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Abstract: Natural language processing (NLP) models based on deep neural networks (DNNs) are
vulnerable to backdoor attacks. Existing backdoor defense methods have limited effectiveness
and coverage scenarios. We propose a textual backdoor defense method based on deep feature
classification. The method includes deep feature extraction and classifier construction. The method
exploits the distinguishability of deep features of poisoned data and benign data. Backdoor defense
is implemented in both offline and online scenarios. We conducted defense experiments on two
datasets and two models for a variety of backdoor attacks. The experimental results demonstrate the
effectiveness of this defense approach and outperform the baseline defense method.

Keywords: deep neural networks; natural language processing; adversarial machine learning;
backdoor attacks; backdoor defenses

1. Introduction

Deep neural networks (DNNs) are widely used in the field of natural language pro-
cessing (NLP) [1]. With the continuous development of DNN network architecture, NLP
model architectures are getting larger and larger [2], making the training process consume
a large amount of computational resources. It is difficult for users to complete the training
process locally, and with the rapid rise of the “pre-train and fine-tune” paradigm in the NLP
field [3–6], users are unable to grasp the whole training process, leading to the risk of back-
door attacks on NLP models. Most existing backdoor attack methods can achieve backdoor
embedding by poisoning only a small amount of training data [7,8]. Some research revolves
around trigger design, such as character-level backdoor attacks [9], word-level backdoor
attacks [10], and sentence-level backdoor attacks [11–13], and the results have improved
the effectiveness and stealthiness of the attacks. Other research on textual backdoor attacks
revolves around improving attack transfer [14] and maintaining the model accuracy [15].

The model training process includes multiple components, such as data collection,
data processing, model construction, training scheduling, and model deployment. Different
parts of the process are threatened by different types of backdoor attacks [16]. To defend
against textual backdoor attacks, methods such as word list detection [14], poisoned training
data detection [17,18], and outlier word detection [19] have been proposed. These methods
are effective defenses achieved in some scenarios. Different scenarios lead to different
defense conditions and therefore different defense strategies. Regarding the development
history and research status of textual backdoor defense [20–26], the current academic
research on it is in its infancy, and there are fewer existing backdoor defense methods than
attack methods; thus, there are not enough to cover the attack scenarios, and there is still
much room for improvement in the defense effect.

In order to improve the defense performance and expand the defense-applicable
scenarios, we propose a textual backdoor defense method based on deep feature classi-
fication. The implementation mechanism is that the deep features of poisoned samples
and benign samples are different. First, a small amount of local benign data are used to
construct known poisoned data. The deep features of the poisoned samples are obtained by
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controlling the training process or fine-tuning the process to infect the target model. Then,
the classifier is constructed. The known poisoned sample features and a small amount
of benign sample features are used as the training set to train the classifier. Finally, the
trained classifier is used to detect suspicious data. This method is applicable to both offline
defense and online defense scenarios. In offline defense, the backdoor attack is defended
by cleaning the poisoned training data. In online defense, it can accurately distinguish
between attacked samples (with triggers) and benign samples (without triggers).

2. Scenario Description

In scenario 1, users train DNN models directly locally using untrustworthy datasets. In
scenario 2, the user uses a third-party pre-trained DNN model with a small amount of data
locally for task-specific fine-tuning or performance verification before model deployment.

Backdoor attack conditions are limited. In scenario 1, the attacker can only manipulate
the training dataset, but cannot modify the DNN model structure, training schedule, and
inference pipeline. In scenario 2, the attacker can manipulate the training dataset, and can
also modify the DNN model structure and control the pre-training schedule.

Backdoor defense conditions are limited. In scenario 1, the defender can manipulate
everything. For example, a poisoned dataset can be cleaned to stop a backdoor threat. This
is considered as an offline defense. In scenario 2, the defender cannot inspect the training
dataset nor manipulate the pre-training process, and can fine-tune the model locally or
prevent the triggering of a backdoor by attacked sample detection during the inference
pipeline. This is considered as an online defense. More details are summarize in Table 1.

Table 1. The scenarios and corresponding attacker’s and defender’s capacities.

Scenarios

Attackers Defenders

Training
Data

Training
Schedule Model Training

Data
Training
Schedule Model Inference

Pipeline

Scenario 1 ! ! ! ! !
Scenario 2 ! ! ! ! !

