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Abstract: Memory-limited partially observable stochastic control (ML-POSC) is the stochastic
optimal control problem under incomplete information and memory limitation. To obtain the optimal
control function of ML-POSC, a system of the forward Fokker–Planck (FP) equation and the backward
Hamilton–Jacobi–Bellman (HJB) equation needs to be solved. In this work, we first show that the
system of HJB-FP equations can be interpreted via Pontryagin’s minimum principle on the probability
density function space. Based on this interpretation, we then propose the forward-backward sweep
method (FBSM) for ML-POSC. FBSM is one of the most basic algorithms for Pontryagin’s minimum
principle, which alternately computes the forward FP equation and the backward HJB equation in
ML-POSC. Although the convergence of FBSM is generally not guaranteed in deterministic control
and mean-field stochastic control, it is guaranteed in ML-POSC because the coupling of the HJB-FP
equations is limited to the optimal control function in ML-POSC.

Keywords: decision-making; optimal control; stochastic control; incomplete information; memory
limitation; mean-field control

1. Introduction

In many practical applications of the stochastic optimal control theory, several con-
straints need to be considered. In the cases of small devices [1,2] and biological
systems [3–8], for example, incomplete information and memory limitation become predom-
inant because their sensors are extremely noisy and their memory resources are severely
limited. To take into account one of these constraints, incomplete information, partially
observable stochastic control (POSC) has been extensively studied in the stochastic optimal
control theory [9–13]. However, because POSC cannot take into account the other constraint,
memory limitation, it is not practical enough for designing memory-limited controllers
for small devices and biological systems. To resolve this problem, memory-limited POSC
(ML-POSC) has recently been proposed [14]. Because ML-POSC formulates noisy obser-
vation and limited memory explicitly, ML-POSC can take into account both incomplete
information and memory limitation in the stochastic optimal control problem.

However, ML-POSC cannot be solved in a similar way as completely observable stochas-
tic control (COSC), which is the most basic stochastic optimal control problem [15–18]. In
COSC, the optimal control function depends only on the Hamilton–Jacobi–Bellman (HJB)
equation, which is a time-backward partial differential equation given a terminal condition
(Figure 1a) [15–18]. Therefore, the optimal control function of COSC can be obtained by
solving the HJB equation backward in time from the terminal condition, which is called
the value iteration method [19–21]. In contrast, the optimal control function of ML-POSC
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depends not only on the HJB equation but also on the Fokker–Planck (FP) equation, which
is a time-forward partial differential equation given an initial condition (Figure 1b) [14].
Because the HJB equation and the FP equation interact with each other through the optimal
control function in ML-POSC, the optimal control function of ML-POSC cannot be obtained
by the value iteration method.

To propose an algorithm to solve ML-POSC, we first show that the system of HJB-
FP equations can be interpreted via Pontryagin’s minimum principle on the probability
density function space. Pontryagin’s minimum principle is one of the most representative
approaches to the deterministic optimal control problem, which converts it into the two-
point boundary value problem of the forward state equation and the backward adjoint
equation [22–25]. We formally show that the system of HJB-FP equations is an extension of
the system of adjoint and state equations from the deterministic optimal control problem to
the stochastic optimal control problem.

The system of HJB-FP equations also appears in the mean-field stochastic control
(MFSC) [26–28]. Although the relationship between the system of HJB-FP equations and
Pontryagin’s minimum principle has been briefly mentioned in MFSC [29–31], its details
have not yet been investigated. In this work, we investigate it in more detail by deriving the
system of HJB-FP equations in a similar way to Pontryagin’s minimum principle. We note
that our derivations are formal, not analytical, and more mathematically rigorous proofs
remain future challenges. However, our results are consistent with many conventional
results and also provide a useful perspective in proposing an algorithm.

We then propose the forward-backward sweep method (FBSM) for ML-POSC. FBSM
is an algorithm to compute the forward FP equation and the backward HJB equation
alternately, which can be interpreted as an extension of the value iteration method. FBSM
has been proposed in Pontryagin’s minimum principle of the deterministic optimal control
problem, which computes the forward state equation and the backward adjoint equation
alternately [32–34]. Because FBSM is easy to implement, it has been used in many ap-
plications [35,36]. However, the convergence of FBSM is not guaranteed in deterministic
control except for special cases [37,38] because the coupling of adjoint and state equations
is not limited to the optimal control function (Figure 1c). In contrast, we show that the
convergence of FBSM is generally guaranteed in ML-POSC because the coupling of the
HJB-FP equations is limited only to the optimal control function (Figure 1b).

FBSM is called the fixed-point iteration method in MFSC [39–42]. Although the fixed-
point iteration method is the most basic algorithm to solve MFSC, its convergence is not
guaranteed for the same reason as deterministic control (Figure 1d). Therefore, ML-POSC is
a special and nice class of optimal control problems where FBSM or the fixed-point iteration
method is guaranteed to converge.

This paper is organized as follows: In Section 2, we formulate ML-POSC. In Section 3,
we derive the system of HJB-FP equations of ML-POSC from the viewpoint of Pontryagin’s
minimum principle. In Section 4, we propose FBSM for ML-POSC and prove its conver-
gence. In Section 5, we apply FBSM to the linear-quadratic-Gaussian (LQG) problem. In
Section 6, we verify the convergence of FBSM by numerical experiments. In Section 7, we
discuss our work. In Appendix A, we briefly review Pontryagin’s minimum principle of
deterministic control. In Appendix B, we derive the system of HJB-FP equations of MFSC
from the viewpoint of Pontryagin’s minimum principle. In Appendix C, we show the
detailed derivations of our results.



Entropy 2023, 25, 208 3 of 34

Figure 1. Schematic diagram of the relationship between the backward dynamics, the optimal
control function, and the forward dynamics in (a) COSC, (b) ML-POSC, (c) deterministic control,
and (d) MFSC. w∗, p∗, λ∗, and s∗ are the solutions of the HJB equation, the FP equation, the adjoint
equation, and the state equation, respectively. u∗ is the optimal control function. The arrows indicate
the dependence of variables. The variable at the head of an arrow depends on the variable at the tail
of the arrow. (a) In COSC, because the optimal control function u∗ depends only on the HJB equation
w∗, it can be obtained by solving the HJB equation w∗ backward in time from the terminal condition,
which is called the value iteration method. (b) In ML-POSC, because the optimal control function
u∗ depends on the FP equation p∗ as well as the HJB equation w∗ (orange), it cannot be obtained by
the value iteration method. In this paper, we propose FBSM for ML-POSC, which computes the HJB
equation w∗ and the FP equation p∗ alternately. Because the coupling of the HJB equation w∗ and
the FP equation p∗ is limited only to the optimal control function u∗, the convergence of FBSM is
guaranteed in ML-POSC. (c) In deterministic control, because the coupling of the adjoint equation λ∗

and the state equation s∗ is not limited to the optimal control function u∗ (green), the convergence
of FBSM is not guaranteed. (d) In MFSC, because the coupling of the HJB equation w∗ and the FP
equation p∗ is not limited to the optimal control function u∗ (green), the convergence of FBSM is
not guaranteed.

2. Memory-Limited Partially Observable Stochastic Control

In this section, we briefly review the formulation of ML-POSC [14], which is the
stochastic optimal control problem under incomplete information and memory limitation.
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2.1. Problem Formulation

This subsection outlines the formulation of ML-POSC [14]. The state of the system
xt ∈ Rdx at time t ∈ [0, T] evolves by the following stochastic differential equation (SDE):

dxt = b(t, xt, ut)dt + σ(t, xt, ut)dωt, (1)

where x0 obeys p0(x0), ut ∈ Rdu is the control, and ωt ∈ Rdω is the standard Wiener
process. In COSC [15–18], because the controller can completely observe the state xt, it
determines the control ut based on the state xt as ut = u(t, xt). By contrast, in POSC [9–13]
and ML-POSC [14], the controller cannot directly observe the state xt and instead obtains
the observation yt ∈ Rdy , which evolves by the following SDE:

dyt = h(t, xt)dt + γ(t)dνt, (2)

where y0 obeys p0(y0), and νt ∈ Rdν is the standard Wiener process. In POSC [9–13], be-
cause the controller can completely memorize the observation history y0:t := {yτ |τ ∈ [0, t]},
it determines the control ut based on the observation history y0:t as ut = u(t, y0:t). In ML-
POSC [14], by contrast, because the controller cannot completely memorize the observation
history y0:t, it compresses the observation history y0:t into the finite-dimensional memory
zt ∈ Rdz , which evolves by the following SDE:

dzt = c(t, zt, vt)dt + κ(t, zt, vt)dyt + η(t, zt, vt)dξt, (3)

where z0 obeys p0(z0), vt ∈ Rdv is the control, and ξt ∈ Rdξ is the standard Wiener process.
The memory dimension dz is determined by the available memory size of the controller. In
addition, the memory noise ξt represents the intrinsic stochasticity of the memory to be
used. Therefore, unlike the conventional POSC, ML-POSC can explicitly take into account
the memory size and noise of the controller. Furthermore, because the memory dynamics
(3) depends on the memory control vt, it can be optimized through the memory control vt,
which is expected to realize the optimal compression of the observation history y0:t into the
limited memory zt. In ML-POSC [14], the controller determines the state control ut and the
memory control vt based on the memory zt as follows:

ut = u(t, zt), vt = v(t, zt). (4)

The objective function of ML-POSC is given by the following expected cumulative
cost function:

J[u, v] := Ep(x0:T ,y0:T ,z0:T ;u,v)

[∫ T

0
f (t, xt, ut, vt)dt + g(xT)

]
, (5)

where f is the cost function, g is the terminal cost function, p(x0:T , y0:T , z0:T ; u, v) is the
probability of x0:T , y0:T , and z0:T given u and v as parameters, and Ep[·] is the expectation
with respect to the probability p. Because the cost function f depends on the memory
control vt, ML-POSC can explicitly take into account the memory control cost, which is also
impossible with the conventional POSC.

ML-POSC is the problem of finding the optimal state control function u∗ and the
optimal memory control function v∗ that minimize the expected cumulative cost function
J[u, v] as follows:

u∗, v∗ := arg min
u,v

J[u, v]. (6)

ML-POSC first formulates the finite-dimensional and stochastic memory dynamics
explicitly, then optimizes the memory control by considering the memory control cost. As
a result, unlike the conventional POSC, ML-POSC is a practical framework for memory-
limited controllers where the memory size, noise, and cost are imposed and non-negligible.
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The previous work [14] has shown the validity and effectiveness of ML-POSC. In
the LQG problem of conventional POSC, the observation history y0:T can be compressed
into the Kalman filter without a loss of performance [10,18,43]. Because the Kalman
filter is finite-dimensional, it can be interpreted as the finite-dimensional memory zt and
discussed in terms of ML-POSC. The previous work [14] has proven that the optimal
memory dynamics of ML-POSC become the Kalman filter in this problem, which indicates
that ML-POSC is a consistent framework with the conventional POSC. Furthermore, the
previous work [14] has demonstrated the effectiveness of ML-POSC in the LQG problem
with memory limitation and in the non-LQG problem by numerical experiments.

