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Abstract: Estimation of Rényi entropy is of fundamental importance to many applications in cryptog-
raphy, statistical inference, and machine learning. This paper aims to improve the existing estimators
with regard to: (a) the sample size, (b) the estimator adaptiveness, and (c) the simplicity of the analy-
ses. The contribution is a novel analysis of the generalized “birthday paradox” collision estimator.
The analysis is simpler than in prior works, gives clear formulas, and strengthens existing bounds.
The improved bounds are used to develop an adaptive estimation technique that outperforms previ-
ous methods, particularly in regimes of low or moderate entropy. Last but not least, to demonstrate
that the developed techniques are of broader interest, a number of applications concerning theoretical
and practical properties of “birthday estimators” are discussed.
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1. Introduction
1.1. Motivation and Background

The aim of entropy estimation is to approximately compute the Rényi entropy of an
unknown probability distribution using only observed samples. Since Rényi entropy is the most
established and popular uncertainty measure, the problem is not only one of fundamental
interest to information theory [1], but also one of importance to a number of applied
research areas. These applications of Rényi entropy include, in particular, quantifying
diversity in ecology [2–4], statistical mechanics [5,6], thermodynamics [7], characterizing
properties of probability distributions [8,9], DNA sequencing [10,11], network anomaly
detection [12,13], clustering [14,15], data mining [16,17], predictive modelling [18], as well
as security and cryptography [19–28].

To state the problem formally, if we consider a fixed discrete distribution with proba-
bility mass function pX , the Rényi entropy [1] of some fixed positive order d is defined as

Hd(pX) ,
1

1− d
log2

(
∑
x

pX(x)d

)
. (1)

The challenge is to estimate this quantity from n independent samples X1, . . . , Xn ∼iid pX .
More precisely, we seek an explicit function of samples Ĥ such that the approximation

Ĥ(X1, . . . , Xn) ≈ Hd(pX) (2)

holds with a small error, high probability, and possibly minimal sample size n. We are
interested in non-parametric estimation, as the distribution X remains unknown.

As in prior work on Rényi entropy estimation, we focus on integer orders. This is
not limiting, because Rényi entropies of positive integer orders: (a) encode the complete
information about the distribution [29], (b) are sufficient for practical applications due to
known smoothing and interpolation properties [30,31], and finally (c) are more efficient to
estimate from the algorithmic perspective [32].
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1.2. Related Work

The most natural, albeit not most efficient, are so-called plugin estimators, which insert
a non-parametric estimate of the probability mass function into the entropy formula [33].
As opposed to that, sample-optimal estimators for Rényi entropy are more involved, as
shown in a relatively recent line of work [32,34,35]. Loosely speaking, these estimators
relate the entropy to collision probabilities and then take advantage of the birthday paradox.
More specifically, base estimations are obtained by counting collisions among tuples in the
observed sample, and then are optionally run in parallel to boost the statistical confidence.
The birthday paradox intuitively explains why the resulting algorithms are sublinear in the
alphabet size. Specifically, for the alphabet of size K, the sample-optimal estimation takes
Od(K1−1/d) samples (the asymptotic notation Od() hides dependencies on d.) to achieve
an additive error of at most 1 and a level of confidence of at least 2/3 [32,34,35]. The
aforesaid state-of-the-art estimators are asymptotically minimax optimal; that is, they achieve
the asymptotically minimal sample size over the worst choice of the sampling distribution.
However, their known analyses leave room for improvement with regard to simplicity,
numerical precision, estimation adaptiveness, and techniques used. We elaborate on these
issues below:

1. Lack of simplicity and numerical precision. The analyses of the state-of-the-art esti-
mators [32,34,35] struggle with analysing the variance of collision estimators, which is
tackled either by poissonization approximations [32,34] (which carry their own overhead)
or by using involved combinatorics [35]. As a consequence, the variance bounds are
available in asymptotic “big-Oh” notation hiding constants and higher-order depen-
dencies (such as relations to the order d), and are not suitable for applications in
statistics or cryptography, which demanding precise formulas. This point was already
raised in the context of applied works on physically unclonable functions [36].

2. Adaptiveness gap. The focus of prior research was on establishing bounds under
the worst-case choice over all distributions [32,34]. This is overly pessimistic because
distributions that arise in practical applications are of a different structure than those
occurring in this worst-case scenario analysis (the worst-case choice is known to be a
mixture of uniform and Dirac distributions). The bounds were somewhat improved
in the follow-up work [35] where a prior entropy bound is assumed. Still, there is a gap
as the entropy bound is usually not known prior to the actual experiment. In fact,
getting an entropy bound might be more costly than its application.

3. Lack of established techniques. Prior work focused on delivering asymptotic for-
mulas and did not elaborate much on techniques that could help obtain simpler
and tighter bounds. The difficulty of analyzing collision estimators is a recurring
issue, well-known to the researchers working on property testing [37]. Do we have a
systematic method of handling it?

1.3. Our Contribution

This work fills the aforementioned gaps with the following contributions:

1. Simpler and more accurate analysis of collision estimators, the main building blocks
of the state-of-the-art Rényi entropy estimators. We analyze the collision estimators as
kernel averages with the technique of Hoeffding’s decomposition. This novelty brings the
promised simplicity and improvement in accuracy.

