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Abstract: In this paper, we present the model of the interaction between the spread of disease and the
spread of information about the disease in multilayer networks. Next, based on the characteristics of
the SARS-CoV-2 virus pandemic, we evaluated the influence of information blocking on the virus
spread. Our results show that blocking the spread of information affects the speed at which the
epidemic peak appears in our society, and affects the number of infected individuals.
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1. Introduction

The increases in human mobility and globalization have created ideal conditions
for the spread of new epidemics [1]. At the turn of 2019 and 2020, a new coronavirus
started spreading in Wuhan. According to the University of Toronto Citizen Lab report [2],
information about it was not released to the general public for more than three weeks,
and multiple other sources report that there was an active campaign to limit the spread
of information about the virus [3–10]. Since spreading the information (awareness that
there is a virus circulating in society) is an important tool in limiting the spread of the
virus [11–17] (aware people might take preventive actions such as staying at home, wearing
face masks, washing hands more often, etc.), we asked questions regarding how delaying
information spread influenced the spread of the virus, and how it affected the number of
infected individuals and disease dynamic.

Unfortunately, we were not able to find the answers to those questions in the related
works; thus, we developed a model for the interaction between virus and information
spreading in multilayer networks (Section 2), where becoming aware of the virus results in
limiting the chance of becoming infected. Next, we adjusted the model using the COVID-
19 pandemic data from its early days (Section 2.3). Finally, we performed experiments
(Section 3) to analyze and compare the spread of SARS-CoV-2 in three scenarios: (i) only
the virus spreads, (ii) the virus and information spread simultaneously from the beginning,
and (iii) the virus and information spread simultaneously, but the information spread is
delayed for some period of time.

2. Materials and Methods

In this section, we briefly introduce the most important concepts and assumptions for
our experimental part.

2.1. Multilayer Network

To evaluate our ideas in a more realistic scenario, we decided to use the multilayer
network [17–20], where the network is defined as M = (N, L, V, E) [20], where

• N is a not-empty set of actors {n1, ..., nn};
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• L is a not-empty set of layers {l1, ..., ll};
• V is a not-empty set of nodes, V ⊆ N × L;
• E is a set of edges (v1, v2) : v1, v2 ∈ V, and if v1 = (n1, l1) and v2 = (n2, l2) ∈ E, then

l1 = l2.

The example of a multilayer network is presented in Figure 1. This network contains:

• Six actors {n1, n2, n3, n4, n5, n6};
• Two layers {l1, l2};
• Ten nodes {v1 = (n1, l1), v2 = (n2, l1), v3 = (n3, l1), v4 = (n4, l1), v5 = (n5, l1),

v6 = (n1, l2), v7 = (n2, l2), v8 = (n3, l2), v9 = (n4, l2), v10 = (n6, l2)};
• Eleven edges {(v1, v2), (v1, v5), (v2, v5), (v2, v3), (v2, v4), (v3, v4), (v6, v9), (v6, v10),

(v7, v8), (v7, v9), (v8, v9)}.

n1
n5

n2

n3

n4

n1

n2

n3

n4

n6

Figure 1. An example of multilayer networks.

This network model allows us to have two different networks (layers), the first one for
disease spreading, which for obvious reasons needs to be limited to offline world contacts
to support virus spread, and the second one for “online” contacts that allow information
spreading. Both layers can have a completely different topology, e.g., two people living in
two geographically distant cities may never meet, but they can exchange information via
phone or social platforms; on the other hand, two people can exchange viruses because
they have shared the same shopping cart or used the same bus, but they might never talk
and exchange information.

2.2. Spreading Models
2.2.1. Epidemic Spreading

In the SIR model, every person who belongs to a population, also called an actor or
a node, can be in one of three states: S (susceptible), in which a person is susceptible to
infection; I (infected), which means infected and at the same time spreading the disease,
and R (recovered), when a person has recovered and acquired immunity or has died and
can no longer infect or become sick again (e.g., smallpox, mumps, and other diseases for
which people can be vaccinated).
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A susceptible actor can be infected by an infected actor in one cycle with probability β,
while infected actors can recover in each cycle with probability γ. This process can be
described by the following equations:

ds
dt

= −βis,
di
dt

= βis− γi,
dr
dt

= γi,

where i, s, r represent the fraction of susceptible, infected, and recovered individuals in the
total population, respectively. The state changes are also presented in Figure 2.

Figure 2. State changes in SIR model.

