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Abstract: Tensor completion is a fundamental tool to estimate unknown information from observed
data, which is widely used in many areas, including image and video recovery, traffic data completion
and the multi-input multi-output problems in information theory. Based on Tucker decomposition,
this paper proposes a new algorithm to complete tensors with missing data. In decomposition-based
tensor completion methods, underestimation or overestimation of tensor ranks can lead to inaccurate
results. To tackle this problem, we design an alternative iterating method that breaks the original
problem into several matrix completion subproblems and adaptively adjusts the multilinear rank of
the model during optimization procedures. Through numerical experiments on synthetic data and
authentic images, we show that the proposed method can effectively estimate the tensor ranks and
predict the missing entries.

Keywords: tensor completion; Tucker decomposition; HOOI algorithm; rank-adaptive methods;
SVT algorithm

1. Introduction

Tensors, as a higher-order generalization of vectors and matrices, can preserve the
original structure and the latent characteristics of multi-dimensional data, such as images
and videos. To store and process these data, vectorization or matricization may break
the adjacency relation and lead to the loss of crucial information in practical applications.
Therefore, tensor analysis of data has gathered increasing attention due to its better perfor-
mance in finding hidden structures and capturing potential features. Due to data missing
from a transmission or insufficient collection, sometimes we have to deal with incomplete
data, which increases the operation cost and the difficulty of multi-dimensional data anal-
ysis. Therefore, tensor completion, also referred to as tensor recovery, plays a key role
in processing and analyzing incomplete multi-dimensional data. In tensor completion,
the prediction of unknown data from a few observed entries is achieved based on the
correlation between different parts of data or, simply, the hidden low-rank structure. Many
real-world data lie in a latent low dimensional space since they may only relate to a small
number of contributions; thus, we can use tensor completion to infer the missing data. It has
already been widely applied in many scientific fields, including surrogate construction [1],
image and video recovery [2–4], traffic data completion [5] and the MIMO (multi-input
multi-output) problems in information theory [6].

The tensor completion methods can be roughly classified into model-based and non-
model-based ones. Extending the idea from existing matrix completion algorithms [7,8],
non-model-based methods directly formulate the tensor completion task as a rank mini-
mization problem subject to linear constraints, and then relax it to a nuclear norm mini-
mization problem, such as LRTC (low rank tensor completion) [9]. However, model-based
methods achieve the goal differently. Based on a decomposition model with a given rank,
these methods minimize the error on the known entries by adjusting the model parame-
ters, such as CP-Wopt (CP-weighted optimization) [10], Tucker–Wopt (Tucker-weighted
optimization) [5], M2SA (multilinear subspace analysis with missing values) [11] and so on.
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The computation cost of non-model-based methods is closely related to the size of the
tensor, leaving little room for reducing the time complexity. On the contrary, this can be
more flexibly controlled in model-based methods by altering the model size. Nonetheless,
there still exists a big challenge when choosing the model’s rank. Underestimation of the
tensor rank makes it harder to reach our desired accuracy, whereas overestimation may
lead to a poor generalization on the unobserved part of entries. Therefore, rank-adaptive
methods are needed and worth studying. In [1], a greedy scheme is designed to find the
fittest rank by gradually increasing the number of factors in the CP decomposition model.
In [12], from an overestimated rank, a systematic approach to reducing the CP ranks to
optimal ones is developed.

Focusing on tensor completion based on Tucker decomposition, we propose a novel
rank-adaptive tensor completion method and verify its efficiency through experiments on
synthetic and real practical data. The rest of the paper is organized as follows. Section 2
formulates the problem setting. Section 3 presents Tucker decomposition and the related
works. We propose our rank-adaptive tensor completion based on the Tucker decompo-
sition (RATC-TD) approach in Section 4 and verify it through numerical experiments in
Section 5. Finally, we conclude our work in Section 6.

2. Notations and the Tensor Completion Problem

Before summarizing the related work and presenting our algorithm, this section first
introduces some basic definitions that will be used in the following sections, and then states
our problem settings.

2.1. Notations

We follow the notations in [13]. Let lowercase letters denote scalars, e.g., a; let lowercase
bold letters denote vectors, e.g., a; let bold capital letter denote matrices, e.g., U; let capital
fraktur letter denote high-order tensors, e.g., T . The ith element of a vector a is denoted
as ai; the element of matrix U with index (i, j) is denoted by uij; the element of N-way
tensor T with index (i1, i2, · · ·, iN) is denoted by ti1i2···iN . A tensor can be viewed as a
multi-dimensional array, and the number of dimensions is generally called the order of the
tensor. For example, matrices are second-order tensors, while vectors are first-order tensors.
A mode-n fiber is a vector extracted from a tensor by fixing all indices except the nth one.
Consider a matrix as an example; mode-1 fibers refer to the columns, and mode-2 fibers
refer to the rows. The mode-n unfolding of a tensor T ∈ RI1×I2×···× IN is to rearrange the
mode-n fibers as the columns of the resulting matrix, denoted as T(n) ∈ RIn×I1···In−1 In+1···IN .
Naturally, the reverse of unfolding, the process of rearranging T(n) ∈ RIn×I1···In−1 In+1···IN into
T ∈ RI1×I2×···× IN , is called folding.

