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Abstract: This article applies the thermocontextual interpretation (TCI) to open dissipative systems.
TCI is a generalization of the conceptual frameworks underlying mechanics and thermodynamics.
It defines exergy with respect to the positive-temperature surroundings as a property of state, and
it defines the dissipation and utilization of exergy as functional properties of process. The Second
Law of thermodynamics states that an isolated system maximizes its entropy (by dissipating and
minimizing its exergy). TCI’s Postulate Four generalizes the Second Law for non-isolated systems.
A non-isolated system minimizes its exergy, but it can do so either by dissipating exergy or utilizing it.
A non-isolated dissipator can utilize exergy either by performing external work on the surroundings
or by carrying out the internal work of sustaining other dissipators within a dissipative network.
TCI defines a dissipative system’s efficiency by the ratio of exergy utilization to exergy input. TCI’s
Postulate Five (MaxEff), introduced here, states that a system maximizes its efficiency to the extent
allowed by the system’s kinetics and thermocontextual boundary constraints. Two paths of increasing
efficiency lead to higher rates of growth and to higher functional complexity for dissipative networks.
These are key features for the origin and evolution of life.

Keywords: dissipative systems; dissipative structuring; evolution; non-equilibrium thermodynamics;
ecosystems; origin of life

1. Introduction
1.1. The Problem of Evolution

Darwin’s theory of evolution is based on the preferential selection of inheritable
variations that improve an organism’s fitness. As Darwin was well-aware, however, nat-
ural selection cannot explain the origin of life, and it cannot explain spontaneous self-
organization within non-replicating systems. Dissipative structures spontaneously emerge
within far-from-equilibrium systems [1], and they are ubiquitous on earth and throughout
the cosmos.

Evolving systems, whether biological or physical, are sustained by the supply and
dissipation of free energy. Numerous researchers have searched for fundamental principles
to describe the stabilities of non-equilibrium dissipative systems. In 1922, Alfred Lotka
proposed that natural selection maximizes the total energy flux through a system, and that
“this law of selection becomes also the law of evolution” [2]. The idea was further refined
by Howard Odum and Richard Pinkerton as the Maximum Power Principle of ecology [3],
and it remains an important concept in the field [4].

Lars Onsager investigated coupled transitions, in which the flow of a component down
a potential gradient can push another component up a potential gradient [5]. Heat flow
through a thermocouple, for example, drives electrons up a voltage gradient. Onsager’s
work documented the power of dissipation to create and maintain non-equilibrium states.

Ilya Prigogine further investigated the thermodynamics of non-equilibrium states
and proposed his minimum entropy production principle. The MinEP principle states
that near equilibrium, the rate of entropy production is minimized at a steady state [6].
Near-equilibrium is defined by linearity between flow rates and driving forces. Linearity
means that the steady state is the only state consistent with a system’s boundary constraints.
With a single allowable state, there is no opportunity for selection or self-organization.
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Prigogine’s main interest was the spontaneous self-organization of far-from-equilibrium
systems, where nonlinearity allows multiple configurations consistent with a system’s ki-
netics and boundary constraints [1]. As a system is pushed farther from equilibrium, new
dissipative configurations become possible and existing configurations become unstable.
The transition of a fluid from conduction to organized convective flow with increased heat
input is a familiar and well-documented example of spontaneous self-organization.

Statistical mechanics describes the stability of a stationary state in terms of statistical
probabilities. A system’s stationary state at an instant of time can be represented by a point
in a generalized state space, which is spanned by a dissipative system’s state variables. Each
point follows a trajectory determined by the system’s kinetics and boundary constraints,
and this converges to a stable stationary state, which is represented by an attractor [7].
A point attractor describes a steady state dissipator, a limit cycle attractor describes a
stationary cycling system, and a “strange” attractor bounded in state-space represents a
stationary chaotic system.

A far-from-equilibrium system has multiple attractors, each representing a locally
stable stationary state with its own basin of attraction. A stationary state is stationary
because it is locally stable to small perturbations, but, at the boundaries between basins of
attraction, infinitesimal fluctuations can send a system to one of multiple different attractors.
Statistical mechanics attributes the sensitivity to fluctuations to deterministic chaos.

An attractor’s basin of attraction is the set of state-space points that deterministically
connect to the attractor. E.T. Jaynes described the probability of an attractor by its “caliber”,
which he defined as the density of the trajectories that lead to it [8]. If all initial states are
equally probable, then the caliber and probability for a stationary attractor is related to the
size of its basin of attraction. Deterministic statistical mechanics describes the statistical
probability of a dissipative system’s attractor based on an a priori assumption of the proba-
bility distribution of initial states and the fraction of initial states that deterministically lead
to that attractor.

Prigogine and colleagues argued that mechanical instabilities at the boundaries be-
tween basins of attraction can amplify quantum fluctuations [9,10], and that this leads to
macroscopic randomness. A trajectory might cross multiple boundaries and have multiple
opportunities for macroscopic random choices. In addition, as a system’s surroundings
changes, the system’s landscape also changes. New attractors can emerge and the bound-
aries between basins of attraction can shift. Macroscopic randomness at basin boundaries
goes beyond the determinism of mechanics, and it provides evolving systems the freedom
to explore new possibilities.

Glansdorff et al. showed that extremal principles can explain the local stability of
dissipative states within a basin of attraction [11], but Glansdorff and Prigogine concluded
that an extremal principle governing the relative stability of locally stable dissipative states
cannot exist [12]. Without a principle of global stability, a dissipative state’s probability is
still described by the statistics of its trajectories. Random fluctuations at critical points of
instability simply introduce an additional factor in the statistics of a system’s trajectories.

One proposed principle of self-organization that has received considerable attention
is the Maximum Entropy Production Principle (MEPP) [13]. The MEPP is based on the
idea that “faster is better.” It proposes that if a far-from-equilibrium system has multiple
stationary solutions consistent with its physical and boundary constraints, then the one
with the highest rate of entropy production is the most stable. This is commonly observed.
Conduction and convection can both be consistent with the system’s boundary constraints,
but a perturbation will irreversibly trigger a switch from conduction to convection, increas-
ing the rates of dissipation and entropy production. A mixture of methane and oxygen will
slowly react to produce water and carbon dioxide, but a spark will irreversibly trigger a
switch to hot combustion, increasing the rates of dissipation and entropy production. Sim-
ple organic compounds subject to UV-C have been shown to spontaneously self-organize
into UV-C pigments, increasing photon absorption and the rates of dissipation and entropy
production [14].
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The MEPP principle remains controversial, however. In a review article, Garth Pal-
tridge describes how in the 1970s he stumbled upon the entropy production rate as an
extremum function that was maximized by atmospheric systems [15]. In 2009, however,
he stated that “the concept of maximum entropy production, while not of any immediate
practical value in itself (the all-too-normal situation with MEP), was at least a catalyst for
investigating something of practical interest in another field.” [16].

An extremum function is key to any comprehensive theory for physical evolution
and complexity. The Santa Fe Institute (SFI), an organization dedicated to complexity
science, concluded in a workshop held in 1993 that complexity arises in many disparate
types of systems, and that there can likely be no simple extremum principle or unified
theory of complexity. Twenty years later in a 2014 retrospective [17], David Pines, one
of SFI’s cofounders, acknowledged that the dream of a unifying theory of complexity
remained elusive. The current state of complexity science basically remains a description
and computer simulation of complex systems and their evolution, and it has been debated
whether complexity science is really a science at all [18].

Physics has moved beyond classical mechanics, but it continues to define the physical
state within the Hamiltonian Conceptual Framework (HCF) of mechanics and statistical
mechanics [19]. Statistical mechanics regards entropy as a measure of an observer’s ig-
norance of a system’s actual mechanical microstate, and it does not recognize entropy or
irreversibility as fundamental.