2.2. Problem Reformulation

Although the formulation of ML-POSC in the previous subsection is intuitive, it
is inconvenient for further mathematical investigations. To address this problem, we
reformulate ML-POSC in this subsection. The formulation in this subsection is simpler and
more general than that in the previous subsection.

First, we define an extended state st as follows:

st :=
(

xt
zt

)
∈ Rds , (7)

where ds = dx + dz. The extended state st evolves by the following SDE:

dst = b̃(t, st, ũt)dt + σ̃(t, st, ũt)dω̃t, (8)

where s0 obeys p0(s0), ũt ∈ Rdũ is the control, and ω̃t ∈ Rdω̃ is the standard Wiener process.
ML-POSC determines the control ũt ∈ Rdũ based on the memory zt as follows:

ũt = ũ(t, zt). (9)

The extended state SDE (8) includes the previous SDEs (1)–(3) as a special case because
they can be represented as follows:

dst =

(
b(t, xt, ut)

c(t, zt, vt) + κ(t, zt, vt)h(t, xt)

)
dt

+

(
σ(t, xt, ut) O O

O κ(t, zt, vt)γ(t) η(t, zt, vt)

) dωt
dνt
dξt

, (10)

where p0(s0) = p0(x0)p0(z0).
The objective function of ML-POSC is given by the following expected cumulative

cost function:

J[ũ] := Ep(s0:T ;ũ)

[∫ T

0
f̃ (t, st, ũt)dt + g̃(sT)

]
. (11)

where f̃ is the cost function and g̃ is the terminal cost function. It is obvious that this
objective function (11) is more general than that in the previous subsection (5).

ML-POSC is the problem of finding the optimal control function ũ∗ that minimizes
the expected cumulative cost function J[ũ] as follows:

ũ∗ := arg min
ũ

J[ũ]. (12)

In the following sections, we mainly consider the formulation of this subsection
because it is simpler and more general than that in the previous subsection. Moreover, we
omit ·̃ for simplicity of notation.
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3. Pontryagin’s Minimum Principle

If the control ut is determined based on the extended state st as ut = u(t, st), ML-
POSC is the same problem with COSC of the extended state, and its optimality conditions
can be obtained in the conventional way [15–18]. In reality, however, because ML-POSC
determines the control ut based only on the memory zt as ut = u(t, zt), its optimality
conditions cannot be obtained in a similar way as COSC. In the previous work [14], the
optimality conditions of ML-POSC were obtained by employing a mathematical technique
of MFSC [30,31].

In this section, we obtain the optimality conditions of ML-POSC by employing Pon-
tryagin’s minimum principle [22–25] on the probability density function space (Figure 2
(bottom right)). The conventional approach in ML-POSC [14] and MFSC [30,31] can be
interpreted as a conversion from Bellman’s dynamic programming principle (Figure 2
(top right)) to Pontryagin’s minimum principle (Figure 2 (bottom right)) on the probability
density function space.

In Appendix A, we briefly review Pontryagin’s minimum principle in deterministic
control (Figure 2 (left)). In this section, we obtain the optimality conditions of ML-POSC in
a similar way as Appendix A (Figure 2 (right)). Furthermore, in Appendix B, we obtain the
optimality conditions of MFSC in a similar way as Appendix A (Figure 2 (right)). MFSC is
more general than ML-POSC except for the partial observability. In particular, the expected
Hamiltonian is non-linear with respect to the probability density function in MFSC, while
it is linear in ML-POSC.

Although our derivations are formal, not analytical, and more mathematically rig-
orous proofs remain future challenges, our results are consistent with the conventional
results of COSC [15–18], ML-POSC [14], and MFSC [26–28,30,31], and also provide a useful
perspective in proposing an algorithm.

Figure 2. The relationship between Bellman’s dynamic programming principle (top) and Pontrya-
gin’s minimum principle (bottom) on the state space (left) and on the probability density function
space (right). The left-hand side corresponds to deterministic control, which is briefly reviewed in
Appendix A. The right-hand side corresponds to ML-POSC and MFSC, which are shown in Section 3
and Appendix B, respectively. The conventional approach in ML-POSC [14] and MFSC [30,31] can
be interpreted as the conversion from Bellman’s dynamic programming principle (top right) to
Pontryagin’s minimum principle (bottom right) on the probability density function space.

3.1. Preliminary

In this subsection, we show a useful result in obtaining Pontryagin’s minimum princi-
ple. Given arbitrary control functions u and u′, J[u]− J[u′] can be calculated as follows:

J[u]− J[u′] =
∫ T

0

(
Ep(t,s)

[
H(t, s, u, w′)

]
−Ep(t,s)

[
H(t, s, u′, w′)

])
dt, (13)
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whereH is the Hamiltonian, which is defined as follows:

H(t, s, u, w) := f (t, s, u) + Luw(t, s). (14)

Lu is the backward diffusion operator, which is defined as follows:

Luw(t, s) :=
ds

∑
i=1

bi(t, s, u)
∂w(t, s)

∂si
+

1
2

ds

∑
i,j=1

Dij(t, s, u)
∂2w(t, s)

∂si∂sj
, (15)

where D(t, s, u) := σ(t, s, u)σ>(t, s, u). w′(t, s) is the solution of the following Hamilton–
Jacobi–Bellman (HJB) equation driven by u′:

−∂w′(t, s)
∂t

= H
(
t, s, u′, w′

)
, (16)

where w′(T, s) = g(s). p(t, s) is the solution of the following Fokker–Planck (FP) equation
driven by u:

∂p(t, s)
∂t

= L†
u p(t, s), (17)

where p(0, s) = p0(s). L†
u is the forward diffusion operator, which is defined as follows:

L†
u p(t, s) := −

ds

∑
i=1

∂(bi(t, s, u)p(t, s))
∂si

+
1
2

ds

∑
i,j=1

∂2(Dij(t, s, u)p(t, s))
∂si∂sj

. (18)

L†
u is the conjugate of Lu as follows:∫

w(t, s)L†
u p(t, s)ds =

∫
p(t, s)Luw(t, s)ds. (19)

We derive Equation (13) in Appendix C.1.

3.2. Necessary Condition

In this subsection, we show the necessary condition of the optimal control function of
ML-POSC. It corresponds to Pontryagin’s minimum principle on the probability density
function space (Figure 2 (bottom right)). If u∗ is the optimal control function of ML-
POSC (12), then the following equation is satisfied:

u∗(t, z) = arg min
u

Ep∗t (x|z)[H(t, s, u, w∗)], a.s. ∀t ∈ [0, T], ∀z ∈ Rdz , (20)

where w∗(t, s) is the solution of the following HJB equation driven by u∗:

−∂w∗(t, s)
∂t

= H(t, s, u∗, w∗), (21)

where w∗(T, s) = g(s). p∗t (x|z) := p∗(t, s)/
∫

p∗(t, s)dx is the conditional probability
density function of state x given memory z, and p∗(t, s) is the solution of the following FP
equation driven by u∗:

∂p∗(t, s)
∂t

= L†
u∗ p∗(t, s), (22)

where p∗(0, s) = p0(s). We derive this result in Appendix C.2.
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In deterministic control, Pontryagin’s minimum principle can be expressed by the
derivatives of the Hamiltonian (Figure 2 (bottom left)). Similarly, the system of HJB-FP
Equations (21) and (22) can be expressed by the variations of the expected Hamiltonian

H̄(t, p, u, w) := Ep(s)[H(t, s, u, w)] (23)

as follows:

∂p∗(t, s)
∂t

=
δH̄(t, p∗, u∗, w∗)

δw
(s), (24)

−∂w∗(t, s)
∂t

=
δH̄(t, p∗, u∗, w∗)

δp
(s), (25)

where p∗(0, s) = p0(s) and w∗(T, s) = g(s) (Figure 2 (bottom right)). Therefore, the
system of HJB-FP equations can be interpreted via Pontryagin’s minimum principle on the
probability density function space.

3.3. Sufficient Condition

Pontryagin’s minimum principle (20) is only a necessary condition and generally not
a sufficient condition. Pontryagin’s minimum principle (20) becomes a necessary and
sufficient condition if the expected Hamiltonian H̄(t, p, u, w) is convex with respect to p
and u. We obtain this result in Appendix C.3.

3.4. Relationship with Bellman’s Dynamic Programming Principle

From Bellman’s dynamic programming principle on the probability density function
space (Figure 2 (top right)) [14], the optimal control function of ML-POSC is given by the
following equation:

u∗(t, z, p) = arg min
u

Ep(x|z)

[
H
(

t, s, u,
δV∗(t, p)

δp
(s)
)]

, (26)

where V∗(t, p) is the value function on the probability density function space, which is the
solution of the following Bellman equation:

−∂V∗(t, p)
∂t

= Ep(s)

[
H
(

t, s, u∗,
δV∗(t, p)

δp
(s)
)]

, (27)

where V∗(T, p) = Ep(s)[g(s)]. More specifically, the optimal control function of ML-POSC
is given by u∗(t, z) = u∗(t, z, p∗), where p∗ is the solution of the FP Equation (22).

Because the Bellman Equation (27) is a functional differential equation, it cannot be
solved even numerically. To resolve this problem, the previous work [14] converted the
Bellman Equation (27) into the HJB Equation (21) by defining

w∗(t, s) :=
δV∗(t, p∗)

δp
(s), (28)

where p∗ is the solution of FP Equation (22). This approach can be interpreted as the conver-
sion from Bellman’s dynamic programming principle (Figure 2 (top right)) to Pontryagin’s
minimum principle (Figure 2 (bottom right)) on the probability density function space.

3.5. Relationship with Completely Observable Stochastic Control

In the COSC of the extended state, the control ut is determined based on the extended
state st as ut = u(t, st). Therefore, in the COSC of the extended state, Pontryagin’s minimum
principle on the probability density function space is given by the following equation:

u∗(t, s) = arg min
u
H(t, s, u, w∗), a.s. ∀t ∈ [0, T], ∀s ∈ Rds , (29)
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where w∗(t, s) is the solution of the HJB Equation (21). Because this proof is almost identical
to that of Section 3.2, it is omitted in this paper.

While the optimal control function of ML-POSC (20) depends on the FP equation and
the HJB equation, the optimal control function of COSC (29) depends only on the HJB
equation. From this nice property of COSC, Equation (29) is not only a necessary condition
but also a sufficient condition without assuming the convexity of the expected Hamiltonian.
We derive this result in Appendix C.4.

This result is consistent with the conventional result of COSC [15–18]. Unlike ML-
POSC and MFSC, COSC can be solved by Bellman’s dynamic programming principle
on the state space. In COSC, Pontryagin’s minimum principle on the probability density
function space is equivalent to Bellman’s dynamic programming principle on the state space.
Because Bellman’s dynamic programming principle on the state space is a necessary and
sufficient condition, Pontryagin’s minimum principle on the probability density function
space may also become a necessary and sufficient condition.

4. Forward-Backward Sweep Method

In this section, we propose FBSM for ML-POSC and then prove its convergence by
employing the interpretation of the system of HJB-FP equations by Pontryagin’s minimum
principle introduced in the previous section.

