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Abstract: A short review constructing the probability representation of quantum mechanics is
given, and examples of the probability distributions describing the states of quantum oscillator at
temperature T and the evolution of quantum states of a charged particle moving in the electric field
of an electrical capacitor are considered. Explicit forms of time-dependent integrals of motion, linear
in the position and momentum, are used to obtain varying probability distributions describing the
evolving states of the charged particle. Entropies corresponding to the probability distributions of
initial coherent states of the charged particle are discussed. The relation of the Feynman path integral
to the probability representation of quantum mechanics is established.

Keywords: tomographic probability distribution; integrals of motion; coherent state; normal probability
distribution; entropy

1. Introduction

In classical mechanics, the states of particles are described by the position q and mo-
mentum p, and in classical statistical mechanics, by the probability density f (q, p) [1–3].
In quantum mechanics, the states of particles are described either by complex wave func-
tions ψ(q) [4,5] or by the density matrices [6–8]. Other representations of the states,
such as Wigner quasidistribution functions W(q, p) [9] and Husimi quasidistribution [10],
as well as Glauber–Sudarshan functions and their generalizations, s-quasidistributions,
are used [11,12]. These representations were found because the attempts to establish the
classical description of quantum states, using the probability distributions of the position q
and momentum p, had difficulties associated with the existence of uncertainty relations for
the position and momentum.

The evolution of the wave functions of quantum states is described by the Schrödinger
equation and the evolution of the density matrices of quantum states is described by the
von Neumann equation [13]. The evolution formalism can be also based on the approach
of the path integral [14].

Recently, the probability representation of quantum states was introduced [15,16];
see [17], where the states are described by the conventional probability distributions, which
are connected to other mentioned representations by integral transforms [18]. To avoid the
mentioned difficulties with the Heisenberg uncertainty relations, the probability distribu-
tion employed in the approach [15] depends on only one position. In this representation, all
quantum effects can be explained, in view of standard properties of conventional probability
theory presented in [1].

The evolutions for probability distributions were discussed in [19], and some new
relations between the probability distributions connected with calculations of the Franck–
Condon principle were obtained in [20].
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The aim of this work is to consider different tomographic probability distributions
describing the quantum oscillator states and states of a charged particle moving in the
electric field E, if the initial state at time t = 0 is taken to be one of known normalized
states, such as the coherent state [11] or the squeezed state, as well as the energy state of
the harmonic oscillator or the quantum oscillator at temperature T. We obtain explicit
expressions for the integrals of motion of a charged particle following [21–23]. Using these
integrals of motion, we obtain probability distributions describing different states of the
charged particle, if the initial state of the particle is prepared in a specific state of a harmonic
oscillator, such as the coherent state or excited state.

This paper is organized as follows.
In Section 2, the approach of symplectic tomography is briefly reviewed. In Section 3,

tomograms of the oscillator states at temperature T are considered. In Section 4, the tomo-
grams of the charged particle with different initial states and path integrals are discussed.
A generic approach to the evolution of these states described by explicit forms of tomo-
graphic probability distributions is studied in Section 5. The relation of the approach to the
Green function of the Schrödinger equation and the path integral is considered in Section 6.
In Section 7, the evolution of coherent and excited states of oscillator is studied. Entropies
of evolving tomographic probability distributions are discussed in Section 8. Conclusions
and prospectives are presented in Section 9.

2. Symplectic Tomography

First, we consider tomographic probability distribution describing the particle states
in classical statistical mechanics. The conventional description of such states is associated
with probability distributions f (q, p, t) ≥ 0 in the phase space, i.e., non-negative functions
depending (or not depending) on time t and on the position q and momentum p of the
particle. This function satisfies the normalization condition∫

f (q, p, t) dq dp = 1. (1)

One can introduce the classical tomographic probability distribution [24], using the Radon
transform [25],

wcl(X | µ, ν, t) =
∫

f (q, p, t) δ(X− µq− νp) dq dp. (2)

The inverse Radon transform reads

f (q, p, t) =
1

4 π2

∫
wcl(X | µ, ν, t) exp[i(X− µq− νp)] dX dµ dν. (3)

One has the normalization condition for the non-negative function wcl(X | µ, ν, t); it is∫
wcl(X | µ, ν, t) dX = 1. (4)

In view of the delta-function properties, the parameter X = µq + νp is the particle position
in the reference frames, with rotated and rescaled momentum and position axes in the
phase space.

