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Abstract: This article investigates the dynamical complexity and fractal characteristics changes of the
Bitcoin/US dollar (BTC/USD) and Euro/US dollar (EUR/USD) returns in the period before and after
the outbreak of the COVID-19 pandemic. More specifically, we applied the asymmetric multifractal
detrended fluctuation analysis (A-MF-DFA) method to investigate the temporal evolution of the
asymmetric multifractal spectrum parameters. In addition, we examined the temporal evolution
of Fuzzy entropy, non-extensive Tsallis entropy, Shannon entropy, and Fisher information. Our
research was motivated to contribute to the comprehension of the pandemic’s impact and the possible
changes it caused in two currencies that play a key role in the modern financial system. Our results
revealed that for the overall trend both before and after the outbreak of the pandemic, the BTC/USD
returns exhibited persistent behavior while the EUR/USD returns exhibited anti-persistent behavior.
Additionally, after the outbreak of COVID-19, there was an increase in the degree of multifractality,
a dominance of large fluctuations, as well as a sharp decrease of the complexity (i.e., increase of
the order and information content and decrease of randomness) of both BTC/USD and EUR/USD
returns. The World Health Organization (WHO) announcement, in which COVID-19 was declared
a global pandemic, appears to have had a significant impact on the sudden change in complexity.
Our findings can help both investors and risk managers, as well as policymakers, to formulate a
comprehensive response to the occurrence of such external events.

Keywords: COVID-19; bitcoin; cryptocurrencies; forex market; complexity; entropy; multifractal
analysis; complex systems; financial crisis; econophysics

1. Introduction

Financial markets are widely recognized as typical examples of complex dynamical
systems [1]. Asset prices are created by a large number of nonlinear interactions between
heterogeneous agents and complex events occurring in the external environment [2,3].
The properties observed in financial time series such as nonlinearity, long-range depen-
dence [4,5], volatility clustering [6], fat tails [7,8], asymmetry [9], chaos [10,11], fractals and
multifractals [12,13], and self-similarity [14] have attracted the interest of many scientists
from different fields. In the last three decades, physicists have studied and developed
models to understand the behaviors and interactions in financial systems, establishing an
interdisciplinary research field known as Econophysics [15–17]. This term first appeared in
the published article by Stanley et al. [18] when analyzing the Dow Jones index; they found
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that stock returns followed a power law distribution. Since then, significant progress has
been made in the field of Econophysics [19].

The dynamics of financial markets are difficult to understand not only because of the
complexity of their internal elements but also because of the many intractable external
factors acting on them. A recent example of an external factor causing disruptions in global
financial markets is the outbreak of the COVID-19 pandemic. At its roots, the COVID-19
crisis is not a financial or economic crisis, it is a health crisis. Nevertheless, through its
effects on supply and demand conditions, it evolved rapidly to a large-scale financial and
economic crisis. In March 2020, the US stock market hit the circuit breaker mechanism
four times in a period of ten days. Since its inception in 1987, the breaker has only ever
been triggered once, in 1997. At the same time as the US crash, stock markets in Asia and
Europe plunged also. More specifically, Japan’s stock market fell by more than 20%, while
the UK’s main index, FTSE, fell by about 10.87% on 12 March 2020. Additionally, during
the pandemic period, most economies experienced exchange rate volatility and currency
depreciation due to capital outflows and market sentiments. Typical examples are the
Australian dollar hitting a 17-year low of AUD 0.59215 and the New Zealand dollar hitting
an 11-year low of NZD 0.5850. Furthermore, the price of gold dropped about 3.53%. It
is worth noting that although gold is considered a strong safe haven for most developed
markets during financial crises, there are findings showing that during the pandemic it
was a weak safe haven for investors in the stock market [20]. The impact of COVID-19
affected even the newer asset classes such as cryptocurrencies. The declines in value of the
three leading cryptocurrencies (Bitcoin, Ethereum, and Litecoin) exceeded 50% during the
pandemic period.

The exchange rate is crucial for maintaining an economy’s external stability. As ex-
change rate directly associates with foreign debt, capital flows, trade balance, and export
competitiveness, maintaining a stable exchange rate is one of the policymakers’ major
concerns. On the other hand, several researchers argue that specific characteristics of cryp-
tocurrencies, including the independence from monetary policy and the non-correlation
with traditional assets, increase their resilience during crisis periods such as the recent
pandemic crisis [21–23]. However, there is also the opposing view which argues that
monetary policy has a significant impact on the price of cryptocurrencies as well as that
the cryptocurrencies do not have zero correlation with other asset classes. For example,
Chaoqun Ma et al. [24] found a strong response of Bitcoin prices to unexpected monetary
policy actions, while Khanh Quoc Nguyen [25] found that S&P 500 returns significantly
affected Bitcoin returns during the pandemic period. Therefore, it is concluded that under-
standing the pandemic’s impact and the possible changes it caused in the cryptocurrency
and foreign exchange markets is crucial for both investors and risk managers as well
as policymakers.