4.1. Forward-Backward Sweep Method

In this subsection, we propose FBSM for ML-POSC, which is summarized in Algorithm 1.
FBSM is an algorithm to compute the forward FP equation and the backward HJB equation
alternately. More specifically, in the initial step of FBSM, we initialize the control function
u0

0:T−dt and obtain p0
0:T by computing the FP equation forward in time from the initial

condition. In the backward step, we obtain w1
0:T by computing the HJB equation backward

in time from the terminal condition and simultaneously update the control function from
u0

0:T−dt to u1
0:T−dt by minimizing the conditional expected Hamiltonian. In the forward step,

we obtain p2
0:T by computing the FP equation forward in time from the initial condition

and simultaneously update the control function from u1
0:T−dt to u2

0:T−dt by minimizing
the conditional expected Hamiltonian. By iterating the backward and forward steps, the
objective function of ML-POSC J[uk

0:T−dt] monotonically decreases and finally converges to
the local minimum at which the control function of ML-POSC uk

0:T−dt satisfies Pontryagin’s
minimum principle.

Pontryagin’s minimum principle is only a necessary condition of the optimal control
function, not a sufficient condition. Therefore, the control function obtained by FBSM is
not necessarily the global optimum except in the case where the expected Hamiltonian is
convex. Nevertheless, the control function obtained by FBSM is expected to be superior to
most control functions because it is locally optimal.

FBSM has been used in deterministic control [32,34,35,38] and MFSC [39–42]. However,
the convergence of FBSM for these problems is not guaranteed because the backward
dynamics depend on the forward dynamics even without the optimal control function
(Figure 1c,d). In contrast, the convergence of FBSM is guaranteed in ML-POSC because
the backward HJB equation does not depend on the forward FP equation without the
optimal control function (Figure 1b). More specifically, in FBSM for ML-POSC, the objective
function J[uk

0:T−dt] monotonically decreases and finally converges to Pontryagin’s minimum
principle. In the following subsections, we prove this nice property of FBSM for ML-POSC.
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Algorithm 1 Forward-Backward Sweep Method (FBSM)
//— Initial step —//
k← 0
pk

0(s)← p0(s)
for t = 0 to T − dt do

Initialize uk
t (z)

pk
t+dt(s)← pk

t (s) + L†
uk

t
pk

t (s)dt

end for
while J[uk

0:T−dt] do not converge do
if k is even then

//— Backward step —//
wk+1

T (s)← g(s)
for t = T − dt to 0 do

uk+1
t (z)← arg minu Epk

t (x|z)

[
H(t, s, u, wk+1

t+dt)
]

wk+1
t (s)← wk+1

t+dt(s) +H(t, s, uk+1
t , wk+1

t+dt)dt
end for

else
//— Forward step —//
pk+1

0 (s)← p0(s)
for t = 0 to T − dt do

uk+1
t (z)← arg minu Epk+1

t (x|z)
[
H(t, s, u, wk

t+dt)
]

pk+1
t+dt(s)← pk+1

t (s) + L†
uk+1

t
pk+1

t (s)dt

end for
end if
k← k + 1

end while
return uk

0:T−dt

4.2. Preliminary

In this subsection, we show an important result in proving the convergence of FBSM
for ML-POSC. We suppose that u0:t−dt,t+dt:T−dt := {u0, ..., ut−dt, ut+dt, ..., uT−dt} is given
and only ut is optimized as follows:

u∗t := arg min
ut

J[u0:T−dt]. (30)

In ML-POSC, u∗t can be calculated as follows:

u∗t (z) = arg min
ut

Ept(x|z)[H(t, s, ut, wt+dt)], a.s. ∀z ∈ Rdz , (31)

where wt+dt(s) is the solution of the following time-discretized HJB equation driven by
ut+dt:T−dt:

wτ(s) = wτ+dt(s) +H(τ, s, uτ , wτ+dt)dt, τ ∈ {t + dt, ..., T − dt}, (32)

where wT(s) = g(s). pt(x|z) := pt(s)/
∫

pt(s)dx is the conditional probability density func-
tion of state x given memory z, and pt(s) is the solution of the following time-discretized
FP equation driven by u0:t−dt:

pτ+dt(s) = pτ(s) + L†
uτ

pτ(s)dt, τ ∈ {0, ..., t− dt}, (33)

where p0(s). Equation (31) is obtained by the similar way to Pontyragin’s minimum
principle in Appendix C.5 and also by the time discretization method in Appendix C.6.

Importantly, wt+dt does not depend on ut in ML-POSC (Figure 3a) while λt+dt and
wt+dt depend on ut in deterministic control (Figure 3b) and MFSC (Figure 3c), respectively.
Therefore, u∗t can be obtained without modifying wt+dt in ML-POSC, which is essentially
different from deterministic control and MFSC. From this nice property, the convergence of
FBSM is guaranteed in ML-POSC.
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Figure 3. Schematic diagram of the effect of updating the control function to the forward and
backward dynamics in (a) ML-POSC, (b) deterministic control, and (c) MFSC. w0:T , p0:T , λ0:T , and
s0:T are the solutions of the HJB equation, the FP equation, the adjoint equation, and the state equation,
respectively. u0:T−dt is a given control function. The arrows indicate the dependence of variables.
The variable at the head of an arrow depends on the variable at the tail of the arrow. (a) In ML-POSC,
while the update from ut to u′t (yellow) changes w0:t and pt+dt:T to w′0:t and p′t+dt:T , respectively (red),
it does not change p0:t and wt+dt:T (blue). From this property, the convergence of FBSM is guaranteed
in ML-POSC. (b) In deterministic control, the update from ut to u′t (yellow) changes λt+dt:T to λ′t+dt:T
as well (red) because the adjoint equation depends on the state equation (green). Because FBSM
does not take into account the change of λt+dt:T , the convergence of FBSM is not guaranteed in
deterministic control. (c) In MFSC, the update from ut to u′t (yellow) changes wt+dt:T to w′t+dt:T as
well (red) because the HJB equation depends on the FP equation (green). Because FBSM does not
take into account the change of wt+dt:T , the convergence of FBSM is not guaranteed in MFSC.

4.3. Monotonicity

In FBSM for ML-POSC, the objective function is monotonically non-increasing with
respect to the update of the control function at each time step. More specifically,

J[uk
0:t−dt, uk+1

t:T−dt] ≤ J[uk
0:t, uk+1

t+dt:T−dt] (34)

is satisfied in the backward step, and

J[uk+1
0:t−dt, uk

t:T−dt] ≥ J[uk+1
0:t , uk

t+dt:T−dt] (35)

is satisfied in the forward step. We prove this result in Appendix C.7. Furthermore, in
FBSM for ML-POSC, the objective function is monotonically non-increasing with respect to
the update of the control function at each iteration step as follows:

J[uk+1
0:T−dt] ≤ J[uk

0:T−dt]. (36)

Equation (36) is obviously satisfied from Equations (34) and (35).
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4.4. Convergence to Pontryagin’s Minimum Principle

We assume that J[u0:T−dt] has a lower bound. From Equation (36), FBSM for ML-
POSC is guaranteed to converge to the local minimum. Furthermore, we assume that if
the candidate of uk+1

t includes uk
t , then set uk+1

t at uk
t . Under these assumptions, FBSM

for ML-POSC converges to Pontryagin’s minimum principle (20). More specifically, if
J[uk+1

0:T−dt] = J[uk
0:T−dt] holds, uk+1

0:T−dt satisfies Pontryagin’s minimum principle (20). We
prove this result in Appendix C.8.

Therefore, unlike deterministic control and MFSC, in FBSM for ML-POSC, the objective
function J[uk

0:T−dt] monotonically decreases and finally converges to the local minimum at
which the control function uk

0:T−dt satisfies Pontryagin’s minimum principle (20).

5. Linear-Quadratic-Gaussian Problem

In this section, we apply FBSM to the LQG problem of ML-POSC [14]. In the LQG
problem of ML-POSC, the system of HJB-FP equations is reduced from partial differential
equations to ordinary differential equations.

5.1. Problem Formulation

In the LQG problem of ML-POSC, the extended state SDE (8) is given as follows [14]:

dst = (A(t)st + B(t)ut)dt + σ(t)dωt, (37)

where s0 obeys the Gaussian distribution p0(s0) := N (s0|µ0, Λ0 ) where µ0 is the mean
vector and Λ0 is the precision matrix. The objective function (11) is given as follows:

J[u] := Ep(s0:T ;u)

[∫ T

0

(
s>t Q(t)st + u>t R(t)ut

)
dt + s>T PsT

]
, (38)

where Q(t) � O, R(t) � O, and P � O. The LQG problem of ML-POSC is the problem of
finding the optimal control function u∗ that minimizes the objective function J[u] as follows:

u∗ := arg min
u

J[u]. (39)

5.2. Pontryagin’s Minimum Principle

In the LQG problem of ML-POSC, Pontryagin’s minimum principle (20) can be calcu-
lated as follows [14]:

u∗(t, z) = −R−1B>(ΠK(Λ)(s− µ) + Ψµ), a.s. ∀t ∈ [0, T], ∀z ∈ Rdz , (40)

where K(Λ) is defined as follows:

K(Λ) :=
(

O Λ−1
xx Λxz

O I

)
, (41)

where µ(t) and Λ(t) are the mean vector and the precision matrix of the extended state,
respectively, which correspond to the solution of the FP Equation (22). We note that
Ept(z|x)[s] = K(Λ)(s− µ) + µ is satisfied. µ(t) and Λ(t) are the solutions of the following
ordinary differential equations (ODEs):

µ̇ =
(

A− BR−1B>Ψ
)

µ, (42)

Λ̇ = −
(

A− BR−1B>ΠK(Λ)
)>

Λ−Λ
(

A− BR−1B>ΠK(Λ)
)
−Λσσ>Λ, (43)
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where µ(0) = µ0 and Λ(0) = Λ0. Ψ(t) and Π(t) are the control gain matrices of the
deterministic and stochastic extended state, respectively, which correspond to the solution
of the HJB Equation (21). Ψ(t) and Π(t) are the solutions of the following ODEs:

−Ψ̇ = Q + A>Ψ + ΨA−ΨBR−1B>Ψ, (44)

−Π̇ = Q + A>Π + ΠA−ΠBR−1B>Π + (I − K(Λ))>ΠBR−1B>Π(I − K(Λ)), (45)

where Ψ(T) = Π(T) = P. The ODE of Ψ (44) is the Riccati equation [16–18], which also
appears in the LQG problem of COSC. In contrast, the ODE of Π (45) is the partially
observable Riccati equation [14], which appears only in the LQG problem of ML-POSC.
The above result is obtained in [14].

The ODE of Ψ (44) can be solved backward in time from the terminal condition. Using
Ψ, the ODE of µ (42) can be solved forward in time from the initial condition. In contrast,
the ODEs of Π (45) and Λ (43) cannot be solved in a similar way as the ODEs of Ψ (44) and
µ (42) because they interact with each other, which is a similar problem to the system of
HJB-FP equations.