In the case of the quantum particle, we discuss the construction of tomographic
probability distribution describing the state of any system, such as an oscillator, with the
wave function, where the Hamiltonian reads

Ĥ =
p̂2

2
+ V(q̂, t); (5)

here, we assume that the particle mass m and Planck’s constant h̄ are such that m = h̄ = 1,
and the oscillator frequency is ω = 1.
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The Schrödinger evolution equation has the form

i
∂ψ(x, t)

∂t
= Ĥψ(x, t), (6)

and its solution, in the case of ψ(x, t = 0) = ψ(x), can be expressed in terms of the Green
function G(y, x, t) as

ψ(y, t) =
∫

G(y, x, t)ψ(x) dx. (7)

We consider the construction of tomographic conditional probability distribution
w(X | µ, ν, t) of only one random position X; this position is determined as X = µq + νp
in the reference frame in the phase space, where the position axis q and the momentum
axis p are transformed according first to rescaling q′ = sq and p′ = s−1 p and then to the
following rotation: q′′ = cos θq′ + sin θp′ and p′′ = − sin θq′ + cos θp′. This means that
the parameter X is the position of the charged particle measured in the reference frame in
the phase space obtained via rescaling and rotation of the initial axes q and p determined
by real parameters µ and ν. Namely introducing the probability distribution of only one
random variable X provides the possibility of avoiding the problems connected with the
Heisenberg uncertainty relation.

One can easily check that the density operator ρ̂ψ(t) =| ψ〉〈ψ | can be mapped onto
the function w(X | µ, ν, t) using the operator δ

(
X1̂− µq̂− ν p̂

)
; the map is

w(X | µ, ν, t) = Tr
[
ρ̂ψ(t)δ

(
X1̂− µq̂− ν p̂

)]
. (8)

The inverse transform reads [15,17,26,27]

ρ̂ψ(t) =
1

2π

∫
w(X | µ, ν, t) exp

[
i
(
X1̂− µq̂− ν p̂

)]
. (9)

In terms of an explicit form of the wave function, relation (8) converts into

w(X | µ, ν, t) =
1

2π|ν|

∣∣∣∣∫ ψ(y, t) exp
(

iµ
2ν

y2 − iX
ν

y
)

dy
∣∣∣∣2; (10)

this function is non-negative and, in view of (8), it is obvious that∫
w(X | µ, ν, t) dX = 1. (11)

These properties mean that the function w(X | µ, ν, t), called the symplectic tomogram, is
the conditional probability distribution; the conditions are labeled by parameters µ and
ν, determining the reference frame where the random position X is measured. In view
of relations (8) and (9), the distribution w(X | µ, ν, t) (or the state tomogram) contains all
information on the density operator (9). This means that the tomographic probability
distribution completely describes the quantum state. Additionally, this is an explicit
construction of the probability representation of quantum state ρ̂ψ, which was not known
in the literature.

We can find the Wigner function of the state [9]

Wψ(q, p, t) =
∫

ψ(q + y/2, t)ψ∗(q− y/2, t)e−ipy dy (12)

and check that

Wψ(q, p, t) =
1

2π

∫
w(X | µ, ν, t)ei(X−µq−νp) dX dµ dν. (13)

The case of parameter s = 1 corresponds to the optical tomogram w(X | θ), which replaces
the symplectic tomogram in (8) and (9). Namely, the optical tomogram w(X | θ) of photon
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states is measured in the experiments in quantum optics [28], and it is used to reconstruct
the Wigner function [29–31].

As became clear, the optical tomogram can also be employed to describe quantum
states, and it is not only an experimental tool to measure the object determining the Wigner
function, as it was considered before symplectic tomography was introduced. Comparing
Equations (7) and (9), we obtain a new relation for tomogram, which can be expressed in
terms of the Green function of the Schrödinger equation

w(X | µ, ν, t) =
1

2π|ν|

∣∣∣∣∫ G(y, x, t)ψ(x, 0) exp
(

iµ
2ν

y2 − iX
ν

y
)

dx dy
∣∣∣∣2; (14)

this formula provides the possibility of mapping the initial wave function ψ(x, 0) onto the
evolving tomogram w(X | µ, ν, t). It can be rewritten as follows:

w(X | µ, ν, t) =
∣∣∣∣∫ g(x, µ, ν, t)ψ(x, 0) dx

∣∣∣∣2, (15)

where

g(x, µ, ν, t) =
1√

2π|ν|

∫
exp

(
iµ
2ν

y2 − iX
ν

y
)

