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Abstract: The article analytically summarizes the idea of applying Shannon’s principle of entropy
maximization to sets that represent the results of observations of the “input” and “output” entities of
the stochastic model for evaluating variable small data. To formalize this idea, a sequential transition
from the likelihood function to the likelihood functional and the Shannon entropy functional is
analytically described. Shannon’s entropy characterizes the uncertainty caused not only by the
probabilistic nature of the parameters of the stochastic data evaluation model but also by interferences
that distort the results of the measurements of the values of these parameters. Accordingly, based on
the Shannon entropy, it is possible to determine the best estimates of the values of these parameters
for maximally uncertain (per entropy unit) distortions that cause measurement variability. This
postulate is organically transferred to the statement that the estimates of the density of the probability
distribution of the parameters of the stochastic model of small data obtained as a result of Shannon
entropy maximization will also take into account the fact of the variability of the process of their
measurements. In the article, this principle is developed into the information technology of the
parametric and non-parametric evaluation on the basis of Shannon entropy of small data measured
under the influence of interferences. The article analytically formalizes three key elements: -instances
of the class of parameterized stochastic models for evaluating variable small data; -methods of
estimating the probability density function of their parameters, represented by normalized or interval
probabilities; -approaches to generating an ensemble of random vectors of initial parameters.

Keywords: Shannon entropy; machine learning; evaluation of small data; measurement errors;
stochastic model; parametric optimization; normalized probabilities; interval probabilities

1. Introduction

One of the most relevant problems of modern science is the extraction of useful
information from available data. In various fields of science, methodologies aimed at
solving this problem are being developed. Each such methodology is based on a certain
hypothesis about the properties of the data and the real or hypothetical source of their
origin. In the context of the data evaluation problem, two fundamental hypotheses can
be distinguished [1-5]. The first hypothesis focuses on directly measurable, deterministic
parameters to identify potential functional dependencies between them. All data that
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cannot be attributed to one or more defined parameters are considered influences in this
hypothesis and are rejected. Naturally, such an approach is adequate and productive only
if the information is extracted from data obtained from a known, sufficiently investigated
the source of origin. The second hypothesis focuses on the analysis of the data as such and
is focused on identifying patterns in them, the presence of which can be assessed using a
certain defined metric. This can be, for example, a measure of data sufficiency, a property
of a sample from the general population, the normality of probability distribution densities,
etc. Itis practically impossible to guarantee the characteristics of these properties for specific
data. However, the improbable becomes common if we analyze not data, but Big Data. This
trend is the basis for the progress of such methodologies as mathematical statistics [2,6-8],
machine learning [9-12], econometrics [13-16], financial mathematics [17-19] and control
theory [20-23].

In recent decades, the first two of the methodologies just mentioned have been heard.
Machine learning is based on the axiomatic perception of probability spaces, as outlined
in the paradigm of the theory of statistical learning developed in the 1960s [24-26]. There
are several dominant categories of machine learning, but the most common is tutored
learning [9,10,27,28]. In this category, researchers work with symmetric finite datasets,
summarized in the “input” and “output” entities. The purpose of data analysis is to identify
the functional dependence between these entities. The set of admissible types of functions
forms the hypothesis space of this category of machine learning. The machine learning
algorithm consistently evaluates the expected risks of describing the dependence of the
existing “input” and “output” entities by each type of function from the hypothesis space.
The evaluation is carried out by calculating a single loss function for the entire research. The
expected risk is understood as the product of the sum of the estimates and the probability
distribution of the data. If the compatible mapping probability distribution is known, then
finding the best hypothesis is a trivial task. In the general case, the distribution is unknown,
so the machine learning algorithm chooses the most appropriate hypothesis according to
a certain rule and proves this thesis by calculating the empirical risk. In addition to the
computational complexity, the disadvantage of machine learning is the tendency of the
algorithms of this methodology to minimize the loss function by overfitting the potentially
best hypothesis to the available data (so-called overtraining [9,27,29]). A typical way to
detect (but not prevent) overtraining is to test the best hypothesis on data that the algorithm
has not yet worked on (the control sample). Methods of mathematical statistics are not
subject to retraining, because they do not assess empirical risk as such.