Particularly useful conclusions about the effects of COVID-19 on financial markets
can be obtained by studying changes in the multifractality and complexity of financial
time series during the period around the COVID-19 outbreak. In the field of Econophysics,
extensive research has been conducted on these topics. For example, Mnif et al. [26] uti-
lized the multifractal detrended fluctuation analysis (MF-DFA) approach to investigate
the degree of cryptocurrency efficiency before and after the COVID-19 outbreak using a
limited time period, until 19 May 2020. Their results indicated that the pandemic out-
break positively affected the efficiency of the five cryptocurrencies that they studied.
Naeem et al. [9] examined the asymmetric efficiency of the cryptocurrencies Bitcoin,
Ethereum, Litecoin, and Ripple, using 1-h data. In their analysis, the authors utilized
the A-MF-DFA and their results showed that the price of cryptocurrencies exhibited sig-
nificant asymmetric multifractality. Moreover, they found that uptrends showed stronger
multifractality than downtrends. Additionally, applying the time-varying deficiency mea-
sure, they found that the pandemic outbreak had a negative impact on the efficiency of the
cryptocurrencies that they analyzed. Kakinaka and Umeno [27], applying the A-MF-DFA,
examined the asymmetric multifractality along with the market efficiency of two main
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cryptocurrencies (Bitcoin, Ethereum) during the pandemic period, taking into consideration
different investment horizons. Their empirical results showed that the outbreak of COVID-
19 affected the efficiency of the two cryptocurrencies differently in the short- and long-term
horizons. More specifically, after the outbreak of COVID-19, Bitcoin and Ethereum in the
short term exhibited stronger multifractality, while in the long term exhibited weaker multi-
fractality. In addition, they studied the asymmetric market patterns between small and large
price fluctuations and between upward and downward trends. These results confirmed
that the outbreak caused a significant change in the level of asymmetry in cryptocurrency
markets. Aslam et al. [28] applied the MF-DFA to study the efficiency of foreign exchange
markets during the initial period of the COVID-19 pandemic. In their analysis, they used
high-frequency data of six major currencies, during the period from 1 October 2019 to
31 March 2020. Before calculating the MF-DFA, they examined the inner dynamics of
multifractality through seasonal and trend decomposition using loess. Their results indi-
cated that efficiency of foreign exchange markets during the COVID-19 outbreak declined.
Mensi et al. [29] examined the effect caused by the COVID-19 crisis on the pricing efficiency
and asymmetric multifractality of major asset classes (US Treasury bond, US dollar index,
S&P500, Brent oil, Gold, and Bitcoin). In their article, they applied the permutation entropy
on intraday data from 30 April 2019 to 13 May 2020. Their results indicated that after the
outbreak of COVID-19, the efficiency of all asset classes that they studied was deteriorated,
and in most cases this deterioration was significant. In addition, using the A-MF-DFA, they
found evidence of asymmetric multifractality in all markets. Drożdż et al. [30] studied the
complexity of the cryptocurrency market in the period around the COVID-19 outbreak
from three different perspectives. Their findings showed that throughout the time period
analyzed, the returns of exchange rates were multifractal with intermittent signatures of
bifractality that can be associated with the periods where the market was more volatile.

Lahmiri and Bekiros [31] investigated the time-varying characteristics of the infor-
mational efficiency in sixteen international stock markets and forty-five cryptocurrency
markets before and during the pandemic period using the approximate entropy and Largest
Lyapunov Exponent. Their results indicated that cryptocurrencies exhibited more irregu-
larity and more instability during the pandemic period compared to international stock
markets. Additionally, Lahmiri and Bekiros [32], applying Rényi entropy, analyzed the
multiscale entropy function in the return time series of S&P500, Brent, WTI, Gas, Silver,
Gold, Bitcoin, and VIX. Additionally, they analyzed the information sharing between these
markets by estimating mutual information. Their results from Rényi entropy showed that
for all market indices, disorder and randomness were more concentrated in less probable
events. In addition, their results from the mutual information indicated that the information
sharing network between markets has changed during the pandemic period. Wang J. and
Wang X. [33] investigated the market efficiency of the S&P 500 Index, Gold, Bitcoin, and
US Dollar Index during the extreme event of the COVID-19 pandemic using a multiscale
entropy-based method. Their results indicated that, at all scales, the four markets’ efficiency
decreased abruptly and persistently during the period from February to March 2020. Mar-
ket efficiency decreased the most in the S&P 500 Index and the least in the Bitcoin market.
Additionally, their results showed that Bitcoin market efficiency was more resilient than
the others during the extreme event. Fernandes et al. [34] investigated the informational
efficiency and price disorder of five main cryptocurrencies (Ethereum, Bitcoin, Cardano,
XRP, and BNB) before and during the pandemic period. In their article, the authors applied
the permutation entropy and Fisher information measure to construct the Shannon–Fisher
causality plane in order to map the cryptocurrencies and their respective locations in a
two-dimensional plane. Their results indicated that all cryptocurrencies exhibited high but
slightly varying informational efficiency during both periods. Additionally, their results
showed that Cardano was the most efficient cryptocurrency. Kim and Lee [35] investigated
the evolution of the complexity of the cryptocurrency market and analyzed the properties
from the previous upward trend market in 2017 against the COVID-19 pandemic. In their
article, the authors used three popular measures of complexity based on the nonlinear
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analysis: sample entropy, approximate entropy, and Lempel–Ziv complexity. They stud-
ied the market complexity/unpredictability for forty-three cryptocurrency prices. They
found that sample entropy, approximate entropy, and Lempel–Ziv complexity metrics of
all markets could not generalize the COVID-19 effect of the complexity due to different
patterns. Nevertheless, market unpredictability increased by the ongoing health crisis.
Olbryś and Majewska [36] applied sample entropy to evaluate changes in the regularity of
returns of thirty-six U.S. and European stock market indices during periods of uncertainty.
Specifically, the authors studied the period of the Global Financial Crisis as well as the
period of the COVID-19 pandemic. Their results showed that entropy decreased during
the periods of turbulence, indicating that the regularity and predictability of stock market
indices returns increased during these periods. In the field of Econophysics, the study
of the complexity and multifractality of financial time series during the pandemic is a
challenging topic. However, to the best of our knowledge, until now there has not been an
in-depth comparative analysis of the effects of the pandemic on the complexity and fractal
characteristics of the returns of two completely different currencies, such as BTC/USD and
EUR/USD, that play a key role in the modern financial system.