The n-mode matrix product is the multiplication of a tensor T ∈ RI1×I2×···× IN with a
matrix U ∈ RJ×In , denoted as X = T ×n U, where X ∈ RI1×···×In−1×J×In+1×···×IN . It can be
regarded as multiplying each mode-n fiber of T with U. The matricized form is given by

X(n) = UT(n), (1)

and the element-wise operations can be obtained by

xi1 ...in−1 jin+1 ...iN =
In

∑
in=1

ti1 ...in−1inin+1 ...iN ujin . (2)

The norm of a tensor T ∈ RI1×I2×···× IN is a higher-order analog of the matrix Frobenius
norm, defined by

‖T ‖F =

√√√√ I1

∑
i1=1

I2

∑
i2=1
· · ·

IN

∑
iN=1

t2
i1i2···iN

. (3)



Entropy 2023, 25, 225 3 of 16

The inner product of two same sized tensors T ,X ∈ RI1×I2×···× IN is defined by

〈T ,X 〉 =
I1

∑
i1=1

I2

∑
i2=1
· · ·

IN

∑
iN=1

ti1i2···iN xi1i2···iN . (4)

2.2. The Tensor Completion Problem

Tensor completion is the problem of predicting missing entries through a few sampled
entries of a tensor based on the assumption that it has a low-rank structure. Supposing
we have a partially observed tensor T ∈ RI1×···×IN , the set of indices where entries are
observed is denoted as Ω. Let PΩ be an operator on RI1×···×IN , such that PΩ(X ) is equal
to X on Ω and is equal to 0 otherwise. The low-rank tensor completion problem can be
formulated as

min
X

rank (X ) s.t. PΩ(X ) = PΩ(T ). (5)

Although the formulation seems easy, how to measure the rank of a tensor is still
an open question. In previous research, the CP rank [1,12] and the Tucker rank [9,14,15]
were mostly considered. After the tensor-train (TT) decomposition was proposed in [16],
tensor completion based on the TT rank was studied in [3,17,18]. The low-tubal rank tensor
completion problem was studied in [19–21]. In addition, the combination of the CP and the
Tucker ranks was investigated in [22].

Since matrices are second-order tensors, matrix completion can be viewed as a special
case of tensor completion. Using the matrix nuclear norm to approximate the rank of a
matrix is studied for matrix completion in [23]. Liu et al. [9] generalized this to the tensor
scheme by defining the nuclear norm of tensors and proposing the following low-rank
tensor completion problem:

min
X
‖X ‖∗ s.t. PΩ(X ) = PΩ(T ). (6)

The nuclear norm of a tensor is defined by ‖X ‖∗ := ∑N
n=1 ‖X(n)‖∗, where ‖X(n)‖∗ is the

nuclear norm of the matrix X(n). The nuclear norm can be computed by the sum of the
singular values. However, the computation involves SVD (singular value decomposition)
of the unfolding matrix T(n) in each iteration, which is expensive when the size of T
is large. To control the computation cost, this problem is reformulated based on tensor
decomposition [5,11]. Particularly, the low-rank tensor completion problem based on
Tucker decomposition can be written as

min
G,A1···,AN

‖T − X‖2
Ω

s.t. X = G ×1 A1 · · · ×N AN , AT
n An = IRn×Rn , n = 1, · · ·, N,

(7)

where X is the completed goal tensor, (R1, · · ·, RN) is a predefined multilinear rank,
An ∈ RIn×Rn and ‖ · ‖Ω denote the norm on the observation elements, i.e., ‖PΩ(·)‖F. Meth-
ods are actively developed to solve this problem, including M2SA [11], gHOI (generalized
higher-order orthogonal iteration) [24] and Tucker–Wopt [5]. However, these algorithms
typically require the multilinear ranks given a priori, both underestimating and overes-
timating the ranks can result in inaccurate completion results. To handle this issue, we
in this work propose a rank-adaptive tensor completion approach without requiring the
multilinear ranks given a priori.

3. The Tucker Decomposition and Its Computation

We review Tucker decomposition and its related algorithms in this section.
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3.1. Tucker Decomposition

Tucker decomposition was first introduced by Tucker [25]. For a Nth-order tensor
T ∈ RI1×I2×···×IN , its Tucker decomposition has the form

T = G ×1 A1 ×2 A2 · · · ×N AN , (8)

where G ∈ RR1×···×RN is a core tensor and An ∈ RIn×Rn , n = 1, 2, · · ·, N, are factor matrices.
For simplicity, we assume all the factor matrices have orthogonal columns. Rn is the rank
of the mode-n unfolding matrix T(n). As described in [13], Tucker decomposition can be
viewed as a higher-order generalization of PCA (principal component analysis) in some
sense. In Tucker decomposition, the columns of the factor matrix represent the components
in each mode, and each element of the core tensor characterizes the level of interaction
between the components in different modes.

The tuple (R1, · · ·, RN) is called Tucker rank or multilinear rank. However, prac-
tically, we prefer to use the truncated version of Tucker decomposition, where we set
Rn < rank(T(n)) for one or more n. Given the truncation (R1, · · ·, RN), the approximation
of the truncated Tucker decomposition of a tensor T ∈ RI1×···×IN can be described as

min
G,A1···,AN

‖T − X‖2
F

s.t. X = G ×1 A1 · · · ×N AN , AT
n An = IRn×Rn , n = 1, · · ·, N,

(9)

where G ∈ RR1×···×RN , An ∈ RIn×Rn is the nth factor matrix, and IRn×Rn is an identity
matrix of size Rn × Rn.