G(y, x, t) dy. (16)

This relation can be used to connect the Feynman path integral approach, which describes
the Green function while considering quantum dynamics, with dynamics of the probability
distributions determining the system quantum states. To achieve this, one can rewrite the
Green function in Equation (16) in the form of the Feynman path integral, which expresses
the Green function in terms of the Feynman path integral [32].

One can associate the probability distribution w(X, µ, ν) of three random variables
with the tomogram, employing the Bayes formula

w(X, µ, ν) = w(X | µ, ν)P(µ, ν), (17)

where the function P(µ, ν) is a probability density, e.g., in the form of normal distribu-
tion [33],

P(µ, ν) =
1
π

e−µ2−ν2
. (18)

Analogously, one can also obtain new properties of Hermite polynomials [34].
The density operator ρ̂ of the quantum state with such a function is obtained, in view

of the formula

ρ̂ =
1
2

∫
w(X, µ, ν)eµ2+ν2

exp[i(X− µq̂− ν p̂)] dX dµ dν. (19)

The probability distribution w(X, µ, ν) is determined by the density operator ρ̂, using the
relation

w(X, µ, ν) = π−1Tr
[
ρ̂ e−µ2−ν2

δ(X− µq̂− ν p̂)
]
; (20)

the function w(X, µ, ν) is non-negative, and it satisfies the normalization condition∫
w(X, µ, ν) dX dµ dν = 1. (21)

Thus, the quantum state is described by the probability distribution of three random
variables: X, µ, and ν, with X, being the position, and parameters µ and ν being random
characteristics of reference frames in the particle phase space, where the position X is
measured. We can use different functions P(µ, ν) in (17) and (18).
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Born’s rule for the probability P1
2 = Tr(ρ̂1ρ̂2) reads

P1
2 = π−2

∫
w1(X, µ, ν)w2(Y,−µ,−ν) exp

[
i(X + Y) + 2µ2 + 2ν2

]
dX dY dµ dν. (22)

If the probability distribution P(µ, ν) is chosen to be

P(µ, ν) ≡ P0(µ, ν) = δ(µ− µ0)δ(ν− ν0), (23)

the probability distribution w(X, µ, ν) takes the form

w0(X, µ, ν) = w(X | µ, ν)δ(µ− µ0)δ(ν− ν0); (24)

this means that the probability distribution of one random position reads∫
w0(X, µ, ν) dµ dν = w(X | µ0, ν0), (25)

and it coincides with the tomographic conditional probability distribution describing the
quantum state with the density operator ρ̂(t = 0) (8).

If the probability distribution P(µ, ν) is chosen as the function of two random variables
µ and ν, the probability distribution of the position X reads

wP(X) =
∫

w0(X | µ, ν)P(µ, ν) dµ dν. (26)

3. Tomograms of the Oscillator States at Temperature T

Now, we consider the tomogram of the oscillator state, corresponding to the thermal
state with temperature T, introducing the parameter β = 1/T and assuming the oscillator
parameters and Planck’s constant to be m = ω = h̄ = 1. The density operators of the ther-

mal state with the Hamiltonian Ĥ =
p̂2

2
+

q̂2

2
, i.e., ρ̂(β) = Z−1(β) exp

(
−Ĥβ

)
has, in the po-

sition representation, the matrix elements of the Gaussian form
〈x | ρ̂(β) | x′〉 = ρ(x, x′, β) [32]; they are

ρ
(

x, x′, β
)
=

1
Z(β)

√
1

2 π sinh β
exp

{
− 1

2 sinh β

[(
x2 + x′2

)
cosh β− 2 xx′

]}
. (27)

The density operator ρ̂(β) satisfies the condition Tr[ρ̂(β)] = 1; this means that, for the
oscillator at temperature β−1 = T, we have

Z(β) =
e−1/2T

1− e−1/T =
1

2 sinh(1/2T)
. (28)