2. Adaptive estimation of Rényi entropy, using no prior knowledge of the sampling
distribution. The sample size cost of the presented algorithm is essentially optimal
(up to a poly-logarithmic factor).

3. Modular approach using the established methods of U-statistics and Robust Mean
Estimation. Specifically, we point out that the moment estimation problem, which
Rényi entropy estimation reduces to, can be seen as the estimation of certain U-
statistics. While the dedicated statistical theory provides the bias–variance analysis,
the confidence can be independently boosted by techniques of Robust Mean Estimation.
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This paper aims to solve the two mentioned bottlenecks and, in this way, to close the
gap between the theory-oriented state-of-the-art and the demand coming from applied
researchers and their practical use cases, such as [36].

1.4. Organization

The notation and preliminary concepts are discussed in Section 2. The technical results
and applications are presented in Section 3. The proofs are discussed in Appendix A, and
the work is concluded in Section 4.

2. Preliminaries
2.1. Basic Notation

Throughout the paper, pX is the probability mass function of a fixed discrete distribu-
tion over an alphabet of size K and X1, . . . , Xn are observed independent samples from pX .
We denote [n] = {1, . . . , n} and let ([n]d ) denote the collection of all d-element subsets of n.

2.2. Estimation of Entropy, Moments, and Collisions

We leverage the following observation from prior work: the task of Rényi entropy
estimation is equivalent to the task of moment estimation. More precisely, the d-th moment
of the probability mass function pX is defined as

Pd , ∑
x

pX(x)d, (3)

and then—immediately from definition—we have the following result:

Proposition 1. An estimate Ĥ of the Rényi entropy of order d (defined in (1)) has an additive error
of ε if and only if 2Ĥ is an estimate of the d-th moment (defined in (3)) with a relative error of
ε′ = 2ε(d−1) − 1.

Solving the (equivalent) problem of moment estimation is more convenient due to the
beautiful representation of moments as collision probabilities. More precisely, we have

Pd = P(X1 = X2 = . . . = Xd). (4)

2.3. U-Statistics

For a symmetric real function h of d arguments, the U-statistic with kernel h of the
sample X1, . . . , Xn is defined as:

Uh(X1, . . . , Xn) ,
(

n
d

)−1

∑
16i1<...<id6n

h(Xi1 , . . . , Xid). (5)

The U-statistic gives an unbiased estimate of the function expectation, hence its name.
U-statistics were invented by Hoeffding [38] to extend certain results, such as concentration
bounds, to sums of partly dependent terms. Many statistical quantities can be related to
U-statistics; for example, moments or sample variances [39]. In the same spirit, we will
see estimators of the collision probability in Equation (3) as U-statistics and use those to
establish their desired properties.

2.4. Robust Mean Estimation

It is difficult to directly obtain high confidence bounds (such as those of the Chernoff–
Hoeffding type) for moment estimators. Instead, we will boost weaker bounds obtained
from bias–variance analyses. To this end, we combine independent runs of estimators into
high-confidence bounds using the technique of Robust Mean Estimation.
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Estimating the mean of a distribution from i.i.d. samples is not trivial: the “obvious”
use of the empirical mean is inaccurate for heavy detailed distributions. Following the
recent survey [40], we mention here two solutions:

• the median-of-means approach organizes data (such as independent algorithm outputs)
into blocks and computes the median of means within blocks.

• the trimmed mean approach takes the mean of independent runs, excluding a certain
fraction of smallest and biggest outcomes (removing outliers).

We note that any robust mean estimation can be used to achieve confidence boost-
ing. In this work, we stick to the median-of-means. The following result discusses its
performance.

Proposition 2 (Performance of Median-of-Means [40]). Let Z1, . . . , Zn be i.i.d. random vari-
ables with mean µ and variance σ2. For k = d8 log(1/δ)e, split Z1, . . . , Zn into k blocks and let µ̂
be the median of the means within blocks. Then, with probability 1− δ,

|µ̂− µ| 6 σ

√
4

bn/kc . (6)

2.5. Moment Bounds

We will need some bounds on moments of probability distributions, in order to
simplify formulas that arise from variance analysis. Specifically, we will use these auxiliary
results to express higher-order moments in terms of moments of small order (d = 2 and
d = 3).

Proposition 3. For any probability distribution p = (pi), we have

∑
i

p2d−k
i > (∑

i
pd

i )
2

for any integer k, d such that 1 6 k 6 d. Moreover, with pmax , maxi pi it holds that

∑
i

p2d−k
i > (∑

i
pd

i )
2/pk−1

max.

Proposition 4. For any non-negative sequence (pi), it holds that the quantity ‖p‖d ,
(

∑i pd
i

)1/d

decreases in d > 1.

3. Results

Following the convention from prior work, our results are stated for moment estimation,
which is equivalent to entropy estimation as discussed in Proposition 1. Throughout the
rest of the paper, we keep this reduction in mind.