3.2. The Higher-Order Orthogonal Iteration (HOOI) Algorithm

There are several approaches to computing the truncated Tucker decomposition of a
tensor. One of the most popular methods is the higher-order orthogonal iteration (HOOI)
algorithm [26], also referred to as the alternative least square (ALS) algorithm for Tucker
decomposition. It is an alternative iterating method, where we fix all except one factor
matrix each time, and then minimize the objective function in (9). Specifically, given initial
guesses {A(0)

n : n = 1, · · ·, N}, at the kth iteration, for each n = 1, · · ·, N, we fix all the factor
matrices except An, and then find the optimal solution to the subproblem

min
G,A(k)

n

‖T − X‖2
F

s.t. X = G ×1 A(k)
1 · · · ×n A(k)

n ×n+1 A(k−1)
n+1 · · · ×N A(k−1)

N , (A(k)
n )T A(k)

n = IRn×Rn ,
(10)

where G ∈ RR1×···×RN , A(k)
n ∈ RIn×Rn . Denoting B := G ×n A(k)

n , this optimization problem
can be simplified as

min
B
‖T − X‖2

F

s.t. X = B ×1 A(k)
1 · · · ×n−1 A(k)

n−1 ×n+1 A(k−1)
n+1 · · · ×N A(k−1)

N , rank(B(n)) ≤ Rn,
(11)

where B ∈ RR1×···Rn−1×In×Rn+1···RN and B(n) is the mode-n unfolding matrix form of B. It
can be considered as a constrained least squares problem [27], and thus the solution to (10)
can be easily obtained by the following steps:

1. Compute B∗ = T ×1

(
A(k)

1

)T
· · · ×n−1

(
A(k)

n−1

)T
×n+1

(
A(k−1)

n+1

)T
· · · ×N

(
A(k−1)

N

)T
;

2. Unfold B∗ at the nth mode to obtain B∗(n), then perform a truncated rank-Rn singular

value decomposition (B∗(n))[R] = UΣV T = B(n);

3. Compute A(k)
n = U and G(n) = ΣV T .
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We iteratively solve these subproblems until a given stopping criterion is reached,
i.e., the difference between the solutions at two adjacent iterations is small enough, or the
value of the objective function decreases very slightly. The complete procedure of HOOI is
presented in Algorithm 1.

Algorithm 1 The high-order orthogonal iteration (HOOI) algorithm [26]

Input: Tensor T ∈ RI1×I2×···×IN and truncation (R1, R2, · · ·, RN).
Output: Core tensor G ∈ RR1×···×RN , and factor matrices An ∈ RIn×Rn for n =
1, 2, · · ·, N.

1: Initialize A(0)
n ∈ RIn×Rn for n = 1, 2, · · ·, N using HOSVD.

2: k← 0.
3: while not converge do
4: k← k + 1.
5: for n = 1, 2, · · ·, N do

6: B ← T ×1

(
A(k)

1

)T
· · · ×n−1

(
A(k)

n−1

)T
×n+1

(
A(k−1)

n+1

)T
· · · ×N

(
A(k−1)

N

)T
.

7: B(n) ←mode-n unfolding matrix of B.
8: U, Σ, V T ← truncated rank-Rn SVD of B(n).

9: A(k)
n ← U.

10: end for
11: end while
12: G ← ΣV T folding at mode-n.

3.3. The Rank-Adaptive HOOI Algorithm

HOOI requires the multilinear rank (R1, · · ·, RN) given a priori, which is hard to be
determined in practice. Instead of (9), Xiao and Yang [27] consider the following form of
the low multilinear rank approximation problem:

min
G,A1···,AN

(R1, R2, · · ·, RN) s.t. ‖X − T ‖2
F < ε‖T ‖2

F,

X = G ×1 A1 · · · ×N AN , AT
n An = IRn×Rn , n = 1, · · ·, N,

(12)

where ε is a given tolerance. A rank-adaptive HOOI algorithm is proposed in [27], which
adjusts the truncation Rn for dimension n in the HOOI iterations by

R(k)
n = argmin

R
‖B(n) − (B(n))[R]‖2

F ≤ ‖B‖2
F − (1− ε)‖T ‖2

F, (13)

where (B(n))[R] is the best rank-R approximation of B(n). For the full SVD of B(n) = UΣV T ,
it can be calculated by (B(n))[R] = U:,1:RΣ1:R,1:RV T

:,1:R. In [27], it is proven that (13) is a local
optimal strategy for updating Rn, i.e., the optimal solution of the following problem:

min
B

rank(B(n)) s.t. ‖X − T ‖2
F < ε‖T ‖2

F,

X = B ×1 A(k)
1 · · · ×n−1 A(k)

n−1 ×n+1 A(k−1)
n+1 · · · ×N A(k−1)

N .
(14)

Details of the above procedure are summarized in Algorithm 2.
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Algorithm 2 The rank-adaptive HOOI algorithm [27]

Input: Tensor T ∈ RI1×I2×···×IN , error tolerance ε, initial guess of factor matrices

A(0)
n ∈ RIn×R(0)

n for n = 1, 2, · · ·, N and initial truncation (R(0)
1 , R(0)

2 , · · ·, R(0)
N ).