5.3. Forward-Backward Sweep Method

In the LQG problem of ML-POSC, FBSM is reduced from Algorithm 1 to Algorithm 2.
F (Λ, Π) and G(Λ, Π) are defined by the right-hand sides of the ODEs of Λ (43) and Π (45),
respectively, as follows:

F (Λ, Π) := −
(

A− BR−1B>ΠK(Λ)
)>

Λ−Λ
(

A− BR−1B>ΠK(Λ)
)
−Λσσ>Λ,

G(Λ, Π) := Q + A>Π + ΠA−ΠBR−1B>Π + (I − K(Λ))>ΠBR−1B>Π(I − K(Λ)).

This result is obtained in Appendix C.9. Importantly, in the LQG problem of ML-POSC,
FBSM computes the ODEs of Λ (43) and Π (45) instead of the FP Equation (22) and the HJB
Equation (21).

Algorithm 2 Forward-Backward Sweep Method (FBSM) in the LQG problem
//— Initial step —//
k← 0
Λk

0 ← Λ0
for t = 0 to T − dt do

Initialize Πk
t+dt

Λk
t+dt ← Λk

t +F (Λk
t , Πk

t+dt)dt
end for
while J[uk

0:T−dt] do not converge do
if k is even then

//— Backward step —//
Πk+1

T ← P
for t = T − dt to 0 do

Πk+1
t ← Πk+1

t+dt + G(Λ
k
t , Πk+1

t+dt)dt
end for

else
//— Forward step —//
Λk+1

0 ← Λ0
for t = 0 to T − dt do

Λk+1
t+dt ← Λk+1

t +F (Λk+1
t , Πk

t+dt)dt
end for

end if
k← k + 1

end while
return uk

0:T−dt
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6. Numerical Experiments

In this section, we verify the convergence of FBSM in ML-POSC by performing nu-
merical experiments on the LQG and non-LQG problems. The setting of the numerical
experiments is the same as the previous work [14].

6.1. LQG Problem

In this subsection, we verify the convergence of FBSM for ML-POSC by conducting a
numerical experiment on the LQG problem. We consider state xt ∈ R, observation yt ∈ R,
and memory zt ∈ R, which evolve by the following SDEs:

dxt = (xt + ut)dt + dωt, (46)

dyt = xtdt + dνt, (47)

dzt = vtdt + dyt, (48)

where x0 and z0 obey the standard Gaussian distributions, y0 is an arbitrary real number,
ωt ∈ R and νt ∈ R are independent standard Wiener processes, and ut = u(t, zt) ∈ R
and vt = v(t, zt) ∈ R are the controls. The objective function to be minimized is given as
follows:

J[u, v] := Ep(x0:10,y0:10,z0:10;u,v)

[∫ 10

0

(
x2

t + u2
t + v2

t

)
dt
]

. (49)

Therefore, the objective of this problem is to minimize the state variance with small state
and memory controls.

This problem corresponds to the LQG problem, which is defined by (37) and (38). By
defining st := (xt, zt) ∈ R2, ũt := (ut, vt) ∈ R2, and ω̃t := (ωt, νt) ∈ R2, the SDEs (46)–(48)
can be rewritten as follows:

dst =

((
1 0
1 0

)
st + ũt

)
dt + dω̃t, (50)

which corresponds to (37). Furthermore, the objective function (49) can be rewritten
as follows:

J[ũ] := Ep(s0:10;ũ)

[∫ 10

0

(
s>t

(
1 0
0 0

)
st + ũ>t ũt

)
dt
]

, (51)

which corresponds to (38).
We apply the FBSM of the LQG problem (Algorithm 2) to this problem. Π0(t) is

initialized by Π0(t) = O. To solve the ODEs of Πk(t) and Λk(t), we use the fourth-order
Runge–Kutta method. Figure 4 shows the control gain matrix Πk(t) ∈ R2×2 and the
precision matrix Λk(t) ∈ R2×2 obtained by FBSM. The color of each curve represents the
iteration k. The darkest curve corresponds to the first iteration k = 0, and the brightest
curve corresponds to the last iteration k = 50. Importantly, Πk(t) and Λk(t) converge with
respect to the iteration k.
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Figure 4. The elements of the control gain matrix Πk(t) ∈ R2×2 (a–c) and the precision matrix
Λk(t) ∈ R2×2 (d–f) obtained by FBSM (Algorithm 2) in the numerical experiment of the LQG
problem of ML-POSC. Because Πk

zx(t) = Πk
xz(t) and Λk

zx(t) = Λk
xz(t), Πk

zx(t) and Λk
zx(t) are not

visualized. The darkest curve corresponds to the first iteration k = 0, and the brightest curve
corresponds to the last iteration k = 50. Π0(t) is initialized by Π0(t) = O.

Figure 5a shows the objective function J[uk] with respect to iteration k. The objective
function J[uk] monotonically decreases with respect to iteration k, which is consistent
with Section 4.3. This monotonicity of FBSM is the nice property of ML-POSC that is
not guaranteed in deterministic control and MFSC. The objective function J[uk] finally
converges, and uk satisfies Pontryagin’s minimum principle from Section 4.4.

Figure 5b–d compare the performance of the control function uk at the first iteration
k = 0 and the last iteration k = 50 by performing a stochastic simulation. At the first
iteration k = 0, the distributions of state and memory are unstable, and the cumulative cost
diverges. In contrast, at the last iteration k = 50, the distributions of state and memory are
stabilized and the cumulative cost is smaller. This result indicates that FBSM improves the
performance in ML-POSC.

Figure 5. Performance of FBSM in the numerical experiment of the LQG problem of ML-POSC.
(a) The objective function J[uk] with respect to the iteration k. (b–d) Stochastic simulation of state xt

(b), memory zt (c), and the cumulative cost (d) for 100 samples. The expectation of the cumulative
cost at t = 10 corresponds to the objective function (49). Blue and orange curves correspond to the
first iteration k = 0 and the last iteration k = 50, respectively.

Although Figure 5b–d look similar to Figure 2d–f in the previous work [14], they are
comparing different things. While Figure 5b–d demonstrate the performance improvement
by the FBSM iteration, the previous work [14] compares the performance of the partially
observable Riccati Equation (45) with that of the conventional Riccati Equation (44).
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6.2. Non-LQG Problem

In this subsection, we verify the convergence of FBSM in ML-POSC by conducting a
numerical experiment on the non-LQG problem. We consider state xt ∈ R, observation
yt ∈ R, and memory zt ∈ R, which evolve by the following SDEs:

dxt = utdt + dωt, (52)

dyt = xtdt + dνt, (53)

dzt = dyt, (54)

where x0 and z0 obey the Gaussian distributions p0(x0) = N (x0|0, 0.01) and p0(z0) =
N (z0|0, 0.01), respectively. y0 is an arbitrary real number, ωt ∈ R and νt ∈ R are inde-
pendent standard Wiener processes, and ut = u(t, zt) ∈ R is the control. For the sake of
simplicity, memory control is not considered. The objective function to be minimized is
given as follows:

J[u] := Ep(x0:1,y0:1,z0:1;u)

[∫ 1

0

(
Q(t, xt) + u2

t

)
dt + 10x2

1

]
, (55)

where

Q(t, x) :=

{
1000 (0.3 ≤ t ≤ 0.6, 0.1 ≤ |x| ≤ 2.0),
0 (others).

(56)

The cost function is high in 0.3 ≤ t ≤ 0.6 and 0.1 ≤ |x| ≤ 2.0, which represents the obstacles.
In addition, the terminal cost function is the lowest at x = 0, which represents the desirable
goal. Therefore, the system should avoid the obstacles and reach the goal with a small
control. Because the cost function is non-quadratic, it is a non-LQG problem.

We apply the FBSM (Algorithm 1) to this problem. u0(t, z) is initialized by u0(t, z) = 0.
To solve the HJB equation and the FP equation, we use the finite-difference method. Figure 6
shows wk(t, s) and pk(t, s) obtained by FBSM at the first iteration k = 0 and at the last
iteration k = 50. From Appendix C.6, wk(t, s) is given as follows:

wk(t, s) = Ep(st+dt:1|st=s;uk)

[∫ 1

t

(
Q(τ, xτ) + (uk

τ)
2
)

dτ + 10x2
1

]
. (57)

Because u0(t, z) = 0, w0(t, s) reflects the cost function corresponding to the obstacles and
the goal (Figure 6a–e). In contrast, because u50(t, z) 6= 0, w50(t, s) becomes more complex
(Figure 6f–j). In particular, while w0(t, s) does not depend on memory z, w50(t, s) depends
on memory z, which indicates that the control function u50(t, z) is adjusted by the memory
z. We note that w0(1, s) (Figure 6e) and w50(1, s) (Figure 6j) are the same because they
are given by the terminal cost function as w0(1, s) = w50(1, s) = 10x2. Furthermore,
while p0(t, s) is a unimodal distribution (Figure 6k–o), p50(t, s) is a bimodal distribution
(Figure 6p–t), which can avoid the obstacles.
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Figure 6. The solutions of the HJB equation wk(t, s) (a–j) and the FP equation pk(t, s) (k–t) at the
first iteration k = 0 (a–e,k–o) and at the last iteration k = 50 (f–j,p–t) of FBSM (Algorithm 1) in the
numerical experiment of the non-LQG problem of ML-POSC. u0(t, z) is initialized by u0(t, z) = 0.

Figure 7a shows the objective function J[uk] with respect to iteration k. The objective
function J[uk] monotonically decreases with respect to iteration k, which is consistent
with Section 4.3. This monotonicity of FBSM is the nice property of ML-POSC that is
not guaranteed in deterministic control and MFSC. The objective function J[uk] finally
converges, and its uk satisfies Pontryagin’s minimum principle from Section 4.4.

Figure 7b,c compare the performance of the control function uk at the first iteration
k = 0 and the last iteration k = 50 by conducting the stochastic simulation. At the first
iteration k = 0, the obstacles cannot be avoided, which results in a higher objective function.
In contrast, at the last iteration k = 50, the obstacles can be avoided, which results in a
lower objective function. This result indicates that FBSM improves the performance in
ML-POSC.

Figure 7. Performance of FBSM in the numerical experiment of the non-LQG problem of ML-POSC.
(a) The objective function J[uk] with respect to the iteration k. (b) Stochastic simulation of the state xt

for 100 samples. The black rectangles and the cross represent the obstacles and the goal, respectively.
Blue and orange curves correspond to the first iteration k = 0 and the last iteration k = 50, respectively.
(c) The objective function (55), which is computed from 100 samples.

Although Figure 7b,c look similar to Figure 3a,b in the previous work [14], they are
comparing different things. While Figure 7b,c demonstrate the performance improvement
by the FBSM iteration, the previous work [14] compares the performance of ML-POSC with
the local LQG approximation of the conventional POSC.
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7. Discussion

In this work, we first showed that the system of HJB-FP equations corresponds to
Pontryagin’s minimum principle on the probability density function space. Although the
relationship between the system of HJB-FP equations and Pontryagin’s minimum principle
has been briefly mentioned in MFSC [29–31], its details have not yet been investigated. We
addressed this problem by deriving the system of HJB-FP equations in a similar way to
Pontryagin’s minimum principle. We then proposed FBSM to ML-POSC. Although the
convergence of FBSM is generally not guaranteed in deterministic control [32,34,35,38]
and MFSC [39–42], we proved the convergence in ML-POSC by noting the fact that the
update of the current control function does not affect the future HJB equation in ML-POSC.
Therefore, ML-POSC is a special and nice class where FBSM is guaranteed to converge.