It must be noted that in a real epidemic spreading, for diseases such as chickenpox
or mumps, a person in state S will be infected only if he or she has direct contact with an
infected person.

Nevertheless, in a complex network, actors are represented by nodes, and the possibil-
ity of contact is determined by connections between them, i.e., edges in the network. In such
circumstances, a node in state S may change its state to I only if it has at least one infected
neighbor. In this way, classical epidemic models can be extended to network representation,
and the presented expressions can be considered as a special case where the corresponding
network is fully connected. In the absence of some connections in the network, the fraction
of susceptible individuals in the total population may be larger, and there may be actors
who will not be infected [21].

2.2.2. Information Spreading

In the SIS model, an actor can be in one of two states: susceptible (S) or infected (I).
The person’s state change is determined by the relevant probability. If an actor is in the S
state, its switch to I, in any iteration, will depend on probability β. Return from the state I
to S depends on the probability γ. This reflects the situation where a susceptible person
becomes infected by any infected member of the population and then becomes ill but has
not acquired immunity. It means that despite being already ill, a person is susceptible to
reinfection (e.g., cold or seasonal flu). These processes can be described by the following
equations:

ds
dt

= −βis + γi,
di
dt

= βis− γi,

where i, s represent the fraction of susceptible and infected actors in the total population,
respectively. The state changes are also presented in Figure 3.

Figure 3. State changes for SIS model.

This model corresponds to real processes of spreading seasonal diseases such as cold
or flu, for which one does not acquire immunity, as in the case of chickenpox or mumps.
The representation of this model for the network is similar to the case described for the SIR
model, except that instead of a transition to state R, there will be a return to state S [21].
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Epidemic models can be used to simulate other spreading processes. The most com-
mon example would be information spreading, where we have models such as UAU [22]
(unaware–aware–unaware) or UAF [23] (unaware–aware–forgot), which are based on SIS
and SIR models, respectively. In the case of our research, we decided to use an SIS-based
model (i.e., UAU [22]) to model the spread of information.

2.2.3. Interaction between Processes

Interactions between multiple processes in a network can take many forms, and most
research is centered on one of three categories: supporting, competing, and mixed ap-
proaches [17].

Supporting processes are observed, for example, in the case of opinion formation
and decision-making, where public opinion about a topic is taken into account during the
decision-making process [24].

Epidemics in multilayer networks can take a cooperative form, as one disease can
exacerbate or inhibit the development of another [25]. As a result, the dynamics and extent
of a disease can be increased by other diseases spreading in the same network. One disease
may be a consequence of contracting another. For example, the number of people with
tuberculosis increases in the population with HIV [26]. However, the issue of mutual
support processes represents a small percentage of all works [17].

Competing processes. Competition between processes has been modeled and ana-
lyzed on a large scale. An example can be competition studies for memes [27] and extended
to generalization for other content [28].

Competitive processes have also been studied in the context of optimal resource
allocation in multilayer networks, where a single node may participate in multiple processes
at the same time. It has also been shown that the diffusion of resources in the information
layer can affect the spread of outbreaks in the physical contact layer and change the phase
transition. Studies have shown that the existence of optimal resource diffusion leads to
maximum disease suppression [29].

Mixed approaches. The third type of interaction is a mixed approach, used in model-
ing competing and supporting processes spreading simultaneously. For example, the ap-
pearance on the market of new technologically advanced products, which are very similar to
each other, creates a demand for new services (support) and, at the same time, strengthens
the competition on the market (competition) [30].

Researchers also analyzed the coexistence of cooperation and competition mechanisms.
They observed that increased cooperation boosts the ability of content to spread across all
layers, whereas without cooperation, the layers are independent, and each virus spreads
only within one layer. Due to the competition mechanism, only one viral agent can be
assigned to one node [31].

Interesting results can be observed in the field of spreading diseases and information
about them. In some research, awareness inhibits the spread of diseases. On the other hand,
we can have a situation in which the infected node becomes aware and can spread infection
and information about the disease at the same time [12,15,16]. A similar scenario in which
disease supports the spread of information, and awareness reduces disease, was also
examined for disease and immunization. The spread in a multilayer structure that contains
disease and immunization can enhance or dampen the epidemic. While immunization can
compete with the epidemic, it can also enhance its dynamics [32]. Mixed interactions can
also be observed in individuals waiting for immunization [33].

