is Wr = {1, . . . , 2r}. We denote the ordered sets of the pinned values
of CK as Xw, where w ∈ Wr. For example, X1 = {x1 = 0, x2 = 0, . . . , xr−1 = 0, xr = 0},
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X2 = {x1 = 0, x2 = 0, . . . , xr−1 = 0, xr = 1}, etc. Then, the dynamics of an RBN are
as follows: {

xc(t) = Xw

xo(t) = { fi(yi(t− 1))}i>r.
(2)

We reserve the index w = 0 to describe the unpinned dynamics, that is, X0 = { fi(yi(t−
1)}i≤r. In other words, when w = 0, Equation (3) is Equation (1).

For each w ∈ Wr, the pinning procedure generates a new steady-state distribution
g(r)

w = {g(r)w (s)}s∈S that is attributed to a new type of cell. Thus, each CK set can generate
up to 2r new types of cells. An interesting property of this control approach is that it
naturally partitions the state space, S, into 2r equivalent sets. As a consequence, for i 6= j,
we have the orthogonal condition

〈g(r)
i , g(r)

j 〉 = 0, (3)

where 〈g(r)
i , g(r)

j 〉 = ∑s∈S g(r)i (s)g(r)j (s) is the scalar product of g(r)
i and g(r)

j . This property
is illustrated in Figure 2, where we applied the pining procedure to the 6-gene model BN.
In the case of r = 1, pinning the CK to either X1 or X2 generates two nonoverlapping
steady-state distributions g(1)1 (s) and g(1)2 (s), respectively (Figure 2 (left)). Similarly, a CK

of r = 2 generates four disjoint steady-state distributions g(2)1 (s), g(2)2 (s), g(2)3 (s), and g(2)4 (s)
(Figure 2 (right)).

Figure 2. (Left) Pinned BN with r = 1; x1 is either 0 or 1. The two resulting steady-state distributions

g(1)1 (s) and g(1)2 (s) have partitioned state spaces and preserve attractor points. (Right) Pinned BN

with r = 2; x1 and x2 are pinned to either 0 or 1. The four resulting steady-state distributions g(2)1 (s),

g(2)2 (s), g(2)3 (s), and g(2)4 (s), once again, have partitioned state spaces and preserve attractor points.

Here, we define dynamic CK as xc(t) = Xηt , where ηt is a discrete-time deterministic
or stochastic process with state spaceW ⊆ {{0}, Wr}. Let g(s) be the new steady-state
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distribution as a result of Xηt . If the mean waiting time in a given state of ηt is finite and
long enough, the distribution of the cell states will be a mixture of all gws, i.e.,

g(s) = c0g0(s) + ∑
w∈Wr

c(r)w g(r)w (s), (4)

where cws are the scalar weights of the respective gws.
To illustrate this point, we set r = 1 and assume that ηt ∈ W1 = {1, 2} is a discrete-

time Markov chain process with the transition diagram shown in Figure 3a. Figure 3b
shows the time evolution of ηt for the first 100 time steps. It is clear that ηt = 2 is sampled
more than ηt = 1. The resulting steady-state distribution g(s), shown in Figure 3c, is a
mixture of g(1)1 (s) and g(1)2 (s) with the corresponding weights c2 > c1. Here, we interpret
this as that the new cell type g(s) resulting from stochastic pinning is a weighted mixture of cell
types g(1)

1 and g(1)
2 . This is true as long as the transition rates are not “too fast.” In Section 2.4,

we take advantage of the disjoint property of the gws to develop a spectral decomposition
method that provides these weights. Other methods, such as linear optimization and
non-negative matrix factorization (NNMF), are discussed in the case where g(1)1 (s) and

g(1)2 (s) are no longer disjoint under different CK rules.

Figure 3. Stochastic pinning of the BN: (a) transition diagram for a two-state, W1 = {1, 2}, stochas-
tic pinning process; (b) first 100 sampled values of the stochastic process ηt; and (c) steady-state
distribution of the stochastic CK, g(s), obtained after T = 105 simulation steps.