3.1. Simpler & More Accurate Moment Estimation

The first novelty offered in the current work is a simplified and strengthened variance
analysis of the state-of-the-art moment estimator, presented in Algorithm 1. Differently
than in prior work, we write the estimator output as a kernel average of the function
h(xi1 , . . . , xid) , I(xi1 = . . . xid) over the d-element subsets of the sample. This approach is
not only more readable but ultimately also more accurate, as it links the task of moment
estimation to the established theory of U-statistics [38].

On top of that comes the refined high-confidence moment estimator in Algorithm 2, which
we build on robust mean estimators [40]. Due to this modularity, it uses fewer samples
than the direct approach from prior work [34].
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Algorithm 1: BIRTHDAY MOMENT ESTIMATOR

Data:
• entropy order d
• samples X1, . . . , Xn, n > d, from an unknown distribution with p.m.f. pX

Result: an estimate P̂d of Pd = ∑x pX(x)d, the d-th moment of pX

C ← #
{
{i1 . . . id} ∈ ([n]d ) : Xi1 = Xi2 = . . . = Xid

}
P̂d ← C/(n

d)

return P̂d

Theorem 1 (Bias–Variance Analysis of Moment Estimator). With the notation as above, the
output of Algorithm 1 is unbiased:

E[P̂d − Pd] = 0, (7)

and its variance equals

Var[P̂d] =
∑d

k=1 (
d
k)(

n−d
d−k)(P2d−k − P2

d )

(n
d)

. (8)

In particular, for any n > d and ε > 0 we can upper-bound the variance as

Var[P̂d] 6
2d2P2−1/d

d
n

, (9)

and the relative error confidence as

P[|P̂d − Pd| > εPd] 6
2d2

nP1/d
d ε2

. (10)

Remark 1 (Efficient Implementation). Birthday estimators can be efficiently computed, in
memory O(n) and one-pass over samples, by using a dictionary to count empirical frequencies of
observed elements. Such an implementation is given in the supplementary material [41].

Remark 2 (Structural Assumptions). The bounds from Theorem 1 use the statistic Pd of the
sampling distribution. This explicit dependency is beneficial, as further discussion clarifies. Lacking
any prior knowledge, it can be estimated by the worst-case behavior, in terms of the alphabet size.

Algorithm 2: HIGH-CONFIDENCE BIRTHDAY MOMENT ESTIMATOR

Data:
• a moment order d
• samples X1, . . . , Xn, n > d, from an unknown distribution with p.m.f. pX
• a confidence parameter δ

Result: an estimate P̂d of Pd = ∑x pX(x)d, the d-th moment of pX
k← d8 log(1/δ)e
`← bn/kc
for j = 1, . . . , kc do

P̂(j)
d ← output of Algorithm 1 Xj·`, . . . , X(j+1)·`−1 on (j-th input block of length `)

end

P̂d ← MEDIAN(P̂(j)
d , j = 1, . . . , k)

We see that the choice n > 6d2ε−2/P1/d
d guarantees P[|P̂d − Pd| > εPd] 6 δ for δ = 1

3 .
Higher confidence (smaller δ) can be handled with the method of Robust Mean Estimation.
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Theorem 2 (High-Confidence Moment Estimator). For any ε > 0, Algorithm 2 approximates
Pd with probability 1− δ and a relative error of ε provided that

n >

⌈
8d2

ε2P1/d
d

⌉
· d8 log(1/δ)e. (11)

Remark 3. The constant can be refined a little based on the methods from [42].

When comparing these results with prior work, we review the following aspects:

1. Novel techniques of broader interest. We recall that analyzing variance formulas has
been challenging for prior works on entropy estimation ([32,34] resorted to Poisson
approximations, while [35] gave an involved combinatorial argument), even for the
case d = 2 (the lack of sharp analysis caused lots of difficulties in property testing [37]).
As opposed to these ad hoc approaches, we establish the formula in a simple yet
direct manner, pointing out that such formulas can be obtained by the techniques of
U-statistics. When discussing applications, we will further benefit from these tools.

2. Clean and improved formulas. Our confidence bound does not involve any implicit
constants, while prior works in their main statements have unspecified dependencies
on d (essentially, hiding more than absolute constants). We compare the accuracy
bounds from this and prior works in Table 1 below. Our bound is strictly better given
that Pd is minimized at the uniform distribution and thus P−1/d

d 6 K−1+1/d (with
a large gap when the distribution is far from uniform), which establishes that the
dependency on d is 4d2. Leveraging the theory of U-statistics, we will show that the
factor O(d2) is optimal, which is also a novel contribution.

Table 1. The performance of the “birthday estimator” of moments. In the formulas, ε ∈ (0, 1) is the
relative error, n is the sample size, and 1− δ is the confidence (the prob. that |P̂d − Pd| 6 εPd).

Confidence 1 − δ in Algorithm 1 Author Assumption

δ 6 4d2n−1ε−2P−1/d
d this paper n > d

δ 6 Od(n−1ε−2P−1/d
d ) [35] n > d

δ 6 Od(n−1ε−2K1−1/d) [32] n > d

3.2. Adaptive Estimation

As per our variance analysis, the performance actually depends not on the alphabet
size K (that is ultimately the pessimistic bound) but rather on a more fine-grained statistic of
X, namely Pd. Following the result in Theorem 2, we could hope for a moment estimation of

n =? Θ(log(1/δ))ε−2d2P
− 1

d
d . (12)

The obvious obstacle is that, in general, we do not know Pd in advance. We solve this
problem by developing an adaptive algorithm. It does not assume the right number of
samples in advance but tries gradually and eventually terminates with high probability,
giving the answer within the desired margin of error and using only a few more samples
than the ideal bound conjectured above. Its core is a subroutine that guesses the moment
value, gradually changing the candidate.