In this article, we present a study of the temporal evolution of the multifractality
and complexity of BTC/USD and EUR/USD returns for the period before and after the
WHO announcement that declared COVID-19 a global pandemic (i.e., 11 March 2020). We
chose to analyze and compare the effects of the pandemic on the two most representative
currencies from the cryptocurrency and forex markets, respectively. Although these two
markets are completely different from each other, they play a significant role in the modern
financial system. More specifically, we applied the A-MF-DFA to investigate the temporal
evolution of the asymmetric multifractal spectrum parameters (α0, ∆α, A) before and after
the outbreak of the pandemic. Although there are numerous studies that have followed a
similar approach for the study of financial time series (e.g., [37–39]), as far as we are able
to know, this is the first time that the temporal evolution of the specific parameters has
been applied to BTC/USD and EUR/USD returns to study the period before and during
COVID-19. At this point, it is important to mention that the analysis of the multifractal
properties of financial time series has a wide contribution to the field of finance. For ex-
ample, multifractality can be used to obtain better forecasts of tail risk as demonstrated
by Batten et al. [40]. In addition, we examined the temporal evolution of four popular
complexity measures. Although approximate and sample entropies are quite common for
financial time series analysis [31,35,41], we chose to use Fuzzy entropy as it is considered as
an upgraded alternative of approximate and sample entropy for evaluating the complexity,
specifically for short time series contaminated by noise [42]. In combination, we chose to
use the Shannon entropy as the standard information measure and Tsallis entropy as its
non-extensive generalization, very closely related to multifractality. Additionally, we used
another complexity measure, Fisher information. In financial data analysis, the application
of Fisher information is very widespread for the construction of the Shannon–Fisher causal-
ity plane [34,43]. In the present article, we chose to investigate the temporal evolution of
Fisher information as we believe that it can reveal useful elements for the evolution of
the complexity of the dynamical system, providing a “mirror image” of the evolution of
entropies, but also presenting the key difference of its so-called “locality” property (see
Section 2.4). Our study attempts to provide a complete picture of the pandemic’s impact
in terms of the dynamical change of the complexity and the fractal characteristics of the
two currencies. Additionally, our results provide useful conclusions about the behavior
of two very different currencies during uncertainty periods. At the same time, interest-
ing conclusions are drawn about the impact of WHO announcements and the reaction of
investors to external events such as the pandemic. Our findings can help both investors
and risk managers, as well as policymakers, to formulate a comprehensive response to the
occurrence of such external events.
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2. Materials and Methods

This section briefly presents the asymmetric multifractal detrended fluctuation anal-
ysis approach (Section 2.1), as well as key concepts of multifractal spectrum parameters
(Section 2.1.1). Additionally, we present key notions and formulae related to Fuzzy entropy
(Section 2.2), Tsallis entropy (Section 2.3), and Fisher information measure (Section 2.4).

2.1. Asymmetric Multifractal Detrended Fluctuation Analysis (A-MF-DFA)

The A-MF-DFA extends the MF-DFA method by considering positive and negative mar-
ket trends [44,45]. First, the profile time series of each return time series

{
xj : j = 1, . . . , N

}
are calculated as X(t) = ∑t

j=1
(
xj − x

)
for t = 1, . . . , N, where x is the average of the entire

return time series. Then, the profile time series and the return time series are both divided
into Nn = bN/nc non-overlapping segments of length n. In case N is not a multiple of n,
we repeat the division initially from the other end of the time series to take into account
all the available data, making a total of 2Nn segments for both the profile and the return
time series.

Next, the local trend of the profile series X̃v(i), i = 1, . . . , n is calculated for each
segment v = 1, . . . , 2Nn, by fitting a least-square polynomial of degree 2 in order to detrend
the corresponding profile Xv(i), i = 1, . . . , n. For the return time series, the local linear
trend for each segment is also calculated to determine whether the return time series show
an uptrend or downtrend. The different trends depend on the sign of each local slope
bn,v 6= 0, where bn,v represents the coefficient of the linear trend for segment v at scale n [27].
If bn,v > 0 (bn,v < 0), the return time series have an upward (downward) trend within
the vth segment.

Then, we define the residual variance as follows:

F2(n, v) =
1
n

n

∑
i=1

(
Xv(i)− X̃v(i)

)2
. (1)

By taking the average over corresponding segments, we can obtain the asymmetric qth
order average fluctuation functions, which are then calculated by taking the average over
the corresponding segments:

F+
q (n) =

{
1

M+

2Nn

∑
v=1

1 + sgn(bn, v)

2

[
F2(n, v)

] q
2

} 1
q

, (2)

F−q (n) =

{
1

M−
2Nn

∑
v=1

1− sgn(bn, v)

2

[
F2(n, v)

] q
2

} 1
q

, (3)

where M+ = ∑2Nn
v=1(1 + sgn(bn, v))/2 and M− = ∑2Nn

v=1(1− sgn(bn, v))/2 are the number of
total segments with directional trends. Note that for all v = 1, . . . , 2Nn, M+ + M− = 2Nn
holds. Therefore, the qth order average fluctuation functions for the overall trend is
written as:

Fq(n) =

{
1

2Nn

2Nn

∑
v=1

[
F2(n, v)

] q
2

}1/q

. (4)

The calculation is repeated to find the fluctuation function for all box sizes n. If long-
range power-law correlations are present, the function will increase with n as a power-law
Fq(n) ∼ nh(q). The scaling exponent h(q), namely, the generalized Hurst exponent, is
calculated by estimating the slope of the linear regression of log

(
Fq(n)

)
versus log(n). The

asymmetric generalized exponents h+(q) and h−(q) are calculated in a similar way from
the relationship F+

q (n) ∼ nh+(q) and F−q (n) ∼ nh−(q). In this study, we consider n ranging
from 8 to N/4 for the log-log linear regression to estimate the asymmetric generalized
Hurst exponents.
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2.1.1. Asymmetric Multifractal Spectrum Parameters

The multifractal characteristics of time series can be described not only by the gen-
eralized Hurst exponent H(q) but also by the multifractal scaling exponent τ(q), and
their relationship can be expressed as τ(q) = qH(q)− 1. In the case that τ(q) and q are
linearly related, the analyzed time series is monofractal. In the case that τ(q) and q have a
nonlinear relationship, the analyzed time series is multifractal. Additionally, it is signifi-
cant to note that the stronger their nonlinear relationship is, the stronger the multifractal
characteristics are [46].

Moreover, using the multifractal (singularity) spectrum f (α) can also describe multi-
fractional characteristics of time series. The multifractal spectrum is obtained by applying
the first-order Legendre transform [39,46]:

α = dτ(q)/dq, (5)

f (α) = qα− τ(q), (6)

where α is the singularity strength (also known as the Hölder exponent) that characterizes
singularities in the time series. The interpretation of α is as follows: If α = 1, then the
distribution of the time series data is uniform. If α < 1, then the singularity degree is
larger. On the other hand, if α > 1, then the singularity degree is smaller. The multifractal
spectrum f (α) denotes the singularity content [46,47].