2.3. Coupled Boolean Networks

The study of coupled BNs has gained increased interest in recent decades. Villani
et al. and Serra et al. have shown that increasing interactions between RBNs results in
more disordered states [36,37]. Damiani et al. revealed that short-distance interacting
RBNs display robust generic properties [38]. The collective behaviors of coupled BNs
have been investigated in [26,39,40]. In particular, [39] showed that the pattern formation
in the tissues of BNs is the most information-rich in the near-critical complexity domain,
while in [26], the authors showed that the pattern formation of long-term steady states is
most often observed in networks of critical dynamics. In the most recent study by Kim et
al., multilayer RBNs were investigated, where isogenic GRN were coupled according to a
random selection of topology in silico with activation rules from [39]. They showed that a
multilayer RBN structure facilitated the production of antifragile systems [40].

In this work, we model stem cell populations as L-coupled isogenic BNs (tissue).
Let xi,m represent the m-th gene of the i-th cell. Each cell i is allowed to interact with a
set of other cells denoted by Γi. For each Boolean variable σ ∈ {0, 1}, we define a linear
transformation σ̄ = 2σ− 1 ∈ {−1, 1}. We assume that BNs interact with each other through
their CK according to the multilayer Ising Hamiltonian:

Hr = −
r

∑
m=1

L

∑
i=1

[
∑
j∈Γi

Jij x̄i,m x̄j,m + h0 x̄i,m f̄i,m + hx̄i,mψ̄m

]
. (5)
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In terms of a standard spin model, the first term of Equation (5) is the interaction
between cells i and j, where Jij is the strength of the interaction. It is simply the Hamiltonian
of r-independent Ising models. The second and third terms represent local external fields
acting on the control kernel, where h and h0 are the corresponding strengths. In our coupled
BN model, the first term describes paracrine signaling with neighboring cells. The second
term describes the cell’s tendency to follow the dynamics of its original cell ( f̄i,m). By default,
it is time-dependent and indirectly couples the r Ising models. The third may describe
autocrine signaling and/or external interventions (ψ̄m) and can be static or time-dependent.

Cell–cell communication or cell interaction with external signals is facilitated by
diffusing signaling molecules. To capture this stochastic process, we introduce an additional
type of intrinsic noise, denoted as T, which acts at the population level. The analog of T in
standard statistical mechanics is the temperature of the system.

To simulate the system, we use the standard Metropolis algorithm for the coupled CKs
and the Equation (2) for the synchronous BN update. During an MC step, the NMC ≤ L
subset of nodes, xi,m, for each 1 ≤ m ≤ r, is chosen randomly. We sequentially flip their
state. The new state is accepted with probability min(1, exp(−∆E/T), where ∆E is the
energy difference between the current and the attempted state. After each MC step, all BN
states xo are updated.

2.4. Detecting Cell Types

In Section 2.2, we illustrated that dynamic CKs can generate a new steady-state distribu-
tion as a mixture of the distributions. Let the vector G(t) be the instantaneous distribution
of the states of all cells in a population and

G̃(t) = c0(t)g0 + ∑
w∈Wr

c(r)w (t)g(r)
w , (6)

be the approximation given by Equation (4). We define the relative error as ε(t) = ||G(t)−
G̃(t)||/N , where ||.|| denotes the standard Euclidean norm. Finding the coefficients c0 and
c(r)w is a linear optimization problem with two constraints: (a) 0 ≤ c0 ≤ 1 and 0 ≤ c(r)w ≤ 1
for all w, and (b) c0 +∑w c(r)w = 1. These two constraints allow us to interpret the coefficients
as the number density or fraction of each cell type in the population.