Classical Irreversible Thermodynamics (CIT), as developed by Lars Onsager, Ilya
Prigogine and many others, breaks from the HCF and mechanics by accepting empirical
irreversibility and random fluctuations as fundamental. Nonlinear CIT explains the local
stability of stationary states [10]. It describes the relative probabilities of stationary states
based on the initial state distribution and random fluctuations at critical points, and on
state-space trajectories determined by nonlinear kinetics [14]. CIT theory successfully
describes the evolution of dissipative structures within chemical networks [20] and the
abiogenesis of fundamental molecules of life under photochemical potentials [14,21–23].
This paper, however, is interested in transcending the description of self-organization to an
explanation of self-organization in terms of a global principle of stability. In the author’s
opinion, this requires a radically new conceptual framework.

1.2. A Thermocontextual World

The thermocontextual interpretation (TCI) provides an alternative to the Hamiltonian
Conceptual Framework (HCF) of mechanics [19]. Mechanics describes a system by its
microstate, which expresses everything measurable and knowable about a system’s physical
state. It defines the microstate by perfect measurement in the absence of thermal noise, with
respect to a reference state at absolute zero temperature. Mechanics does not accommodate
irreversible change as fundamental. It regards the irreversible flow of time as a matter of
perception, and it regards processes as fundamentally deterministic and time symmetrical.

TCI also provides an alternative to CIT. CIT recognizes irreversibility and randomness,
but it simultaneously defines a non-isothermal system with respect to multiple reference
states. CIT describes a non-isothermal system by partitioning it into separate thermally
equilibrated parts, each locally equilibrated with a different-temperature reference state. If
the system’s temperature(s) change, the CIT reference state(s) also change. This is the local
equilibrium hypothesis.

TCI’s postulates and definitions are summarized in Appendix A, and they provide
the conceptual framework for the concepts needed for any discussion of self-organization.
TCI is based on a simple premise: the physical state is thermocontextually defined relative
to an ambient reference state in equilibrium with the system’s actual surroundings at a
positive ambient temperature. This provides a reference for defining entropy, exergy, and
irreversible system time as thermocontextual properties of state. The ambient reference
state provides a fixed reference from which a process of change can be described. This
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enables TCI to define dissipation, utilization, and efficiency as well-defined properties of a
dissipative process.

TCI joins a long list of quantum mechanical interpretations [24], but to the author’s
knowledge, it is the only one to define the physical state thermocontextually. This has
allowed TCI to provide straightforward explanations for long-standing questions without
the extreme and untestable metaphysical implications common with existing interpre-
tations [19]. TCI reconciles the determinism and time-symmetry of physical laws with
quantum randomness and the thermodynamic arrow of time; it reconciles the superlumi-
nal correlation of entangled measurements with relativistic causality; and it resolves the
measurement problem of quantum mechanics [19,25].

As with any foundation, we need to start at ground level. This paper addresses familiar
concepts, but these need to be carefully reassessed from a thermocontextual perspective.
TCI defines a dissipative system, not by its state properties, but by its dissipative function
(Appendix A). TCI lays the foundation for a new principle of selection for dissipative
processes, which is introduced in Section 3.1, and which drives the evolution of open
dissipative systems towards higher efficiency of exergy utilization.

2. TCI States and Processes
2.1. The Thermocontextual State

The Thermocontextual interpretation (TCI) generalizes the definition of a mechanical
state [19,25]. As with the Hamiltonian Conceptual Framework, TCI defines a system’s
absolute energy with respect to a hypothetical zero-energy reference state at absolute zero
temperature. However, TCI then partitions absolute energy, Eabs, into thermocontextual
components, which is given by:

Eabs = E + Eas = X + Q + Eas. (1)

Absolute energy is resolved into system energy, E, and ambient state energy, Eas.
Ambient state energy is the system’s “ground state” energy, and it is defined by equilibrium
with the system’s surroundings. It is the energy of the ambient reference state with respect
to the hypothetical zero-energy absolute zero reference state. Since the ambient temperature
is always positive (Postulate Two), the ambient state energy is always positive.

The system energy is defined relative to the ambient state energy. It is resolved into
exergy (X) and entropic energy (Q). Exergy is defined by the system’s potential work
capacity on the ambient surroundings in the limit of a quasistatic equilibrium process. TCI
further partitions a system’s exergy into the sum of mechanical exergy and thermal exergy.
Mechanical exergy is the sum of the system’s particles’ kinetic and non-thermal potential
energies. Thermal exergy is the work potential of the system’s thermal energy, q. Thermal
exergy is empirically given by:

dXq =

(
T − Ta

T

)
dq, (2)

where dq is an increment of heat at temperature T and Ta is the ambient temperature.
Exergy is a generalization of free energy. Whereas exergy and exergy changes are

well-defined thermocontextual properties of state, free energy is defined by work that is
reversibly measured at the system’s temperature. A reference state for measuring free
energy and its changes is not well-defined for a non-isothermal system or for a system with
a changing temperature. For a special-case system at fixed and uniform temperature T,
however, free energy and exergy are equivalent, with dF = (T/Ta)dX.
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Entropic energy is defined by Q ≡ E − X. A system’s entropic energy and the ambient
heat of the surroundings both have zero exergy, and they are freely exchangeable. Entropic
energy is related to thermal energy at temperature T by:

dQ =

(
Ta

T

)
dq = Ta

(
CV
T

)
dT, (3)

where CV is the volumetric heat capacity.
TCI finally defines thermal entropy by:

S ≡ Q
Ta

. (4)

As described in [19], thermal entropy is a generalization of thermodynamic entropy, which
is defined with respect to absolute zero temperature. From (3) and (4), dS = dq/T ≡ dStd,
and the changes in thermal entropy and thermodynamic entropy are identical. They
differ only in their zero-entropy reference state. TCI also defines statistical entropy as a
transactional property of a transition between states [25] (Appendix A).

Exergy, entropic energy, and ambient temperature are three independent thermocon-
textual properties of state, and together, they define a system’s thermocontextual energy
state. Other thermocontextual properties include system energy, ambient state energy,
absolute energy, and entropy. The energy state is specified by any three independent ther-
mocontextual properties. The energy state for the ambient reference state at Ta is uniquely
defined by E = X = Q = S = 0 and Eabs = Eas.

The thermocontextual properties of state are empirically defined by perfect measure-
ment (Figure 1). Perfect measurement involves a thermodynamically reversible and closed
transition from an initial state (A) to an ambient reference state (B). Thermodynamic closure
means that the system can exchange energy and work with the surroundings, but not mass
components. Thermodynamic reversibility means a quasistatic equilibrium process. Heat
is isothermally exchanged with the surroundings at the ambient temperature, and there is
no dissipation or entropy production.
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Figure 1. Perfect measurement is a reversible closed-system transition from an initial State A to
ambient State B. The measurement of a positive-entropy system is resolved into two steps. The first
step for a positive entropy state involves derandomization by the reversible transfer of entropic
energy to the surroundings. This sets the statistical entropy σA′B (Appendix A) [25] to zero and
randomly instantiates a zero-entropy microstate for state A′. The second step is the actualization of
the measurement results. This involves the reversible and deterministic transfer of state A′, with
exergy XA to ambient state B, and the export of exergy to actualize a measurement result.

Perfect measurement reversibly transfers energy to the surroundings as ambient heat
qa at the ambient temperature and as utility υ, which we define as the summed transfers
of work and thermal exergy (Figure 1). For an open system, utility can also include
the internal exergy of exported components. A system’s exergy, entropy, and entropic
energy are empirically defined by measurements of the utility and ambient heat reversibly
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transferred to the surroundings. A system’s exergy is always non-negative, but its initial
entropic energy can be negative or positive.

2.2. Transitions

A transition describes a spontaneous change in state. Isolated transitions are governed
by the Second Law of thermodynamics, which states that the entropy of an isolated system
(or system plus surroundings) never declines and is maximized when the isolated system
reaches equilibrium. TCI’s Postulate Four (Appendix A) generalizes the Second Law of
thermodynamics to apply to all transitions. Postulate Four says that a state of lower
exergy is more stable than a state of higher exergy, and that the highest stability state is the
equilibrium ambient state, with zero exergy. In contrast to an isolated transition, a non-
isolated transition has the option of reducing its exergy, in part, by performing work on the
surroundings. The Second Law of thermodynamics is a special case of Postulate Four when
applied to an isolated system for which exergy decline is due to internal dissipation alone.