Our derivation of Pontryagin’s minimum principle on the probability density function
space is formal, not analytical. Therefore, more mathematically rigorous proofs should
be pursued in future work. Nevertheless, because our results are consistent with the
conventional results of COSC [15–18], ML-POSC [14], and MFSC [26–28,30,31], they would
be reliable except for special cases. Furthermore, our results provide a unified perspective
on FBSM in deterministic control [32,34,35,38] and the fixed-point iteration method in
MFSC [39–42], which have been studied independently. It clarifies the different properties of
ML-POSC from deterministic control and MFSC, which ensures the convergence of FBSM.

The regularized FBSM has recently been proposed in deterministic control, which is
guaranteed to converge even in the general deterministic control [44,45]. Our work gives
an intuitive reason why the regularized FBSM is guaranteed to converge. In the regularized
FBSM, the Hamiltonian is regularized, which makes the update of the control function
smaller. When the regularization is sufficiently strong, the effect of the current control
function on the future backward dynamics would be negligible. Therefore, the regularized
FBSM of deterministic control would be guaranteed to converge for a similar reason to the
FBSM of ML-POSC. However, the convergence of the regularized FBSM is much slower
because the stronger regularization makes the update of the control function smaller. The
FBSM of ML-POSC does not suffer from such a problem because the future backward
dynamics already do not depend on the current control function without regularization.

Our work gives a hint about a modification of the fixed-point iteration method to
ensure convergence in MFSC. Although the fixed-point iteration method is the most basic
algorithm in MFSC, its convergence is not guaranteed [39–42]. Our work showed that the
fixed-point iteration method is equivalent to the FBSM on the probability density function
space. Therefore, the idea of regularized FBSM may also be applied to the fixed-point
iteration method. More specifically, the fixed-point iteration method may be guaranteed to
converge by regularizing the expected Hamiltonian.

In FBSM, we solve the HJB equation and the FP equation using the finite-difference
method. However, because the finite-difference method is prone to the curse of dimen-
sionality, it is difficult to solve high-dimensional ML-POSC. To resolve this problem, two
directions can be considered. One direction is the policy iteration method [21,46,47]. Al-
though the policy iteration method is almost the same as FBSM, only the update of the
control function is different. While FBSM updates the system of HJB-FP equations and the
control function simultaneously, the policy iteration method updates them separately. In
the policy iteration method, the system of HJB-FP equations becomes linear, which can be
solved by the sampling method [48–50]. Because the sampling method is more tractable
than the finite-difference method, the policy iteration method may allow high-dimensional
ML-POSC to be solved. Furthermore, the policy iteration method has recently been studied
in MFSC [51–53]. However, its convergence is not guaranteed except for special cases in
MFSC. In a similar way to FBSM, the convergence of the policy iteration method may be
guaranteed in ML-POSC.

The other direction is machine learning. Neural network-based algorithms have recently
been proposed in MFSC, which can solve high-dimensional problems efficiently [54,55]. By
extending these algorithms, high-dimensional ML-POSC may be solved efficiently. Fur-



Entropy 2023, 25, 208 19 of 34

thermore, unlike MFSC, the coupling of the HJB-FP equations is limited only to the optimal
control function in ML-POSC. By exploiting this nice property, more efficient algorithms
may be devised for ML-POSC.
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Appendix A. Deterministic Control

In this section, we briefly review Pontryagin’s minimum principle in deterministic
control [22–25].

Appendix A.1. Problem Formulation

In this subsection, we formulate deterministic control [22–25]. The state of the sys-
tem st ∈ Rds at time t ∈ [0, T] evolves according to the following ordinary differential
equation (ODE):

dst

dt
= b(t, st, ut), (A1)

where the initial state is s0, and the control is ut = u(t) ∈ Rdu . The objective function is
given by the following cumulative cost function:

J[u] :=
∫ T

0
f (t, st, ut)dt + g(sT), (A2)

where f is the cost function and g is the terminal cost function. Deterministic control is
the problem of finding the optimal control function u∗ that minimizes the cumulative cost
function J[u] as follows:

u∗ := arg min
u

J[u]. (A3)
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Appendix A.2. Preliminary

In this subsection, we show a useful result in deriving Pontryagin’s minimum principle.
Given arbitrary control functions u and u′, J[u]− J[u′] can be calculated as follows [16]:

J[u]− J[u′] =
∫ T

0

(
H(t, st, ut, λ′t)−H(t, s′t, u′t, λ′t)−

(
∂H(t, s′t, u′t, λ′t)

∂s

)>
(st − s′t)

)
dt

+ g(sT)− g(s′T)−
(

∂g(s′T)
∂s

)>
(sT − s′T), (A4)

whereH is the Hamiltonian, which is defined as follows:

H(t, s, u, λ) := f (t, s, u) + λ>b(t, s, u). (A5)

λ′t is the solution of the following adjoint equation driven by u′:

−dλ′t
dt

=
∂H(t, s′t, u′t, λ′t)

∂s
, (A6)

where λ′T = ∂g(s′T)/∂s. st and s′t are the solutions of the state Equation (A1) driven by u
and u′, respectively.

In the following, we derive Equation (A4). J[u]− J[u′] can be calculated as follows:

J[u]− J[u′] =
[∫ T

0
f (t, st, ut)dt + g(sT)

]
−
[∫ T

0
f (t, s′t, u′t)dt + g(s′T)

]
=

[∫ T

0

(
H(t, st, ut, λ′t)− (λ′t)

>b(t, st, ut)
)

dt + g(sT)

]
−
[∫ T

0

(
H(t, s′t, u′t, λ′t)− (λ′t)

>b(t, s′t, u′t)
)

dt + g(s′T)
]

=
∫ T

0

(
H(t, st, ut, λ′t)−H(t, s′t, u′t, λ′t)

)
dt

−
∫ T

0
(λ′t)

>(b(t, st, ut)− b(t, s′t, u′t)
)
dt + g(sT)− g(s′T). (A7)

From the state Equation (A1),

J[u]− J[u′] =
∫ T

0

(
H(t, st, ut, λ′t)−H(t, s′t, u′t, λ′t)

)
dt

−
∫ T

0
(λ′t)

> d(st − s′t)
dt

dt + g(sT)− g(s′T). (A8)

From the integration by parts and s0 − s′0 = 0,

J[u]− J[u′] =
∫ T

0

(
H(t, st, ut, λ′t)−H(t, s′t, u′t, λ′t)

)
dt

+
∫ T

0

(
dλ′t
dt

)>
(st − s′t)dt + g(sT)− g(s′T)− (λ′T)

>(sT − s′T). (A9)

From the adjoint Equation (A6), Equation (A4) is obtained.

Appendix A.3. Necessary Condition

In this subsection, we show the necessary condition of the optimal control function of
deterministic control. It corresponds to Pontryagin’s minimum principle on the state space
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(Figure 2 (bottom left)). If u∗ is the optimal control function of deterministic control (A3),
then the following equation is satisfied [16]:

u∗(t) = arg min
u
H(t, s∗t , u, λ∗t ),

∀t ∈ [0, T], (A10)

where λ∗t is the solution of the following adjoint equation driven by u∗:

−dλ∗t
dt

=
∂H(t, s∗t , u∗t , λ∗t )

∂s
, (A11)

where λ∗T = ∂g(s∗T)/∂s. s∗t is the solution of the following state equation driven by u∗:

ds∗t
dt

=
∂H(t, s∗t , u∗t , λ∗t )

∂λ
, (A12)

where s∗0 = s0. Because ∂H(t, s∗t , u∗t , λ∗t )/∂λ = b(t, s∗t , u∗t ), Equation (A12) is consistent
with Equation (A1).

In the following, we show that Equation (A10) is the necessary condition of the optimal
control function of deterministic control. We define the control function:

uε(t) :=

{
u∗(t) t ∈ [0, T]\Eε,
u(t) t ∈ Eε,

(A13)

where Eε := [t′, t′ + ε] ⊆ [0, T], and ∀u : [0, T] → Rdu . From Equation (A4), J[uε]− J[u∗]
can be calculated as follows:

J[uε]− J[u∗] =
∫ T

0

(
H(t, sε

t , uε
t , λ∗t )−H(t, s∗t , u∗t , λ∗t )−

(
∂H(t, s∗t , u∗t , λ∗t )

∂s

)>
(sε

t − s∗t )

)
dt

+ g(sε
T)− g(s∗T)−

(
∂g(s∗T)

∂s

)>
(sε

T − s∗T)

=
∫ T

0

(
H(t, sε

t , u∗t , λ∗t )−H(t, s∗t , u∗t , λ∗t )−
(

∂H(t, s∗t , u∗t , λ∗t )

∂s

)>
(sε

t − s∗t )

)
dt

+ g(sε
T)− g(s∗T)−

(
∂g(s∗T)

∂s

)>
(sε

T − s∗T)

+
∫

Eε

(H(t, sε
t , ut, λ∗t )−H(t, sε

t , u∗t , λ∗t ))dt. (A14)

Letting ε→ 0,

J[uε]− J[u∗] =
∫ T

0

((
∂H(t, s∗t , u∗t , λ∗t )

∂s

)>
(sε

t − s∗t )−
(

∂H(t, s∗t , u∗t , λ∗t )
∂s

)>
(sε

t − s∗t )

)
dt

+

(
∂g(s∗T)

∂s

)>
(sε

T − s∗T)−
(

∂g(s∗T)
∂s

)>
(sε

T − s∗T)

+
(
H(t′, s∗t′ , ut′ , λ∗t′ )−H(t′, s∗t′ , u∗t′ , λ∗t′ )

)
dt

=
(
H(t′, s∗t′ , ut′ , λ∗t′ )−H(t′, s∗t′ , u∗t′ , λ∗t′ )

)
dt. (A15)

Because u∗ is the optimal control function, the following inequality is satisfied:

0 ≤ J[uε]− J[u∗] =
(
H(t′, s∗t′ , ut′ , λ∗t′)−H(t′, s∗t′ , u∗t′ , λ∗t′)

)
dt. (A16)

Therefore, Equation (A10) is the necessary condition of the optimal control function of
deterministic control.
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Appendix A.4. Sufficient Condition

Pontryagin’s minimum principle (A10) is a necessary condition and generally not
a sufficient condition. Pontryagin’s minimum principle (A10) becomes a necessary and
sufficient condition if the Hamiltonian H(t, s, u, λ) is convex with respect to s and u and
the terminal cost function g(s) is convex with respect to s.