In the case h0 = 0, the population dynamics are dictated by the network of interacting
CKs and external intervention. Thus, all CKs are expected to be in a state w ∈ Wr. In
other words, c0 = 0. This assumption can significantly simplify the computation of
coefficients. Taking advantage of the nonoverlapping (disjoint) property of gw, we define a
set of orthonormal vectors as ĝ(r)

w = g(r)
w /

〈
g(r)

w , g(r)
w

〉
. Then, one can use a simple spectral

decomposition method to obtain the coefficients:

c(r)w (t) =
〈

G(t) , ĝ(r)
w

〉
. (7)

If the error ε(t) is not sufficiently small, the assumption of Equation (6) breaks down.
In such cases, machine learning algorithms can be implemented to decompose G and gain
insight into the dynamics of the system. Here, since the elements of G are non-negative,
we use non-negative matrix factorization (NNMF) [41]. In short, NNMF can decompose
a non-negative matrix GN×T into a product of two non-negative matrices ΩN×K and
EK×T . Here, T is the simulation time, and K is the rank of the decomposition to be
determined. The matrix ΩN×K provides K-different steady-state distributions, which
can also be interpreted as new types of cells. The corresponding time-dependent density
numbers are stored in EK×T .
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3. Results

This section presents the results of our numerical simulations based on the hybrid
Monte Carlo and synchronous BN update method. We assume that we have a simple 2D
tissue with periodic boundary conditions. The set Γi consists of the four nearest neighbors
of the ith cell. For simplicity, we choose Jij = J ≥ 0.

Some interesting limits of the multilayer Ising model include:

Case 1. If h0 = 0, the CK is not affected by unpinned dynamics. Thus, the Hamiltonian
reduces to the standard r-layer Ising model under the influence of an external field.

Case 2. If J = 0 and h = 0, then Equation (5) describes L-uncoupled BNs (non-interacting
cells).

Case 3. For h0 ≈ J, the r Ising layers are coupled through the dynamics of each BN. This is
a nontrivial, bidirectional, and time-dependent nonlinear coupling.

In this work, we set J = 1 and neglect the third term in Equation (5). Thus, the
control parameters are intrinsic noise (“temperature”) T and local coupling h0. For each
set of parameters, we first equilibrate the system for teq time steps and then compute the
time average of an observable A(t) as A = ∑Tt=1 A(t)/T , where T is the sampling time.
The time average of the numerical error ε is always less than 10−2. In Section 3.1, we
use the linear optimization technique to compute the coefficients of Equation (6), while
in Section 3.2, where we assume that h0 = 0, we implement the spectral decomposition
method from Section 2.4.

In what follows, we present the results for r = 1 or r = 2. Unless otherwise stated,
T = teq = 104. The parameters values are summarized in Appendix A.

3.1. Spontaneous Cell Differentiation

This section examines the behavior of the system as a function of the control parameters
T and h0. Specifically, we show that varying the control parameters causes the system to
undergo a series of spontaneous symmetry-breaking events. It should be noted that many
biological phenomena, such as the stem cell differentiation process, are precisely explained
by this phase transition. For example, the first step in the core embryonic stem cell cycle
is the organization of the pluripotent state in cells [42]. Upon dissolution of pluripotency,
stem cells reach a critical state, at which point they undergo symmetry breaking. The
stem cell population spontaneously (and collectively) undergoes a cell fate specification for
differentiated specialized cells.

In the first set of simulations, shown in Figure 4, we fix r = 1. In Figure 4a–c, we
kept the temperature constant at T = 0.25, T = 1, and T = 1.25, respectively, and varied
the parameter h0. Specifically, we started with a high value of h0 = 3, where we expected
the fraction of the original cell c0 to be dominant and gradually reduced it to h0 = 0. For
h0 = 3, the initial conditions of all nodes in the tissue were randomly chosen. The final
state of this simulation is the initial condition for the next value of the local field h0, and so
on. For high values of h0, we see that c0 is the most dominant fraction in the colony. As h0
decreases, c0 drops to a critical value where spontaneous differentiation occurs. An arrow
in Figure 4 approximately indicates the starting point of the differentiation process. Note
that the system always differentiates to the g(1)

2 cell. This decision is related to the structure
of the original BN. As seen in Figure 1d, the steady-state distribution is slightly higher in
the second half of the state space, and this small difference always favors g(1)

2 . However,
different BNs may exhibit alternative phenotypic behaviors. This transition is smooth for
high temperatures (T = 1 and T = 1.25). However, the differentiation seems rather steep
for low temperatures (T = 0.5).
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Figure 4. Differentiation process for r = 1 and a 50 × 50 tissue size. First row: spontaneous
differentiation process as a function of h0 for (a) T = 0.25, (b) T = 1, and (c) T = 1.25. Second row:
spontaneous differentiation process as a function of T for (d) h0 = 0, (e) h0 = 0.5, and (f) h0 = 1. The
arrow approximately indicates the differentiation starting point.