3.2.1. Lower-Bounding Moments

The key ingredients of our approach are the following two subroutines: Algorithm 3
tests, based on samples, whether the moment is smaller or bigger than a proposed candidate;
subsequently, Algorithm 4 loops the tester over a grid of candidate values.

The correctness of the approach is guaranteed by the lemmas stated below.
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Algorithm 3: MOMENTLESSTHAN

Data:
• independent samples X1, . . . , Xn ∼iid pX
• tested threshold Q
• access to an estimator P̂ of Pd

Result: tests if Pd 6 Q
2 or Pd > 2Q

P̂← P̂(X1, . . . , Xn)

if P̂ < Q then
return True

else if P̂ > Q then
return False

Algorithm 4: MOMENTBOUND

Data:
• independent samples X1, X2, . . . ∼iid pX (online access)
• access to Algorithm 3
• the sample size n(Q, δ) for Algorithm 3

Result: finds bound Q such that Q
2 6 Pd 6 Q

Q← 1
while Q > 1/Kd−1 & b = True do

Q← Q/2
n← n(Q, δ/ log K)
b← MOMENTLESSTHAN(X1, . . . , Xn; Q) /* this call can recycle Xi */

end
return Q

Lemma 1 (Moment Testing). Let P̂ be any estimator of Pd which, given

n > C(δ)P−1/d
d ε−2

samples, for some function C(·) and any ε > 0, 1 > δ > 0, achieves a relative error of ε with
probability 1− δ. Then Algorithm 3, when given at least

n(Q, δ) = d4C(δ)Q−1/de

samples of X, with probability 1− δ, outputs TRUE when Pd 6 Q/2 and FALSE when Pd > 2Q.

Lemma 2 (Moment Bounding). With same P̂ as in Lemma 1, with probability 1− δ, Algorithm 4
terminates after using at most

n = d4C(δ/(d− 1) log K)P−1/d
d e

samples of X, and its output Q satisfies Q
2 6 Pd 6 4Q.

3.2.2. Construction of Adaptive Estimator

Armed with Lemma 2, we are ready to analyze adaptive estimation. The algorithm is
the same in the non-adaptive case, and we need Lemma 2 only to adjust the sample size.

Theorem 3 (Adaptive Moment Estimation). With online access to samples from X, with proba-
bility 1− δ, one can estimate Pd within a relative error of ε, terminating at the number of samples

n 6 O((log(1/δ) + log log K)P
− 1

d
d ε−2). (13)

Remark 4 (Adaptive Overhead). The sample size for adaptive estimation differs from the “dream
bound” in (12) by a (very small) factor of log log K.
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Remark 5 (Sample Complexity Guarantees). Observe that the algorithm is not guaranteed
to achieve the “good” sample complexity every time, but rather with high probability. This is a
minor issue inherently related to the concept of adaptive estimation and does not affect much the
performance in practical applications. Namely, we can always clip the total number of samples
available at the pessimistic level from prior work and fall back to the fixed-size sample estimation
should the adaptive estimation exceed the limit. This, however, happens with small probability δ,
which can be further decreased with little overhead.

Remark 6 (Comparison to Prior Work). We give a clear comparison of our adaptive estimation
and prior work in Table 2 below. We always have Pd > Q and Pd > K−1+1/d. Furthermore, usually
Pd/Q is much bigger than 1 (because in practice we do not know a prior lower bound in advance)
and Pd is much bigger than K−1+1/d (this gap can be as big as KΩ(1), which is a huge factor for
some applications; for example, in cryptography, we consider alphabets as big as K = 2256). Thus,
our bound outperforms the previous approaches for typical use cases.

Table 2. The performance of moment (Rényi entropy) estimators. In the formulas, K is the alphabet
size, ε is the relative error, and the confidence is 1− δ.

Sample Size n Author Assumptions

O((log(1/δ) + log log K)ε−2P−1/d
d ) this paper

O(log(1/δ)ε−2Q−
1
d ) [35] prior bound Q 6 Pd

O(log(1/δ)ε−2K1− 1
d ) [32]

3.3. Novel Applications
3.3.1. One-Sided Estimation: Random Sources for Cryptography

The collision probability Pd for d = 2 plays an important role in cryptography: it
quantifies the amount of randomness that can be extracted from a distribution [28]. For
that extraction to work, P2 should be small enough. Specifically, if P2 6 2−k allows for
extraction of nearly k bits of cryptographic quality, how could we check whether P2 6 2−k?

To solve the problem, we adapt Algorithm 4 by adding early stopping; namely, we
quit the loop if Q > 2−k. We take n = O(log(k/δ)2k/2) samples.