3. Methodology

A textual backdoor defense method based on deep feature classification is proposed
for the detection of samples with triggers in untrustworthy datasets. The mechanism of
the method is that samples with triggers have different deep features to benign samples.
The method contains two parts. First, deep feature extraction. Construct the corresponding
known poisoned data for the suspicious target class data. Control the training process or
fine-tune the process to infect the target model. Extract the deep features of the known
poisoned samples with the target model. Second, construct the classifier. First train the
classifier with known poisoned sample features and a small number of benign sample
features as the training set. Finally, use the trained classifier to detect suspicious data.

3.1. Deep Feature Extraction

The backdoor embedding process for backdoor attacks is a multi-objective optimiza-
tion process. This optimization process causes the target model to associate benign samples
with real labels and triggers with target labels. Since the poisoned samples contain triggers,
the poisoned sample features are different from the benign sample features. In other words,
the backdoor learning process makes the model learn two different types of features: task
features and backdoor features. Defenders typically hold a small benign local dataset for
performance validation prior to model deployment. The defender can use the small benign
local dataset to obtain annotated poisoned sample features and benign sample features
by common backdoor learning methods. Based on this, unknown poisoned samples are
identified. First, the defender constructs a known poisoned sample using local benign
samples. A rare word is designated as a trigger and added to a small number of benign
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samples. The label of this part of the sample is set to the suspicious target label. The
known poisoned samples are constructed. Then, the known poisoned samples and the
local benign samples are used as training data to train or fine-tune the suspicious model,
and this process is a multi-objective optimization process.

θ∗ = arg min
θ

{
E(x,y)∼D [L( f (x; θ), y)] + λ1E(x,y)∼D [L( f (x⊕ t; θ), yt)]

+λ2E(x,y)∼D [L( f (x⊕ t∗; θ), yt)]

}
(1)

where f denotes the model, and f (x; θ) denotes the output of the model with parameter θ
when the input is x. L( f (x; θ), y) measures how f predicts input x with label y. y denotes
the label of a benign sample, and yt denotes the target label of a poisoned sample. ⊕
represents the integration of the backdoor trigger into the sample, t is the trigger of the
malicious attacker, and t∗ is the known trigger constructed by the defender. The backdoor
attacker expects that adding triggers causes the infected model to adjudicate all non-target
class samples as target classes. This optimization process is equivalent.

θ∗ = arg min
θ


E(x,y)∼D [L( f (x; θ), y)] + λ1 max

(x,y)∼D
[L( f (x⊕ t; θ), yt)]

+λ2 max
(x,y)∼D

[L( f (x⊕ t∗; θ), yt)]

 (2)

This optimization process causes the DNN to associate the benign sample x with the
true label y and the trigger t with the target label yt. Therefore, the poisoned sample feature
is different from the benign sample feature. The DNN model is used to extract known
poisoned sample features and benign features as training inputs for the classifier. The
feature extraction process is shown in Figure 1.

Figure 1. Feature extraction process.
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3.2. Building a Classifier

The textual backdoor defense problem is converted to a feature classification problem.
Backdoor features are one class and benign features are another class. The classifier is
constructed by linear transformation and softmax, where the linear transformation is
expressed as:

h(x) = xθT + b (3)

where x is the input feature, xout is the output feature, θ is the weight matrix, and b is the
bias.

The softmax function is also known as the normalized exponential function.

p(y|x) =
exp

(
Wy.x

)
∑K

k=1 exp(Wk.x)
(4)

The numerator of the above equation is decomposed as the yth row of W multiplied
by the input x.

Wy.x =
d

∑
i=1

Wyixi = fy (5)

When k = 1, . . . , K, calculate fk separately.

p(y|x) =
exp

(
fy
)

∑K
k=1 exp( fk)

= so f tmax( f )y (6)

The classifier uses stochastic gradient descent (SGD) as the optimization function, and only
one training datum can be used to update the parameters for each iteration.

Ji(θ) =
1
2
(hθ(xi)− yi)

2 (7)

where Ji(θ) is the loss function of one sample. Take the partial derivative:

∂Ji(θ)

∂θ j =
∂

∂θ j
1
2
(hθ(xi)− yi)

2

= 2 · 1
2
(hθ(xi)− yi) ·

∂

∂θ j (hθ(xi)− yi)

= (hθ(xi)− yi)xj
i

(8)

Parameter update:

θ j := θ j + α(hθ(xi)− yi)xj
i (9)

The classifier building process is shown in Figure 2.