2.3. Adjusting Parameters for COVID-19 Pandemic

Based on previous research in epidemic modeling, we adjusted the model’s parameters
to the SARS-CoV-2 virus and the early days of the COVID-19 pandemic. Out of many
existing epidemic models, for virus spread, the SIR model was selected, and for information
spread, the UAU (SIS) model was chosen. Values for all parameters can be found in Table 1
and the explanation for those values can be found in the following subsections.
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Table 1. Summary of the experimental setup.

Param. Values Description

β 0.19, 0.22, 0.28, 0.31 The probability of contracting an infection during con-
tact with an infected individual.

γ 0.1, 0.02, 0.08 The probability of recovery of an infected individual
during each iteration.

β′ β
10 The probability of contracting infection by aware person.

ε min(β ∗ x, 1); xε{1, 2, 3, 4} The probability of an unaware person contracting the
information from their aware neighbor.

µ min(γ ∗ x, 1); xε{1, 2, 3, 4} The probability of an aware person forgetting the infor-
mation or stopping being influenced by it.

ε′ 0.692 The probability of an unaware infected person to be-
come aware.

time 150 We simulated the first 150 days of the pandemic.

repetition 20 The simulation was repeated 20 times for each combina-
tion of parameters and each network.

2.3.1. SIR Model

In the beginning, it was necessary to define the initial conditions and assumptions
resulting from the specificity of the virus, as well as the research questions posed. That was
equal to answering the questions where?, what?, and how? it spreads.

Spreading structure. To simulate the coronavirus epidemic, it was necessary to
select the structure in which it would occur. In the real world, the virus is spread
through direct contact between a susceptible person and an infected person or through
things/objects/surfaces upon which virus particles have settled. Additionally, the situation
is complicated because susceptibility to infection is an individual factor. Moreover, in the
case of the analyzed virus, this factor is greater for the elderly or people suffering from
chronic diseases.

Initial state. An essential question is how to initiate an outbreak. Based on the literature
analysis, there are two main approaches to establishing the initial state of the network.
In the first one, the epidemic starts with the disease of a certain number of individuals,
the most common being the so-called patient zero. This approach, as faithful as possible to
the principles of epidemiology, is slightly troublesome from the perspective of comparative
studies when we test networks of different sizes [34]. An alternative approach is more
sympathetic to comparative analysis, as it assumes that some percentage of nodes in a
network or layer is initially infected [35]. Due to the prospect of comparing epidemic
progression for networks of different sizes, we used the second approach.

In the initial state, one percent of all nodes in the personal contact layer are infected.
The calculated number of infected actors is rounded up to an integer value to ensure that
for networks with the number of nodes in the contact layer below 100, we have at least
a single seed node. Determining the actors who will be infected is the result of random
selection.

State changes. An actor in state S can change its state with probability β to I if it
has an infected neighbor. This model means that for each actor in the state I, all direct
neighbors (all nodes connected by an edge to a given infected node) are searched; for each
of them, a value between (0, 1) indicating the probability of infection is randomized that is
compared with the value of the threshold β. If the drawn value is less than the β then this
actor will change its state to I on the next epidemic day (iteration of the process). Otherwise,
the state of the node will not change. A separate draw determines the change of state of an
actor in the state I. When all neighbors of the infected individual are found, a probability
value is generated from the interval (0, 1) for it and, similarly to the case described above, it
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is compared with γ. The change in state to R will occur only if the generated value is lower
than the γ. If this does not happen, the actor remains in the state I and continues to infect.

It should be noted that a node that has changed its state to R cannot change it to I
again. However, there are indeed reports of reinfection in the literature, but their percentage
relative to all cases is so low that they are not included in this model.

Probabilities β and γ. The coronavirus pandemic led to intensive work in the scientific
community on modeling the epidemic. As a result, in the literature, one can find probability
values for the SIR model tailored to the modeling of the SARS-CoV-2 virus spreading.
Most publications concern Asian countries, especially China, where the pandemic began,
and European countries, where the epidemic further developed—causing paralysis of
health services, resulting in serious illnesses or deaths of many people. These countries
included Italy, Spain, France, and, to a lesser extent, Germany and Poland.

Based on the analysis of available works, as well as the available social networks and
their density, it was decided to adopt four different probability values, the first three for
Italy (β = 0.19, γ = 0.10 [36], β = 0.22, γ = 0.02 [37], β = 0.28, γ = 0.08 [38]) and one for
Poland (β = 0.31, γ = 0.10 [36]).