If a thermodynamically closed transition outputs utility (sum of work plus thermal
exergy), it is exergonic (Figure 2a). If the transition is driven by an external supply of
utility, it is endergonic. An endergonic transition uses utility from the surroundings to lift a
component to a higher exergy (Figure 2b).
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Figure 2. A component transitions as a thermodynamically closed system, exchanging energy
and work but no material components with the surroundings. (a) In an exergonic transition, a
component transitions to lower exergy and outputs utility (υ). (b) Utility added to an endergonic
transition lifts a component to higher exergy. Dissipation reduces the efficiency of both exergonic and
endergonic transitions.

A transition is driven by the dissipation and flow of exergy, not by the flow of entropic
energy. To describe the change in exergy during a transition, we start with the fundamental
equation for thermodynamic energy change, given by:

dE = TdS− PdV + ∑ µidMi. (5)

Equation (5) expresses the conservation of internal energy for systems not subject to
external forces or external field changes. It states that the change in internal energy dE
equals the sum of inputs of (1) classical entropic energy (TdS) from the direct addition of
heat at temperature T and from the entropies of added components, dMi; (2) the input of
work (represented by −PdV); and (3) the inputs of free energy from added components,
dMi, with chemical potential µi (free energy per unit component i). We note that the
addition of components’ thermal energy is included in the TdS term.

We can recast Equation (5) within the TCI framework by making the following changes:

• Replace TdS with TadS=Q (Equation (4)).
• Replace PdV (PV work output) with generalized utility output, dυ.
• dE = dX + dQ (Internal energy equals internal exergy plus entropic energy).
• Replace chemical potential µ with specific exergy, X (exergy per unit component).

Inserting these changes into Equation (5) yields:

dX = −dυ + ∑ XidMi. (For reversible transitions) (6)
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Irreversible dissipation has no impact on the total energy, and it is ignored by Equation (5),
and, therefore, also by (6). Dissipation does affect exergy, however, and TCI’s fundamental
equation for internal exergy change includes irreversible dissipation:

dX = −dQdiss − dυ + ∑ XidMi. (For all transitions) (7)

dQdiss is the production of entropic energy by dissipation and dυ is the output of utility
to the surroundings associated with the decline in exergy (Figures 1 and 2a). Equation (7)
describes the change in a system’s internal exergy due to internal dissipation and the
reversible exchanges of components, utility, and entropic energy with the surroundings.

An important class of transitions is the thermodynamically closed isentropic transition.
Isentropic means that the component’s entropy is fixed, and a fixed entropy means that
the isentropic transition is nonstatistical (i.e., deterministic). Isentropic does not mean
reversible, however. If irreversibly produced entropy is output as ambient heat, then the
transition is isentropic and deterministic, but not reversible.

From the conservation of energy, the decline in exergy during an isentropic entropic
transition equals the output of utility and ambient heat. This is expressed by Equation (8):

−∆X dM = dυ + dqa (exergonic isentropic transition). (8)

Equation (8) describes the transition’s outputs of dissipated exergy as ambient heat, dqa,
and of utility, dυ. We can rewrite (8) for an endergonic transition as (9):

−dυ = ∆ XdM + dqa. (endergonic isentropic transition). (9)

Equation (9) describes the utility dυ supplied to an endergonic isentropic transition to lift an
increment of component dM to higher specific exergy and to overcome dissipation (Figure 2b).
Dissipation reduces the exergy of outputs for both exergonic and endergonic transitions.

One of the most familiar transitions is the one-dimensional steady state flow of heat
down a temperature gradient (Figure 3a). As described in the figure caption, the transition
is exergonic and isentropic.
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Figure 3. (a): Continuous heat flow in the classical limit. Input energy qT is resolved into thermal
exergy Xq and entropic energy Q. The input of entropic energy is output as ambient heat, qa. Thermal
exergy is dissipated and is also output as ambient heat, but as qdiss. Produced entropy is exported,
and the transition is, therefore, isentropic. (b): Discontinuous heat flow through an elementary
transition node.

If we measure temperatures across the length of steady state conductive heat flow, we
find an essentially linear gradient. The steady state rate of heat flow is empirically given by
Fourier’s Law, J = k∇T, where k is the thermal conductivity and a constant.

Other phenomenological laws relating flow rates to gradients include Ohm’s law for
electrical flows, Fick’s law for chemical diffusion, and chemical kinetics for chemical
reaction rates. Phenomenological rate laws describe rates driven by thermodynamic
pressure gradients. Examples are given in Table 1, below. In the linear range, flow rates
increase linearly with thermodynamic pressure gradients, giving rise to phenomenological
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rate laws for heat, chemical diffusion, and other processes. Linearity between flow rates
and gradients define the near-equilibrium range. The table also shows the differentials
in specific exergy for the various components. In the case of electrical and fluid flow,
thermodynamic pressure is equal to the exergy gradient, but this is not the case for heat or
chemical processes.

Table 1. Linear rate laws and exergy differentials.

Process Component
Thermodynamic

Pressure (Generalized
Concentration)

Phenomenological
Rate Law Specific Exergy (dX)

Conductive
heat flow, J Unit heat Temperature, T J = −k∇T X = q(T − Ta)/T;

dX=qTadT/T2

Chemical diffusion, J Unit mass
Chemical activity, A.

A∝ C for dilute
concentration, C.

J = −D∇C X = RTaln(A)
dX=RTadA/A

Electrical flow, I Unit charge Voltage, V I = −σ∇V (σ electrical
conductance) dX = dV

Chemical
reaction

ΣνiRi
 ΣνjPj
(1) Θ ≡ ∏ aνi

Pi

∏ a
νj
Rj

≡ ΘP
ΘR

dζ
dt = k+ΘR − k−ΘP

(2)
dX ≡ dΘX ≡

∏ Xνiζ

Pi

∏ X
νj(1−ζ)

Rj

dζ
(3)

Laminar flow, J Fluid Pressure, P J = −K∇P (4) dX = dP
(1) Reactants Ri transition to products Pj as a closed system. νi are stoichiometric coefficients. (2) zeta ζ is a
reaction progress variable (0→1) and k+ and k− are forward and reverse kinetic rate constants. (3) Specific
exergy X = RTaln(A), where activity for the ambient reference state is set to unity. (4) Hydraulic conductivity
K is constant for Newtonian laminar flow, but at higher flow rates, turbulent flow becomes non-linear with
pressure gradient.

In the classical limit, a steady state transition is continuous (Figure 3a). In quantum
mechanics and TCI, however, transitions are not infinitely resolvable and elementary
transitions are always discrete and finite. An elementary transition is thermocontextually
defined as the smallest measurable change in a component’s state.

We describe an elementary transition as a node that takes a component from one state
to another state of measurably different exergy. Internal details of the elementary transition
or the component’s state are not measurable, however. Consequently, they are not definable
within TCI. TCI defines states and elementary transitions as discrete. Figure 3b illustrates
an elementary transition of heat to lower temperature and exergy.

The decline in exergy across the elementary node is output as the measurable quanta
of ambient heat and dissipated energy. Its rate of dissipation is given by:

.
Q = J × ∆X. (10)

J is the rate of flow for a generic component and ∆X is the component’s change in spe-
cific exergy. Equation (10) is the general expression for the rate of dissipation across a
transition node.

2.3. Dissipative Processes

We now proceed to describe an open system’s stationary process of dissipation and
its interactions with its surroundings. Figure 4 illustrates the TCI model for a stationary
dissipative system, which is sustained by a stable supply of utility and components. The
model assumes a stationary environment, but it is nonequilibrium. The system’s surround-
ings include an ambient background and one or more sources of utility or high-exergy
components. A system with stationary utility sources and environment for wastes will
converge over time to a stationary process of dissipation. The system is stationary, but it is
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not static, and the dissipative state is not an actual state, as its components are in constant
flux and dissipating exergy. We describe a stationary system’s dissipative process by a
dissipative function (Appendix A).
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Figure 4. Dissipative system model. The system’s nonequilibrium surroundings include utility
source(s)—either directly (e.g., sunlight) or indirectly—by high-exergy components. Other com-
ponents in the surroundings (e.g., water, air, detritus) are also freely available to the system for
processing and discharge. A stationary system is defined by a function describing its stationary
dissipative process, with equal time-averaged inputs and outputs of materials and total energy.