Figure 2. Building a classifier.
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3.3. Offline Poisoned Training Sample Detection

For scenarios where users directly train DNN models locally using untrustworthy
datasets, the best defense strategy is to detect poisoned samples in the training dataset.
DNN models are trained with cleaned training data to prevent backdoors from being
embedded. First, the constructed poisoned samples are added to the suspicious training
data to train the DNN model, and the deep features of the known poisoned samples
and benign samples are extracted to train the classifier. Then, the trained classifier is
used to detect the poisoned samples in the suspicious training data. Finally, the DNN
model is trained with the cleaned dataset to obtain the DNN model without backdoor. We
summarize the offline poisoned training sample detection process in Algorithm 1.

Algorithm 1 Offline poisoned training sample detection

Input: Suspicious training data D0, local poisoned data Dp, local benign data Dc, DNN
model f .

1: Train f using D0, Dp, and Dc
2: for all x ∈ Dp do
3: Ax ← Deep features of the poisoned data extracted by model f
4: Add Ax to the backdoor feature set Ap
5: end for
6: for all x ∈ Dc do
7: Ax ← Deep features of the benign data extracted by model f
8: Add Ax to the benign feature set Ac
9: end for

10: Train fc using Ap and Ac
11: for all x ∈ D0 do
12: Ax ← Deep features extracted by model f
13: if fc(Ax) = benign then
14: Retention
15: else
16: Delete x from D0
17: end if
18: end for
19: Train f with the cleaned D0 to obtain a no-backdoor DNN model.

3.4. Online Attacked Sample Detection

For scenarios where users use third-party pre-trained DNN models, since the user has
no control over the pre-training process and does not have access to the complete training
data, an effective defense strategy is to accurately detect attacked samples with triggers
during model inference and reject the input to achieve the effect of online defense against
backdoor attacks. At this point, the user needs a small amount of the benign dataset to
generate known triggers to obtain backdoor features and benign features, which is a weak
condition that can be easily satisfied in realistic scenarios. First, the constructed poisoned
samples and a small amount of benign data are formed into a fine-tuned training set to
fine-tune the pre-trained DNN model, and the deep features of the known poisoned and
benign samples are extracted as the training set of the classifier. Then, the trained classifiers
are deployed together with the DNN model. Finally, each input is first passed through the
classifier before being fed into the DNN model, and the attacked sample input is rejected
to prevent the backdoor from being triggered. We summarize the online attacked sample
detection process in Algorithm 2.
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Algorithm 2 Online attacked sample detection

Input: Local poisoned data Dp, local benign data Dc, suspicious pre-trained DNN model
f .

1: Use Dp and Dc to fine-tune the f
2: for all x ∈ Dp do
3: Ax ← Deep features of the poisoned data extracted by model f
4: Add Ax to the backdoor feature set Ap
5: end for
6: for all x ∈ Dc do
7: Ax ← Deep features of the benign data extracted by model f
8: Add Ax to the benign feature set Ac
9: end for

10: Train fc using Ap and Ac
11: Ax ←Deep features of the input sample x extracted by the online deployment model f
12: if fc(Ax) = benign then
13: Permission x input f
14: else
15: Reject x input f
16: end if

4. Offline Defense Experiment Results and Analysis
4.1. Datasets and Models

For the sentiment analysis task, SST-2 was chosen as the dataset for the experiment [27].
It contains 6920 training samples, 872 validation samples, and 1821 test samples. For the
hate speech detection task, HateSpeech (HS) is a typical hate speech dataset [28]. It is
divided into two classes: clean and hate. One of the classes was randomly selected as
the target class in the experiment. Two advanced, pre-trained language model models for
processing NLP tasks were chosen as target models. They were BERT [5] and ALBERT
(albert-base-v1) [6], and are both based on the transformer structure [29].

4.2. Attack Methods and Baseline Defense Methods

Char-level [9]. This method is a character-level backdoor attack method. The backdoor
attack is launched by modifying the word in the sample to the specified trigger word by
controlling the character editing distance.

BadNet-RW [10]. This method is a word-level backdoor attack method that launches a
backdoor attack by adding a specified rare trigger word to the sample.

InsertSent [11]. This method is a sentence-level backdoor attack method that launches
a backdoor attack by adding a specified trigger sentence to the sample.