2.3.2. UAU Model

The spread of the virus is accompanied by the spread of awareness (information) of its
existence. However, this is a process at least partly independent of the spread of the virus.
For this reason, it is necessary to have two different models for both processes. For the
spread of information about the virus, the SIS-based UAU model was adapted.

Previous research showed that despite the spreading of seasonal diseases such as cold
or flu, the UAU model could be successfully adapted for the spread of different types of
information, taking into account the process of forgetting [13]. The states of the model
can then be described as U (unaware)—unaware of information (S in SIS model) and A
(aware)—spreading information (I in SIS model).

The change of states is determined by the probabilities β and γ. To simplify the
understanding of the interactions between the models, the probabilities will be denoted by
symbols ε and µ, respectively.

In the UAU model, an unaware actor in state U may learn about the existence of the
virus from a conscious member of the population A. Over time, the aware person returns to
state U, which corresponds to the situation in which someone forgets about the existence of
the virus or becomes used to it and awareness does not affect its behavior [13]; for example,
someone, despite knowing about the pandemic, stops wearing the mask. Similarly to the
adaptation of the SIR model, for the UAU model, it was necessary to define the initial state
and the assumptions.

Spreading structure. Simulating the spread of information requires defining the
medium in which it will occur. Information and viruses in the real world coexist within the
same population. Therefore, the network for the SIS and SIR models is common. However,
the specifics of spreading differ. Unlike the virus, access to information is so widespread
that receiving it does not require direct contact between two people. Information reaches
the recipient through social networks, the Internet, newspapers, etc. However, this does
not exclude acquiring information through real interpersonal contacts or traveling by
shared means of transport. Furthermore, obtaining information from one source does not
prevent encountering the same information again through another medium. Therefore,
to simulate a real process, information may spread throughout the network at all layers.
For simplicity, the type of interaction does not affect the entire process; regardless of the
layer, the assumptions are the same.

Initial state. Similar to the infection process, information appears in a population
through human action. To determine the initial state of the aware population, the same
tactics were used as for the virus. Initially, one percent of all actors in the network are
aware of the virus. The selection of informed actors results from random selection similar
to the SIR process.
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State changes. An actor in state U can change its state to A with probability ε if
it has an aware neighbor. What this model means is that for each actor in state U, all
immediate neighbors (all nodes connected by an edge to a given aware vertex) are searched,
and for each of them, a value is drawn from the interval (0, 1), denoting the probability of
awareness. It is then compared with the value of the threshold ε. If the drawn value is less
than the ε, the actor will change its state to A in the next iteration. Otherwise, the state of
the individual will not change.

A separate drawing determines the change of state of an actor in state A. When all
neighbors of the aware individual are found, then a probability value from the interval
(0, 1) is drawn for it and, similar to the case described above, compared with the threshold,
which is the probability µ. A return to state U will occur only if the drawn value is less
than the µ. If this does not happen, the actor remains in state A and continues to spread
information. A node that has changed its state to U may change it again to A. Although,
over time, we forget a given piece of information or consciously downplay the presence
of the virus, resulting in a return to state U, this does not preclude a renewed increase in
interest or awareness.

Probabilities ε and µ

In previous research, we could not find information on how to determine the ε and µ
for the UAU model during the spread of information about the SARS-CoV-2 virus. There-
fore, it was assumed that the probabilities ε and µ would be equal to the probabilities of the
SIR model to reflect the intensity of the spread of information and this issomehow related
to the intensity of virus spread. Since in real life, the spread of information is much faster
than the virus itself, it was decided to extend the set of probabilities by multiplying the
initial probabilities according to the equations:

ε = min(β ∗ x, 1), µ = min(γ ∗ x, 1) where x ε {1, 2, 3, 4}.

Thus, for each β and γ combination, we have four combinations of ε and µ.

2.3.3. Interaction between Virus and Information Processes

While analyzing the impact of the spread of information on the virus, it is necessary
to locate both processes in a single medium. For this purpose, a multilayer network was
chosen. The virus spread, simulated by the SIR model, will progress within a direct
contact layer. In contrast, awareness will spread in all layers. Therefore, it is necessary
to address the interaction between the models. In reality, awareness of the virus causes a
range of behaviors designed to avoid infection (social distancing, masks, vaccination, etc.).
A representation of this phenomenon will be a reduction in the infection probability, β,
for actors aware of the virus. Choosing just one number for the reduction of β was difficult
since different actions yield different results in infection risk reduction. For example,
wearing a mask will result in 65% risk reduction (RR) [39], and one meter of social distancing
has a similar effect (RR of 65%) [39,40], with RR increasing with the distance [39]. Other
actions have lower (e.g., face shields) or higher RR (e.g., quarantine and self-isolation
have RR of almost 100%). Additionally, one will increase RR with the combination of
more than one action (e.g., face mask and social distancing). Since various countries
decided on different actions and various actions have various effects we decided to assume
RR of 90%. Thus, the primary probability will be reduced by a factor of ten, which the
following equation can describe: β′ = β

10 , where β is the probability of infection and β’ is
the probability of infection of an aware node.