In the following, we show this result. We define the arbitrary control function ∀u :
[0, T]→ Rdu . From Equation (A4), J[u]− J[u∗] is given by the following equation:

J[u]− J[u∗] =
∫ T

0

(
H(t, st, ut, λ∗t )−H(t, s∗t , u∗t , λ∗t )−

(
∂H(t, s∗t , u∗t , λ∗t )

∂s

)>
(st − s∗t )

)
dt

+ g(sT)− g(s∗T)−
(

∂g(s∗T)
∂s

)>
(sT − s∗T). (A17)

SinceH(t, s, u, λ) is convex with respect to s and u and g(s) is convex with respect to s, the
following inequalities are satisfied:

H(t, st, ut, λ∗t ) ≥ H(t, s∗t , u∗t , λ∗t ) +

(
∂H(t, s∗t , u∗t , λ∗t )

∂s

)>
(st − s∗t )

+

(
∂H(t, s∗t , u∗t , λ∗t )

∂u

)>
(ut − u∗t ), (A18)

g(sT) ≥ g(s∗T) +
(

∂g(s∗T)
∂s

)>
(sT − s∗T). (A19)

Hence, the following inequality is satisfied:

J[u]− J[u∗] ≥
∫ T

0

(
∂H(t, s∗t , u∗t , λ∗t )

∂u

)>
(ut − u∗t )dt. (A20)

Because u∗ satisfies (A10), the following stationary condition is satisfied:

∂H(t, s∗t , u∗t , λ∗t )

∂u
= 0. (A21)

Hence, the following inequality is satisfied:

J[u]− J[u∗] ≥ 0. (A22)

Therefore, Equation (A10) is the sufficient condition of the optimal control function of
deterministic control if H(t, s, u, λ) is convex with respect to s and u and g(s) is convex
with respect to s.

Appendix A.5. Relationship with Bellman’s Dynamic Programming Principle

From Bellman’s dynamic programming principle on the state space (Figure 2 (top
left)) [16], the optimal control function of deterministic control is given by the following
equation:

u∗(t, s) = arg min
u
H
(

t, s, u,
∂w∗(t, s)

∂s

)
, (A23)

where w∗(t, s) is the value function on the state space, which is the solution of the following
Hamilton-Jacobi-Bellman (HJB) equation:

−∂w∗(t, s)
∂t

= H
(

t, s, u∗,
∂w∗(t, s)

∂s

)
, (A24)
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where w∗(T, s) = g(s). More specifically, the optimal control function of deterministic
control is given by u∗(t) = u∗(t, s∗t ), where s∗t is the solution of the state Equation (A12).

The HJB Equation (A24) can be converted into the adjoint Equation (A11) by defining

λ∗t :=
∂w∗(t, s∗t )

∂s
, (A25)

where s∗t is the solution of the state Equation (A12). This approach can be interpreted as
the conversion from Bellman’s dynamic programming principle (Figure 2 (top left)) to
Pontryagin’s minimum principle (Figure 2 (bottom left)) on the state space.

In the following, we obtain this result. First, we define

Λ∗(t, s) :=
∂w∗(t, s)

∂s
. (A26)

By differentiating the HJB Equation (A24) with respect to s, the following equation is
obtained:

−∂Λ∗(t, s)
∂t

=
∂H(t, s, u∗, Λ∗)

∂s
+

(
∂Λ∗(t, s)

∂s

)>
b(t, s∗, u∗), (A27)

where Λ∗(T, s) = ∂g(s)/∂s. Then the derivative of λ∗t = Λ∗(t, s∗t ) with respect to t can be
calculated as follows:

dλ∗t
dt

=
∂Λ∗(t, s∗t )

∂t
+

(
∂Λ∗(t, s∗t )

∂s

)> ds∗t
dt

. (A28)

By substituting Equation (A27) into Equation (A28), the following equation is obtained:

−dλ∗t
dt

=
∂H(t, s, u∗, λ∗)

∂s
−
(

∂Λ∗(t, s∗t )
∂s

)> (ds∗t
dt
− b(t, s∗, u∗)

)
︸ ︷︷ ︸

(∗)

. (A29)

From the state Equation (A12), (∗) = 0 is satisfied. Therefore, λ∗(t) satisfies the adjoint
Equation (A11).

Appendix B. Mean-Field Stochastic Control

In this section, we show that the system of HJB-FP equations in MFSC corresponds to
Pontryagin’s minimum principle on the probability density function space. Although the
relationship between the system of HJB-FP equations and Pontryagin’s minimum principle
has been mentioned briefly in MFSC [29–31], its details have not yet been investigated. In
this section, we address this problem by deriving the system of HJB-FP equations in the
similar way as Appendix A. Although our derivations are formal, not analytical, our results
are consistent with the conventional results of MFSC [26–28,30,31].

Appendix B.1. Problem Formulation

In this subsection, we formulate MFSC [26–28]. The state of the system st ∈ Rds at
time t ∈ [0, T] evolves by the following stochastic differential equation (SDE):

dst = b(t, st, pt, ut)dt + σ(t, st, pt, ut)dωt, (A30)

where s0 obeys p0(s0), pt(s) := p(t, s) is the probability density function of the state s,
ut(s) := u(t, s) ∈ Rdu is the control, and ωt ∈ Rdω is the standard Wiener process. The
objective function is given by the following expected cumulative cost function:

J[u] := Ep(s0:T ;u)

[∫ T

0
f (t, st, pt, ut)dt + g(sT , pT)

]
, (A31)
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where f is the cost function, g is the terminal cost function, p(s0:T ; u) is the probability
of s0:t := {sτ |τ ∈ [0, t]} given u as a parameter, and Ep[·] is the expectation with respect
to probability p. MFSC is the problem of finding the optimal control function u∗ that
minimizes the expected cumulative cost function J[u] as follows:

u∗ := arg min
u

J[u]. (A32)

Appendix B.2. Preliminary

In this subsection, we show a useful result in deriving Pontryagin’s minimum principle.
Given arbitrary control functions u and u′, J[u]− J[u′] can be calculated as follows:

J[u]− J[u′] =
∫ T

0

(
H̄(t, p, u, w′)− H̄(t, p′, u′, w′)

−
∫

δH̄(t, p′, u′, w′)
δp

(s)
(

p(t, s)− p′(t, s)
)
ds
)

dt

+ ḡ(p)− ḡ(p′)−
∫

δḡ(p′)
δp

(s)
(

p(T, s)− p′(T, s)
)
ds, (A33)

where H̄ and ḡ are the expected Hamiltonian and terminal cost function, respectively,
which are defined as follows:

H̄(t, p, u, w) := Ep(s)[H(t, s, p, u, w)], (A34)

ḡ(p) := Ep(s)[g(s, p)]. (A35)

H is the Hamiltonian, which is defined as follows:

H(t, s, p, u, w) := f (t, s, p, u) + Luw(t, s). (A36)

Lu is the backward diffusion operator, which is defined as follows:

Luw(t, s) :=
ds

∑
i=1

bi(t, s, p, u)
∂w(t, s)

∂si
+

1
2

ds

∑
i,j=1

Dij(t, s, p, u)
∂2w(t, s)

∂si∂sj
, (A37)

where D(t, s, p, u) := σ(t, s, p, u)σ>(t, s, p, u). w′ is the solution of the following Hamilton-
Jacobi-Bellman (HJB) equation driven by u′:

−∂w′(t, s)
∂t

=
δH̄(t, p′, u′, w′)

δp
(s), (A38)

where w′(T, s) = (δḡ(p′)/δp)(s). p is the solution of the following Fokker-Planck (FP)
equation driven by u:

∂p(t, s)
∂t

= L†
u p(t, s), (A39)

where p(0, s) = p0(s). p′ is the solution of the FP Equation (A39) driven by u′. L†
u is the

forward diffusion operator, which is defined as follows:

L†
u p(t, s) := −

ds

∑
i=1

∂(bi(t, s, p, u)p(t, s))
∂si

+
1
2

ds

∑
i,j=1

∂2(Dij(t, s, p, u)p(t, s))
∂si∂sj

. (A40)

L†
u is the conjugate of Lu as follows:∫

w(t, s)L†
u p(t, s)ds =

∫
p(t, s)Luw(t, s)ds. (A41)
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In the following, we derive Equation (A33). J[u]− J[u′] can be calculated as follows:

J[u]− J[u′] = Ep(s0:T)

[∫ T

0
f (t, st, pt, ut)dt + g(sT , pT)

]
−Ep′(s0:T)

[∫ T

0
f (t, st, p′t, u′t)dt + g(sT , p′T)

]
= Ep(s0:T)

[∫ T

0

(
H(t, st, pt, ut, w′)−Lut w

′(t, st)
)
dt + g(sT , pT)

]
−Ep′(s0:T)

[∫ T

0

(
H(t, st, p′t, u′t, w′)−Lu′t

w′(t, st)
)

dt + g(sT , p′T)
]

=
∫ T

0

(
H̄(t, p, u, w′)− H̄(t, p′, u′, w′)

)
dt

−
∫ T

0

(
Ep(t,s)

[
Luw′(t, s)

]
−Ep′(t,s)

[
Lu′w

′(t, s)
])

dt + ḡ(p)− ḡ(p′). (A42)

Because Lut and Lu′t
are the conjugates of L†

ut and L†
u′t

, respectively,

J[u]− J[u′] =
∫ T

0

(
H̄(t, p, u, w′)− H̄(t, p′, u′, w′)

)
dt

−
∫ T

0

∫ (
L†

u p(t, s)−L†
u′ p
′(t, s)

)
w′(t, s)dsdt + ḡ(p)− ḡ(p′). (A43)

From the FP Equation (A39),

J[u]− J[u′] =
∫ T

0

(
H̄(t, p, u, w′)− H̄(t, p′, u′, w′)

)
dt

−
∫ T

0

∫
∂(p(t, s)− p′(t, s))

∂t
w′(t, s)dsdt + ḡ(p)− ḡ(p′). (A44)

From the integration by parts and p(0, s)− p′(0, s) = p0(s)− p0(s) = 0,

J[u]− J[u′] =
∫ T

0

(
H̄(t, p, u, w′)− H̄(t, p′, u′, w′)

)
dt

+
∫ T

0

∫ (
p(t, s)− p′(t, s)

)∂w′(t, s)
∂t

dsdt

+ ḡ(p)− ḡ(p′)−
∫ (

p(T, s)− p′(T, s)
)
w′(T, s)ds. (A45)

From the HJB Equation (A38), Equation (A33) is obtained.