In the Gaussian state (27), the mean values of the position 〈q〉 = Tr(q̂ρ̂(β)) and the mo-
mentum 〈p〉 = Tr( p̂ρ̂(β)) are equal to zero. Additionally, the dispersion of the position
(δq)2 = Tr

(
q̂2ρ̂(β)

)
and the dispersion of the momentum (δp)2 = Tr

(
p̂2ρ̂(β)

)
read

(δq)2 =
1
2

coth(β/2), (δp)2 =
1
2

coth(β/2). (29)

In addition, the correlation parameter r of the position and the momentum is also equal to
zero, due to the equality

Tr[(q̂ p̂ + p̂q̂)ρ̂(β)] = 0. (30)

Thus, the Schrödinger–Robertson uncertainty relation of the position and momentum [35,36]

(δq)2(δp)2 ≥ 1
4

1
1− r2 (31)
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corresponds to the inequality for the state (27), which reads

1
4
[coth(β/2)]2 ≥ 1

4
. (32)

Tomogram of the thermal state

w(X | µ, ν, β) = Tr[ρ̂(β)δ(X− µq̂− ν p̂)] (33)

has the form of conditional normal probability distribution

X̄ = µ〈q〉+ ν〈p〉 = 0, (34)

σ =
1
2

(
µ2 + ν2

)
coth(β/2). (35)

Then, the symplectic tomogram identified with the oscillator state at temperature T is
explicitly described as follows:

w(X | µ, ν, T) =
1√

π(µ2 + ν2) coth(1/2T)
exp

(
− X2

(µ2 + ν2) coth(1/2T)

)
. (36)

For zero temperature, T = 0, the parameter coth(β/2) = 1, and the state with density
operator (27) is the ground state of the oscillator with the tomogram

w0(X | µ, ν, T = 0) =
1√

π(µ2 + ν2
exp

(
− X2

µ2 + ν2

)
. (37)

The oscillator tomographic probability distribution of three random variables X, µ, and ν reads

w(X, µ, ν, T) =
√

π√
(µ2 + ν2) coth(1/2T)

exp
[
− X2

(µ2 + ν2) coth(1/2T)
−
(

µ2 + ν2
)]

; (38)

this probability distribution describes the state of the quantum oscillator at temperature T.
For generic probability distribution P(µ, ν), we have the tomogram

wP(X, µ, ν, T) =
1√

(µ2 + ν2) coth(1/2T)
exp

[
− X2

(µ2 + ν2) coth(1/2T)

]
P(µ, ν). (39)

Tomogram of the ground state of harmonic oscillator at temperature T, with the wave
function ψ0(x) = π−1/4 exp

(
−x2/2

)
, given by the integral

w0(X | µ, ν) =
1

2π|ν|

∣∣∣∣∫ π−1/4 exp
(
−y2

2
+

iµ
2ν

y2 − iXy
ν

)
dy
∣∣∣∣2, (40)

has the form

w0(X | µ, ν) =
1√

π(µ2 + ν2)
exp

(
− X2

µ2 + ν2

)
. (41)

For the function P(µ, ν) = π−1 exp
(
−µ2 − ν2), the probability distribution of three random

variables X, µ, and ν reads

w0(X, µ, ν) =
π−3/2√
µ2 + ν2

exp
(
− X2

µ2 + ν2 − µ2 − ν2
)

; (42)
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this means that the probability distribution of position X has the form

w0(X) = π−3/2
∫ 1√

µ2 + ν2
exp

(
− X2

µ2 + ν2 − µ2 − ν2
)

dµ dν. (43)

In the case of the classical oscillator at temperature T, with the joint probability density

f (q, p) =
1

Z(T)
e(−p2−q2)/2T , Z(T) =

2 π

T
, (44)

the symplectic tomogram is

wcl(X | µ, ν, T) =
∫

f (q, p) δ(X− µq− νp) dq dp; (45)

in the explicit form, we have

wcl(X | µ, ν, T) =
1√

2 π(µ2 + ν2)T
exp

[
− X2

2(µ2 + ν2)T

]
. (46)

Employing the relationship

lim
ε→0

1√
πε

e−x2/ε = δ(x), ε = 2T, (47)

in the limit T → 0, we arrive at the probability density, which is

wcl(q, p, T = 0) = δ(q)δ(p). (48)

This means that for the classical state, (δq)2(δp)2 = 0, that is permitted for the classical
oscillator, since the uncertainty relations for the position and momentum take place for the
quantum oscillator and not for the classical oscillator.