Similar to how awareness affects the probability of infection, the infection can alter
the chance of becoming aware. This corresponds to the situation where a person with
COVID-19 becomes aware of the SARS-CoV-2 virus by having specific disease symptoms
or test results. However, not all cases of infection with the coronavirus are manifested by
symptoms [41,42]. At the same time, symptoms can be similar to other upper respiratory
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diseases that are not difficult to confuse. To address the impact of this phenomenon on
the ε′, the percentage of symptomatic patients was taken. In previous research on the SARS-
CoV-2 virus, only a few addressed the issue of the number of asymptomatic patients. One
of the most important is the proportion of patients with asymptomatic COVID-19 based
on observations of passengers on the Diamond Princess, a quarantined ship off the coast
of Wuhan. In this case, 17.9% of the ill passengers were asymptomatic [41]. However, it
should be noted that the ship’s crew, by sharing the quarantine, was an isolated community,
so generalizing the results to the whole population might not be correct. Slightly more
general results were obtained in a study of a group of Japanese people evacuated from
Wuhan by a shared plane. Although the group examined was smaller than that of the
ship’s passengers, a significant difference is the lack of shared isolation. Researchers, using
a binomial distribution, estimated that among evacuees, the proportion of symptomless
patients was 30.8% [42]. The characteristics of the virus change over time due to mutations
or certain individual attributes in different populations. However, since we are interested
in the initial part of the pandemic, we can use published data from the initial period of
the spread of the SARS-CoV-2 virus. Based on this, we assumed that the probability that
the unaware node becomes aware if it is infected will correspond to the percentage of
symptomatically ill people from [42], i.e., ε′ = 0.692. The described changes in probabilities
are presented in Table 2.

Table 2. Probabilities change by spreading processes interactions.

State in SIR Model State in U AU Model Probability Change

Susceptible Unaware -
Infectious Aware -
Recovered Unaware -
Susceptible Aware β− β′

Infectious Unaware ε− ε′

Recovered Aware -

In summary, the interaction between information dissemination and virus spread can
be classified as a mixed interaction. The virus spread supports information dissemination,
and information dissemination can suppress virus spread. An example of support is
increasing the chance of obtaining information about the virus for an infected node. This
allows the information to spread faster.

Otherwise, knowledge of the existence of the virus reduces the chances of an actor
being infected by blocking the development of an epidemic. This is an example of competi-
tion. It should be noted that competition is not limited to the layer where both processes
occur because awareness of the virus gained in the layer of direct contacts affects the spread
of information about the virus in all other layers.

3. Results and Discussion

Experiments were performed using multinet library [43] and six multilayer networks
(Table 3). For each network, we selected a layer acting as a direct contact layer for virus
spread. For some networks, the selection was based on the characteristic of interactions
between layers (e.g., N1), while for others, the choice was arbitrary (e.g., N3). The rest of
the layers acted as communication layers. For the bigger networks, N5 and N6, we ran the
experiment a few times, each time with a different layer acting as the direct contact layer.
We know that not all networks are classic social networks; however, we also wanted to
observe the effects on other complex networks, especially since they reflect human mobility
(N3) or information exchange (N5, N6).
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Table 3. Networks used in experiments, their parameters, and short description. The average degree
of actors was calculated using degree definition from [43]. For each direct contact layer, the average
node degree on that layer is included in the brackets.

Net. Layers Nodes Edges Avg. Degree Direct Contact Layer Description

N1 5 61 620 20.33 work (6.47) AUCS CS-AARHUS [44]

N2 3 241 1370 11.37 advice (4.18) Ckm Physicians Innovation [45]

N3 37 417 3588 17.21 Ryanair (9.39) EU Air Transportation [46]

N4 3 71 1659 46.73 co-work (10.8) Lazega Law Firm [47]

N5 3 88,804 210,250 4.64 RT (2.79) and MT (3.83) Tweets related to 2013 World
Championships in Athletics [48]

N6 13 14,489 59,026 8.39 physics.bio-ph (4.13), q-bio.MN (4.64),
physics.data-an (5.30), cond-mat.dis-nn
(4.19), cs.SI (4.69)

Arxiv papers related to Network
Science [49]

To evaluate the relationship between information spread and virus spread, three main
scenarios were constructed.