In Figure 4d–f, we fixed the local field constant at h0 = 0, h0 = 0.5, and h0 = 1,
respectively, and simulated with various temperature points from a high value of T = 3
to a low value of T = 0.1. Here, we also observe a differentiation at a critical temperature
indicated by the arrow, which consistently rules in favor of g(1)

2 for nonzero h0. However,
for h0 = 0 (Figure 4d), the original cell has no influence on the dynamics of the system, and
the cells can differentiate to g(1)

1 or g(1)
2 with an equal probability. In Figure 4e, we show an

example where the cell differentiates into g(1)
1 . As a matter of fact, in this limit, Equation (5)

is the standard Ising model. If one defines the order parameter 〈M〉, where M is the time
average of |Mt| =

∣∣∣c(1)2 (t)− c(1)1 (t)
∣∣∣, and the brackets indicate the ensemble average, it can

be shown that the system belongs to the same universality class as the 2D Ising model.
In Figure 5, we performed the same simulations as in Figure 4 but for r = 2. In this

case, the BN has four potential steady states to differentiate. As observed in all the graphs
in Figure 5, two consecutive cell differentiations exist; the arrow indicates the first sequence
of differentiation, and the dashed arrow indicates the second. First, there is a differentiation
between

{
g(2)

1 , g(2)
2

}
and

{
g(2)

3 , g(2)
4

}
, where the second group is always favored for the

same reasons mentioned in Figure 4. Then, there is a second spontaneous differentiation in
which the cell decides equally between the g(2)

3 and g(2)
4 cell types. When h0 = 0, the colony

can spontaneously differentiate into any of the four types of cells. Figure 5d illustrates a
simulation in which the cell differentiates into g(2)

1 .
Next, we illustrate the cell-to-cell variability in the system. As an example, we used

the parameters of Figure 5e and plotted the time evolution of the cell fractions, as well as
representative snapshots at three different temperature points: T = 3, T = 1.85, and T = 1
(Figure 6). At temperature T = 3, precisely before the first differentiation, all types of cells
co-exist throughout the simulation time (Figure 6a). The snapshot in Figure 6b illustrates
this high level of cell variability. At T = 1.85 (Figure 6c), where the second differentiation
occurs, the system fluctuates significantly between g(2)

3 and g(2)
4 . This fluctuation resembles

the features of the second-order phase transition observed in 2D Ising models. In support of
this assumption, the snapshot of Figure 6d shows the characteristic fractal-like structure of
g(2)

3 island sizes in a sea of g(2)
4 cells. At low temperature T = 1, the second differentiation

has already taken place, and the decision to differentiate to cell g(2)
4 was made for this
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particular simulation (Figure 6e,f). It must be underlined that, for this specific BN, the
original cell g0 can differentiate equally between the g(2)

3 and g(2)
4 .

Figure 5. Differentiation process for r = 2 and on a 50× 50 tissue. First row: spontaneous differentia-
tion process as a function of h0 for (a) T = 0.25, (b) T = 1, and (c) T = 1.25. Second row: spontaneous
differentiation process as a function of T for (d) h0 = 0, (e) h0 = 0.5, and (f) h0 = 1. The arrow and
dashed arrow denote approximate starting points of two different differentiation processes.

Figure 6. Cell-to-cell variability for r = 2 with h0 = 0.5 on a 50× 50 tissue. First row ((a,c,e) shows
time evolutions of the cell fractions, and the second row ((b,d,f) shows representative snapshots of
the tissue states at time t = 67 respectively. Temperature is T = 3 for the first column ((a,b)), T = 1.85
for the second column ((c,d)), and T = 1 for the third column ((e,f)). The time unit is 102 MC steps.