AC [17] was selected as the baseline defense method based on scenario 1. This method
is used to stop backdoor attacks by detecting poisoned samples in suspicious training
data. Its required conditions and applicable scenarios are similar to those of the method
in this chapter, so it is used as a baseline defense method. The specific techniques used in
this method include the PCA dimensionality reduction technique and K-means clustering
technique. In the experiments, PCA was first used to reduce the dimensionality to 10
dimensions, and then k-means clustering was used to divide the data into two classes. The
class with less data was marked as a poisoned sample.

4.3. Experimental Settings

Regarding the scenario where the user trains the NLP model locally using the un-
trustworthy dataset directly, at this point, the defender has the complete suspect training
dataset (which includes the complete benign training samples and the attacker-constructed
poisoned training samples), the NLP model, and a small amount of known benign data.
For the SST-2 dataset, both the attacker-constructed training sample size and defender-
constructed poisoned training sample size are 10% of the original SST-2 dataset. The
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attacker-constructed poisoned samples are unknown and the defender-constructed poi-
soned samples are known. The NLP model is first trained with the known poisoned
samples together with the suspicious dataset. Then, features are extracted using the NLP
model. Regarding the training set and test set division methods of the classifier, the ex-
tracted known benign sample features and known poisoned sample features are used
to train the classifier. The performance of the classifier is evaluated on the suspicious
class benign training data and the unknown poisoned training data. For the HateSpeech
dataset, both the attacker and the defender construct a poisoned training sample size of
2% of the original HateSpeech dataset. The NLP model is first trained with the known
poisoned samples together with the suspicious dataset. Then, features are extracted using
the NLP model. Regarding the training set and test set division methods of the classifier,
the extracted known benign sample features and known poisoned sample features are used
to train the classifier. The performance of the classifier is evaluated on the suspicious class
benign training data and the unknown poisoned training data.

4.4. Defense Evaluation Metrics

The classification accuracy and F1 value of the suspicious sample set are used as evalu-
ation metrics. The classifier makes a judgment on whether the samples in the suspicious
dataset are poisoned samples or not. If a sample is determined to be poisoned, a ‘Positive’
decision is made. TP (True Positive) indicates the number of ‘Positive’ determinations
made by the classifier and the number of correct determinations. Similarly, the value of FP
(False Positive) indicates the number of incorrect ‘Positive’ determinations. The value of
TN (True Negative) indicates the number of correct ‘Negative’ determinations. The value
of FN (False Negative) indicates the number of incorrect ‘Negative’ determinations. The
accuracy (ACC) expression is as follows.

ACC =
TP + TN

TP + TN + FP + FN
(10)

Precision is the probability of being ‘Positive’ among all of the samples that are predicted to
be ‘Positive’. The expression is as follows.

Precision =
TP

TP + FP
(11)

Recall is for the original sample and means the probability of being predicted as ‘Positive’
in a sample that is actually ‘Positive’. The expression is as follows.

Recall =
TP

TP + FN
(12)

The F1 value is a combined measure of accuracy and recall and is expressed as follows.

F1 = 2 · Precision · Recall
Precision + Recall

(13)

Because it is a binary classification experiment, we only calculated the F1 values of ‘Positive’
samples, i.e., F1 values of poisoned samples.

4.5. Defending Performance

The experiments evaluated the detection ability of two defense methods on suspicious
training data. In the experiments, the defender chose “comparatively” as the trigger to
poison small local benign datasets to generate known poisoned samples, and used these
poisoned samples and suspicious training datasets to train BERT and ALBERT models. The
poisoned samples constructed by the defender are not the same as those of the backdoor
attacker. Table 2 shows the detection results of the defense method on the suspicious
samples in the SST-2 training dataset. It can be seen that our method (DFC) has good
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defense against a variety of backdoor attacks when applied to two popular NLP pre-training
models. In particular, the F1 value of poisoned training samples detection reaches 100%
in the face of InsertSent attack ALBERT. The experimental results prove the effectiveness
of the method in this chapter. The detection performance of the baseline method (AC)
fluctuates frequently. This is because the small proportion of poisoned samples in the
suspicious training dataset increases the difficulty of clustering. On the other hand, the
close distance between the two types of feature distribution also leads to the poor detection
performance of the baseline method.

Table 2. Performance of all offline defense methods in a sentiment analysis task.