The classical tomographic probability distribution of three random variables X, µ,
and ν, at temperature T, reads

wcl(X, µ, ν, T) =
√

π√
2 (µ2 + ν2)T

exp
[
− X2

2(µ2 + ν2)T
−
(

µ2 + ν2
)]

. (49)

4. Charge in the Electric Field

The integrals of motion for classical systems such as, for example, a charged particle
with the mass m = 1 and charge e moving in the constant electric field E along the field
are obtained, in view of formulas for the position q(t) and momentum p(t) of the charge,
which read

q(t) = q0 + p0t + at2/2, (50)

p(t) = p0 + at, (51)

where a = eE is the charge acceleration. The initial position q0 in (50) and momentum p0
in (51) of the charge trajectory in its phase space are the constants of motion, which are
functions of time and the position q and momentum p of the form

q0(t) = q− pt + at2/2, (52)

p0(t) = p− at. (53)

Thus, we can check that for the classical charge e, the integrals of motion q0(t) and p0(t),

corresponding to the classical Hamiltonian H =
p2

2
− eEq, are linear forms of the position

q, momentum p, and time t.
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For the charged particle with the charge e and Hamiltonian (5), where V(q̂, t) = −aq̂
and the constant parameter a = eE, there exist two integrals of motion q̂0(t) = q̂− p̂t +
at2/2 and p̂0(t) = p̂− at.

Since the Green function G(y, x, t) [22,23] satisfies the system of equations(
y + it

∂

∂y
+

at2

2

)
G(y, x, t) = x G(y, x, t), (54)(

−i
∂

∂y
− at

)
G(y, x, t) = i

∂

∂x
G(y, x, t), (55)

i
∂G(y, x, t)

∂t
=

(
−1

2
∂2

∂y2 − a y
)

G(y, x, t), (56)

with the initial conditions G(y, x, t = 0) = δ(y− x), it can be found in the Gaussian form.
This function can be presented in the limit of integral form

G(y, x, t) = lim
n→∞

[∫
u1

∫
u2

· · ·
∫

un
uy,xn(tn)uxn ,xn−1(tn−1) · · · ux1,x0(t1)

n

∏
k=1

dxk

]
, (57)

where uxn ,xn−1(tn) is the matrix element of the evolution operator, which is the Green
function G(xn, xn−1, tn, tn−1).

One can check that the Gaussian solution for the Green function satisfying (54)–(56)
reads

G(y, x, t) = f (t) exp

{
i

[(
y− x− at2/2

)2

2t
+ xat

]}
, (58)

where the function f (t) is determined by (56).
Following the consideration of quantum integrals of motion for the systems with

the Hamiltonians, which are quadratic forms in the position and momentum, presented
in [21,22], we can use quantized expressions in (54)–(56) with operators q̂0(t), p̂0(t), q̂, and p̂

acting on the wave functions in the system with the charge Hamiltonian Ĥ =
p̂2

2
− aq̂.

In the case of time-dependent electric field E, the parameter a is the corresponding
function, which depends on the time. If we find the quantum integrals of motion q̂0(t) and
p̂0(t), we obtain the system of equations for the Green function of the Schrödinger equation
related to the integrals of motion.

5. Evolution of the Density Operator of Quantum System in the
Probability Representation

The state vectors | ψ(t)〉 of the pure quantum states satisfy the Schrödinger Equation (6).
The density operator ρ̂(t) of the quantum states satisfies the von Neumann equation for
the systems with the Hamiltonian of the form

∂ρ̂(t)
∂t

+ i
[
Ĥ(t), ρ̂(t)

]
= 0. (59)

The density operator ρ̂(t) can be found as a solution of this equation, if one knows the
evolution operator û(t) satisfying the following equation:

i
∂û(t)

∂t
= Ĥ(t)û(t); û(t = 0) = 1̂. (60)

For the known density operator ρ̂(t = 0) = ρ̂(0), the evolution density operator ρ̂(t) reads

ρ̂(t) = û(t)ρ̂(0)û†(t). (61)
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If the Hamiltonian Ĥ(t) is the Hermitian operator, i.e., Ĥ†(t) = Ĥ(t), the evolution operator
û(t) is the unitary operator, i.e., û†(t)û(t) = û(t)û†(t) = 1̂.