To analyze and make a solid understanding of the multifractal characteristics of a
time series, a set of the asymmetric multifractal spectrum parameters (α0, ∆α, A) has been
suggested. More specifically, the maximum of the multifractal spectrum f (α) is used to
detect the correlation behavior in terms of persistence and anti-persistence. The spectrum
α0 gives the maximum f (α), i.e., f (α0) = 1. At this spectrum, the measure provides
information about the central tendency of the multifractal spectrum. If α0 < 0.5, then the
correlations in the time series exhibit anti-persistent behavior (i.e., an increase is very likely
to be followed by a decrease), if α0 > 0.5, then the correlations in the time series exhibit
persistent behavior (i.e., an increase is very likely to be followed by an increase, and a
decrease is very likely to be followed by a decrease), whereas if α0 = 0.5, then the time series
displays characteristics of a standard non-correlated sequence [39,47,48]. By looking into
the spectrum width, one can quantitatively detect the time series multifractality. Specifically,
the width of the spectrum is estimated by the equation ∆α = αmax − αmin, and it reflects
the degree of multifractality of the time series. The larger values of ∆α are, the stronger
the degree is and the more severe the fluctuations in the time series are. On the contrary,
the smaller the values of ∆α, the more the time series is close to a monofractal behavior,
indicating less significant fluctuations in the time series. The spectrum width should be
equal to zero for a completely monofractal time series [39,49,50]. The dominance of small
or large fluctuations is also an interesting characteristic of time series. This information
can be extracted from the skew asymmetry of the multifractal spectrum, which is defined
by the equation [51] A = L−R

R+L = −∆S
W , where R = αmax − α0, L = α0 − αmin, ∆S = R− L,

and W = R + L = ∆α = αmax − αmin. If A > 0 (L > R), the spectrum is left-skewed, which
means that the scaling behavior of large fluctuations dominates the multifractal behavior.
On the contrary, if A < 0 (L < R), then the spectrum is right-skewed, where the scaling
behavior of small fluctuations dominates. The case of A = 0 indicates that the shape of
multifractal spectra is symmetric [46,51].

Another multifractal spectrum asymmetry metric is the so-called truncation, defined
as ∆ f (a) = f (αmin) − f (αmax) [49,52]. If ∆ f (a) < 0, the multifractal spectrum is right-
truncated, i.e., it has a long left tail, indicating that the multifractal structure in the time
series is insensitive to the local fluctuations with small magnitudes. In other words, the
time series is less multifractal, closer to monofractal, for the small fluctuations than for
the large fluctuations. If ∆ f (a) > 0, the multifractal spectrum is left-truncated, i.e., it has
a long right tail, indicating that the multifractal structure is then insensitive to the local
fluctuations with large magnitudes. It has to be noted that, very often, truncation and skew
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asymmetries are directly related so that a left-skewed spectrum is also right-truncated, and
a right-skewed is left-truncated. The absolute value of truncation, also known as “C-value”,
C− value = |∆ f (a)| = | f (αmin)− f (αmax)| [49,52], indicates the degree of the truncation
asymmetry, which also provides interesting information as C-values are known to illustrate
the systems’ underlying undulation or instability. The degree of undulation or instability
becomes minimum when the C-value presents the smallest value (≈ 0) [49,52].

2.2. Fuzzy Entropy (FuzzyEn)

Expanding upon the concepts already established with approximate entropy (ApEn)
and sample entropy (SampEn), Chen et al. [53,54] combined elements from Fuzzy sets and
information theory to develop a fuzzy version of the SampEn. Fuzzy entropy (FuzzyEn)
like its ancestors, ApEn and SampEn [54], is a “regularity statistic” that quantifies the
(un)predictability of fluctuations in a time series. For the estimation of FuzzyEn, the
similarity between vectors is defined based on fuzzy membership functions and the vectors’
shapes. The gradual and continuous boundaries of the fuzzy membership functions lead to
a series of advantages, such as the continuity as well as the validity of FuzzyEn at small
values, higher accuracy, stronger relative consistency, and even less dependence on the
data length. FuzzyEn can be considered as an upgraded alternative of SampEn (and ApEn)
for the evaluation of complexity, especially for short time series contaminated by noise [55].

Similar to SampEn, FuzzyEn excludes self-matches. Nevertheless, it applies a slightly
different definition for the employed first N −m vectors of a length of m, by removing a
baseline, si:

si = m−1
m−1

∑
j=0

si+j, (7)

i.e., for the FuzzyEn estimations, we use the first N −m of the vectors:

Xm
i = {si, si+1, . . . , si+m−1} − si, i = 1, 2, . . . , N −m + 1, (8)

Then, the similarity degree, Dm
ij , between each pair of vectors, Xm

j and Xm
i , being within a

distance, r, from each other is defined by a fuzzy membership function:

Dm
ij = µ

(
dm

ij , r
)

, (9)

where dm
ij is, as in the case of ApEn and SampEn, the supremum norm difference between

Xm
i and Xm

j . For each vector, Xm
i , we estimate the average similarity degrees with respect to

all other vectors, Xm
j , j = 1, 2, . . . , N −m + 1, and j 6= i (i.e., excluding itself):

φm
i (r) = (N −m− 1)−1

N−m

∑
i=1,j 6=i

Dm
ij . (10)

Then, we evaluate

ϕm(r) = (N −m)−1
N−m

∑
i=1

φm
i (r), (11)

and

ϕm+1(r) = (N −m)−1
N−m

∑
i=1

φm+1
i (r). (12)

The FuzzyEn(m, r) is then defined as

FuzzyEn(m, r) = lim
N→∞

[
ln ϕm(r)− ln ϕm+1(r)

]
, (13)
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which, for finite time series, can be calculated by the statistic

FuzzyEn(m, r, N) = ln ϕm(r)− ln ϕm+1(r). (14)

As mentioned above, FuzzyEn is a measure of estimation of the complexity. More specifi-
cally, lower FuzzyEn values demonstrate a larger chance that a set of data will be followed
by similar data (regularity). Hence, lower values demonstrate larger regularity. Conversely,
a greater value of FuzzyEn indicates a smaller chance of similar data being repeated (irreg-
ularity). Thus, greater values convey more randomness, disorder, and system complexity.
Consequently, a low (high) value of FuzzyEn reflects a high (low) degree of regularity [42].

2.3. Tsallis Entropy

In a vast variety of systems that exhibit long-range interactions or long-term memory or
being of a multifractal nature, they have been found to be better described by a generalized
statistical-mechanical formalism proposed by Tsallis [56,57]. Tsallis, inspired by multifractal
concepts, introduced an entropic expression characterized by an index, qTS, which leads to
non-extensive statistics [56,57]:

SqTS = k
1

qTS − 1

(
1−

W

∑
i=1

pqTS
i

)
, (15)

where qTS is a real number, k is the Boltzmann’s constant from statistical thermodynamics,
pi are probabilities associated with the microscopic configurations, and W is their total
number. It is important to note that there is a remarkable conceptual similarity between
Tsallis’ entropy definition and the notion of Rényi entropies.