It remains for us to show that the algorithm behaves as desired. By the guarantees in
Lemma 1 and the union bound over at most k steps, with probability 1− δ, we have the
following: when P2 < 2−k−1, the algorithm finishes with Q 6 2−k; and when P2 > 2−k+1,
the algorithm finishes with Q > 2−k. This can be generalized to one-sided estimation for
any d, where the goal is to decide whether Pd > Ω(2−k) or Pd < O(2−k).

This one-sided estimation allows for saving samples and testing only up to a necessary
extent. In cryptography, we do not have to estimate the whole entropy (which may be more
costly, even with adaptive estimation) but only what suffices for the chosen application.

3.3.2. Birthday Estimators Are UMVUE

The shortcut UMVUE stands for uniformly minimum unbiased variance estimators. We
prove this conceptually strong and interesting characterization, which essentially shows
that the birthday estimator in Theorem 1 is variance-optimal among unbiased estimators.
The argument is inspired by our variance analysis, seeing the estimator as a U-statistic.

Corollary 1 (Birthday estimators are UMVUE). Let P̂d be as in Algorithm 1 and P̃d be another
unbiased (for any X) estimator of Pd. Then we have Var[P̂d] 6 Var[P̃d].

Proof. We will use the known result due to Lehmann and Sheff, which states that if an
unbiased estimator is a function of a complete and sufficient data statistic, then it has the
smallest possible variance [43,44].
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To apply this result, without losing generality (as it is a matter of encoding the alpha-
bet), we assume that X takes values in the set {1, . . . , K}. Consider the sample X1, . . . , Xn,
and let σ be the rearrangement such that Xσ(1) 6 Xσ(2) 6 . . . Xσ(n) (this is called the
order statistic). The estimator P̂d can be seen as the average of the symmetric function
h(Xi1 , . . . , Xid) = I(Xi1 = xi2 = . . . = Xid) over tuples i1 < i2 < . . . < id, and thus is
also the function of T = (Xσ(1), Xσ(2), . . . , Xσ(n)). The claim follows if we prove that T is
sufficient and complete (as a sample statistic).

Order statistics are sufficient for univariate distributions. This is because we have:

PX1,...,Xn |Xσ(1),Xσ(2),...,Xσ(n)
=

1
n!

,

which does not depend on Xi. Thus, Xσ(1), Xσ(2), . . . , Xσ(n) carries the same information
about the data as Xi.

The completeness of T means that there are no non-trivial unbiased estimators of
zero; equivalently, if E f (T) = 0 for all sampling distributions and some function f , then
P[ f (T) = 0] = 1. To this end, observe that from the sufficiency proved above we have

E f (Xσ(1), . . . , Xσ(n)) = 0 =⇒ E f (X1, . . . , Xn) = 0

Suppose that the above holds for any finitely supported sampling distribution X. Let X
take values i ∈ I with probability pi. Then the above implies

∑
i1,...,in∈I×...×I

pi1 . . . pin f (i1, . . . , in) = 0

for every distribution (pi). The left-hand side represents a multivariate polynomial in
variable pi, which evaluates to zero on the entire simplex of dimension n− 1. Thus, its
coefficients must be zero, which implies f (i1, . . . , in) = 0 for each tuple i1, . . . , in and proves
that T is sufficient.

3.3.3. Central Limit Theorem for Birthday Estimators

We again represent the estimator as the average sum over tuples:

P̂d =

(
n
d

)−1

∑
i1<...<id

h(Xi1 , . . . , Xid),

where

h(xi1 , . . . , xid) , I(xi1 = xi2 = . . . = xid).

We view the whole expression as the U-statistic with the kernel function h. Then we
show the following strong result (below, N (0, σ2) denotes the normal distribution with
zero-mean and variance σ2).

Corollary 2 (Asymptotic Normality). For n→ +∞ it holds that
√

n · (P̂d − Pd)→ N (0, σ2)
where σ2 = d2(P2d−1 − P2

d ), with Pd as in (3).

The proof utilizes the classical convergence results for U-statistics [38] and the deriva-
tion of our variance formula. Note that the result says that the central limit theorem applies,
despite the fact that the sum components are correlated. Clearly, the result is interesting on
its own, particularly because (a) it proves that our constant O(d2) is sharp, and (b) can be
used more generally to benchmark other proposed bounds, by means of comparing with
the asymptotic gaussian tail.

However, we would like to point out an application to applied statistical research.
In [36], Rényi entropy of order d = 2 has been estimated for the distribution of physically
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unclonable functions (PUFs), which are important in the field of cryptography. How-
ever, their methodology lacks statistical rigor. Particularly, for the authors’ needs, prior
work on Rényi entropy estimation was insufficient in terms of clarity on constants; thus,
they resorted to the naive application of the central limit theorem, which can give very
biased results.

A more solid alternative would be to use the above corollary to (a) justify the sound-
ness, at least in the regime of large n, and (b) establish a more robust estimation of
the variance.

Proof of Corollary 2. The limiting variance equals d2σ2
1 [39] with

σ2
1 = Cov[h(Xi1 , . . . , Xid), h(Xj1 , . . . , Xjd)],

where the tuples (i1, . . . , id) and (j1, . . . , jd) have only k = 1 element in common. We
analyze this expression when proving Theorem 1 and know that it equals P2d−1 − P2

d . The
claimed formula now follows.