If the Hamiltonian Ĥ(t) of the system under consideration does not depend on time,
the evolution operator û(t) satisfying Equation (60) reads

û(t) = exp
(
−itĤ

)
. (62)

Any operators Î(t) of the form

Î(t) = û(t) Î(0)û†(t) (63)

are integrals of motion, i.e.,

dÎ(t)
dt

=
∂ Î(t)

∂t
+ i
[
Ĥ, Î(t)

]
= 0, (64)

and this means that 〈 Î(0)〉 satisfy the condition

Tr
[
ρ̂(t) Î(0)

]
= Tr

[
ρ̂(0) ÎH(t)

]
. (65)

The density operator ρ̂(t) satisfying the evolution Equation (59) is the integral of motion.
Additionally, the operators

q̂0(t) = û(t)q̂û†(t), p̂0(t) = û(t) p̂û†(t) (66)

where q̂ and p̂ are the position and momentum operators, are the integrals of motion. Then,
the operators

q̂H(t) = û†(t)q̂û(t), p̂H(t) = û†(t) p̂û(t) (67)

are the position and momentum operators satisfying, in the Heisenberg representation,
the following evolution equations:

∂q̂H(t)
∂t

− i
[
Ĥ, q̂H(t)

]
= 0,

∂ p̂H(t)
∂t

− i
[
Ĥ, p̂H(t)

]
= 0. (68)

For systems with time-independent Hamiltonians, the integrals of motion Î0(t) (64) and
the operators ÎH(t) = û†(t)I(0)û(t) have the property

ÎH(t) = Î0(−t); (69)

this means that, if one has an explicit form of the integrals of motion Î0(t), the corresponding
operator, in the Heisenberg representation, is also given as the integral of motion for the
negative time−t, and vice versa. The discussed properties provide the possibility of finding
the evolution of the symplectic tomogram, e.g., of the oscillator, which is determined by
the density operator ρ̂(t); it is

w(X | µ, ν, t) = Tr[ρ̂(t)δ[X− µq̂− ν p̂)]. (70)

In fact, the density operator is the solution of (59); from this fact follows that, in view of (65),
we arrive at

w(X | µ, ν, t) = Tr
[
û(t)ρ̂(0)û†(t)δ[X− µq̂− ν p̂)

]
, (71)

or
w(X | µ, ν, t) = Tr[ρ̂(0)δ[X− µq̂H(t)− ν p̂H(t))]. (72)

6. The State Evolution of the Oscillator and Charge Probability Distributions

Employing expression (72), we study the time dependence of tomographic probability
distributions of two systems–oscillators and their charge in the electric field.
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The state evolution can be presented as the time evolution of the tomographic proba-
bility distribution determining the quantum state. This evolution can be obtained using
the evolution equation for the probability distribution, which follows from the evolution
equation for the density operator (59). In our study, we employ the possibility of using the
evolution equation for the case of Hamiltonians, which are quadratic forms of the position
and momentum operators. For such systems, the Heisenberg position and momentum are
expressed as linear forms in the position and momentum, and we use this circumstance to
explicitly obtain the evolution of the tomogram due to Equation (72).

First, we consider the oscillator initially prepared in the state of thermal equilibrium at
temperature T, then at time t = 0, it is removed from the potential V(q̂) = q̂2/2 and starts
to freely move. The evolution of such a state of the oscillator is described by (72), where
the initial density operator is associated with the tomographic probability distribution (36).
For free motion of quantum oscillator with a removed spring,

q̂H(t) = q̂ + p̂ t, p̂H(t) = p̂, (73)

and one has the equality

X− µq̂H(t)− ν p̂H(t) = X− µ(q̂ + p̂ t)− ν p̂. (74)

Then, one can express the argument of Dirac delta-function as follows:

X̃− µ̃q̂− ν̃ p̂ = X− µq̂− (ν + µt) p̂. (75)

Thus, expression (72) describes the evolution of tomographic conditional probability distri-
bution of the oscillator state initially given for time t = 0 by (36), providing at time t the
following result:

w(X | µ, ν, T, t) =
1√

π
[(

µ2 + (ν + µt)2
)

coth(1/2T)
] exp

− X2(
µ2 + (ν + µt)2

)
coth(1/2T)