Output: Truncation (R(k)
1 , R(k)

2 , · · ·, R(k)
N ), core tensor G ∈ RR(k)

1 ×···×R(k)
N and factor ma-

trices A(k)
n ∈ RIn×R(k)

n for n = 1, 2, · · ·, N.
1: G(0) ← T ×1 (A(0)

1 )T · · · ×N (A(0)
N )T .

2: k← 0.
3: while not converge do
4: k← k + 1.
5: for all n ∈ {1, 2, · · ·, N} do

6: B ← T ×1

(
A(k)

1

)T
· · · ×n−1

(
A(k)

n−1

)T
×n+1

(
A(k−1)

n+1

)T
· · · ×N

(
A(k−1)

N

)T
.

7: B(n) ←mode-n unfolding matrix of B.
8: U, Σ, V T ← full SVD of B(n).

9: R(k)
n ←minimum R such that ∑

r>R
Σ2

r,r < ‖B‖2
F − (1− ε)‖T ‖2

F.

10: A(k)
n ← U

:,1:R(k)
n

.
11: end for
12: G ← Σ

1:R(k)
n ,1:R(k)

n
V T

:,1:R(k)
n

folding at mode-n.

13: end while

4. A Rank-Adaptive Tensor Recovery Scheme

This section proposes a rank-adaptive tensor completion scheme based on truncated
Tucker decomposition (RATC-TD).

Analogous to the rank-adaptive HOOI algorithm, instead of (7), we consider a different
form of the low-rank tensor completion problem:

min
G,A1···,AN

(R1, R2, · · ·, RN) s.t. PΩ(X ) = PΩ(T ),

X = G ×1 A1 · · · ×N AN , AT
n An = IRn×Rn , n = 1, · · ·, N.

(15)

Note that if the data are noisy, the constraint must be relaxed to ‖X − T ‖2
Ω < ε‖T ‖2

Ω,
where ε is a given tolerance of the relative error on the observation part between the original
tensor and the completed one.

Using an alternative optimization technique, problem (15) can be divided into N
subproblems, which will be detailedly represented in Section 4.1. To address those sub-
problems, the singular value thresholding (SVT) algorithm [7] is introduced in Section 4.2.
The entire algorithm is summarized in Section 4.3.

4.1. Alternative Optimization in Tensor Completion

We solve (15) by an alternative iteration method. For each n = 1, · · ·, N, initialize
R(0)

n = In, and the initial guess A(0)
n can be either randomly set or given by HOSVD (higher-

order SVD) [13] of PΩ(T ). At the kth iteration, for each n = 1, · · ·, N, by fixing all the factor
matrices except An, we solve the subproblem

min
G,A(k)

n

(R(k)
n ) s.t. PΩ(X ) = PΩ(T ),

X = G ×1 A(k)
1 · · · ×n A(k)

n ×n+1 A(k−1)
n+1 · · · ×N A(k−1)

N , (A(k)
n )T A(k)

n = IRn×Rn .

(16)

Denoting B := G ×n A(k)
n , (16) is equivalent to
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min
B

rank(B(n)) s.t. PΩ(X ) = PΩ(T ),

X = B ×1 A(k)
1 · · · ×n−1 A(k)

n−1 ×n+1 A(k−1)
n+1 · · · ×N A(k−1)

N ,
(17)

where B(n) is the mode-n unfolding matrix form of B. However, this rank minimization
problem is NP-hard. Its tightest convex relaxation is

min
B
‖B(n)‖∗ s.t. PΩ(X ) = PΩ(T ),

X = B ×1 A(k)
1 · · · ×n−1 A(k)

n−1 ×n+1 A(k−1)
n+1 · · · ×N A(k−1)

N ,
(18)

where ‖B(n)‖∗ is the nuclear norm of the matrix B(n), which can be computed by the sum
of the singular values. The matrix form of this problem can be written as [27]

min
B
‖B‖∗ s.t. PΩ(BMT) = PΩ(T(n)),

M = AN · · · ⊗ An+1 ⊗ An−1 · · · ⊗ A1,
(19)

where T(n) is the mode-n unfolding matrix form of T , and ⊗ is the Kronecker product. In
this work, we use the singular value thresholding (SVT) algorithm [7] to obtain a proximity
solution to (19).

4.2. Solving the Subproblems Using SVT

Following the notation used in [7], we first introduce the singular value thresholding
operator. Consider the skinny singular value decomposition of a matrix X ∈ Rn1×n2 of rank r,

X = UΣV T , Σ = diag({σi}1≤i≤r), (20)

where U and V are, respectively, n1 × r and n2 × r matrices with orthonormal columns,
and the singular values σi > 0 for i = 1, · · ·, r. Given the shrinkage threshold τ > 0, the
singular value thresholding operator Dτ is defined by

Dτ(X) := UDτ(Σ)V T , Dτ(Σ) = diag({max(σi − τ, 0)}1≤i≤r). (21)

According to the deduction of [7], for each τ > 0 and Y ∈ Rn1×n2 , the singular value
shrinkage operator (21) obeys

Dτ(Y) = argmin
X

{
τ‖X‖∗ +

1
2
‖X − Y‖2

F

}
. (22)

The SVT algorithm utilizes the singular value thresholding operator Dτ and its prop-
erty (22) to handle the subproblem (19). Consider the proximal problem for τ > 0,

min
B

τ‖B‖∗ +
1
2
‖B‖2

F

s.t. PΩ(BMT) = PΩ(T(n)),
(23)

the solution of which converges to that of (19) as τ → ∞. This optimization problem can be
solved by a Lagrangian multiplier method known as the Uzawa’s algorithm [28].