TCI models the dissipative process as a network of elementary transitions linked
by the exchanges of components and energy. An elementary transition has inputs and
outputs of components with measurable states, but the internal details are not resolvable
or measurable from the ambient surroundings.

Figure 5a illustrates a near-equilibrium dissipative system with a pair of linked transi-
tion nodes, A and B, and components, 1 and 2. Component 1 is the driving component, and
at low concentration, component 2 is the driven component. Near equilibrium, flows are
linear with generalized thermodynamic pressures. We further assume that the components’
thermodynamic pressures are equal to their exergy gradients. The flow rates, following
Onsager [5], are then given by:

J1 = L11∇X1 + L12∇X2 and J2 = L21∇X1 + L22∇X2 (11)

where Lij are constants describing the linear contribution of the specific exergy gradient in
component j to the flow of component i. Onsager expressed potentials by entropy gradients
instead of specific exergy gradients, but they differ from each other only by a constant
factor (the negative ambient temperature).
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Figure 5. Coupled transitions. The flows of components 1 and 2 are based on Equation (11) with
L11 = L22 = 1 and L12 = L21 = 0.2. (a) For X2 < 2, exergonic node A outputs power to endergonic
node B (

.
υAB > 0), which lifts component 2 to higher exergy. For X2 > 2, the flow of component 2 is

reversed, and node B becomes exergonic, outputting power to node A. (b) Graphs of power input for
component 1 (black line) and total power input (blue line). Total power input equals total dissipation
.

Q. The figure also shows the rate of utility transfers between nodes (
.
υAB) (red line).

The total power input to the two nodes is shown by the blue line in Figure 5b. Power
input is equal to the total dissipation

.
Q, where the over-dot indicates its rate. The blue
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curve shows that dissipation is minimized at steady state for the zero flow of component 2
(

.
υAB = 0) at X2 = 2. This is a very special case steady state. For any other fixed value of

X2, the entropy production rate is not minimized at steady state. We also note that the
Onsager’s relations (Equation 10) are based on the equality of thermodynamic pressures
and negative exergy gradients, and this is yet another special case, not valid for heat
flow, diffusion, or chemical reactions. The rates of dissipation and entropy production are
generally not minimized at steady state, even very near equilibrium.

Coupled flows can create nonequilibrium gradients, but if flows and thermodynamic
pressures are linearly related, then the steady state is the only dissipative solution. The lin-
ear flows in Figure 5 can maintain a nonequilibrium steady state, but there is no opportunity
for selection or self-organization.

Self-organization involves choices, and this requires non-linear dynamics. Figure 6
illustrates a simple non-linear model that can switch between two steady state processes.
The Schlögl reaction [26] consists of a single component and two sequential transitions:
(1) A→x and (2) x→B. A is the fixed state of input, B is the fixed state of output, and x is
an intermediate state that converges to a steady state. Transition 1 describes the transition
from state A to x. Its reaction rate is given by k+Ax2 − k−x, where k+ and k− are the
forward and reverse kinetic rate coefficients. This corresponds to a detailed reaction given
by A + 2x→3x. The product x partakes in the reaction, making the system’s dynamics
autocatalytic and non-linear. Figure 6a illustrates the nodal network representation of the
Schlögl reaction.
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x to B. Based on simple kinetic rate theory and Table 1, the rate of change in x as a function 
of the concentration of x is given by Equation (12), below, and shown by the black curve 
in Figure 6b. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘1+𝑑𝑑3 + 𝑘𝑘1−𝐴𝐴𝑑𝑑2 − 𝑘𝑘2+𝑑𝑑 + 𝑘𝑘2−𝐵𝐵,   (12) 
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k’s are the forward and reverse reaction rate coefficients for transitions 1 and 2. Equation 
(12) is a third order polynomial, with three solutions for the steady state condition dx/dt=0. 

Figure 6. (a) Nodal network diagram for the Schlögl Reaction. Transition 1 is an autocatalytic reaction
A + 2x→3x. Transition 2 is a simple transition x→B. (b) The black curve shows the rate of change in
the concentration of x versus concentration. The Schlögl reaction’s three steady states, at x1, x2, and
x3, are defined by dx/dt = 0. Perturbation analysis shows that x1 and x3 are stable to perturbations.
The red curve shows the system’s rate of dissipation as a function of the concentration of x.

The rate of change In x is the difference in the rates of transition from A to x and from
x to B. Based on simple kinetic rate theory and Table 1, the rate of change in x as a function
of the concentration of x is given by Equation (12), below, and shown by the black curve in
Figure 6b.

dx
dt

= −k1+x3 + k1−Ax2 − k2+x + k2−B, (12)

A, x, and B are the activities (idealized concentrations) of the component states, and the k’s
are the forward and reverse reaction rate coefficients for transitions 1 and 2. Equation (12)
is a third order polynomial, with three solutions for the steady state condition dx/dt = 0.
The steady state at x2 is unstable to perturbations. X2 is a bifurcation point separating
two basins of attraction around the stable steady state dissipative functions x(t) = x1 and
x(t) = x3.

The red curve in Figure 6b shows the dissipation rate, calculated from Equations (10) and
(12), with the input and output of a single component and no exchanges of work. None of the
steady states align with an extremum in dissipation (or entropy production) rate.

Dissipative processes are not always steady state. Figure 7 shows the dissipative
network for the Brusselator reaction [1]. The Brusselator has inputs of two components:
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component 1 in state A and component 2 in state B. The Brusselator’s “state” is defined by
the concentrations of X and Y, which are represented by the horizontal lines of essentially
constant and measurable exergy. They have attached “pods” to accommodate transient
storage and fluctuations in component concentrations and flow rates.
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Figure 7. The Brusselator network model. Letters refer to the components’ states. The overall reaction
is A + B→E + D. States higher on the diagram have higher specific exergy. The Brusselator comprises
four reaction steps: R1: External source A→ X; R2: Y + 2X→ 3X; R3: External source B + X→ Y + D
(discharge); and R4: X→ E (discharge). The arrowhead expressions describe reaction rates.

The Brusselator has four reactions, R1 to R4, listed in the figure caption. Transition
rates, based on simple reaction rate theory and Table 1, are shown by the arrowhead
expressions in the figure. The kinetic rate coefficient for the forward direction is set to
unity, and the reverse direction is assumed to be much slower and is set to zero. So, for
example, the transition rate for R3 (B + X→D + Y) is simply BX. Reaction 2 is an autocatalytic
transition of component 1 from state Y to state X. For reaction R2 (Y + 2X→3X), the transition
rate is X2Y, making the Brusselator non-linear. Non-linearity allows for the possibility of
multiple stationary dissipative solutions for a given set of boundary conditions.

R1, R2, and R4 are exergonic transitions of component 1, represented by nodes 1, 2,
and 4. Reaction R3 couples two separate component transitions: X→Y and B→D. Node
3B is another exergonic transition, dissipating component 2 from state B to state D. The
component’s exergy is only partially dissipated, however. Some of the exergy performs
work on node 3A (wavy arrow). Node 3A is an endergonic transition. It implements utility
from 3B to lift component 1 “uphill” from state X to the higher exergy state Y.