1. Worst case scenario: only virus spreads (SIR).
2. Best-case scenario: virus and awareness spread simultaneously (SIR and UAU).
3. Evaluated scenario: the virus spreads, but the information about the virus is blocked

for some period. When the blocking time ends, the information (awareness) about the
virus also starts to spread (blocking).

Only virus spreads. In the direct contact layer, one percent of all actors are infected
by drawing lots. Simulations lasted 150 days, where one day is one iteration of the SIR
model. During an epidemic, the probabilities β and γ are constant. The epidemic can end
before 150 days if all actors are recovered or, although there are people in the susceptible
state, they do not have infectious neighbors, so they cannot become infected. The first case
refers to the situation in which the entire society has been infected and recovered, while
the second case refers to the situation in which enough people have been infected to create
herd immunity in society. For each set of parameters, the scenario was run at least 20 times.

Virus and information spread simultaneously. In the direct contact layer, the virus
spreads the same way as when there is no information. At the same time, information about
the existence of the virus spreads throughout the network. As a result of a random draw,
those who are aware of the existence of the virus are selected, representing one percent of
all nodes in the network. This is followed by the awareness-spreading process according to
an adapted UAU model with fixed probabilities ε and µ. There are interactions between
the processes. If an actor is aware of a virus, then their probability of being infected is
changed to a smaller value β′. In the opposite situation, for an infected actor, the probability
of becoming aware is ε′. As in the case of the virus itself, the epidemic can end before
150 days have passed when everyone is in state R or the number of infected nodes is zero.
The scenario is repeated at least 20 times for each combination of parameters.

Information blocking. Similar to the spread of a single process, the virus spreads
through a layer of direct contacts. The epidemic lasted 150 days. In the initial phase of
the experiment, the probabilities β and γ are constant, and only the virus spreads in the
network. The spread of information begins after the blocking time, which is intended to
simulate the real situation when the information about SARS-CoV-2 was not released to
the public. The Citizen Lab report shows that the blocking lasted three weeks (21 days) [2].
Consequently, for the first 21 iterations, the spread of information is blocked. As networks of
different sizes were analyzed, it was decided to test the effect of changing the blocking time
on the outbreak and additionally test blocking for one week (7 iterations) and two weeks
(14 iterations). After that time, the spread of the information begins, and the information
spreads simultaneously to virus as described above (scenario: virus and information spread
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simultaneously). The epidemic lasts 150 days or until all nodes are in the R state or no
actor is in the I state. The scenario is repeated at least 20 times for each combination
of parameters.

3.1. Effect of Information Blocking

To compare three scenarios with each other, we looked at three moments during the
epidemic spreading:

1. When the peak of the infected people occurred, assuming that the later this happened
the better, as it gives the healthcare services more time to prepare. Thus, we took the
peak day for case 2 (virus and information spread simultaneously) and calculated
how much faster we would have the peak day for the other two cases.

2. How many people became infected till the peak day? We took the peak day for the
second case (virus and information) and compared how many more people became
infected until this day in the other two cases (taking into account both infected and
recovered nodes).

3. How many people became infected during 150 days? We took the final number
of infected and recovered people for the second case (virus and information) and
compared how many more people became infected during 150 days in the other two
cases (taking into account both infected and recovered nodes).

Table 4 and Figure 4 present the summary of our results for the three aspects mentioned
above. We can see that in most networks, the results indicate that blocking information
for just 21 days results in the peak day being up to 35% (network N2) faster than in the
case where the information can spread together with the virus. A similar case occurs with
the number of infected individuals on the peak day, which can be up to 138% (again for
network N2) higher than for the SIR and UAU process. Interestingly, while information
blocking significantly impacts the “peak time”, it has a lower impact on the total number
of individuals affected by the disease after 150 days.

Table 4. The results for different scenarios: our baseline is SIR and UAU to which we compare
two other processes. The value in each cell represents how faster the peak day was or how many
more nodes were infected (until the peak day or until 150 day) compared to SIR and UAU, that is,
the scenario where both the virus and the information start to spread at the same time.