. (76)

At zero temperature T = 0, we have the evolution of the tomogram of the oscillator’s initial
ground state, if the potential energy V(q̂) = q̂2/2 is removed (say, a spring of the oscillator
is suddenly removed at time t = 0) and the probability distribution describing the evolving
state of the oscillator is given by normal time-dependent distribution of the form

w0(X | µ, ν, t) =
1√

π
(

µ2 + (ν + µt)2
) exp

[
− X2

µ2 + (ν + µt)2

]
. (77)

At the initial large temperatures, we obtain the expression corresponding to the classical
behavior of the probability of the oscillator state.

Second, we consider a case in which the initial state of the charged oscillator at tempe-
rature T and time t = 0 starts to evolve following the Hamiltonian with potential energy
V(q̂) = −aq̂. Here, equality (72) converts into

X− µq̂H(t)− ν p̂H(t) = X̃− µ̃q̂− ν̃ p̂ = X− µ
(

q̂ + p̂ t + at2/2
)
− ν( p̂ + at). (78)

In view of the relations

X̃ = X− µ
(

at2/2
)
− νat, µ̃ = µ, ν̃ = ν + µt, (79)

after replacing the parameters X, µ, and ν in Equation (36) with the above parameters X̃,
µ̃, and ν̃, we arrive at the expression of the tomogram of the time-dependent state of the
charged oscillator evolving in the potential V(q̂) = −eEq̂. As a result, tomogram we of
normal distribution describing the evolution of thermal state reads
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we(X | µ, ν, T) =
1√

π[(µ2 + (ν + µt)2) coth(1/2T)]
exp

[
−

[
X− µ

(
at2/2

)
− νat

]2√
(µ2 + (ν + µt)2) coth(1/2T)

]
. (80)

Thus, for the charged oscillator state, we obtain a tomogram in the form of normal dis-
tribution with an evolving mean value of the quadrature X and evolving dispersion of
the quadrature.

7. Evolution of Coherent and Excited States of Oscillator

Now, we will discuss the evolution of other important states of the charged oscillator.
Assume that the oscillator initial state is chosen either as the coherent state with the wave
function ψα(x), such that âψα(x) = αψα(x), where â = 2−1/2(q̂ + i p̂); or the state ψn(x),
such that â† âψn(x) = nψn(x); n = 1, 2, 3, . . . Additionally, it is common knowledge that

ψα(x) = π−1/4 exp
(
−|α|

2

2
− x2

2
+
√

2 αx− α2

2

)
, (81)

ψn(x) =
π−1/4e−x2/2
√

2nn!
Hn(x). (82)

In [26], it is shown that, for an arbitrary normalized wave function ψ(x), tomogram
wψ(X | µ, ν) reads

wψ(X | µ, ν) =
1

2π|ν|

∣∣∣∣∫ ψ(y) exp
(

iµ
2ν

y2 − iX
ν

y
)

dy
∣∣∣∣2. (83)

In view of this expression, we can obtain symplectic tomograms of the oscillator state at
time t = 0 for (81) and (82), as follows:

For the coherent state, it reads

wα(X | µ, ν) =
1√

2πσα
exp

(
− [X− X̄(α)]

2

2σα

)
, (84)

where X̄α =
√

2 µ Re α +
√

2 ν Im α and σα =
(
µ2 + ν2)/2.

For the excited state, it is

wn(X | µ, ν) =
1√

π(µ2 + ν2)
exp

(
− X2

µ2 + ν2

)
1

2nn!

∣∣∣∣Hn

(
X

µ2 + ν2

)∣∣∣∣2. (85)

Thus, employing the tool elaborated for obtaining the symplectic tomogram evolution
for the charged oscillator moving in the constant electric field by replacing the parameters
X, µ, and ν with the parameters X̃, µ̃, and ν̃, we can easily derive the symplectic tomogram
evolution for the initial states (84) and (85).