Setting the net production rates of X and Y to zero yields the steady state dissipa-
tive function |X(t), Y(t)| = |A, B/A|. The nonlinearity of the Brusselator’s kinetics and
boundary constraints allows for other solutions. For B > 1 + A2, the steady state function’s
basin of attraction becomes a point and bifurcation boundary. Any perturbation from the
steady state dissipative process sends the system on a transient path that converges to a
stationary periodic function. The dissipative function for the periodic solution |X(t), Y(t)|
is graphically illustrated in Figure 8 as the limit cycle attractor.
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Figure 8. The Brusselator’s stationary dissipative functions in state space, spanned by its state
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Nicolis and Prigogine [1] introduced the Brusselator as a simplified model for oscillat-
ing chemical reactions, such as the Belousov–Zhabotinsky reaction, for which
A = 4 × bromate (BrO3

−); B = 3 × malonic acid (CH2(CO2H)2); D = 9 × CO2; and
E = 4 × bromide (Br−) + 6 × H2O. A well-stirred system shows fluctuating colors, re-
flecting oscillating concentrations (Figure 8). In an unstirred system, in which diffusion
occurs, a variety of moving spatial patterns can develop [27]. The models of an unstirred
system are represented in a pixelated two- or three-dimensional model space. The gener-
alized state space in this case is many- but finite-dimensional, with separate state-space
dimensions for the concentrations of X and Y in each pixel of the model space. The system’s
trajectory over time traces out the changes in the concentrations of X and Y across the
system’s pixelated volume.

To summarize, a system’s dissipative process is defined by its dissipative function,
which describes its measurable state properties over space and time. The dissipative
function is defined by the trace over time along the system’s attractor in a generalized
state space spanning the system’s variable properties (e.g., Figure 8). Relevant properties
typically include temperature and the component concentrations of each pixel of the
system’s pixelated model space.

Near equilibrium, linearity between flow rates and thermodynamic pressures leads to
a unique time-independent steady state and a single-point attractor. Entropy production
and dissipation rates are minimized at steady state only for special cases.

Far-from-equilibrium, multiple attractors, and stationary dissipative processes can
exist, as is consistent with a dissipative system’s kinetic and boundary constraints. The
integration of Equation (10) over an attractor’s pixelated model space and a unit interval
of time yields the system’s time-averaged dissipation over that time interval. Dissipative
processes with higher rates of dissipation (and entropy production) are often more stable,
but this is not always the case. In the next section, we propose an extremum principle for
the global stability of a dissipative system based on the efficiency of its interactions with
the surroundings.

3. Evolving Complexity
3.1. An Extremum Principle for Dissipative Systems

The Second Law of thermodynamics is an extremum principle for the stability of
thermodynamic states. This is illustrated in Figure 9a. The Second Law applies to isolated
systems, and it says that the state of maximum entropy is the most stable. TCI generalizes
the Second Law with its Postulate Four, which says that the state of minimum exergy is
the most stable. This is illustrated in Figure 9b. The transition to a more stable state can be
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by the irreversible dissipation of exergy or by the thermodynamically reversible output of
work on the surroundings.
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Figure 9. Internal and external utility. (a) Thermodynamics describes an isolated transition by the
conservation of energy and production of entropy. (b) Postulate Four extends the Second Law to
open transitions, in which exergy decline can be by dissipation to qX and by external work w. (c) For
a network of dissipators, an elementary node’s utility output is resolved into external utility (work)
and internal utility, which is input to other nodes within the network.

TCI proposes an extremum principle for the stability of a dissipative system based on
its utilization efficiency. This contrasts with other proposed principles based on the rate
of exergy dissipation or entropy production. To define a system’s utilization, we start by
resolving exported utility into its external work and exported exergy components:

υexp = w + Xexp. (13)

If exergy is exported to the system’s ambient surroundings, that exergy is lost from the
system as external dissipation. Tangible work on the system’s ambient surroundings, on
the other hand, creates positive exergy adjacent to and accessible by the system. Equation
(14) defines the total dissipation of exergy (qx) by the sum of internal dissipation (qdiss) and
external dissipation (Xexp):

qx = qdiss + Xexp. (14)

From (13), (14), and the conservation of energy, we have for a single dissipative node:

υin = υout + qdiss + υexp = υout + qx + w. (15)

Equation (15) and Figure 9b describe the utility input (υin = XA) to a single node and its
outputs of utility (υout = XB), dissipated exergy, and work.

If we resolve the single-node transition in Figure 9b into a network of elementary
nodes, as schematically shown in Figure 9c, the utility output from one node is input to
other nodes within the dissipative network, and we refer to this as internal utility, υint. We
then rewrite (15) for an individual node as:

υin = w + qx + υint. (16)
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Equation (16) describes the transition of a node’s utility input to work on the surround-
ings, and to internal utility, which is transferred to endergonic nodes within the system.
Dissipated exergy is exported to the ambient surroundings.

The system’s ambient surroundings defines a system’s measurable resolution, and
it thermocontextually establishes the elementary nodes through which the system’s com-
ponents transition from one discrete state to another. This allows us to define a system’s
utilization (Υ) as the sum of the rates of internal utility transfers plus work exports:

Υ = ∑〈
.
υint,i〉+ ∑〈

.
wi〉. (17)

The over-dots are time derivatives, and the angle brackets denote stationary properties
averaged over the system’s characteristic unit of time. The characteristic unit of time for a
steady state process can be any positive time interval; for a periodic dissipative process, it
is one cycle; and for a chaotic system, it is sufficiently long to dampen fluctuations to below
the thermocontextually defined limit of resolution.

We can now define a system’s utilization efficiency (Ξ) by:

Ξ =
Υ
.
υin

, (18)

and we express the maximization of efficiency by Postulate Five.
Postulate Four states that a system spontaneously transitions to a more stable state

of lower exergy, and Postulate Five (MaxEff) constrains how that transition occurs. For
an isolated transition, internal dissipation is the only means of reducing exergy, and this
means that an isolated transition maximizes dissipation and entropy production. For an
open transition, however, work on the surroundings provides another way to reduce the
exergy of output to comply with Postulate Four. MaxEff says that given the opportunity, a
system selects exergy utilization over exergy dissipation.

Many of the fundamental molecules of life are UV-C pigments, which can be de-
rived from simple precursors under UV-C light. In an article in this special volume, Karo
Michaelian provides a detailed description of the abiogenesis of Adenine within the frame-
work of Classical Irreversible Thermodynamics [14]. A pigment minimizes the reflection
and transmission of incident photons, and within the framework of TCI, this minimizes
external dissipation (Xext). Reducing the export and external dissipation of exergy makes
additional exergy available for internal utility transfers to other dissipative steps within the
overall process of dissipation. From (17) and (18), this reflects an increase in efficiency. The
abiogenesis of UV-C pigments under a UV-C flux provides a clear illustration of MaxEff.

MaxEff is also an essential basis of measurement. A measurement setup provides
a system with an opportunity to actualize a measurement result as it transitions to its
measurement reference state (Figure 1). MaxEff ensures that when a measurement is
conducted, the transition deterministically records the measurement results rather than
dissipating its exergy without recording a measurement. Recording a measurement result
is one means of utilizing available exergy. The concept of measurement can be generalized
to include recording any exergonic transition, such as sensory inputs.

We have already seen the importance of autocatalysis in dissipative systems. MaxEff
helps explain why autocatalysis might spontaneously emerge. A transition from a high-
exergy state A to lower exergy state B typically involves an intermediate activated state
A*. The high specific energy of A* creates a barrier that limits the reaction rate from A to
B. This relationship is expressed by the Arrhenius equation [28], relating the kinetic rate
constant k to temperature:

k ∝ e−
EA∗
RT . (19)

E is the energy of the activated state A*, and R is the universal gas constant. The idea is that
at a higher temperature, there is a higher probability of a fluctuation reaching the energy
necessary to pass over the activation energy’s barrier, resulting in a higher reaction rate.
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If we rewrite the Arrhenius equation within the TCI framework, we obtain:

k ∝ e−
XA∗
QA . (20)

RT in (19) is the entropic energy plus ambient state energy of an ideal gas at temperature T.
Equation (20) replaces EA* and RT—both defined with respect to absolute zero temperature—
with XA* and QA—both defined with respect to the ambient reference state. A higher
entropic energy increases the statistical probability of reaching the activated state exergy
barrier and increases the reaction rate. Counterintuitively, component A must irreversibly
reduce the exergy it had at its input in order to increase its entropic energy and increase its
probability of reaching the activation exergy. This results in a higher reaction rate, but lower
efficiency. Autocatalysis reduces the activation exergy for the reaction. By reducing the
activation exergy, autocatalysis allows a reaction to proceed with a lower entropic energy, a
higher utility output, and a higher efficiency.