The entropic index, qTS, describes the deviation of Tsallis entropy from the standard
Boltzmann–Gibbs entropy. Indeed, using p(qTS−1)

i = e(qTS−1) ln (pi) ∼ 1 + (qTS − 1) ln(pi)
in the limit qTS → 1 , we recover the Boltzmann–Gibbs entropy

S1 = −k
W

∑
i=1

pi ln(pi), (16)

as the thermodynamic analog of the information-theoretic Shannon entropy. From this
point and for the rest of this article, we will refer to the entropy calculated by Equation (16)
as the Shannon entropy.

For qTS 6= 1, the entropic index, qTS, characterizes the degree of non-extensivity
reflected in the following pseudo-additivity rule:

SqTS(A + B)
k

=
SqTS(A)

k
+

SqTS(B)
k

+ (qTS − 1)
SqTS(A)

k
SqTS(B)

k
, (17)

where A and B are two subsystems. In case these subsystems have special probability
correlations, extensivity does not hold for qTS = 1 (S1 6= S1(A) + S1(B)), but may occur
for SqTS , with a particular value of the index, qTS 6= 1. Such systems are called non-
extensive [56]. The cases qTS > 1 and qTS < 1 correspond to sub-additivity or super-
additivity, respectively. As in the case of Rényi entropies, we may think of qTS as a bias
parameter: qTS < 1 privileges rare events, while qTS > 1 highlights prominent events [58].

It is noted that the parameter, qTS, itself is not a measure of the complexity of the
system but measures the degree of the non-extensivity of the system. In turn, the temporal
variations of the Tsallis entropy, SqTS , for some qTS, quantify the dynamical changes of the
complexity of the system. In particular, lower SqTS values characterize the portions of the
signal with lower complexity [55].
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2.4. Fisher Information Measure (FIM)

In the last decades, Fisher information has been increasingly gaining the interest of sci-
entists of different scientific fields. It was first introduced by Fisher [59] as a representation
of the amount of information in the results of experimental measurements of an unknown
parameter of a stochastic system, or simply the amount of information that can be extracted
from a set of measurements (or the “quality” of the measurements) [60]. Fisher information
is a useful method to study non-stationary and complex time series [61]. It is used as a
measure of the level of disorder of a system, behaving inversely to entropy, i.e., when the
disorder increases, the entropy increases, while the Fisher information decreases. Fisher
information has been successfully applied to many different systems, revealing its ability
in describing the complexity of them [62–64]. Additionally, its use has been suggested to
identify reliable precursors of critical events [65–67]. Moreover, Fisher information presents
the so-called “locality” property in contrast to the “globality” of entropy, referring to the
sensitivity of Fisher information in changes in the shape of the probability distribution
corresponding to the measured variable, not presented by entropy [68,69]. The Fisher
information measure can be expressed as

Ix =
N−1

∑
n=1

[p(xn+1)− p(xn)]
2

p(xn)
. (18)

The discrete probability distribution p(xn) corresponds to the specific values of the un-
known underlying probability density function at the center values of the intervals {xn},
which are not necessarily of equal length. The probability density function is usually
approximated by a histogram, or by the kernel density estimator technique, employing
different kernel functions such as the Gaussian kernel or Epanechnikov kernel [60].

3. Data and Results

The cryptocurrency market is a relatively new and emerging market, meaning that the
trading mechanism is unique and makes it very different from traditional markets. More
than 21, 800 different cryptocurrencies are currently traded around the world with an esti-
mated total market capitalization of over USD 843 billion (see, e.g., https://coinmarketcap.
com/ (accessed on 7 December 2022)). On the other hand, the foreign exchange market
is the largest financial market worldwide, with transactions amounting to trillions of US
dollars daily [70]. In this article, we focused on the analysis of the two most representative
currencies of these two markets, i.e., the BTC/USD and EUR/USD. Our analyses were
applied to the daily logarithmic returns (rt = ln pt − ln pt−1, where pt denotes the price at
time t) of the BTC/USD and EUR/USD during the period from 1 May 2019 to 20 January
2021. In an announcement by the WHO on 11 March 2020, the outbreak of COVID-19
was declared a global pandemic. Therefore, we considered the period from 1 May 2019 to
11 March 2020 as the pre-announcement period, and the period from 12 March 2020 to
20 January 2021 as the post-announcement period. All financial time series were taken
from Yahoo Finance (http://finance.yahoo.com/ (accessed on 7 December 2022)).

In our study, we investigated the temporal evolution of complexity and fractal charac-
teristics by using overlapping sliding windows (with window length equal to 512 samples
and slide step equal to 1 sample). First, we investigated the temporal evolution of the mul-
tifractal spectrum parameters (α0, ∆α, A) before and after the outbreak of the pandemic.
Then, for the same time period, we extended our analysis by examining the temporal
evolution of Fuzzy entropy, Tsallis entropy, Shannon entropy, and Fisher information.

At this point, we should mention that for the calculation of Tsallis entropy we have
chosen to use the value qTS = 1.8 for the non-extensive parameter, qTS. On one hand, for
financial time series qTS has been found to take values qTS ∼ 1.6− 1.8 [3], which has been
discussed within the framework of the similarities in scaling properties and universality
related to observables of extreme events from different disciplines (e.g., financial crisis,
earthquake, epileptic seizure, magnetic storm, solar flare) [3,55,60,61]. On the other hand,

https://coinmarketcap.com/
https://coinmarketcap.com/
http://finance.yahoo.com/
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from the time series analysis point of view, the selection of the qTS value for the calculation
of the temporal variation of Tsallis entropy practically only affects the “separation” between
the lower and higher complexity parts of the analyzed time series (e.g., min to max entropy
values ratio, in direct analogy to the signal to noise ratio), while for the herein analyzed
time series it was found that any qTS value in the range ∼ 1.6− 1.8 leads to approximately
the same results.