Peak Day I + R at Peak Day I + R at 150 Day

Network SIR Blocking SIR Blocking SIR Blocking

N1 16.65% 15.18% 23.78% 21.91% 10.70% 9.80%

N2 34.54% 35.42% 136.78% 138.23% 91.80% 95.83%

N3 15.16% 10.82% 18.60% 19.05% 10.73% 11.26%

N4 52.15% 50.74% 35.77% 33.28% 8.74% 7.14%

N5-RT 6.51% 6.36% 7.14% 6.24% 3.59% 2.67%

N5-MT 1.96% 0.78% 7.32% 6.75% 4.56% 3.88%

N6-bio-ph 14.85% 14.50% 16.03% 14.94% 8.00% 7.45%

N6-data-an 3.00% 2.81% 7.42% 6.00% 3.48% 2.78%

N6-dis-nn 1.02% 0.41% 0.65% −0.68% 0.28% −0.55%

N6-MN −0.15% 0.02% 1.24% −1.72% 0.44% −0.82%

N6-SI 0.58% −0.90% 1.57% 1.04% 0.87% 0.63%
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Figure 4. The results for different scenarios; our baseline is SIR and UAU to which we compare two
other processes. Each bar represents how much faster the peak day was or how many more nodes
became infected (until the peak day or until day 150) compared to SIR and UAU, that is, the scenario
where both the virus and the information start to spread at the same time.

We have to note that since both SIR and UAU are not deterministic processes, we
repeated the simulation at least 20 times for each combination of parameters. However,
for bigger networks such as N6-dis-nn, N6-MN, and N6-SI, this number was too low,
and in the case of those networks, all three cases (SIR, SIR, and UAU, blocking) were very
similar. Each one was within the standard deviation of another two, and there was no
statistically significant difference between all three cases (Table 5). Unfortunately, due to
the size of the network and the number of combinations of parameters, we could not repeat
the simulations more times.

Table 5. The results of the p-value for Wilcoxon signed rank test. We compare the results of SIR and
blocking to SIR and UAU. Wilcoxson signed rank test is a nonparametric counterpart of the paired
t-test and is often used in situations when we cannot ensure normal distribution of samples [50,51].

Peak Day I + R at Peak Day I + R at 150 Day

Network SIR Blocking SIR Blocking SIR Blocking

N1 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

N2 >0.05 <0.05 <0.05 <0.05 <0.05 <0.05

N3 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

N4 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

N5-RT <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

N5-MT <0.05 >0.05 <0.05 <0.05 <0.05 <0.05

N6-bio-ph <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

N6-data-an <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

N6-dis-nn <0.05 >0.05 <0.05 <0.05 >0.05 <0.05

N6-MN >0.05 >0.05 >0.05 <0.05 >0.05 >0.05

N6-SI >0.05 <0.05 <0.05 <0.05 <0.05 <0.05

3.2. Duration of the Delay

The next element we evaluated was the effect of the delay duration on the epidemic
spreading. To do so, we ran our experiments again, this time for 7- and 14-day information
blocking periods, and compared the with previous results for the 21-day blocking period.
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Due to the network size in this experiment, we did not use the N5 network. The results
show that information blocking, regardless of the blocking period, results in very similar
results, i.e., although for some individual networks, longer blocking results in a faster
epidemic peak and higher number of infected nodes, on average, the results for all blocking
periods are very similar (Table 6 and Figure 5), and according to Wilcoxson signed rank
test, most of the differences are not statistically significant (Table 7).

Table 6. The results for different delay times (the baseline is SIR and UAU with 21 days delay)to
which we compare two other delay periods. The value in each cell represents how much sooner
or later (in case of negative values) the peak day was, or how many more or fewer (in the case of
negative values) nodes became infected till peak day or till day 150.

Peak Day I + R at Peak Day I + R at 150 Day

Network 14 days 7 days 14 days 7 days 14 days 7 days

N1 −1.25% 1.80% 0.00% −2.20% 0.55% −2.03%

N2 4.41% 1.88% −4.07% −6.41% −4.12% −4.34%

N3 1.09% 2.98% 1.44% 0.74% 1.28% 0.67%

N4 −1.70% −2.21% 1.85% 0.85% 1.83% 1.10%

N6-bio-ph 0.08% −0.54% 0.03% −4.76% −0.24% −2.65%

N6-data-an −0.04% 0.62% 0.12% −0.12% 0.05% −0.44%

N6-dis-nn 0.81% 0.42% 0.44% −3.27% 0.34% −2.76%

N6-MN 3.47% 0.74% 0.21% 0.44% −0.43% −0.20%

N6-SI 0.76% −0.30% −0.20% −1.31% −0.13% −0.86%

Figure 5. The results for different delay times (the baseline is SIR and UAU with 21 days delay) to
which we compare two other delay periods. Each bar represents how much sooner or later (in case of
negative values) the peak day was, or how many more or fewer (in the case of negative values) nodes
became infected till peak day or till day 150.