3.3.4. Adaptive Testing in Evaluation of PUFs

Here we discuss again an application to [36], but from a different perspective. As
explained by the authors, the problem with estimating Rényi entropy of PUFs is a serious
bottleneck: for this problem, the alphabet is huge, which limits the experiment scope, even
on computational clusters [36]. In this note, we would like to point out that parts of these
difficulties can be solved by our adaptive estimation. In fact, PUFs provide an excellent use
case when entropy is quite low; therefore, the moment Pd term in Theorem 3 is much bigger
than the pessimistic bound based on the alphabet size. We discuss this application in full
detail in a follow-up work.

3.3.5. Applications to Property Testing

The estimator from Algorithm 1 was first studied in [45], but the variance bounds
obtained were not sharp. Quite oddly, in the ongoing research on closeness testing, the
birthday-like collision estimators (being subroutines for uniformity checking) seemed to be
suboptimal [46] until, very recently, the work of [37] re-examined the variance formula for
d = 2 and shows that it achieves (in our notation) optimal dependence on K and ε. Thus, a
breakthrough was possible just because of a specialized version of (8). In this discussion,
we would like to (a) point out that the general variance formula can likely have similar
applications and impact for d > 2 and should be of broader interest, and (b) comment on a
minor gap in an early version of the proof of the central result in [37]. Lemma 2.3 in [37],
which establishes the variance bound for d = 2, is the key ingredient of the main results.
The authors derive an expression bounding, in our notation, the variance in Theorem 1
for the case d = 2. When doing so, they face up the term n(n− 1)(n− 2)(P3 − P2

2 ) (in our
notation) and bound it as n3(P3 − P2

2 ) (the last line of derivation claims the upper bound,
the following remark claims the lower bound). The reasoning, however, is valid when
P3 − P2

2 is non-negative. This is true by Proposition 3.

3.4. Application to Statistical Inference

We will use Algorithm 1 to efficiently test whether a given distribution is close or
far from a uniform one. The procedure described below is asymptotically equivalent but
numerically superior to the one from [37].

Denote by K the alphabet size and let γ be such that P2 = 1
K + γ. We see that

γ = ∑
x

(
pX(x)− 1

K

)2
, (14)
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which shows that γ measures the squared `2-distance between pX and the uniform distri-
bution. For convenience, we will refer to γ as the collision gap. Define

γ̂ = P̂2 −
1
K

. (15)

This estimator gives an unbiased approximation of γ, because E[γ̂] = E[P̂2]− 1
K = P2− 1

K =

γ. Furthermore, its variance equals the variance of P̂2 because 1
K is a deterministic constant.

By Chebyshev’s inequality, with probability 1− δ, we have

|γ̂− γ| 6
√

Var[P̂2]/δ. (16)

We now analyze the variance in more detail. Define δ(x) = pX(x) − 1
K . Then P2 =

1
K + ∑x δ(x)2 and P3 − P2

2 = ∑x δ(x)3 + 1
K ∑x δ(x)2 − (∑x δ(x)2)2. In particular, we have

P2 = 1
K + γ and 0 6 P3 − P2

2 6 γ
3
2 + γ

K by Propositions 3 and 4. Therefore, by Theorem 1
we obtain

Var
[

P̂d −
1
K

]
6

4( γ
K + γ

3
2 )

n
+

γ + 1
K

(n
2)

. (17)

Thus, with probability 1− δ, we have

γ−

√√√√4( γ
K + γ

3
2 )

nδ
+

γ + 1
K

(n
2)δ

6 γ̂ 6 γ +

√√√√4( γ
K + γ

3
2 )

nδ
+

γ + 1
K

(n
2)δ

. (18)

The above two-sided inequality allows us to estimate a range of possible values γ with
respect to the (observed) statistics γ̂, which yields high-confidence bounds for γ.

We illustrate the procedure numerically on real-world datasets. Data and results are
summarized in Figure 1a,b. Our method confirms non-uniformity in both cases and pro-
vides confidence intervals. The details of the experiment are shared in the supplementary
material [41].

3.5. Application to Entropy Estimation

The following experiment illustrates advantages of adaptive entropy estimation for
distributions with large support and relatively low entropy, such as Zipf’s law.

Let X follow Zipf’s law with parameter s = 1.1 and the support of K = 104 elements.
By numerical calculations, we find that P2 ≈ 0.40005. Consider now the task of estimating
entropy of X from samples. Theorem 3 allows us to save a large factor of about K1/2 = 102

in the number of samples. Calculations show that on a sample of size about n = 10, 000,
the algorithm from Algorithm 2 finds an approximation P̂d = 0.39898 with a relative error
ε = 1

2 and confidence 1− δ = 0.95. The details appear in the supplementary material [41].
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(a) (b)

Figure 1. (a) U.S. births 2000–2014 (source: Social Security Administration). For this dataset,
P̂2 ≈ 0.14794 and 1

K ≈ 0.14286, so that the gap equals γ ≈ 0.00017. Our method gives the 99%
confidence interval of (0.005,0.00516). (b) Births from insurance claims (source: courtesy of Roy
Murphy). For this dataset, P̂2 ≈ 0.08348 and 1

K ≈ 0.08333, so that the collision gap equals γ ≈ 0.00015.
Our method gives the 99% confidence interval of (0.00009,0.00035).