Figure 1c,d, depict the temporal evolution of α0 values under different market trends
of the BTC/USD and EUR/USD returns, respectively. By analyzing the overall trend of the
BTC/USD returns, it is observed that the values of the α0 fluctuate around 0.6 (Figure 1c).
These results indicate that the returns time series is characterized by long-range correlations,
both before and after the onset of COVID-19. By analyzing the downtrend markets of the
BTC/USD returns, it is observed that the values of the α0 fluctuate over 0.6 both before
and after the outbreak of the pandemic, indicating persistent behavior. In the uptrend
markets of the BTC/USD returns, the values of α0 fluctuate between 0.5 and 0.65 for almost
throughout the analysis period. An exception is a short period of time after the WHO
announcement, where α0 values fell below 0.5.
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Figure 1. Comparative asymmetric multifractal analysis of BTC/USD (left panels) and EUR/USD
(right panels) under different market trends. (a,b): Exchange rates and Returns. (c,d): Tempo-
ral evolution of α0 parameter. (e,f): Temporal evolution of width of the multifractal spectrum.
(g,h): Temporal evolution of the asymmetry parameter A values. The red vertical dash line cor-
responds to the date of the WHO announcement in which COVID-19 was declared a global pan-
demic (i.e., 11 March 2020). The period from 1 May 2019 to 11 March 2020 corresponds to the
pre-announcement period, while the period from 12 March 2020 to 20 January 2021 corresponds to
the post-announcement period.
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Figure 1d depicts the temporal evolution of the α0 values of the EUR/USD returns
under different market trends. In this case, we observe that for the overall trend the α0
values fluctuate around 0.4 during the whole pre-announcement period, while after the
announcement they present a progressive increase approaching very close to α0 = 0.5
at the end of the considered analysis period. This suggests that the time series exhibit a
“different” power-law correlation, such that large and small time series are more likely to
alternate (anti-persistent behavior). It is worth mentioning that the downtrend α0 values
remain at the anti-persistent side except for the very last part of the analyzed period, while
the uptrend α0 values, although < 0.5 for the whole pre-announcement period, present
an alternating behavior after the WHO announcement, taking values α0 > 0.5 for two
two-month-long periods.

Figure 1e,f illustrate the width of the multifractal spectrum under different market
trends of the BTC/USD and EUR/USD returns, respectively. As already mentioned in
Section 2.1.1, the width of the multifractal spectrum ∆α is a measure of the degree of
multifractality. If a time series presents a smaller width of the multifractal spectrum, this
indicates that the time series has lower heterogeneity, i.e., lower fluctuations and lower
market risk [58]. The results show that throughout the period analyzed, the width of
the multifractal spectrum receives higher values for the BTC/USD returns compared to
the EUR/USD returns. Therefore, it can be concluded that EUR/USD is relatively more
stable than BTC/USD. In addition, we observe that after the outbreak of the pandemic,
the width of the multifractal spectrum increased for both BTC/USD returns and the
EUR/USD returns for the overall trend. This suggests that after the outbreak of the
pandemic, both currencies reacted similarly in terms of multifractality when observed
from an overall trend point of view. The degree of multifractality increased, and, therefore,
the fluctuations became more intense and the market risk increased. However, in terms
of asymmetric multifractality, this is not always the case. When focused on downside
markets of BTC/USD, the degree of multifractality decreased after the outbreak. More
interestingly, downtrend multifractality was higher than the uptrend multifractality during
the period before COVID-19, but during the pandemic the uptrend multifractality became
higher. These findings reveal that the incremental multifractality in BTC/USD is due to
intense fluctuations and higher heterogeneity during price increases, but not during price
declines. In EUR/USD, it appears that the downside markets play a more important role in
increasing multifractality. Nevertheless, both market trends may have had some impact in
the post-announcement period increase in multifractality. It is important to note that the
increase in multifractality in BTC/USD returns during COVID-19 is consistent with the
existing literature as other studies have reached the same conclusion (e.g., [26,27]).

Figure 1g,h depict the temporal evolution of the asymmetry parameter A values
under different market trends of the BTC/USD and EUR/USD returns, respectively. In the
time period before the onset of the pandemic, the asymmetry parameter A of BTC/USD
returns appears to have been consistently below 0, indicating relative dominance of the
small fluctuations. Immediately after the date of the WHO announcement, there was a
sharp change in the values of A in all market trends. Specifically, for both overall trend
and uptrend markets, the values of A of the BTC/USD returns remain above 0 for the
entire period after the outbreak of the pandemic. This sharp change shows a transition
from a period where small fluctuations predominate (before the pandemic) to a period
where large fluctuations predominate (during the pandemic). In the downtrend markets,
the values of parameter A are almost at 0 for the entire period after the outbreak of the
pandemic, indicating that the spectrum became practically symmetrical (Figure 1g). On
the other hand, the values of the asymmetry parameter A of the EUR/USD returns for
the uptrend markets are almost equal to 0 for the whole period before the outbreak of the
pandemic. This fact indicates that the spectrum is practically symmetrical. On the contrary,
analyzing the overall and downward trends of the market, we observe that the values of
the asymmetry parameter A are below 0, almost for the entire period before the outbreak
of the pandemic. Therefore, it is concluded that in the overall and downward trends of
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the markets, they are dominated by the small fluctuations in EUR/USD returns before the
outbreak of the pandemic. Immediately after the announcement date, the values of the
asymmetry parameter A of the EUR/USD returns exceeded 0 in all market trends. This
result shows that EUR/USD returns after the outbreak of the pandemic are dominated by
large fluctuations (Figure 1h).