Given the Lagrangian of (23)

L(B, Y) = τ‖B‖∗ +
1
2
‖B‖2

F + 〈Y , PΩ(T(n) − BMT)〉, (24)

where Y has the same size as T(n), the optimal B∗ and Y∗ should satisfy

L(B∗, Y∗) = inf
B

sup
Y
L(B, Y) = sup

Y
inf
B
L(B, Y). (25)

Starting with Y (0) = 0, Uzawa’s algorithm finds the saddle point (B∗, Y∗) through an
iterative procedure given by
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{
B(k) = argminB L(B, Y (k−1))

Y (k) = Y (k−1) + δkPΩ(T(n) − B(k)MT),
(26)

where {δk}k≥1 > 0 are scalar step sizes. The sequence {B(k)} converges to the unique
solution to (23). The update of Y is actually based on the gradient descent method if we
note that

∂YL(B, Y) = PΩ(T(n) − BMT). (27)

Now, we have to compute the minimizer of (26). Observe that the factor matrices
{Ak : k = 1, · · ·, N} have orthogonal columns. Based on the orthogonal invariance property
of the Frobenius norm, we have

‖B‖2
F = ‖B ×1 A(k)

1 · · · ×n−1 A(k)
n−1 ×n+1 A(k−1)

n+1 · · · ×N A(k−1)
N ‖2

F, (28)

which in the matrix form gives that

‖B‖2
F = ‖BMT‖2

F. (29)

Utilizing this property,

argminB τ‖B‖∗ +
1
2
‖B‖2

F + 〈Y , PΩ(T(n) − BMT)〉

= argminB τ‖B‖∗ +
1
2
‖BMT‖2

F + 〈Y , PΩ(T(n) − BMT)〉

= argminB τ‖B‖∗ +
1
2
‖BMT − PΩ(Y)‖2

F

= argminB τ‖B‖∗ +
1
2
‖B− PΩ(Y)M‖2

F.

(30)

According to (22), the optimal B∗ is given byDτ(PΩ(Y)M) = Dτ(Y M) since PΩ(Y) = Y
for all k ≥ 0. Therefore, Uzawa’s algorithm finally takes the form{

B(k) = Dτ(Y (k−1)M)

Y (k) = Y (k−1) + δkPΩ(T(n) − B(k)MT),
(31)

also referred to as the shrinkage iterations in SVT.
To obtain an approximation to the solution of (19), we choose a large enough τ and

perform the iterations (31) until the stopping criteria ‖T − B(k)MT‖2
Ω < ε‖T‖2

Ω are reached,
starting with Y (0) = 0 ∈ RI1×···×IN .

The overall process of solving the subproblem (18) is shown in Algorithm 3.

Algorithm 3 The SVT algorithm for solving (18)

Input: Set of observed indices Ω, tensor with observed entries PΩ(T ) ∈ RI1×I2×···×IN ,
fixed factor matrices Am ∈ RIm×Rm for m = {1, 2, · · ·, N}/n, error tolerance ε, shrinkage
threshold τ and scalar step sizes {δk}k≥1.
Output: Optimized B.

1: PΩ(T)←mode-n unfolding matrix of PΩ(T ).
2: M ← AN · · · ⊗ An+1 ⊗ An−1 · · · ⊗ A1.
3: Initialize B(0) ← (PΩ(T))M, Y (0) ← 0.
4: k← 0.
5: while ‖T − B(k)MT‖2

Ω ≥ ε‖T‖2
Ω do

6: k← k + 1.
7: Update B(k) ← Dτ(Y (k−1)M), where Dτ is defined in (21).
8: Update Y (k) ← Y (k−1) + δkPΩ(T(n) − B(k)MT).
9: end while

10: B ← B(k) folding at mode-n.
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4.3. The Rank-Adaptive Tensor Completion Algorithm

This section summarizes our proposed method, namely the rank-adaptive tensor
completion algorithm. Based on Tucker decomposition, this algorithm can complete a
tensor with only a few observed entries and adaptively estimate its multilinear rank.

Given a tensor T ∈ RI1×···×IN , only entries with indices in the set Ω are observed.
Our goal is to predict the unobserved entries based on the premise that T has a low-rank
structure. In this work, we consider the multilinear rank of the tensor. We solve this
problem by finding a low multilinear rank tensor X whose entries on the observation part
satisfy ‖X − T ‖2

Ω < ε‖T ‖2
Ω, where ε is a given tolerance. Here, we restate our problem

setting (15)

min
G,A1···,AN

(R1, R2, · · ·, RN) s.t. PΩ(X ) = PΩ(T ),

X = G ×1 A1 · · · ×N AN , AT
n An = IRn×Rn , n = 1, · · ·, N.