A second source of cell variability is due to the size of the colonies. For colonies of
small size, there is always a measurable probability of having the first two types of cells,
although the structure of the original cell does not favor this decision. This probability
decreases significantly as the size of the tissue increases and almost vanishes for sizes
greater than 20× 20. This is due to weak ergodicity breaking that makes it difficult for the
system to visit the first half of the state space. This theoretical interpretation may contribute
to the cell-to-cell variability observed in small stem cell colonies.
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Phase transitions can be studied in terms of the order parameters cww′ = cw − cw′ ,
where w, w′ ∈ {0, Wr}. Note that for each r there are M = m!/(m!(m − 2)!), where
m = 2r + 1 unique fraction differences. Although this computation is manageable for r = 1,
it becomes increasingly difficult to solve for r ≥ 2. In an ongoing project, we attempt to
classify the phase transitions presented in Figures 4 and 5 and compute the corresponding
critical exponents. Preliminary results indicate that partial construction of the Wadding-
ton epigenetic landscape [43] is possible. Specifically, one can derive the quasi-potential
V({cww′}) ∝ −ln(P({cww′})), where P({cww′}) is the joint probability distribution of all
{cww′} [44,45]. Note that this scalar function is defined in anM-dimensional space. This
construction can be simplified considerably in cases where some transitions are not possible.
For example, in the model BN for r = 2, the transitions from g(1)

1 to g(2)
3 and g(2)

4 and from

g(1)
2 to g(2)

3 and g(2)
4 were not observable in the limited number of simulations performed

for this section.

3.2. Self-Tuned Cell Differentiation

In Section 3.1, we showed that by manually tuning T and h0 through the critical
values, the system undergoes a series of symmetry-breaking events. In this section, we
demonstrate that cells can collectively self-tune through a critical state that allows them to
decide their fate. For simplicity, we set r = 1 and neglect the local fields in Equation (5).
This limit is equivalent to the standard Ising model. We recently showed that a mean-field
approach of the Ising model with a negative feedback mechanism drives the system through
a supercritical pitchfork bifurcation that can be interpreted as a cell fate decision [46]. Here,
we apply this approach to the full Ising Hamiltonian Equation (5).

The heterogeneity of the system can be measured in terms of instantaneous “magneti-
zation” Mt = c(1)2 (t)− c(1)1 (t). A perfect mixture of g(1)

1 and g(1)
2 (Mt = 0) corresponds to

the pluripotent state of the cell [2]. On the contrary, Mt = −1 and Mt = 1 correspond to
homogeneous populations of cell types g(1)

1 and g(1)
2 , respectively.

We consider an internal mechanism that allows the heterogeneity of a population,
measured in terms of instantaneous magnetization of the tissue, Mt, to regulate the intrinsic
noise of the population (temperature T):

dT
dt

= |Mt| − αT, (8)

where α is the relaxation coefficient. That is to say, Equation (8) captures the negative
feedback response between cell–cell cooperativity and its intrinsic gene expression noise.

The model Hamiltonian for coupled Boolean networks (Equation (5)) with h = 0
and h0 = 0, combined with the internal temperature–magnetization feedback mechanism
(Equation (8)), was simulated on tissues of size 32× 32. The system was set to evolve for
up to t = 8× 105 MC steps, where NMC = 10. Equation (8) was solved using the Euler
method with a step size of ∆τ = 5× 10−7, and the parameter α = 0.8 was fixed. The model
Boolean network from Figure 1 was instantiated for all cells with internal noise of q = 0.02.

The simulation of the model begins with random gene states for all cells in the tissue,
except for the CK node, which, without loss of generality, is set: xc = {1}. We choose a
high starting temperature of T = 2.8 for the system, because it generates a natural state
of hypothesized heterogeneity in pluripotent cells in the early stage of the embryonic
stem cell cycle. Through negative feedback on instantaneous magnetization, Equation (8)
then self-tunes the system towards the critical and then subcritical temperatures, where
symmetry breaking triggers spontaneous differentiation.