Figure 2c,d indicate that the effect of the announcement was, for all cases (for both
BTC/USD and EUR/USD returns and for all three considered market trends), a sharp
change towards right-truncation, which means that after the WHO announcement the
multifractal structure in the time series became more insensitive to the local fluctuations
with small magnitudes. On the other hand, Figure 2e,f show that the behavior of BTC/USD
and EUR/USD returns was different concerning the degree of truncation asymmetry,
indicated by the so-called C− value. Specifically, EUR/USD returns present C− values
quite close to 0 before the WHO announcement, which means that the underlying system
then presented the lowest possible undulation or instability. After the WHO announcement,
the picture changed and for all market trends an increase in the undulation or instability
of the underlying system is observed. In contrast, BTC/USD returns present a general
trend (although with notable fluctuations for the overall and uptrend markets) towards
a decrease in the C− values after the WHO announcement, which means that a trend
for the decrease in the undulation or instability of the underlying system is observed. It
is noted that the downtrend market after the WHO announcement presents C− values
closer to 0, as compared with the uptrend and overall markets, indicating lower undulation
or instability.
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Figure 2. Comparative asymmetric multifractal analysis of BTC/USD (left panels) and EUR/USD
(right panels) under different market trends. (a,b): Exchange rates and Returns. (c,d): Temporal
evolution of truncation ∆ f (a) = f (αmin) − f (αmax). (e,f): Temporal evolution of the degree of
truncation asymmetry, known as C− value = |∆ f (a)| = | f (αmin)− f (αmax)|. The red vertical dash
line corresponds to the date of the WHO announcement in which COVID-19 was declared a global
pandemic (i.e., 11 March 2020). The period from 1 May 2019 to 11 March 2020 corresponds to the
pre-announcement period, while the period from 12 March 2020 to 20 January 2021 corresponds to
the post-announcement period.
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Moreover, we analyzed the temporal evolution of some complexity measures.
Figure 3c,d illustrate the temporal evolution of the Fuzzy entropy of the BTC/USD and
EUR/USD returns, respectively. As it has already been mentioned in Section 2.2., smaller
values of Fuzzy entropy indicate a greater chance that a set of data will be followed by
similar data (regularity). Conversely, larger values of Fuzzy entropy point to a lower chance
of similar data being repeated (irregularity). As we observe in Figure 3c,d, the values of
Fuzzy entropy dropped sharply in both BTC/USD and EUR/USD returns immediately
after the WHO announcement. This fact indicates that in the pre-announcement period,
both BTC/USD and EUR/USD returns were characterized by a higher degree of disorder
and randomness, i.e., by higher complexity. In contrast, in the period during the pandemic,
the values of Fuzzy entropy decreased, suggesting that the returns were characterized by a
higher degree of order and lower complexity. Therefore, it is concluded that the pandemic
led investors to behave in an “organized” (similar) way that thereby reduced the complexity
of the two markets.
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Figure 3. Comparative analysis of BTC/USD (left panels) and EUR/USD (right panels). (a,b): Exchange
rates and Returns. (c,d): Temporal evolution of Fuzzy entropy. (e,f): Temporal evolution of Tsallis
entropy. (g,h): Temporal evolution of Shannon entropy. (i,j): Temporal evolution of Fisher information.
The red vertical dash line corresponds to the date of the WHO announcement in which COVID-19
was declared a global pandemic (i.e., 11 March 2020). The period from 1 May 2019 to 11 March 2020
corresponds to the pre-announcement period, while the period from 12 March 2020 to 20 January 2021
corresponds to the post-announcement period.

Corresponding results are obtained by also studying two quite popular complexity
measures, i.e., the Shannon entropy (Figure 3g,h) and Tsallis entropy (Figure 3e,f). More
specifically, the time variations of the Shannon entropy as well as the Tsallis entropy
(for a given qTS) quantify the dynamical changes of the information content and the
complexity of the system. Smaller values characterize time series with lower complexity
and randomness, as well as higher information content and order. Conversely, larger
values characterize time series with higher complexity, disorder and randomness, as well
as lower information content. As we observe in Figure 3e–h, during COVID-19, the
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values of Tsallis and Shannon entropies were reduced in both BTC/USD and EUR/USD
returns, indicating that the complexity of the two markets was reduced and the information
content was increased. It is important to note that all the entropy measures we applied
quickly adapted to market conditions, showing a sharp decrease immediately after the
WHO announcement, with Shannon entropy being the exception in the case of BTC/USD.
Additionally, it is of particular interest that the entropy values remained at low levels
throughout the pandemic period we analyzed, showing that the effects of the pandemic
were not short-term. Additionally, concerning the study of Lahmiri and Bekiros [32],
although not the main finding of their analyses, it is nevertheless important to note that their
results showed a decrease in Rényi entropy (and consequently a decrease in randomness)
for the BTC/USD market during the pandemic compared to before.

In addition, we applied one more complexity measure, the Fisher information. Fisher
information is a useful method to study non-stationary and complex time series. Fisher
information is used as a measure of the degree of order of a system, behaving inversely to
entropy, i.e., when the order increases, the entropy decreases, while the Fisher information
increases. Moreover, unlike entropy, it is sensitive to changes in the shape of the probability
distribution corresponding to the measured variable. Figure 3i,j illustrate the temporal evo-
lution of the Fisher information of the BTC/USD and EUR/USD returns, respectively. We
observe that immediately after the WHO announcement, the values of Fisher information
increased in both BTC/USD and EUR/USD returns, indicating an increase in the order of
the two markets.

At this point, it has to be mentioned that the observed decrease in randomness after the
WHO announcement, indicated by all the applied complexity measures, is fully compatible
with the corresponding increase of multifractality. Specifically, the more random a time
series is, the more unifractal its scaling is, which means that a more multifractal time series
can be considered as being farther away from “randomness” [71].