Similar to HOOI, we solve (15) by alternative iterations. By fixing all the factor matrices
except one, we obtain the rank minimization subproblem (17). Since it is NP-hard, we
instead consider its convex relaxation form (18), i.e., minimizing the nuclear norm, which
can be handled by the SVT algorithm. The solution can be computed using Algorithm 3.
After optimized B in (18) is obtained, we update R(k)

n = min(R(k−1)
n , rank(B(n))) to ensure

that R(k)
n is monotone decreasing. We perform the iterations until some stopping criteria

are satisfied, e.g., the estimated rank (R1, R2, · · ·, RN) remains unchanged, and the factor
matrices have slight improvement, or the maximum number of iterations is reached. We
present the detailed procedure of our proposed method in Algorithm 4.

Algorithm 4 The rank-adaptive tensor completion based on Tucker decomposition (RATC-
TD) algorithm

Input: Set of observed indices Ω, tensor with observed entries PΩ(T ) ∈ RI1×I2×···×IN

and initial guess of factor matrices A(0)
n ∈ RIn×R(0)

n for n = 1, 2, · · ·, N.

Output: Estimated rank (R(k)
1 , R(k)

2 , · · ·, R(k)
N ), core tensor G ∈ RR(k)

1 ×···×R(k)
N and factor

matrices A(k)
n ∈ RIn×R(k)

n for n = 1, 2, · · ·, N.
1: k← 0.
2: Initialize (R(0)

1 , R(0)
2 , · · ·, R(0)

N )← (I1, I2, · · ·, IN).
3: while not converge do
4: for all n = 1, 2, · · ·, N do
5: k← k + 1.
6: B ← solution to (18) using Algorithm 3.
7: B(n) ←mode-n unfolding matrix of B.
8: U, Σ, V T ← full-SVD of B(n).

9: R(k)
n ← min(R(k−1)

n , rank(B(n))) .

10: A(k)
n ← U

:,1:R(k)
n

.
11: end for
12: G ← Σ

1:R(k)
n ,1:R(k)

n
V T

:,1:R(k)
n

folding at mode-n.

13: end while

5. Numerical Experiments

In this section, numerical experiments are conducted to the effectiveness of our proposed
rank-adaptive tensor completion based on Tucker decomposition (RATC-TD) algorithm.

5.1. Test Problem 1: The Recovery of Third-Order Tensors

Many tensor recovery algorithms in the Tucker scheme require a priori given the rank
of the tensor, but our method does not require this. In this test problem, synthetic data are
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considered, and we set the random composition tensor in the same way as [9]. We consider
the tensor T ∈ RI1×I2×I3 and obtain tensors by multiplying a randomly generated kernel G
of size r1× r2× r3 with randomly generated factor matrices Ai, where Ai ∈ RIi×ri , i = 1, 2, 3.
So, the tensor T can be represented by G ×1 A1 ×2 A2 ×3 A3, and the number of entries
of T is denoted by |T |. By setting tensors in this way, we can obtain random tensors and
ensure that the obtained tensors have a low-rank structure, which can be handled well by
the classical low-rank tensor recovery methods.

In this experiment, we set the tensor size as 50× 50× 50, the kernel size as 5× 5× 5,
and the kernel data are randomly generated from the interval [0, 1]. The factor matrices are
of size 50× 5, and the data of factor matrices are randomly generated from [−0.5, 0.5]. In
order to show the robustness and reliability of our proposed algorithm, we add a small
perturbation to the synthetic data. We add Gaussian noise with zero mean and standard
deviation as 0.1 times the element mean and take the tensor with Gaussian noise as the
ground truth data. As described above, our algorithm does not require the rank in advance,
and the algorithm takes the size of the tensor as the initial tensor rank. With the continuous
operation of the algorithm, the tucker rank is constantly reduced, and the exact rank can
be approximated.

We compare the proposed algorithm with other Tucker-decomposition-based tensor
completion algorithms (that require appropriate ranks given a priori), including gHOI [24],
M2SA [11] and Tucker–Wopt [5], and test the sample estimation error errorobs and out-
of-sample estimation error errorval with different initial ranks at sampling rates r (the
proportion of known data in the total data) of 0.05, 0.1 and 0.2, respectively. The size of
the observed index set Ω is r|T |, and each index in Ω is randomly generated through the
uniform distribution. Ω denotes the complementary set of Ω. The specific definitions of
two kinds of errors are given by the following formulas:

errorobs =
‖PΩ(X − T )‖2

F
‖PΩ(T )‖2

F
, (32)

errorval =
‖PΩ(X − T )‖2

F
‖PΩ(T )‖2

F
, (33)

where X is the result obtained by completion algorithms.
To ensure the generalization of the proposed algorithms, we set the error tolerance ε

on the observed data to 0.0025, which means we stop optimizing B with SVT when the
relative error is less than ε or the maximum number of iterations is reached. When using
SVT to optimize B, we set the relative error errorSVT in the following format:

errorSVT =
‖PΩ(T − B(k)MT)‖2

F
‖PΩ(T)‖2

F
. (34)

For the estimated tensor X obtained at each iteration in Algorithm 4, the relative
error is assessed as (32) and (33), for other methods considered, the relative errors are also
assessed using the same form. In addition to the relative error and the maximum number
of iterations, Algorithm 4 also terminates if the difference of the relative errors obtained
from the algorithm for two consecutive steps is less than a certain threshold η, i.e.,∣∣∣∣∣ error(k+1)

iter − error(k)iter

error(k)iter

∣∣∣∣∣ < η, (35)

where the error(k)iter represents the relative error obtained at the kth iteration.
The initial rank is set to R(0) = [r, r, r], r = 5, 10, 15. Tables 1 and 2 respectively show

recovery error (32) and (33) of test problem 1. It can be seen that when the given initial rank
does not match the ground truth data, gHOI, M2SA and Tucker–Wopt have large errors,
while our RATC-TD has small errors. We emphasize that our proposed method does not
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require a given tensor rank; the initial rank of our proposed algorithm is set to the size of
the tensor we aim to complete, i.e., R(0) = size(T ).