This leads to the conclusion that what is important is the fact that we block information
about infectious diseases, not the duration of the ban. This emphasizes the need to share
information with society as soon as possible so that the information can start spreading as
soon as possible and prevent as many infections as possible, especially in the first weeks of
a pandemic.
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Table 7. The results of the p-value for Wilcoxon signed-rank test. We compare the results of SIR and
UAU with 7 and 14 days’ delay to SIR and UAU with 21 days’ delay. Wilcoxon signed-rank test is a
nonparametric counterpart of the paired t-test and is often used in situations when we cannot ensure
normal distribution of samples [50,51].

Peak Day I + R at Peak Day I + R at 150 Day

Network 14 days 7 days 14 days 7 days 14 days 7 days

N1 >0.05 >0.05 >0.05 >0.05 >0.05 <0.05

N2 >0.05 <0.05 >0.05 >0.05 >0.05 >0.05

N3 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

N4 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

N6-bio-ph >0.05 >0.05 <0.05 >0.05 >0.05 <0.05

N6-data-an >0.05 >0.05 >0.05 >0.05 >0.05 <0.05

N6-dis-nn >0.05 >0.05 <0.05 >0.05 >0.05 <0.05

N6-MN >0.05 <0.05 >0.05 >0.05 >0.05 >0.05

N6-SI >0.05 >0.05 >0.05 <0.05 >0.05 <0.05

4. Conclusions

The study included an investigation of the influence of information blocking on the
spread of infectious diseases. A comparison of the intensity of the epidemic for three
different periods of information blocking, as well as an investigation of the impact of the
parameters of the information spreading model on the epidemic course, revealed that
the spreading of information about the virus reduces the intensity of the epidemic and
flattens the disease curve. No impact of shorter blocking periods on the change in epidemic
dynamics was found, indicating that even a short period of information blocking will
increase the size and speed of the epidemic.

Limitations of Our Research

The problem of spreading information and virus in multilayer networks is very im-
portant. This work focused on mapping the most important features of the propagation
of the SARS-CoV-2 virus and information about it. Research allowed us to investigate the
most important relationships; however, some aspects must be elaborated further. In this
paper, the spreading probability thresholds for the SIR model and the UAU are assumed
to be the same for all actors. They only change due to interactions between processes,
but each change results in the same probability value. In real life, the chance of contracting
a virus is significantly influenced by age, the burden of additional diseases, and other
factors. Therefore, it would be necessary to investigate how the analyzed process will
shape the individual probability of infection for each actor in the network. One way of
studying this dependence would be to randomize the status of individual actors in the
network based on available statistics that describe the characteristics of the population of a
given country through information such as gender, age, or the percentage of patients with
specific diseases.

A broader view of the examined relationship between virus and information spread
could be gained by extending the set of tested probabilities for the SIR model to include
probability values for countries other than Italy and Poland.

The model of the spread of information about the virus could be improved with
the time dependence of the probability of information spread. In this way, it would be
possible to represent the real pattern that new information is more popular. Then it spreads
faster in direct contacts, as well as through social networks. As the information becomes
older, it becomes less popular, which means that the spread is slower, and sometimes
stops completely. Additionally, our model assumes that the information spreads between
actors, ignoring the external influence on the network, such as government information
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campaigns that target all nodes in the network simultaneously. Because of this mechanism,
the influence of information blocking could be even more profound since information
might reach all nodes at the beginning of the epidemic.

An additional interesting issue is an attempt to represent the phenomenon of “forget-
ting” or ignoring the existence of the virus. It is the result of the fatigue of having to respect
the restrictions imposed by the authorities or to be careful and wear personal protective
equipment. Therefore, as time passes, more and more people start to ignore the information
about the existence of the virus and become less vigilant. This should be expressed as
an increased chance of infection despite awareness of the virus after a certain period of
the epidemic.

Finally, we used average-sized networks. It would be interesting to use larger networks
that better reflex the complexity of interaction between people on various levels and
consider real mobility patterns.
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