MaxEff applies to individual transitions, but its real significance is its application to
dissipative networks. MaxEff describes the self-organization of a dissipative network into
dissipative structures as a response to increasing its internal transfers of utility. Thermal
exergy added to the base of a liquid carries out thermal expansion that sustains convection.
Hot combustion heats its fuel supply and maintains a higher reaction rate than cold
combustion. In both cases, the more stable process is sustained by internal exergy utilization,
and each has higher utilization efficiency than conduction or cold combustion. Convection
and hot combustion are two familiar examples of spontaneous transitions to more stable
dissipative processes of higher internal utilization and efficiency.

3.2. The Two Arrows of Evolution

We can rewrite Equations (17) and (18) as:

Ξ =
∑〈

.
wexp,i〉
〈 .
υin〉

+
∑〈

.
υint,i〉
〈 .
υin〉

= GF + CF. (21)

Equation (21) resolves efficiency into two components: the growth factor, GF, which
corresponds to external efficiency, and the functional complexity factor, CF, which corre-
sponds to internal efficiency. A dissipative system can increase its efficiency and stability
either by having a positive rate of growth or by increasing its internal utilization and
functional complexity.

The first arrow of evolution is growth by expansion or replication. If a dissipative
system does work on a component in the surroundings, then that component is no longer
part of the zero-exergy ambient surroundings, and a new node is created in a growing
network of dissipators. This describes the utilization of ultraviolet photons’ exergy on
ambient organic compounds to create high-exergy compounds.

An existing dissipator can also grow horizontally by expansion or replication. Hori-
zontal growth describes the spread of a fire or a species’ population growth. In the case of
a spreading fire, work involves heating ambient fuel in the surroundings to its combustion
point, allowing the fire to spread. In the case of a species’ increasing population, work
on the environment involves building new biomass from ambient resources. As a system
grows horizontally by expansion or replication, its requirement for exergy supply increases
in proportion. A dissipative system can grow horizontally up to the carrying capacity of
the system’s environment to sustain it.

The second path towards higher efficiency is by increasing internal utilization and
functional complexity. The term complexity is commonly associated with the amount of
information required to specify a system’s state. Here, we are interested in the complexity
of a dissipative system’s functional process, as quantified by its functional complexity, CF.
The functional complexity is the ratio of internal utilization to utility input, and it is a
measurable and well-defined property of a dissipative process.
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For a single pass of exergy and a single endergonic node, functional complexity
can approach unity as dissipation approaches zero. However, a dissipative system can
increase its functional complexity well beyond unity by reprocessing and recycling exergy
via feedback loops or by sustaining a network of exergonic–endergonic pairs. Figure 10
illustrates a simple feedback loop resulting in functional complexity and efficiency of five
hundred percent. Feedback loops are ubiquitous within biological systems, from cells
to ecosystems, leading to higher functional complexity. Figure 10 could also illustrate a
high-exergy system or organism sustained by low-exergy inputs from its environment.
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Figure 10. Simple feedback loop. A component flows through a system (straight vectors) at a rate (J)
of one mass unit/s. The component’s specific exergy (X) equals two units at input and zero at output.
The rates of net exergy input (J × X) and total dissipation rate (

.
Q) equal two energy units/s. Mass

and energy inputs and outputs are balanced. Exergonic node 2 takes the component with 12 units of
specific exergy, dissipates one unit, and performs work on endergonic node 1 (wavy vector) at a rate
of 11 units/s. Endergonic node 1 applies ten units of work to lift the component’s specific exergy
from 2 units to 12 units, and in the process, it dissipates one unit of work. The system’s rate of internal
work on the component equals 10 units. With 2 units of exergy input, its functional complexity CF

and efficiency equals five.

A system can also increase its functional complexity by upward or downward integra-
tion. In downward integration, a system incorporates existing nodes that already utilize
exported exergy. Downward integration increases a system’s efficiency by internalizing
utility transfers from what would otherwise be externally dissipated to the surroundings.
An ecosystem can be viewed as a downward integration from plants to herbivores, carni-
vores, scavengers, and degraders. The ecosystem is sustained by sunlight, and each level
sustains the level below. An ecosystem with a stable environment is constantly evolving
new niches to recycle nutrients and utilize otherwise wasted exergy [29].

In upward integration, a system incorporates existing exergy sources. Upward integra-
tion increases efficiency by converting external utility sources into internal utility transfers.
The evolution of eukaryotic cells can be viewed as an upward integration of prokaryotic
cells and their incorporation as organelles.

Growth and increasing functional complexity are two distinct ways that a dissipative
system can increase its efficiency and stability.

3.3. Oscillations and Synchronicity

Oscillations and synchrony are ubiquitous within biological systems, human institu-
tions, astrophysics, and quantum mechanics [30]. The spontaneous emergence of resonance,
commonly observed in mechanical or fluid mechanical systems far from equilibrium, illus-
trates spontaneous cycling and the arrow of increasing functional complexity.

The Brusselator illustrates the higher efficiency and stability of an oscillating process
over a steady state dissipative process. Its steady state and cycling functions have identical
time-averaged rates of dissipation. They differ, however, in their efficiency. For the
steady state dissipative process, the concentrations of X and Y are fixed. There is never a
measurable transfer of component 1 “uphill” from state X to Y, and endergonic node 3A
performs no net work on the system. For the oscillating mode, in contrast, component 1
periodically accumulates in and is released from the X and Y pods. During the phase of
the cycle with a net transfer from X to Y, endergonic node 3B performs the internal work



Entropy 2023, 25, 229 17 of 24

of lifting component 1 to higher exergy. The oscillating dissipative process, therefore, has
higher efficiency than the steady state mode. MaxEff asserts that the oscillating mode is
more stable, in agreement with perturbation analysis. We generalize this conclusion and
assert that an oscillating dissipative process is more stable than a steady state dissipative
process, other differences being negligible.

Systems of linked oscillators often synchronize in a process known as entrainment [31].
Figures 11 and 12 illustrate the synchronization of a network of linked oscillators. As
detailed in the figure captions, the analysis shows that a network of linked oscillators
increases its efficiency when all oscillators synchronize. MaxEff, therefore, predicts that
networks of coupled oscillators are stabilized by synchronization, independent of their
physical details.
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Figure 11. Coupled oscillators. The figure shows sixteen oscillators linked in a circle. All oscillators
have identical unit rates of utility input (wavy arrows) into nodes, which pump an ambient component
(not shown) into the pods. When the concentration in a pod reaches a critical value, the component
is released, and the cycle resumes. Coupling between adjacent pods allows components to leak
from one pod to another. The leak rate equals the difference in concentrations, multiplied by a
coupling coefficient.
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Figure 12. Synchronization of coupled oscillators. Top—Pod Concentrations: Oscillators are ran-
domly assigned periods between 49.5 and 50.5 time units. They start with randomly assigned
concentrations. After about 1500 time steps, the oscillators synchronize. Bottom—Average Rate of
Exergy Accumulation: Each oscillator has a unit rate of work input, which is used to pump compo-
nent into its pod. When oscillators are not synchronized, some exergy is lost to diffusive leakage
between adjacent oscillators. When all oscillators synchronize after 1500 time steps, concentrations
are equal, there is no diffusive loss, and the pods’ rate of exergy accumulation is maximized and equal
to the work input (except at pod discharge). The rate of internal work is equal to the time-averaged
accumulation of exergy by the pods, and this is maximized by synchronization. Synchronization,
therefore, increases the efficiency of the system’s dissipative process.
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For a strictly deterministic system, like the model in Figure 12, a dissipative process’s
stability is related to the size of its basin of attraction. Many randomly assigned starting
points settle into full synchronization like that shown in the figure. For others, however,
the system deterministically settles into a variety of other attractors, including partially
synchronized dissipative functions, in which subsets of oscillators are synchronized but
the subsets are phase-shifted from each other. They have efficiencies that are intermediate
between full synchrony and asynchrony. With sufficient time and intrinsically random tran-
sitions [25], a system would generally settle into its most stable process of synchronization
and maximum efficiency. However, an external jolt is sometimes required, such as the need
for a defibrillator to restore the synchronization of pacemaker cells.