Appendix B.3. Necessary Condition

In this subsection, we show the necessary condition of the optimal control function
of MFSC. It corresponds to Pontryagin’s minimum principle on the probability density
function space (Figure 2 (bottom right)). If u∗ is the optimal control function of MFSC (A32),
then the following equation is satisfied:

u∗(t, s) = arg min
u
H(t, s, p∗, u, w∗), a.s. ∀t ∈ [0, T], ∀s ∈ Rds , (A46)

where w∗ is the solution of the following HJB equation driven by u∗:

−∂w∗(t, s)
∂t

=
δH̄(t, p∗, u∗, w∗)

δp
(s), (A47)
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where w∗(T, s) = (δḡ(p∗)/δp)(s). p∗ is the solution of the following FP equation driven
by u∗:

∂p∗(t, s)
∂t

=
δH̄(t, p∗, u∗, w∗)

δw
(s), (A48)

where p∗(0, s) = p0(s).
In the following, we show that Equation (A46) is the necessary condition of the optimal

control function of MFSC. We define the control function

uε(t, z) :=

{
u∗(t, s) (t, s) ∈ ([0, T]×Rds)\(Eε1 × Fε2),
u(t, s) (t, s) ∈ Eε1 × Fε2 ,

(A49)

where Eε1 := [t′, t′ + ε1] ⊆ [0, T], Fε2 := [s′, s′ + ε2] ⊆ Rds , and ∀u : [0, T]× Rds → Rdu .
From Equation (A33), J[uε]− J[u∗] can be calculated as follows:

J[uε]− J[u∗] =
∫ T

0

(
H̄(t, pε, uε, w∗)− H̄(t, p∗, u∗, w∗)

−
∫

δH̄(t, p∗, u∗, w∗)
δp

(s)(pε(t, s)− p∗(t, s))ds
)

dt

+ ḡ(pε)− ḡ(p∗)−
∫

δḡ(p∗)
δp

(s)(pε(T, s)− p∗(T, s))ds

=
∫ T

0

(
H̄(t, pε, u∗, w∗)− H̄(t, p∗, u∗, w∗)

−
∫

δH̄(t, p∗, u∗, w∗)
δp

(s)(pε(t, s)− p∗(t, s))ds
)

dt

+ ḡ(pε)− ḡ(p∗)−
∫

δḡ(p∗)
δp

(s)(pε(T, s)− p∗(T, s))ds

+
∫

Eε1

∫
Fε2

(H(t, s, pε, u, w∗)−H(t, s, pε, u∗, w∗))pε(t, s)dsdt. (A50)

Letting ε1 → 0 and ε2 → 0,

J[uε]− J[u∗] =
∫ T

0

(∫
δH̄(t, p∗, u∗, w∗)

δp
(s)(pε(t, s)− p∗(t, s))ds

−
∫

δH̄(t, p∗, u∗, w∗)
δp

(s)(pε(t, s)− p∗(t, s))ds
)

dt

+
∫

δḡ(p∗)
δp

(s)(pε(T, s)− p∗(T, s))ds−
∫

δḡ(p∗)
δp

(s)(pε(T, s)− p∗(T, s))ds

+
(
H(t′, s′, p∗, u, w∗)−H(t′, s′, p∗, u∗, w∗)

)
p∗(t′, s′)dsdt

=
(
H(t′, s′, p∗, u, w∗)−H(t′, s′, p∗, u∗, w∗)

)
p∗(t′, s′)dsdt. (A51)

Because u∗ is the optimal control function, the following inequality is satisfied:

0 ≤ J[uε]− J[u∗] =
(
H(t′, s′, p∗, u, w∗)−H(t′, s′, p∗, u∗, w∗)

)
p∗(t′, s′)dsdt. (A52)

Therefore, Equation (A46) is the necessary condition of the optimal control function of
MFSC.

Appendix B.4. Sufficient Condition

Pontryagin’s minimum principle (A46) is a necessary condition and generally not
a sufficient condition. Pontryagin’s minimum principle (A46) becomes a necessary and
sufficient condition if the expected Hamiltonian H̄(t, p, u, w) is convex with respect to p
and u and the expected terminal cost function ḡ(p) is convex with respect to p.
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In the following, we show this result. We define the arbitrary control function ∀u :
[0, T]×Rds → Rdu . From Equation (A33), J[u]− J[u∗] is given by the following equation:

J[u]− J[u∗] =
∫ T

0

(
H̄(t, p, u, w∗)− H̄(t, p∗, u∗, w∗)

−
∫

δH̄(t, p∗, u∗, w∗)
δp

(s)(p(t, s)− p∗(t, s))ds
)

dt

+ ḡ(p)− ḡ(p∗)−
∫

δḡ(p∗)
δp

(s)(p(T, s)− p∗(T, s))ds. (A53)

Because H̄(t, p, u, w) is convex with respect to p and u and ḡ(p) is convex with respect to p,
the following inequalities are satisfied:

H̄(t, p, u, w∗) ≥ H̄(t, p∗, u∗, w∗) +
∫

δH̄(t, p∗, u∗, w∗)
δp

(s)(p(t, s)− p∗(t, s))ds

+
∫ (

δH̄(t, p∗, u∗, w∗)
δu

(s)
)>

(u(t, s)− u∗(t, s))ds, (A54)

ḡ(p) ≥ ḡ(p∗) +
∫

δḡ(p∗)
δp

(s)(p(T, s)− p∗(T, s))ds. (A55)

Hence, the following inequality is satisfied:

J[u]− J[u∗] ≥
∫ T

0
Ep∗(t,s)

[(
∂H(t, s, p∗, u∗, w∗)

∂u

)>
(u(t, s)− u∗(t, s))

]
dt. (A56)

Because u∗ satisfies Equation (A46), the following stationary condition is satisfied:

∂H(t, s, p∗, u∗, w∗)
∂u

= 0. (A57)

Hence, the following inequality is satisfied:

J[u]− J[u∗] ≥ 0 (A58)

Therefore, Equation (A46) is the sufficient condition of the optimal control function of
MFSC if the expected Hamiltonian H̄(t, p, u, w) is convex with respect to p and u and the
expected terminal cost function ḡ(p) is convex with respect to p.

Appendix B.5. Relationship with Bellman’s Dynamic Programming Principle

From Bellman’s dynamic programming principle on the probability density function
space (Figure 2 (top right)) [56–58], the optimal control function of MFSC is given by the
following equation:

u∗(t, s, p) = arg min
u
H
(

t, s, p, u,
δV∗(t, p)

δp
(s)
)

, (A59)

where V∗(t, p) is the value function on the probability density function space, which is the
solution of the following Bellman equation:

−∂V∗(t, p)
∂t

= Ep(s)

[
H
(

t, s, p, u∗,
δV∗(t, p)

δp
(s)
)]

, (A60)

where V∗(T, p) = Ep(s)[g(s)]. More specifically, the optimal control function of MFSC is
given by u∗(t, s) = u∗(t, s, p∗), where p∗ is the solution of the FP Equation (A48).
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Because the Bellman Equation (A60) is a functional differential equation, it cannot be
solved even numerically. To resolve this problem, the previous works [30,31] converted the
Bellman Equation (A60) into the HJB Equation (A47) by defining

w∗(t, s) :=
δV∗(t, p∗)

δp
(s), (A61)

where p∗ is the solution of FP Equation (A48). This approach can be interpreted as the
conversion from Bellman’s dynamic programming principle (Figure 2 (top right)) to Pon-
tryagin’s minimum principle (Figure 2 (bottom right)) on the probability density func-
tion space.

Appendix C. Derivation of Main Results

Appendix C.1. Derivation of Result in Section 3.1

In this subsection, we derive Equation (13). J[u]− J[u′] can be calculated as follows:

J[u]− J[u′] = Ep(s0:T)

[∫ T

0
f (t, st, ut)dt + g(sT)

]
−Ep′(s0:T)

[∫ T

0
f (t, st, u′t)dt + g(sT)

]
= Ep(s0:T)

[∫ T

0

(
H(t, st, ut, w′)−Lut w

′(t, st)
)
dt + g(sT)

]
−Ep′(s0:T)

[∫ T

0

(
H(t, st, u′t, w′)−Lu′t w

′(t, st)
)

dt + g(sT)

]
=
∫ T

0

(
Ep(t,s)

[
H(t, s, u, w′)

]
−Ep′(t,s)

[
H(t, s, u′, w′)

])
dt

−
∫ T

0

(
Ep(t,s)

[
Luw′(t, s)

]
−Ep′(t,s)

[
Lu′w′(t, s)

])
dt

+Ep(T,s)[g(s)]−Ep′(T,s)[g(s)]. (A62)

Because Lut and Lu′t
are the conjugates of L†

ut and L†
u′t

, respectively,

J[u]− J[u′] =
∫ T

0

(
Ep(t,s)

[
H(t, s, u, w′)

]
−Ep′(t,s)

[
H(t, s, u′, w′)

])
dt

−
∫ T

0

∫ (
L†

u p(t, s)−L†
u′ p
′(t, s)

)
w′(t, s)dsdt

+Ep(T,s)[g(s)]−Ep′(T,s)[g(s)]. (A63)

From the FP Equation (17),

J[u]− J[u′] =
∫ T

0

(
Ep(t,s)

[
H(t, s, u, w′)

]
−Ep′(t,s)

[
H(t, s, u′, w′)

])
dt

−
∫ T

0

∫
∂(p(t, s)− p′(t, s))

∂t
w′(t, s)dsdt

+Ep(T,s)[g(s)]−Ep′(T,s)[g(s)]. (A64)

From the integration by parts and p(0, s)− p′(0, s) = p0(s)− p0(s) = 0,

J[u]− J[u′] =
∫ T

0

(
Ep(t,s)

[
H(t, s, u, w′)

]
−Ep′(t,s)

[
H(t, s, u′, w′)

])
dt

+
∫ T

0

∫ (
p(t, s)− p′(t, s)

)∂w′(t, s)
∂t

dsdt

+Ep(T,s)[g(s)]−Ep′(T,s)[g(s)]−
∫ (

p(T, s)− p′(T, s)
)
w′(T, s)ds. (A65)

From the HJB Equation (16), Equation (13) is obtained.
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Appendix C.2. Derivation of Result in Section 3.2

In this subsection, we show that Equation (20) is the necessary condition of the optimal
control function of ML-POSC. It corresponds to Pontryagin’s minimum principle on the
probability density function space. We define the control function

uε(t, z) :=

{
u∗(t, z) (t, z) ∈ ([0, T]×Rdz)\(Eε1 × Fε2),
u(t, z) (t, z) ∈ Eε1 × Fε2 ,

(A66)

where Eε1 := [t′, t′ + ε1] ⊆ [0, T], Fε2 := [z′, z′ + ε2] ⊆ Rdz , and ∀u : [0, T]× Rdz → Rdu .
From Equation (13), J[uε]− J[u∗] can be calculated as follows:

J[uε]− J[u∗] =
∫ T

0

(
Epε(t,s)[H(t, s, uε, w∗)]−Epε(t,s)[H(t, s, u∗, w∗)]

)
dt

=
∫

Eε1

∫
Fε2

(
Epε

t (x|z)[H(t, s, u, w∗)]−Epε
t (x|z)[H(t, s, u∗, w∗)]

)
pε

t(z)dzdt.

Letting ε1 → 0 and ε2 → 0,

J[uε]− J[u∗] =
(
Ep∗

t′ (x′ |z′)
[
H(t′, s′, u, w∗)

]
−Ep∗

t′ (x′ |z′)
[
H(t′, s′, u∗, w∗)

])
p∗t′(z

′)dzdt.

Because u∗ is the optimal control function, the following inequality is satisfied:

0 ≤ J[uε]− J[u∗] =
(
Ep∗

t′ (x′ |z′)
[
H(t′, s′, u, w∗)

]
−Ep∗

t′ (x′ |z′)
[
H(t′, s′, u∗, w∗)

])
p∗t′(z

′)dzdt.

Therefore, Equation (20) is the necessary condition of the optimal control function of
ML-POSC.