Figure 7a shows the time evolution of magnetization (Mt) for two independent sim-
ulations. Here, it can be seen that both simulations begin with Mt = 1, which quickly
approaches 0 over time. As time passes, the simulations decide and split in their magneti-
zation paths (Mt ≈ 1 and Mt ≈ −1), resulting in differentiation of population cell types
(which correspond to g(1)

1 and g(1)
2 ). Figure 7b shows the time evolution of the temperature



Entropy 2023, 25, 235 12 of 16

trajectories of the two simulations. Here, the trajectories begin at T = 2.8, and with time,
the temperature drops below the critical temperature and eventually equilibrates to a
subcritical temperature. Combined, we see that as the temperature reaches the Ising critical
temperature (Tc), the tissue magnetizations diverge, with an equal chance of the system
choosing one of the two cell types.

Figure 7. Simulations of a 32× 32 Ising model with a self-tuning feedback equation (Equation (8)).
Here, h = 0, h0 = 0, and α = 0.8. (a) Magnetization trajectories show two systems are driven
to Mt ≈ 0 immediately upon initialization and eventually self-tune to two different homogeneous
cell types (Mt ≈ −1 or Mt ≈ 1). (b) The simulations show that the temperature drop slows
as it descends below the critical temperature (Tc) and eventually reaches a steady temperature.
Combining (a) and (b), we see that as the feedback temperature reaches the Ising critical temperature
(Tc), the magnetizations begin to diverge and tissue differentiates homogeneously to one of the two
possible cell types. The time unit is 102 MC steps with NMC = 10.

Observing tissue-level statistics provides additional insight into collective behaviors
in pluripotent cells transitioning to two possible cell types. A total of 100 independent
and identical tissue simulations of Figure 7 were carried out, and instantaneous state
distributions G(t) and the average gene state (mean G(t) of a whole tissue) were collected
at each time step. At the beginning of the simulation, t = 1, the system was initialized
with a high temperature point (T = 2.8) and with the CK fixed to xc = {1}, as in Figure 7.
Trivially, all cell states are in g(1)

2 , and the average gene state, which describes the tissue-
level distribution, is unimodal (Figure 8a). At time t = 1× 105, where the system reaches
Mt ≈ 0, two different cell types are probed, resulting in a mixture of g(1)

1 and g(1)
2 cell

types, while the average state at the colony level remains unimodal, centered between g(1)
1

and g(1)
2 (Figure 8b). With time, the temperature self-tunes and reaches an equilibrium

point below the critical temperature (Tc). At time t = 6× 105, approximately half of the
tissues form a homogeneous cell type of g(1)

1 , and the other half form a cell type g(1)
2 . The

tissue-level states reach a split bimodal distribution (Figure 8c). The system describes a full
transition from a population of pluripotent tissue to two differentiated cell types. At the
tissue level, this unimodal–bimodal transition at the critical junction of the phase transition
occurs in several areas from mouse embryogenesis [12] to the development of cancer cell
line [47].
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Figure 8. One hundred independent tissue simulations of a 32× 32 Ising Hamiltonian (Equation (5)
with the temperature–magnetization feedback mechanism (Equation (8)) are shown: (a) At time t = 1,

where the initial temperature is high (T = 2.8), all cells are of cell type g(1)
2 . (b) At time t = 1× 105,

where the tissues are Mt ≈ 0, there is a mixture of g(1)
1 and g(1)

2 cell types from Figure 2 (left),
and the average cell state at the colony-level remains unimodal, centered between the distributions

g(1)1 (s) and g(1)2 (s). (c) At time t = 6× 105, the tissues decide on the fate of the cells with a drop in
temperature to critical and subcritical points, and hence, Mt ≈ −1 or Mt ≈ 1. This results in a split,
bimodal distributions of gene states at the cellular and colony level.