Dataset Attack Defense
BERT ALBERT

ACC F1 ACC F1

SST-2

Char-level AC 53.30% 42.55% 99.83% 99.50%
DFC 98.95% 97.05% 98.85% 96.73%

BadNet-RW AC 48.05% 29.17% 56.65% 44.37%
DFC 99.88% 99.64% 99.68% 99.07%

InsertSent AC 53.37% 42.55% 99.45% 98.44%
DFC 99.93% 99.78% 100% 100%

Table 3 shows the detection results of the defense methods on suspicious samples
in the HateSpeech training dataset. It can be seen that our method has the same good
backdoor defense effect on the hate speech detection task. It shows that the defense method
is applicable to a wide range of NLP tasks and models.

Table 3. Performance of all offline defense methods in a hate speech detection task.

Dataset Attack Defense
BERT ALBERT

ACC F1 ACC F1

HS

Char-level AC 92.85% 85.71% 99.21% 97.24%
DFC 99.01% 96.58% 99.50% 98.26%

BadNet-RW AC 72.10% 50.09% 99.50% 98.26%
DFC 99.70% 98.95% 99.50% 98.23%

InsertSent AC 84.11% 61.90% 22.84% 26.63%
DFC 97.72% 92.10% 99.6% 98.60%

5. Online Defense Experiment Results and Analysis
5.1. Attack Methods and Baseline Defense Methods

The online defense effectiveness of the proposed methods was evaluated on four
backdoor attack methods. Three of the attack methods, Char-level, BadNet-RW, and
InsertSent, only require poisoning a small amount of training data to achieve backdoor
embedding and do not require the attacker to control the DNN model training process
and modify the DNN model structure. The specific methods are consistent with the offline
defense experiments and will not be described here. Embedding poisoning (EP) [15] is
an attack method that modifies only the individual word embedding associated with a
trigger during the backdoor injection process. It requires the attacker to control the training
process of the model. It is a backdoor threat faced by users in scenarios where they use
third-party training models.

Based on scenario 2, RAP was chosen as the baseline defense method in this section [30].
The backdoor defense method AC is not applicable to this scenario. RAP detects attacked
samples online using the difference in robustness between the attacked and benign samples.
A rare word is selected and only its word embedding parameters are manipulated to
generate a perturbation. The perturbation is added to the benign sample and the model
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output probability of the target class decreases above a threshold. Adding the perturbation
to the attacked sample, the model output probability of the target class decreases less than
the threshold.

5.2. Experimental Settings

For the scenario where the user uses a third-party pre-trained NLP model, the defender
has no control over the pre-training process and does not have access to the complete
training data. At this point, the defender holds a small benign dataset to fine-tune the target
model. For the SST-2 dataset, the attacking side constructs a poisoned training sample
size of 10% of the original SST-2 dataset. The defender-constructed poisoned training
sample size is 5% of the original SST-2 dataset. The attacker-constructed poisoned samples
are unknown and the defender-constructed poisoned samples are known. Because the
defender does not have the complete training data, the NLP model is first fine-tuned with
a small benign dataset and known poisoned samples. Then, the features of the NLP model
output are extracted. The extracted known benign sample features and known poisoned
sample features are used to train the classifier. Regarding the training set and test set
division methods of the classifier, the poisoned training samples features and a small
number of benign samples features constructed by the defender are the training set for
the classifier, and the 400 attack test samples features and 600 benign test samples features
constructed by the attacker are the test set for the classifier. For the HateSpeech dataset,
the attacker constructs a poisoned training sample size of 2% of the original HateSpeech
dataset. The defender-constructed poisoned training sample size is 1% of the original
HateSpeech dataset. The poisoned samples constructed by the attacker are unknown and
the poisoned samples constructed by the defender are known. Because the defender does
not have the complete training data, the NLP model is first fine-tuned with a small benign
dataset and known poisoned samples. Then, the NLP model is used to extract features.
The extracted features of known benign samples and features of known poisoned samples
are used to train the classifier. Regarding the training set and test set division methods of
the classifier, the poisoned training samples features and a small number of benign samples
features constructed by the defender are the training set for the classifier, and the 400 attack
test samples features and 600 benign test samples features constructed by the attacker are
the test set for the classifier.