4. Conclusions

This work simplifies the variance analysis of collision estimators, establishing the
closed-form exact formulas and improving upon prior data-oblivious bounds by making
them dependent on certain data statistics. In particular, we use the derived formulas to
estimate Rényi entropy adaptively, asymptotically, and give other applications.

Numerical experiments highlight the importance of the dependency of sample size
on confidence. The constants involved exponentially affect the confidence, so that further
improvements are of significance for many real-world inference problems. This problem is
left for future research.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Data Availability Statement: The data and code is shared in the GitHub repository [41].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs

Appendix A.1. Proof of Proposition 3

For convenience, we introduce the function f (u) = ud−1. Then we have:

∑
i

pi f (pi)
2 > (∑

i
pi f (pi))

2,

which is easiest to see by writing equivalently Var[Z] > 0 where Z is a random variable
taking values pi with probabilities pi. We therefore have

∑
i

p2d−1
i > (∑

i
pd

i )
2.
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Since 0 6 pi 6 1 and 1 6 k 6 d, we have p2d−1
i 6 p2d−k

i . We finally obtain

∑
i

p2d−k
i > ∑

i
p2d−1

i > (∑
i

pd
i )

2.

This can be further sharpened using p2d−1
i 6 p2d−k

i pk−1
max, which gives

∑
i

p2d−k
i pk−1

max > ∑
i

p2d−1
i > (∑

i
pd

i )
2.

Appendix A.2. Proof of Proposition 4

The property in Proposition 4 is equivalent to the monotonicity of p-norms. For a
proof of the latter one, see, for example [47].

Appendix A.3. Proof of Theorem 1

Appendix A.3.1. Proof of the Bias–Variance Formula

For a tuple index i = (i1, . . . , id) where components i ∈ i are different, let Ci indicate
whether all Xi for i ∈ i collides. The definition of the estimator directly implies that

Proposition A1 (Mean Value Formula). The output of Algorithm 1 is

P̂d =

(
n
d

)−1

∑
i=(i1,...,id):16i1<i2<...<id6n

Ci. (A1)

From Proposition A1, it is straightforward to see that the estimator is unbiased.

Proposition A2 (Estimator Is Unbiased). For any i we have that ECi = ∑x pX(x)d = Pd. In
particular, the estimator P̂d of the d-moment is unbiased.

In order to establish a variance formula, we analyze the covariance of the terms Ci.

Proposition A3 (Covariance Formulas). Let i = i1, . . . , id and j = j1, . . . , jd be tuples of
distinct indices. Suppose that exactly k > 0 of entries in i collides with some entries in j, that is
|i ∩ j| = k. Then we have

E
[
CiCj

]
=

{
(∑x pX(x)d)2 k = 0

∑x pX(x)2d−k k > 0,

which implies that

Cov[Ci, Cj] =

{
P2d−k − P2

d k = |i ∩ j| > 0
0 |i ∩ j| = 0.

Remark A1 (Overlaps imply positive correlation). Note that E
[
CiCj

]
− E

[
Ci]E[Cj

]
equals

∑x pX(x)2d−k − (∑x pX(x)d)2. For k 6 d − 1, we have ∑x pX(x)2d−k > ∑x pX(x)d+1 and
∑x pX(x)2d−1 = ∑x pX(x)pX(x)2(d−1) > (∑x pX(x)d)2 by Jensen’s inequality. Thus, we have
positive correlation. This can also be shown by the FKG correlation inequality [48].

Proof. We first prove the formula for E
[
CiCj

]
. Consider the case k = 0, which means that

i and j do not share a common index; it is easy to see that the formula is true because 2d
random variables Xi, Xj for i ∈ i and j ∈ j are independent (lack of collisions among the
indices) so that E[CiCj] = E[Ci]E[Cj]. Consider now the case k > 0, which means that i and
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j overlap. We have Xi = Xj for all i, j ∈ i ∩ j. Conditioning on this common value of all Xi
and Xj (call it x) and denoting Xi = (Xi)i∈i, we obtain

E

CiCj

∣∣∣∣∣∣∣Xi = Xj = x, . . . , x︸ ︷︷ ︸
2d−k

 = pX(x)2d−k,

because we have exactly 2d − k distinct variables Xi or Xj and all are equal to x. The
formula follows now by aggregating over possible values of x.

The covariance formula follows now by combining the above bounds and Proposition A1,
because Cov[Ci, Cj] = E[CiCj]− E[Ci]E[Cj].

Finally, the covariance bounds from Proposition A1 and A3 remain to be used. We
need the following fact, which counts how many times we see a particular pattern from the
covariance formula.

Proposition A4 (Number of terms). There are (n
d)(

d
k)(

n−d
d−k) unordered distinct tuples i and j

that satisfy |i ∩ j| = k. The number of ordered tuples equals ( n
2d−k).

Proof. Recall that i and j are d-combinations out of n. To enumerate tuples such that |i ∩
j| = k, note that it suffices to choose i one in (n

d) ways, then choose k common elements in (d
k)

ways and then choose remaining j \ i elements in (n−d
d−k) ways. This gives the formula.