Appendix C.3. Derivation of Result in Section 3.3

In this subsection, we show that Equation (20) is the sufficient condition of the optimal
control function of ML-POSC if the expected Hamiltonian H̄(t, p, u, w) is convex with
respect to p and u. We define the arbitrary control function ∀u : [0, T]×Rdz → Rdu . From
Equation (13), J[u]− J[u∗] is given by the following equation:

J[u]− J[u∗] =
∫ T

0

(
Ep(t,s)[H(t, s, u, w∗)]−Ep(t,s)[H(t, s, u∗, w∗)]

)
dt. (A67)

Because H̄(t, p, u, w) is convex with respect to p and u, the following inequality is satisfied:

Ep(t,s)[H(t, s, u, w∗)] = H̄(t, p, u, w∗)

≥ H̄(t, p∗, u∗, w∗) +
∫

δH̄(t, p∗, u∗, w∗)
δp

(s)(p(t, s)− p∗(t, s))ds

+
∫ (

δH̄(t, p∗, u∗, w∗)
δu

(z)
)>

(u(t, z)− u∗(t, z))dz. (A68)

Because

δH̄(t, p∗, u∗, w∗)
δp

(s) =
δ

δp

(∫
p(s)H(t, s, u∗, w∗)ds

)∣∣∣∣
p=p∗

= H(t, s, u∗, w∗), (A69)

δH̄(t, p∗, u∗, w∗)
δu

(z) =
δ

δu

(∫
p∗t (z)Ep∗t (x|z)[H(t, s, u, w∗)]dz

)∣∣∣∣
u=u∗

= p∗t (z)
∂Ep∗t (x|z)[H(t, s, u∗, w∗)]

∂u
, (A70)
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the above inequality can be calculated as follows:

Ep(t,s)[H(t, s, u, w∗)] ≥
∫

p∗(t, s)H(t, s, u∗, w∗)ds +
∫
H(t, s, u∗, w∗)(p(t, s)− p∗(t, s))ds

+
∫

p∗t (z)

(
∂Ep∗t (x|z)[H(t, s, u∗, w∗)]

∂u

)>
(u(t, z)− u∗(t, z))dz

= Ep(t,s)[H(t, s, u∗, w∗)]

+Ep∗t (z)

( ∂Ep∗t (x|z)[H(t, s, u∗, w∗)]
∂u

)>
(u(t, z)− u∗(t, z))

. (A71)

Hence, the following inequality is satisfied:

J[u]− J[u∗] ≥
∫ T

0
Ep∗t (z)

(∂Ep∗t (x|z)[H(t, s, u∗, w∗)]

∂u

)>
(u(t, z)− u∗(t, z))

dt. (A72)

Because u∗ satisfies Equation (20), the following stationary condition is satisfied:

∂Ep∗t (x|z)[H(t, s, u∗, w∗)]

∂u
= 0. (A73)

Hence, the following inequality is satisfied:

J[u]− J[u∗] ≥ 0 (A74)

Therefore, Equation (20) is the sufficient condition of the optimal control function of ML-
POSC if H̄(t, p, u, w) is convex with respect to p and u. .

Appendix C.4. Derivation of Result in Section 3.5

In this subsection, we show that Equation (29) is the sufficient condition of the optimal
control function of COSC without assuming the convexity of the expected Hamiltonian.
We define the arbitrary control function ∀u : [0, T] × Rds → Rdu . From Equation (13),
J[u]− J[u∗] is given by the following equation:

J[u]− J[u∗] =
∫ T

0

(
Ep(t,s)[H(t, s, u, w∗)]−Ep(t,s)[H(t, s, u∗, w∗)]

)
dt. (A75)

From (29), the following inequality is satisfied:

J[u]− J[u∗] ≥
∫ T

0

(
Ep(t,s)[H(t, s, u∗, w∗)]−Ep(t,s)[H(t, s, u∗, w∗)]

)
dt = 0. (A76)

Therefore, Equation (29) is the sufficient condition of the optimal control function of COSC.

Appendix C.5. Derivation of Result in Section 4.2 by the Similar Way as Pontyragin’s
Minimum Principle

In this subsection, we derive Equation (31) from Equation (30) by the similar way as
Pontyragin’s minimum principle. From Equation (13), the following equality is satisfied:

J[u0:t−dt, ut, ut+dt:T−dt]− J[u0:t−dt, u∗t , ut+dt:T−dt]

=
(
Ept(s)[H(t, s, ut, wt+dt)]−Ept(s)[H(t, s, u∗t , wt+dt)]

)
dt

= Ept(z)

[
Ept(x|z)[H(t, s, ut, wt+dt)]−Ept(x|z)[H(t, s, u∗t , wt+dt)]

]
dt. (A77)

Therefore, Equation (31) is equivalent with Equation (30).
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Appendix C.6. Derivation of Result in Section 4.2 by the Time Discretized Method

In this subsection, we derive Equation (31) from Equation (30) by the time discretized
method. Equation (30) can be calculated as follows:

u∗t = arg min
ut

J[u0:T−dt]

= arg min
ut

Ep(s0:T ;u0:T−dt)

[∫ T

0
f (τ, sτ , uτ)dτ + g(sT)

]
= arg min

ut
Ep(st:T ;u0:T−dt)

[∫ T

t
f (τ, sτ , uτ)dτ + g(sT)

]
= arg min

ut
Ep(st:T ;u0:T−dt)

[
f (t, st, ut)dt +

∫ T

t+dt
f (τ, sτ , uτ)dτ + g(sT)

]
= arg min

ut
Ept(st)

[
f (t, st, ut)dt +Ep(st+dt:T |st ;ut:T−dt)

[∫ T

t+dt
f (τ, sτ , uτ)dτ + g(sT)

]]
= arg min

ut
Ept(st)

[
f (t, st, ut)dt +Ep(st+dt |st ;ut)[wt+dt(st+dt)]

]
, (A78)

where pt(s) is the solution of the FP Equation (33) driven by u0:t−dt, and wt+dt(s) is defined
as follows:

wt+dt(s) := Ep(st+2dt:T |st+dt=s;ut+dt:T−dt)

[∫ T

t+dt
f (τ, sτ , uτ)dτ + g(sT)

]
. (A79)

From Ito’s lemma,

u∗t = arg min
ut

Ept(st)[ f (t, st, ut)dt + wt+dt(st) + Lut wt+dt(st)dt]

= arg min
ut

Ept(st)[ f (t, st, ut)dt + Lut wt+dt(st)dt]

= arg min
ut

Ept(s)[H(t, s, ut, wt+dt)]. (A80)

Because control ut is a function of memory z in ML-POSC, the minimization by ut can be
exchanged with the expectation by pt(z) as follows:

u∗t (z) = arg min
ut

Ept(x|z)[H(t, s, ut, wt+dt)]. (A81)

Therefore, Equation (31) is derived from Equation (30). Finally, we prove that wt(s) is the
solution of the HJB Equation (32) driven by ut+dt:T−dt. wt(s) can be calculated as follows:

wt(s) = Ep(st+dt:T |st=s;ut:T−dt)

[∫ T

t
f (τ, sτ , uτ)dτ + g(sT)

]
= f (t, s, ut)dt +Ep(st+dt |st=s;ut)[wt+dt(st+dt)]

= f (t, s, ut)dt + wt+dt(s) + Lut wt+dt(s)dt

= wt+dt(s) +H(t, s, ut, wt+dt)dt, (A82)

where wT(s) = g(s). Therefore, wt(s) defined by Equation (A79) is the solution of the HJB
Equation (32) driven by ut+dt:T−dt.

Appendix C.7. Derivation of Result in Section 4.3

In this subsection, we mainly derive the inequality of the forward step (35). The
inequality of the backward step (34) can be derived in a similar way. In the forward step,
uk+1

0:t−dt and uk
t+dt:T−dt are given, and uk+1

t is defined by

uk+1
t (z) := arg min

ut
Epk+1

t (x|z)

[
H
(

t, s, ut, wk
t+dt

)]
. (A83)
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From the equivalence of Equations (30) and (31), the following equation is satisfied:

uk+1
t = arg min

ut
J[uk+1

0:t−dt, ut, uk
t+dt:T−dt]. (A84)

Therefore, the inequality of the forward step (35) is satisfied.

Appendix C.8. Derivation of Result in Section 4.4

In this subsection, we show that FBSM for ML-POSC converges to Pontryagin’s
minimum principle (20). More specifically, we prove that if J[uk+1

0:T−dt] = J[uk
0:T−dt] holds,

uk+1
0:T−dt satisfies Pontryagin’s minimum principle (20). We mainly consider the forward step.

We can make a similar discussion in the backward step. If J[uk+1
0:T−dt] = J[uk

0:T−dt] holds, then
J[uk+1

0:t , uk
t+dt:T−dt] = J[uk+1

0:t−dt, uk
t:T−dt] holds from Equation (35). Because J[uk+1

0 , uk
dt:T−dt] =

J[uk
0:T−dt] holds, uk+1

0 = uk
0 holds. Then, because J[uk

0, uk+1
dt , uk

2dt:T−dt] = J[uk
0:T−dt] holds,

uk+1
dt = uk

dt holds. Iterating this procedure from t = 0 to t = T− dt, uk+1
0:T−dt = uk

0:T−dt holds.
Therefore, because the HJB equation and the FP equation depend on the same control
function uk+1

0:T−dt = uk
0:T−dt, uk+1

0:T−dt satisfies Pontryagin’s minimum principle (20).

Appendix C.9. Derivation of Result in Section 5.3

In this subsection, we show that FBSM is reduced from Algorithm 1 to Algorithm 2 in
the LQG problem of ML-POSC.

We first consider the initial step. We assume that the control function is initialized by

u0(t, z) = −R−1B>
(

Π0K(Λ0)(s− µ) + Ψµ
)

, (A85)

where Π0 is arbitrary and Λ0 is the solution of Λ̇0 = F (Λ0, Π0) given Λ0(0) = Λ0. When
the control function is initialized by (A85), the solution of the FP equation is given by the
Gaussian distribution p0

t (s) := N (s|µ, Λ0), where µ is the solution of (42) and Λ0 is the
solution of Λ̇0 = F (Λ0, Π0) given Λ0(0) = Λ0.

We then consider the backward step. When the solution of the FP equation is given by
the Gaussian distribution pk

t (s) := N (s|µ, Λk), the solution of the HJB equation is given by
the quadratic function wk+1

t (s) = s>Πk+1s + (αk+1)>s + βk+1, where Πk+1, αk+1, and βk+1

are the solutions of the following ODEs:

−Π̇k+1 = G(Λk, Πk+1), (A86)

−α̇k+1 = (A− BR−1B>Πk+1)>αk+1

− 2(I − K(Λk))>Πk+1BR−1B>Πk+1(I − K(Λk))µ, (A87)

−β̇k+1 = tr
(

Πk+1σσ>
)
− 1

4
(αk+1)>BR−1B>αk+1

+ µ>(I − K(Λk))>Πk+1BR−1B>Πk+1(I − K(Λk))µ, (A88)

where Πk+1(T) = P, αk+1(T) = 0, and βk+1(T) = 0.
We finally consider the forward step. When the solution of the HJB equation is given

by the quadratic function wk
t (s) = s>Πks + (αk)>s + βk, the solution of the FP equation is

given by the Gaussian distribution pk+1
t (s) := N (s|µ, Λk+1), where µ is the solution of (42)

and Λk+1 is the solution of Λ̇k+1 = F (Λk+1, Πk) given Λk+1(0) = Λ0. Therefore, FBSM is
reduced from Algorithm 1 to Algorithm 2 in the LQG problem of ML-POSC. The details of
these calculations are almost the same with [14].
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