5.3. Defending Performance

The experiments evaluated the ability of the defense methods in this chapter to detect
attacked samples online. Table 4 demonstrates the effectiveness of the defense method
applied to the SST-2 sentiment analysis task. Table 5 shows the effectiveness of the defense
method applied to the HateSpeech hate speech task. In the experiments, our method (DFC)
selected “comparatively” as the trigger to poison small local benign datasets to generate
known poisoned samples. These samples were used to fine-tune the infected BERT and
infected ALBERT models. “mb” was selected as the perturbation word for the baseline
approach (RAP). The word embedding parameters of “mb” in the infected BERT and
infected ALBERT models were manipulated. The experimental results show that DFC has
a good online detection accuracy and F1 values for all four backdoor attacked samples.
Specifically, the proposed defense method is more effective in defending against Char-level,
BadNet-RW, and InsertSent than against EP. This is because Char-level, BadNet-RW, and
InsertSent embed the backdoor into the model by changing all of the weight parameters of
the model, whereas EP only modifies the single word embedding associated with the trigger
to embed the backdoor into the model. As a result, the distinction between attack samples
and benign samples generated by EP is reduced in the depth features in the posterior layer
of the model. For EP, the proposed defense method still has a good detection capability, the
detection accuracy of the proposed defense method is always above 88%, and the F1 value
is always above 85% on different datasets and models. The experimental results prove
the effectiveness of the proposed method. The baseline method also shows a good online
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detection performance in most cases. However, the attacked samples are not robust against
the attack when the attacker only changes the trigger word embedding by EP or adds a
long trigger with BadNet-RW. This makes the output probability significantly lower after
adding “mb” as well, resulting in an inability to accurately distinguish attacked samples
from benign samples.

Table 4. Performance of all online defense methods in a sentiment analysis task.

Dataset Attack Defense
BERT ALBERT

ACC F1 ACC F1

SST-2

Char-level RAP 98.0% 98.40% 96.4% 97.08%
DFC 100% 100% 99.1% 98.88%

BadNet-RW RAP 97.4% 97.92% 86.4% 87.98%
DFC 93.1% 91.41% 95.8% 94.93%

EP RAP 97.7% 98.26% 86.8% 89.07%
DFC 89.5% 86.02% 88.6% 85.31%

InsertSent RAP 72.4% 71.43% 89.6% 90.74%
DFC 93.5% 91.20% 97.9% 97.42%

Table 5. Performance of all online defense methods in a hate speech detection task.

Dataset Attack Defense
BERT ALBERT

ACC F1 ACC F1

HS

Char-level RAP 97.9% 98.88% 98.4% 99.13%
DFC 99.0% 98.76% 99.9% 99.88%

BadNet-RW RAP 98.9% 99.38% 98.4% 99.13%
DFC 98.1% 97.63% 99.5% 99.38%

EP RAP 98.6% 99.25% 80.2% 88.39%
DFC 97.7% 97.08% 94.3% 92.59%

InsertSent RAP 59.6% 71.81% 44.0% 56.59%
DFC 96.0% 95.24% 99.5% 99.38%

5.4. Detailed Attack Results

Figure 3 shows the benign accuracy of the NLP model after the backdoor is injected by
the four attack methods. It can be seen that the NLP models injected with backdoors still
have a very good benign accuracy. This makes the backdoor attack extremely stealthy. This
is because it is difficult for users to perceive the difference in model performance without
launching a backdoor attack.

Figure 4 shows the attack performance of the four attack methods on different tasks on
the NLP model. It can be seen that, when the attacker launches a backdoor attack by adding
triggers to benign samples, almost all achieve a 100% attack success rate. This indicates
that the NLP model is extremely vulnerable to backdoor attacks, making the deployment
of NLP models in risky application scenarios a great security risk.
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(a) (b)

(c) (d)

Figure 3. The benign accuracy of the backdoor model. (a) SST-2+BERT; (b) SST-2+ALBERT;
(c) HS+BERT; (d) HS+ALBERT.

(a) (b)

(c) (d)

Figure 4. Attack success rate of the attack method. (a) SST-2+BERT; (b) SST-2+ALBERT; (c) HS+BERT;
(d) HS+ALBERT.
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6. Conclusions

In this work, we exploited the difference in deep features between poisoned and
benign samples to propose a textual backdoor defense method DFC based on deep feature
classification that is applicable to both offline and online defense scenarios. The experimen-
tal results show that DFC achieves excellent defense results in a variety of NLP tasks and
models, and outperforms existing baseline defense methods.
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