As an application, self-tuned differentiation can replicate Okamoto et al.’s experimental
work on the collective differentiation of mouse embryonic stem cells (mESCs) under strict
conditions [12]. The authors have observed the gene expression levels of key transcription
factors in mESC, Nanog, and Oct4 in the early stage of differentiation. According to
the immunofluorescence markers of Venus and mKate2, which report Nanog and Oct4
gene expressions, respectively, colonies of mESCs exposed to leukemia inhibitory factor
(LIF) demonstrated a high intensity of fluorescence, thus exhibiting single-state behavior
in Nanog and Oct4. Here, LIF acts to enhance Nanog heterogeneity, in other words, to
maintain the pluripotent state in the stem cell population. However, in the absence of LIF,
high and low levels of Venus and mKate2 fluorescence were observed in cells, and cells are
free to transition from pluripotent to differentiated state. This is termed unimodal–bimodal
transition in the heterogeneity of gene expression levels at the cellular and colony level.

This cellular and colony-level unimodal–bimodal transition in the mESC distributions
of a pluripotent population [6,48,49] is characterized by the multilayer Ising Hamiltonian
(Equation (5)) with the temperature–magnetization feedback mechanism (Equation (8))
when pluripotent cells and differentiated cells are assumed to be complementary in gene
states (i.e., they are induced by a fixed CK of r = 1). Then, pluripotent and differentiated
cell types form g(1)

1 and g(1)
2 , which can exhibit the unimodal–bimodal transition with the

self-tuning mechanism, as seen in Figure 8.

4. Conclusions

In this paper, we developed a model that describes the interplay between stem cell
cooperativity and gene expression noise at the population level. Our model uses isogenic
BNs to represent individual cell dynamics and a multilayer Ising Hamiltonian to describe
the cell–cell interaction. This approach captures various cell signaling effects (paracrine
and autocrine) and external gene expression interventions. The time evolution of this
model is obtained by a hybrid MC method and synchronous update of BN states. We
showed that a mixture of steady-state distributions can accurately represent the collective
dynamics of coupled BNs. By interpreting each steady-state distribution as different types
of cells, we characterized the compositions of stem cell populations with the aid of linear
optimization techniques, standard spectral decomposition methods, and unsupervised
machine learning algorithms.

Numerical analysis of our model in two dimensions revealed that by varying the
system parameters through some critical values, the system undergoes a series of symmetry-
breaking events that alter the dynamics of the original cell. Before these events, the system
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exhibits considerable cell-to-cell variability. This property resembles signatures of disorder–
order phase transitions. We hypothesize that such transitions can be interpreted as the
differentiation of the original cells into specialized cells. This interpretation supports
the hypothesis that stem cells operate in a highly symmetric state (disorder state), and
differentiated cells have a reduced symmetry state (order state). Furthermore, we showed
that by introducing a differential equation that describes the negative feedback between
cell cooperativity and intrinsic noise, the system can self-tune through the critical points
and spontaneously differentiate into various types of cells. The number of different types
of cells that each BN can generate strongly depends on the complexity of the cell–cell
interaction and the structure of the original BN.

It is known that BNs can exhibit ordered, critical, and chaotic dynamics. How do the
different BN dynamics affect the number and type of symmetry-breaking events observed
in our model? Is criticality essential at the population level, locally at a single-cell level,
or both? [36]). In this work, we showed that our model generates a number of different
cell states. Depending on the structure of the BN, some states are stable and others are
metastable. Preliminary results show that metastable cell states can emerge in certain
conditions in cell tissues. What is the biological interpretation of such metastabilities?
Here, we only considered ferromagnetic cell–cell interaction (i.e., J > 0). Can a different
type of interaction (e.g., antiferromagnetic or random field) lead to other types of phase
transition? Is a spin-glass phase transition possible in our model, and how could this
affect collective cell dynamics? These questions, along with the partial construction of the
epigenetic landscape and characterization of the phase transitions, will be studied in detail
in a future publication [46].
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Appendix A

Table A1. Table of parameters, definitions, and parameter values utilized in the model development
and simulations. There are two control parameters: the intercellular intrinsic noise (T) and the
tendency of the system to retain its original BN dynamics (h0). Both parameters are measured in
J units.

Parameter Notation Definition Parameter Values

k BN connectivity 2
p Boolean function bias 0.5
q perturbation probability 0.1, 0.02
r control kernel size 1, 2
J interaction strength/energy unit 1
h external field constant 0
α relaxation coefficient 0.8
T simulation time (MC steps) 104

teq equilibration time (MC steps) 104
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