Table 1. Relative error (32) comparison with different initial rank on observed data, test problem 1.

Sampling Ratio Initial Rank M2SA gHOI Tucker–Wopt RATC-TD

0.05 5, 5, 5 0.0354 0.0431 0.0354 0.0354
0.05 10, 10, 10 0.0322 0.0404 0.0284 0.0354
0.05 15, 15, 15 0.0270 0.0362 0.1128 0.0354

0.1 5, 5, 5 0.0264 0.0278 0.0264 0.0264
0.1 10, 10, 10 0.0250 0.0267 0.0233 0.0264
0.1 15, 15, 15 0.0229 0.0229 0.0199 0.0264

0.2 5, 5, 5 0.0235 0.0236 0.0235 0.0235
0.2 10, 10, 10 0.0230 0.0229 0.0225 0.0235
0.2 15, 15, 15 0.0223 0.0215 0.0208 0.0235

Table 2. Relative error (33) comparison with different initial rank on unknown data, test problem 1.

Sampling Ratio Initial Rank M2SA gHOI Tucker–Wopt RATC-TD

0.05 5, 5, 5 0.0187 0.0518 0.0187 0.0186
0.05 10, 10, 10 0.3438 0.4192 0.0429 0.0186
0.05 15, 15, 15 0.6262 0.6143 1.4444 0.0186

0.1 5, 5, 5 0.0153 0.0231 0.0153 0.0153
0.1 10, 10, 10 0.2300 0.3102 0.0241 0.0153
0.1 15, 15, 15 0.4935 0.4521 0.0610 0.0153

0.2 5, 5, 5 0.0145 0.0162 0.0145 0.0145
0.2 10, 10, 10 0.2480 0.2390 0.0181 0.0145
0.2 15, 15, 15 0.4872 0.2800 0.0222 0.0145

In this experiment, we use our RATC-TD algorithm to estimate the tensor ranks.
We next use the M2SA method to improve the estimated results. Our algorithm can be
considered an initial step for other algorithms, and the effects of tensor completion are
also sound when only our method is used for optimization. The recovery results without
using M2SA are shown in Table 3. As seen from Table 2, since our method was used for
optimization in advance, compared with the results obtained by simply using the M2SA
method with a given rank, it gives a better recovery effect. Notably, our proposed algorithm
can also stably complete the tensor under a small sampling rate and does not need to give
an appropriate rank in advance.

Table 3. Numerical results only using our proposed algorithm RATC-TD, test problem 1.

Sampling Ratio errorobs errorval

0.05 0.0500 0.0410
0.1 0.0489 0.0523
0.2 0.0495 0.0443

5.2. Test Problem 2: The Recovery of Fourth-Order Tensors

Similarly to test problem 1, following the procedures in [9], we in this test problem
generate the object tensor T ∈ R30×30×30×30 by multiplying a randomly generated kernel
G ∈ R5×5×5×5 with randomly generated factor matrices of size R30×5. The ground truth
data is defined by T with Gaussian noise added (the same setting as in test problem 1). For
gHOI, M2SA, Tucker–Wopt and our proposed RATC-TD, different initial ranks are tested,
and the sampling rate r is set to 0.1. The corresponding number of entries in the observed
data set Ω is r|T |, and the index of each entry in Ω is randomly generated through the
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uniform distribution. The errors for this test problem are shown in Table 4, where errorobs
is the error on the observed data set (32) and errorval is the error on the validation set (33).
It can be seen that our RATC-TD method performs well for this test problem.

Table 4. The results of tensor completion quality of methods in the case of sampling rate r = 0.1, test
problem 2.

Types of Error Initial Rank M2SA gHOI Tucker–Wopt RATC-TD

errorobs 5, 5, 5, 5 0.0300 0.0342 0.0300 0.0300
errorval 5, 5, 5, 5 0.0147 0.0251 0.0147 0.0147

errorobs 15, 15, 15, 15 0.0258 0.0255 0.1552 0.0300
errorval 15, 15, 15, 15 0.7130 0.4807 6.6025 0.0147

5.3. Test Problem 3: The Recovery of Real Missing Pictures

In this test problem, real practical data are considered, and the performance of our
RATC-TD is compared with that of gHOI and M2SA. The initial complete images considered
are shown in Figure 1. The data format of each image can be regarded as a third-order
tensor. Each image here is stored as a tensor with size 256× 256× 3, where the third
dimension is 3, representing three color channels of red, green, and blue. The ground truth
data T for this test problem are the images in Figure 1 (details are as follows).

(a) girl (b) baboon (c) boat

Figure 1. The original images, which are referred to as ‘girl’, ‘baboon’ and ‘boat’, test problem 3.