From the interpretation of our results in financial terms, useful conclusions are re-
vealed. More specifically, in analyzing the values of α0 for overall trend, as we have already
mentioned, we observe that the BTC/USD returns show persistent behavior, while the
EUR/USD returns exhibit anti-persistent behavior almost throughout the time period we
studied them (Figure 1c,d). A persistent or anti-persistent market return series is character-
ized by a long memory effect. Therefore, what happens today, theoretically, will impact the
future in a nonlinear fashion. For example, if a persistent market return change has been
up (down) in the last period, then the changes will continue to be positive (negative) in
the next period. On the other hand, anti-persistent markets are “mean-reverting.” If the
market return was up (down) in the previous period, it is more likely to be down (up) in
the next period [72]. The long-memory characteristic in asset return is a fascinating topic
for investors, risk managers, and scholars since appropriate return modeling is crucial for
asset allocation and risk control. For example, existence of long memory in asset returns
indicates that historical returns changes could be predictors of future returns changes [73].
Then, analyzing the ∆α and A parameters, we observe that in the post-announcement
period, mainly in the case of the EUR/USD, the degree of multifractal returns increased,
and, therefore, fluctuations became more intense and market risk increased (Figure 1e,f). At
the same time, we observe that in the post-announcement period, returns were dominated
by large fluctuations (Figure 1g,h). Therefore, it is concluded that in the post-announcement
period, EUR/USD returns experienced intense and large fluctuations. Similar behavior is
observed for the overall trend and uptrend markets of the BTC/USD returns. Regarding the
downtrend markets of the BTC/USD returns, it appears that during the pandemic period
there were less intense fluctuations compared to the pre-pandemic period without small or
large fluctuations in returns dominating. The analysis of the truncation asymmetry degree
(Figure 2e,f), moreover, revealed that the WHO announcement had different impacts on
BTC/USD and EUR/USD returns concerning the undulation or instability of the underly-
ing system. For EUR/USD returns, the post-announcement period was characterized by an
increase in the undulation or instability of the underlying system, whereas for BTC/USD
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returns, the opposite behavior was generally observed. Analyzing the complexity measures
(Fuzzy entropy, Tsallis entropy, Shannon entropy, and Fisher information) (Figure 3c–j),
we observe a sharp decline in complexity (i.e., increase in the order and information con-
tent, and decrease in randomness) in the returns of both BTC/USD and EUR/USD in the
post-announcement period. This fact, in financial terms, suggests that the pandemic led
investors to behave in an “organized” (similar) way that thereby reduced the complexity of
the two markets. In other words, after the outbreak of the pandemic, it seems that investors
behaved like a herd. Therefore, it is concluded that although the fluctuations were larger
and more intense after the outbreak of the pandemic, this was not carried out in a random
way as investors seem to have behaved in an “organized” way; however, this behavior for
BTC/USD returns was generally followed by a decrease in undulation or instability of the
underlying system, while the opposite happened for EUR/USD returns.

Additionally, it is worth noting that the majority of the measures that we studied
showed a strong change for both BTC/USD and EUR/USD returns immediately after the
WHO announcement (11 March 2020), in which COVID-19 was mentioned for the first time
as a pandemic. This fact indicates that the behavior of the system changed immediately
after the WHO′s announcement, although the discussions about COVID-19 being a public
health emergency of international concern had begun weeks before. Therefore, although
many researchers accept the date of 2 January 2020 as the beginning of the COVID-19
pandemic crisis (e.g., [74–76]), we consider the most suitable start date of the pandemic to
be 11 March 2020.

4. Conclusions

The detection of dynamical complexity in time series originated from various complex
systems, including the disciplines of physics, finance, and medicine, and is one of the
foremost problems in science. The measurement of complexity includes nonlinear statistics
methods to extract hidden patterns as well as exploring multifractality, randomness, and
information flows. Hence, complexity provides important information regarding the order
or disorder states of a system under scrutiny. In the field of finance, the detection of the
dissimilarity of complexity between order and disorder states (e.g., before and after the
occurrence of extreme events) could shed light on the mechanisms associated with investor
reaction to these events.

In this article, we studied the temporal evolution of the multifractality and complexity
of BTC/USD and EUR/USD returns for the period before and after the WHO announce-
ment that declared COVID-19 a global pandemic. In our study, we first examined the
asymmetric multifractality through the analysis of the multifractal spectrum parameters as
obtained by the A-MF-DFA method. Then, we extended our analysis by applying Fuzzy,
Tsallis, and Shannon entropies as well as the Fisher information measure. Our results can
be summarized as follows: (i) For the entire time period that we studied (i.e., before and
during the pandemic), the behavior of BTC/USD returns was persistent in all trends of the
market. On one hand, in the period before the outbreak of the pandemic, the behavior of
EUR/USD returns was anti-persistent in all trends of the market. On the other hand, in
almost the entire period after the outbreak of the pandemic, the returns of the EUR/USD
exhibited anti-persistent behavior in the overall trend and downtrend markets, while the
uptrend market presented an alternating behavior, including short periods of persistent
dynamics. (ii) Throughout the period analyzed, the width of the multifractal spectrum
received higher values for the BTC/USD returns compared to the EUR/USD returns. This
implies that the multifractality of the BTC/USD returns was higher than the multifrac-
tality of the EUR/USD returns. In addition, after the outbreak of the pandemic, in the
overall trend and uptrend markets, the width of the multifractal spectrum increased for
both BTC/USD returns and EUR/USD returns. In the case of BTC/USD, the downtrend
multifractality was higher in the pre-announcement period. In EUR/USD, it appears that
the downtrend markets played an important role in increasing multifractality. Nevertheless,
both market trends may have had some impact on the post-announcement period increase
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in multifractality. (iii) In the pre-announcement period, small fluctuations in BTC/USD
returns for all market trends dominated. In contrast, in the post-announcement period,
large fluctuations in BTC/USD returns for overall trend and uptrend markets dominated,
while in downtrend markets the spectrum became practically symmetrical. On the other
hand, although in the uptrend markets the spectrum of EUR/USD returns was almost
symmetrical, the returns in the overall trend and downtrend markets were dominated by
small fluctuations for almost the entire pre-announcement period. During the pandemic
period, the returns of the EUR/USD were dominated by large fluctuations in all market
trends. (iv) For both BTC/USD and EUR/USD returns and all market trends, a sharp
change towards becoming more insensitive to the local fluctuations with small magnitudes
was observed after the WHO announcement. Nevertheless, the WHO announcement
had different impacts on BTC/USD and EUR/USD returns concerning the undulation or
instability of the underlying system. For EUR/USD returns, the post-announcement period
was characterized by an increase in the undulation or instability of the underlying system,
whereas for BTC/USD returns, the opposite behavior was generally observed. (v) Fuzzy
entropy, non-extended Tsallis entropy, Shannon entropy, and Fisher information showed
a sharp decrease in the degree of complexity immediately after the WHO announcement
for both BTC/USD and EUR/USD. This fact shows that in the post-announcement period,
the order and the information content of the systems increased, i.e., the randomness and
complexity in the returns of the two currencies decreased. Therefore, in financial terms, we
conclude that investors seem to have behaved in an “organized” way, as a herd. In addition,
our analyses show that the date of the WHO announcement (11 March 2020) could be
considered as the most appropriate date for the start of the pandemic. This element could
be useful in future research studies.

The main finding that is revealed from our study is that immediately after the WHO
announcement, the returns of both BTC/USD and EUR/USD presented a decrease in
complexity and corresponding increase in multifractality, both indicating that they became
less random compared to the pre-announcement period. Hence, it seems that although
they are two such different currencies, which both play a key role in the modern financial
system, they reacted in a similar way in response to the pandemic.
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