MaxEff provides a general principle that explains the spontaneous emergence of
oscillations and synchronization in terms of a general principle, independent of a system’s
specific dynamics. Figure 12 illustrates the power of MaxEff over statistical mechanics
by being able to efficiently assess global stability without a statistical analysis over many
different starting points.

3.4. Whirlpools Disprove the MEPP

We commonly observe whirlpools, indicating that they can be more stable than radial
flow of water directly towards a drain. A whirlpool provides an important counterexample
to proposals that processes are stabilized by maximizing the rate of dissipation or entropy
production. The Maximum Entropy Production Principle (MEPP) and related proposals
have had success in a number of areas, but they are not universally applicable [15,16].

MEPP equivalent to maximizing the rates of net utility supply and dissipation. The
centrifugal force of a whirlpool’s circulation lowers the water level and pressure over
the drain, and this actually reduces the rate of water discharge. A stationary whirlpool,
therefore, has lower rates of water and exergy input, a lower rate of dissipation, and a
lower rate of entropy production. A whirlpool’s stability results from its higher rate of
internal utilization and higher functional complexity.

To model a whirlpool’s functional complexity, we define a pixelated model space,
which is represented in Figure 13. It represents a 50 cm diameter cylindrical container of
water partitioned into concentric shells radiating outward from a central drain. Water in
each shell is modeled with uniform pressure and kinetic energy.
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Figure 13. Models for radial flow and whirlpool. Left: radial flow. Right: whirlpool. Each concentric
shell is a single zone with uniform pressure (water elevation) and fluid speed. Arrows illustrate fluid
flow directions only. Speed is constant within each zone but the radial speed increases inwards in
both cases due to the incompressibility of water. In addition, the conservation of angular momentum
requires that the rotational velocity for the whirlpool is inversely proportional to the radial distance
and increases inwards.

Water in the outermost shell is maintained at a constant 20 cm depth. Drainage is
assumed to be turbulent and proportional to the square root of the pressure of water over
the drain, taken as the height of the water column in the central core. At each interface, a
component of water transitions to a zone of lower pressure, higher velocity, and higher
kinetic energy. This applies to both the radial flow and whirlpool models.
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Figure 14 shows a detail of the network model for the transition between two zones
in the whirlpool model. The surface water contour for the whirlpool is determined by
conserving angular momentum and balancing hydrostatic and centrifugal forces.
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Figure 14. Paired nodes at whirlpool zonal interface. As water flows across a zonal interface, it
undergoes both a decline in pressure and an increase in velocity and kinetic energy. An elementary
node represents only a single transition, so each interface has two nodes. The first node is exergonic.
It transfers exergy at a rate of

.
Xin = J∆P to endergonic node 2. Node 2 uses this exergy for the internal

work of accelerating the water, which is given by
.
υint =

.
Xin −

.
Qdiss =

1
2 ρ∆V2J, where

.
Qdiss is the rate

of dissipation by node 2. The internal work for the system is summed over all interfaces.

For radial flow, the surface water contour is determined by energy conservation, with
increasing kinetic energy towards the drain offset by lower potential energy and water
column height. Viscous dissipation outside of the central core is negligible for radial flow
and is ignored.

Figure 15 shows profiles for the radial flow and whirlpool models. In the case of radial
flow (solid lines), the profiles show that the drain-ward decline in water level and the
increase in kinetic energy are imperceptible at the plotted scale. In the case of whirlpools
(dashed lines), the figure shows a dramatic decline in water pressure and height near the
drain. This profile represents the whirlpool’s shape. There is a correspondingly large
increase in water velocity and kinetic energy as water approaches the drain. Figure 15
clearly shows that the increase in velocity and kinetic energy near the drain is much greater
for the whirlpool than for radial flow.
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Figure 15. Pressure and kinetic energy profiles for whirlpool and radial flow. Fluid velocity and
kinetic energy increase towards the drain for both the whirlpool and radial flow. The solid lines show
an imperceptible drop in the pressure and a similarly imperceptible acceleration of water for radial
flow. The dashed lines show an 8.1 cm (40%) pressure drop and a sharp acceleration of water for the
whirlpool near its vortex. The lower pressure at the drain for the whirlpool corresponds to lower
rates of water discharge, dissipation, and entropy production compared to radial flow.

Table 2 summarizes the results of the steady state radial and whirlpool models. The
table shows that the rates of water input and output are higher for the radial flow, but the
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internal work rate is 4000 times higher, and the functional complexity is 5000 times higher
for the whirlpool. According to MaxEff, the whirlpool should be more stable than radial
flow, despite its lower rates of net power, dissipation, and entropy production. The common
emergence of whirlpools in draining water empirically documents the relative stability of
whirlpools over radial flow, as predicted by MaxEff. The stability of the whirlpool provides
an important counterexample to the idea that “faster is better.” It falsifies the Maximum
Entropy Production Principle, which asserts that the rate of exergy dissipation and entropy
production always tends to be maximized.

Table 2. Comparison of functional complexity for radial flow and whirlpool models.

Steady State
Flow Rate J

(m3/s)

.
Xin

ρghoJ
(J/s)

.
Xout

ρJ3/Adrain
2

(J/s)

Net Power.
Xin−

.
Xout

(J/s)

.
υint

Σ
.
υint,i
(J/s)

CF
.
υint

.
Xin

Whirlpool
3.00 × 10−5 0.029 0.0022 0.027 2.9 × 10−3 0.1

Radial flow
3.88 ×10 −5 0.038 0.0047 0.033 7.4 × 10−7 1.9 × 10−5

.
Xout = Kinetic exergy of water exiting a 1 cm diameter drain with area Adrain. ρ = Fluid density (1000 kg/m3).
ho = Water depth at perimeter (20 cm).

.
Wi =

1
2 ρ∆V2

i is the increase in kinetic energy per volume of water at

interface i (Figure 14).
.

W int = Internal work of accelerating water from the perimeter zone to the core zone.

4. Summary and Discussion

Physics defines the physical state relative to a theoretical reference state at absolute
zero temperature. Thermocontextual interpretation (TCI), in contrast, defines the physical
state relative to a reference state in equilibrium with the system’s actual surroundings.
This allows TCI to resolve a system’s total energy into exergy, which can perform useful
work on the positive-temperature ambient surroundings, and entropic energy, which is
the randomized energy of ambient heat. Exergy is an easily measurable quantity, but it
is a thermocontextual property and it is not recognized by physics or thermodynamics.
Statistical mechanics and thermodynamics describe the Second Law only in terms of en-
tropy. Without thermocontextual properties of state, they cannot recognize the dissipation
or utilization of exergy; all they can see is the production of entropy.

TCI goes beyond statistical mechanics and Classical Irreversible Thermodynamics:
first, by establishing exergy as a physical property of state and the measure of its instability,
and then by generalizing the Second Law of thermodynamics. The Second Law applies to
isolated systems and states that irreversible dissipation minimizes exergy and maximizes
entropy. TCI’s Postulate Four extends the Second Law’s application to non-isolated systems.
It maintains that a system irreversibly minimizes its exergy, but it can do so either by
dissipating its exergy or utilizing it. Utilization describes the action of a dissipative system,
either of sustaining other dissipative systems within a network of linked dissipators or
of performing work on the system’s surroundings to expand its reach. The Maximum
Efficiency Principle (MaxEff) goes one step further and states that a dissipative system
tends to minimize the dissipation of exergy and maximize efficiency to the extent that
is possible.