For the coherent state, it reads

wα(X | µ, ν, t) =
1√

π
[
µ2 + (ν + µt)2

] exp

(
−
[
X− X̄− µ(at2/2)− νat

]2
µ2 + (ν + µt)2

)
, (86)

where X̄ =
√

2 µ̃ Re α +
√

2 ν̃ Im α, µ̃ = µ, and ν̃ = ν + µt.
For the excited state, it is

wn(X | µ, ν, t) =
1√

π
(

µ2 + (ν + µt)2
) exp

(
−
[
X− µ(at2/2)− νat

]2
µ2 + (ν + µt)2

)

× 1
2nn!

∣∣∣∣Hn

(
X− µ(at2/2)− νat

µ2 + (ν + µt)2

)∣∣∣∣2. (87)
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8. Entropies of Evolving Tomographic Probability Distributions

Since the states of systems are identified with conditional probability distributions, we
can introduce such characteristics of the states as Shannon entropy, which is related to the
symplectic tomogram as follows:

S(µ, ν) = −
∫

w(X | µ, ν) ln w(X | µ, ν) dX. (88)

For tomogram wP(X, µ, ν) = w(X | µ, ν)P(µ, ν) depending on three random variables,
Shannon entropy reads

S = −
∫

w(X | µ, ν) P(µ, ν)[ln w(X | µ, ν) + ln P(µ, ν)] dX dµ dν. (89)

Such entropies are new characteristics of quantum states of such systems as an oscillator.
The entropy has the form of sum S = S1 + S2, with

S1 = −
∫

w(X, µ, ν) ln w(X | µ, ν) dX dµ dν, (90)

S2 = −
∫

w(X, µ, ν) ln P(µ, ν) dX dµ dν. (91)

The von Neumann entropy −Tr(ρ̂ ln ρ̂) can be expressed in terms of a symplectic
tomogram, in view of the relationship

ρ̂ =
1

2π

∫
w(X | µ, ν) exp[i(X− µq̂− ν p̂)] dX dµ dν. (92)

Meanwhile, the developed approach can be used to study the properties of multi-
partite systems, where the probability distributions of many random variables describe
the quantum states. For example, the entanglement phenomenon can be related to the
properties of probability distributions; we will consider this aspect in a future publication.

Thus, employing recently introduced probability representation of quantum states,
we can clarify different aspects of randomness in quantum mechanics.

9. Conclusions

To conclude, we point out the main results of this work.
Throughout the last century, there were many attempts to formulate various notions

of quantum states using different concepts of the wave function, density operator, and
quasidistribution functions such as the Wigner function; thus, the possibility of describing
the notion of quantum state and identifying the state with a conventional probability
distribution function was recently realized [17]. In this paper, we present a short review
of this approach based on the existence of an invertible map of the density operator;
for example, of the oscillator state onto the tomographic conditional probability distribution
function. Such a probability distribution also exists for the classical oscillator, but the
difference in the probability distributions is connected to the existence of the uncertainty
relations of the position and momentum in the quantum case and the violation of the
uncertainty relation in the classical case. These aspects are the reason why the construction
of the probability representation of quantum mechanics took so many decades.

We point out that an analogous consideration can be extended to the case of systems
with discrete variables such as spin systems. The spin states can be described by probability
distributions, and these probability distributions can also be investigated [37,38].

The other new important result of this work is introducing entropy of the quantum
state, which is conventional Shannon entropy of the introduced probability representa-
tion. We also considered quantum statistics and constructed the conventional probability
distribution identified with the quantum state at temperature T. The explicit form of the
harmonic oscillator state identified by the probability distribution is given by Equation (36).
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Since this distribution is normal probability distribution, we obtained all its characteristics
and the results can be extended to the case of many systems.

Additionally, another important aspect of quantum mechanics is the relation of the
Green function of the Schrödinger equation to the Feynmann path integral. We also found
the relation of the evolution of the probability distribution of the harmonic oscillator to the
path integral (the Feynmann path integral) on the example of a harmonic oscillator.

The different kinds of entropic inequalities known in the probability theory can be
discussed for the introduced tomographic probability distributions, and we plan to do this
in a future publication. Additionally, the probability representation of quantum mechanics
provides the possibility of introducing different distributions and relating them to the
irreducible representations of symmetry groups [33] such as unitary SU(n) symmetry of
a harmonic oscillator, relating the approach to construction of the group representation
operators acting in Hilbert spaces of the wave functions in the oscillator space; this will be
considered in the next publication, along with the generalization of the elaborated approach
to study the properties of quantum field states.
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