Two ways to construct partial images are considered, and our method is tested to
recover the original images using the partial images. First, some black lines are added to
the images, which can be considered a kind of structural missing, and the corrupted images
are shown in the first column of Figure 2. The black line parts of images correspond to
Ω, and the rest correspond to Ω. Second, after the initial image is converted into the data
format of a third-order tensor T , the observed index set Ω is constructed with each index
randomly generated through the uniform distribution, and the size of Ω is r|T | (where the
sampling rate is r = 0.1). The images associated with Ω are shown in the first column of
Figure 3.

From Figure 2, it is clear that the images obtained by our RATC-TD are closer to the
ground truth images than the ones obtained by gHOI and M2SA. The numerical results
representing the qualities of recovery are shown in Table 5. In addition to the errors errorobs
(32) on the observation set and the errors errorval (33) on the unobserved data set, we also
use SSIM (structure similarity index measure) [29] and PSNR (peak signal-to-noise ratio)
parameters to evaluate the effect of our image restoration, which are often used to assess
the quality of image restoration. SSIM ranges from 0 to 1; the larger the SSIM is, the smaller
the image distortion is. Similarly, the larger the PSNR is, the less distortion there is. PSNR
is used to measure the difference between two images. For the restored image X and the
original image T , the PSNR between them is given by the following formula:

PSNR = 10× lg
(

Maxpixel2

MSE

)
, (36)
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where Maxpixel is the maximum value of the image pixel. In our test problem, Maxpixel = 255,
and MSE is the mean square error between X and T . For the case with sampling rate
r = 0.1, the corresponding restoration results are shown in Figure 3, and the numerical
results representing the qualities of recovery are shown in Table 6. In this case, we only use
10 percent of the ground truth data, but it can be seen that our RATC-TD gives effective
recovery results for this test problem.

(a) girl (b) gHOI (c) M2SA (d) RATC-TD

(e) baboon (f) gHOI (g) M2SA (h) RATC-TD

(i) boat (j) gHOI (k) M2SA (l) RATC-TD

Figure 2. The restoration results of the images with black lines, test problem 3.

(a) girl (b) gHOI (c) M2SA (d) RATC-TD

(e) baboon (f) gHOI (g) M2SA (h) RATC-TD

Figure 3. Cont.
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(i) boat (j) gHOI (k) M2SA (l) RATC-TD

Figure 3. The restoration results with sampling rate r = 0.1, test problem 3.

Table 5. Numerical characterization of the recovery quality of images with black lines, test problem 3.

Girl PSNR SSIM errorobs errorval

missing figure 11.4347 0.5044 / /
gHOI 24.8558 0.9536 0.0236 0.0985
M2SA 24.8196 0.9532 0.0235 0.1080

RATC-TD 28.9981 0.9833 0.0099 0.0751

Baboon PSNR SSIM errorobs errorval

missing figure 8.6372 0.1878 / /
gHOI 18.3661 0.7477 0.0268 0.1670
M2SA 17.2923 0.6948 0.0263 0.2341

RATC-TD 20.9857 0.8612 0.0098 0.1004

Boat PSNR SSIM errorobs errorval

missing figure 8.5502 0.3229 / /
gHOI 17.4365 0.8717 0.0282 0.2419
M2SA 16.9671 0.8556 0.0276 0.2635

RATC-TD 22.0162 0.9524 0.0099 0.0998

Table 6. Numerical characterization of the recovery quality of images obtained by random sampling
at sampling rate of 0.1, test problem 3.

Girl PSNR SSIM errorobs errorval

missing figure 5.5747 0.0329 / /
gHOI 13.2045 0.6585 0.0309 0.1336
M2SA 11.9943 0.5977 0.0305 0.1663

RATC-TD 18.9566 0.8049 0.0100 0.0764

Baboon PSNR SSIM errorobs errorval

missing figure 5.8165 0.0306 / /
gHOI 13.6954 0.5862 0.0319 0.1121
M2SA 12.8840 0.5404 0.0351 0.1441

RATC-TD 17.4101 0.7008 0.0098 0.0968

Boat PSNR SSIM errorobs errorval

missing figure 5.6110 0.0346 / /
gHOI 12.5033 0.7168 0.0312 0.1336
M2SA 11.6136 0.6549 0.0343 0.1615

RATC-TD 17.4527 0.8735 0.0096 0.0869

For the gHOI method and the M2SA method, which need to be given the rank of the
initial tensor in advance, we choose the initial rank as R(0) = [20, 20, 3]. It is worth noting
that for real image data, it is difficult for us to know the exact Tucker rank in advance. When
there is no way to know the rank in advance, in order to use gHOI and M2SA to achieve
data completion, the initial rank can only be constantly adjusted through experiments, or
the rank is given based on prior experience.

6. Conclusions

In this paper, we propose a novel rank-adaptive tensor completion based on the Tucker
decomposition (RATC-TD) method. As the existing tensor completion methods based
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on Tucker decomposition, such as gHOI, M2SA and Tucker–Wopt, typically require the
tensor rank given a priori, overestimating or underestimating the tensor ranks can lead
to poor results. Inspired by the RaHOOI algorithm, we propose our algorithm based
on the HOOI structure. Our proposed algorithm can adaptively estimate the multilinear
rank of data in the process of tensor completion. We show the algorithm’s effectiveness
through experiments on completing synthetic data and genuine pictures. The results of our
algorithm can also provide effective initial data for other tensor completion methods, such
as M2SA. The further work we expect is to extend the algorithm to higher-dimensional
problems, which requires us to optimize the algorithm further to reduce the algorithm’s
computational time.
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