MaxEff sheds light on two of the most perplexing questions: the origin and definition
of life. Natural selection can explain the evolution of life, but it cannot account for its
prebiotic origin. By preferentially selecting dissipative processes of higher efficiency, MaxEff
drives open systems to expand their dissipative networks and to increase their functional
complexity. Autocatalytic loops for recycling exergy (e.g., Figure 10) lead to higher efficiency
through increased functional complexity, and self-replicating units lead to higher efficiency
through positive growth (21). Once self-replicating networks emerge, natural selection can
then act to propagate beneficial variations and drive the evolution of life.

One of the defining characteristics of life is self-replication according to a “blueprint”
that is subject to modification and selection. A system’s blueprint for self-replication
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is, in essence, a form of autocatalysis. It directs a source of exergy to autocatalyze a
system’s replication from ambient resources. As described in Section 3.1, autocatalysis is
one mechanism to achieve higher efficiency.

Another defining characteristic of life is the ability to interact with and learn from
the environment. Even simple bacteria can learn correlations from their environmental
interactions and can adapt their future behavior accordingly [32]. The process of learning
starts with the work of making and recording measurements of environmental interactions.
As described in Section 3.1, recording measurements is another mechanism for achieving
higher efficiency. Learning also involves training to synchronize a system’s functions to the
environment, further reducing dissipative losses and increasing efficiency (e.g., Figure 12).
Vitaly Vanchurin, in fact, takes learning as a starting point for a theory of evolution [33].
Self-replication and learning from the environment are two defining characteristics of life,
and both can be explained by MaxEff.

Once life is established, it continues to evolve through an interplay between competi-
tion and cooperation. Competition drives growth, and cooperation drives an increase in
functional complexity. These are the two basic paths for evolving systems. Competition
dominates when resources are plentiful and when the dissipative cost of competition is
small relative to the gain in utilization from increased resource supply and growth. Com-
petition enables a species to expand its resource base and to achieve higher efficiency
through growth.

Cooperation dominates when resources are inelastic. When a rainforest’s canopy
completely covers the forest, its solar resource base is maximized, and it is inelastic to further
gains. Over its fifty-million-year period of relative environmental stability, the Amazon
rainforest has nevertheless continued to evolve, by developing increasingly complex webs
of interacting dissipators acting together to recycle components and exergy [34]. Ecological
nutrient cycling [29] involves the repeated utilization and renewal of the nutrients’ specific
exergy. From Equation (21), nutrient recycling increases the system’s internal utilization
and functional complexity factor. Given a stable environment, evolution is open-ended,
and a dissipative system can increase its functional complexity with no theoretical limit.

Any model is an approximation of an actual system that is valid within its domain of
applicability. Quantum mechanics does not invalidate classical mechanics within its domain
of its applicability, and TCI does not invalidate the Hamiltonian Conceptual Framework
(HCF) or Classical Irreversible Thermodynamics (CIT) within their domains of applica-
bility. TCI does, however, extend the range of applicability to describe thermocontextual
properties for systems as they exist with respect to surroundings at a positive ambient
temperature. It explains intrinsic randomness by instantiation (Figure 1 and Appendix A)
during the reversible export of entropic energy to the surroundings, and it provides a fixed
reference from which changes across time can be defined. TCI is a generalization of the
HCF and CIT, and where their valid applications overlap, there is strict correspondence in
their conclusions. TCI also applies to changes in ambient surroundings. A decrease in the
ambient state energy leads to refinement, random instantiation, and spontaneous symmetry
breaking [19,25]. Spontaneous symmetry breaking during expansion and ambient cooling
of the early universe may resolve some of the outstanding questions of cosmic evolution,
such as the baryogenesis problem [35].

By recognizing thermocontextual properties of state and MaxEff, TCI establishes a
firm foundation for the description and analysis of self-organization. A foundation is an
essential step, but a systematic description of self-organization requires building upon that
foundation. It requires a formalized mathematical framework for constructing nonlinear
transition operators, which must include a system’s kinetic and thermocontextual boundary
constraints. The stationary functions consistent with a system’s transition operator can
then determine the dissipative processes, and MaxEff would provide an efficient way to
determine their relative efficiencies and stabilities without the numerous measurements or
simulations that are often needed for a statistical analysis of probabilities.
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Appendix A. Thermocontextual Interpretation’s Postulates and Definitions

Postulate One. The Zeroth Law of thermodynamics establishes that the temperature of a
thermally equilibrated system is a measurable property.

Postulate Two. The Third Law of thermodynamics establishes that absolute zero tempera-
ture can be approached but never be attained.

Postulate Three. There are no unobservable “hidden” variables. The physical proper-
ties of state are measurable, and perfect measurement completely describes a system’s
physical state.

Postulate Four (Generalized Second Law of Thermodynamics). Given a fixed ambient
temperature, a state of higher exergy has potential to spontaneously transition to a state
lower exergy by the irreversible dissipation of exergy and, generally, by the reversible
output of work to the surroundings.

Postulate Five (Maximum Efficiency Principle—MaxEff). A dissipative network sus-
tained by a stable environment seeks to maximize its utilization efficiency to the extent that
is possible.

Absolute energy: A system’s absolute energy, Eabs, equals the system’s potential work, as
measured on the surroundings in the limit of absolute zero.
Actualization: Actualization is the reversible work of recording a measurement result dur-
ing an instantiated microstate’s deterministic transition to its measurement reference state.
Ambient state: A system is in its ambient state when it is in equilibrium with the ambient
surroundings. It is defined by zero exergy and entropic energy.
Ambient state energy: A system’s ambient state energy, Eas, is the ambient reference state’s
potential work capacity, as measured at the limit of absolute zero.
Ambient temperature: A system’s ambient temperature, Ta, equals the positive tempera-
ture of the system’s actual surroundings with which it interacts or potentially interacts and
from which measurements or observations are made.
Dissipative energy function: A dissipative energy function is a function of a stationary
system’s state vector of measurable state properties across its pixelated model space and
time. It traces the system’s state properties as energy and mass components pass through
it, from input to eventual output. The dissipative energy function is a stationary solution to
the dissipative system’s kinetic and boundary constraints.
Efficiency: Efficiency is the ratio of utilization to the input of work and exergy.
Entropic energy: A system’s entropic energy is defined by system energy minus exergy
(Q ≡ E − X).
Entropy (thermal): A system’s thermal entropy is defined by entropic energy divided by
ambient temperature (S ≡ Q/Ta).
Exergy: A system’s exergy, X, is defined by its potential work as reversibly measured at the
ambient surroundings.
Instantiation: Instantiation [25] randomly selects a measurable zero-entropy microstate
from a positive-entropy state comprising multiple microstate potentialities. It is a conse-
quence of derandomization resulting from the reversible export of entropic energy during
a transition from a high-entropy state A to a lower entropy state B.
Perfect measurement: The perfect measurement of state involves a reversible thermody-
namically closed process of transition from a system’s initial state to its ambient reference
state. Perfect measurement reversibly records the outputs of exergy and entropic energy
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to the surroundings. The measurement of a positive entropy system is resolved into
instantiation and actualization.
Reference time: Reference time is the time of relativistic causality, as measured by a
reference clock in the ambient surroundings.
Refinement: Refinement (fine graining) is a response to a declining ambient temperature
and ambient state energy of the ambient reference state. This leads to increases in the
thermocontextually defined exergy and thermal entropy [19].
Statistical Entropy: Statistical entropy, σAB, [25] is a transactional property of a transition
from state A to state B. It is defined by:

σAB ≡ −
N

∑
i=1

Pi ln(Pi).

Pi is the probability of instantiating measurable microstate i from the positive-entropy
system’s N measurable microstate potentialities. Measurable microstate potentialities are
defined with respect to the transactional reference state B.
System energy: System energy is defined by absolute energy minus ambient state energy
(E ≡ Eabs − Eas).
System time: System time is a complex property of state. The real component of system
time indexes the irreversible production of entropy, either by the dissipation of exergy
or by refinement. The imaginary component (‘it′ in quantum mechanics) indexes a sys-
tem’s reversible changes. Both indexes are tracked against the irreversible advance of
reference time.
Utilization: Utilization includes a dissipative system’s work on the surroundings to extend
its reach, plus the total transfer of work and exergy between the dissipative system’s
dissipative nodes.
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