By Proposition A1 we have

Var[P̂d] =

(
n
d

)−2

∑
i,j:distinct ordered d-tuples

Cov[Ci, Cj].

Now Equation 8 follows by using Propositions A3 and A4.

Appendix A.3.2. Proof of Variance Upper Bound (9)

Observe that

Var[P̂d] 6
∑d

k=1 (
d
k)(

n−d
d−k)P2d−k

(n
d)

.

Since we have P2d−k 6 P
2d−k

d
d by Proposition 4, we can estimate

Var[P̂d] 6
P2

d ∑d
k=1 (

d
k)(

n−d
d−k)P−k/d

d
(n

d)
.

Let us rewrite the formula as follows

d

∑
k=1

(
d
k

)(
n− d
d− k

)
P−k/d

d =
d

∑
k=1

Ak,

where we define

Ak ,
(

d
k

)(
n− d
d− k

)
P−k/d

d .

By the definition of binomial coefficients

Ak+1
Ak

=
d− k
k + 1

· d− k
n− 2d + k + 1

· 1

P−k/d
d

.
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Since the ratio, with respect to k = 1 . . . d, is maximized when k = 1 (because it decreases
in k), we obtain:

Ak+1
Ak

6
1
2

when
d− 1

2
· d− 1

n− 2d + 2
· 1

P−1/d
d

6
1
2

.

The condition above is equivalent to n− 2d + 2 > (d− 1)2/P1/d
d , and holds when

n > 2d2/P1/d
d . (A2)

Indeed, since 0 < Pd 6 1, we obtain n > d2/P1/d
d > ((d − 1)2 + 2d − 2)P1/d

d > (d −
1)2P1/d

d + 2d− 2. Thus:

d

∑
k=1

Ak 6 2A1,

and consequently:

Var[P̂d] 6
2d(n−d

d−1)P2−1/d
d

(n
d)

.

Finally, we can observe that

d(n−d
d−1)

(n
d)

= d2 · (n− d)!
(n− 2d + 1)!

· (n− d)!
n!

= d2 · (n− d)d−1

nd

6
d2

n
,

so that we get the variance bound:

Var[P̂d] 6 2d2/n · P2−1/d
d , (A3)

and the confidence bound:

P[|P̂d − Pd| > εPd] 6
2d2

nε2P1/d
d

(A4)

This bound for ε < 1 is also meaningful when n < 2d2/P1/d
d because the probability is at

most 1. This completes the proof.

Appendix A.3.3. Proof of Theorem 2

The result follows by combining Theorem 1 and Proposition 2.

Appendix A.4. Proofs of Adaptive Testing

Appendix A.4.1. Proof of Lemma 1

Suppose now that Pd 6 Q/2. Then we have that

Q > Pd + Q/2, (A5)

and thus

P[P̂ 6 Q] > P[P̂− Pd 6 Q/2]
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Let ε = Q/2Pd, then C(δ)P−1/d
d ε−2 = 4C(δ)P2−1/d

d Q−2 6 C(δ)(Q/2)−1/d 6 n. Therefore,
P[P̂− Pd 6 Q/2] = P[P̂ 6 Pd + εPd] > 1− δ so that we conclude

P[P̂ 6 Q] > P[P̂− Pd 6 εPd] > 1− δ.

Suppose that Pd > 2Q. Then we have that

Q 6 Pd − Pd/2,

which implies

P[P̂ > Q] > P[P̂− Pd > −Pd/2].

Setting ε = 1
2 , we obtain C(δ)P−1/d

d ε−2 6 4C(δ)(2Q)−1/d 6 n, and so

P[P̂ 6 Q] > P[P̂− Pd > −εPd] > 1− δ,

which finishes the proof.

Appendix A.4.2. Proof of Lemma 2

Observe that the internal loop can do at most (d− 1) log K steps. This is because we
decrease the candidate bound Q in each step by a factor of 2, starting from Q = 1, down to
the smallest possible value of 1

Kd−1 (the smallest possible moment value, achieved by the
uniform distribution). Therefore, when we set δ = δ/(d− 1) log K in the subroutine, the
guarantees from Lemma 1 hold in every step. Suppose that the loop takes exactly k steps.
This means that the output is Q = 2−k and that the subroutine outputs b = TRUE at step
k− 1, which gives Pd 6 2−k+2 = 4Q by Lemma 1; at step k, we either get FALSE, which
means Pd > 2−k−1 = Q/2 or 2−k 6 K−d+1 and then Pd > K−d+1 > 2−k > 2−k−1 = Q/2 .

We shall also clarify how the online sample access is used: as stated in the algorithm,
we recycle Xi samples already so that we request only “missing” samples when the number
of samples n increases due to the change of the candidate Q. This recycling is captured in
the union bound.

Appendix A.5. Proof of Theorem 3

We use P̂ from Theorem 1 combined with the Robust Mean Estimation, which works
with accuracy ε and confidence 1 − δ given the number of samples, as in Theorem 2.
This shows that n = Θ(log(1/δ)ε−2P−1/d

d ) works. Now it suffices to combine this with
Lemma 2.
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