A typical example of a problem, in the process of solving which the characteristic
features of mathematical statistics and machine learning are manifested, is linear regres-
sion [7-11]. In the classic formulation of this problem, we need to find the regression
coefficients that minimize the root mean square error between the reference entity “output”
and its pattern as generated by the model. Such a problem can be solved in a closed form.
The theory of statistical learning states that, if we choose the root mean square error as
the loss function and carry out empirical risk optimization, then the obtained result will
coincide with the one that we will obtain by applying traditional linear regression analy-
sis. However, the maximum likelihood method [2,6,7,30] characteristic for mathematical
statistics will demonstrate a similar result in this situation. By the way, the methods of
mathematical statistics do not operate with the concepts of initial and test samples, but use
metrics to evaluate the results of the model. In our example, the statistical approach allows
us to reach the optimal solution because the solution itself exists in a closed form. The
maximum likelihood method does not test alternative hypotheses and does not converge
to the optimal solution, unlike a machine learning algorithm. However, if the piecewise
linear loss function is used for the machine learning algorithm in the same problem, the
final result does not coincide with the maximum likelihood method. The machine learning
algorithm allows us to expand the space of relevant hypotheses with an a priori considered
loss function. The process of their evaluation is carried out automatically. The maximum
likelihood method can estimate the accuracy of the original model but does not allow us
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to automatically change its appearance. Therefore, the methods of machine learning and
mathematical statistics work in different ways, while producing similar results. If the task
of the researcher is to accurately predict the cost of housing, then machine learning tools are
exactly what is needed. If a scientist is investigating the relationships between parameters
or making scientifically based conclusions about the data, then a statistical model cannot
be dispensed with.

Finally, machine learning experts say, “There are no such things as unsolvable prob-
lems, either data or computing power is scarce”. Indeed, everyone has heard about Big
Data analysis [10-12,31]. Now, however, the issue of analyzing so-called “small data” is
becoming increasingly common [32,33]. Classical machine learning approaches are helpless
in such a situation. This circumstance prompted the authors to write this article.

Taking into account the strengths and weaknesses of the mentioned methods, we will
formulate the necessary attributes of scientific research.

The object of the research is the process of the parameterization of the stochastic
model for evaluating variable small data for machine learning purposes.

The research subject is probability theory and mathematical statistics, evaluation the-
ory, information theory, mathematical programming methods and experiment
planning theory.

The research aims to formalize the process of finding the best estimates of the probabil-
ity density functions for the characteristic parameters of instances of the class of stochastic
models for evaluating variable small data.

The research objectives are:

(1) To formalize the process of calculating the variable entropy estimation of the
probability density functions of the characteristic parameters of the stochastic variable
small data estimation model, represented by normalized probabilities;

(2) To formalize the process of calculating the variable entropy estimation of the
probability density functions of the characteristic parameters of the stochastic variable
small data estimation model, represented by interval probabilities;

(3) To justify the adequacy of the proposed mathematical apparatus and demonstrate
its functionality with an example.

The main contribution of the research is that the article analytically summarizes
the idea of applying the Shannon entropy maximization principle to sets that represent
the results of observations of the “input” and “output” entities of the stochastic model
for evaluating variable small data. To formalize this idea, a sequential transition from
the likelihood function to the likelihood functional and the Shannon entropy functional
is analytically described. Shannon’s entropy characterizes the uncertainty caused not
only by the probabilistic nature of the parameters of the stochastic data evaluation model
but also by influences that distort the results of the measurements of the values of these
parameters. Accordingly, based on the Shannon entropy, it is possible to determine the
best estimates of the values of these parameters for maximally uncertain (per entropy unit)
influences that cause measurement variability. This postulate is organically transferred to
the statement that the estimates of the probability distribution density of the parameters of
the stochastic model of small data obtained as a result of Shannon entropy maximization
will also take into account the fact of the variability of the process of their measurements.
In the article, this principle is developed into the information technology of parametric and
non-parametric evaluation on the basis of Shannon entropy of small data measured under
the influence of interferences.

The highlights of the research are:

(1) Instances of the class of parameterized stochastic models for evaluating variable
small data;

(2) Methods of estimating the probability density function of their parameters, repre-
sented by normalized or interval probabilities;

(3) Approaches to generating an ensemble of random vectors of initial parameters;
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(4) A technique for statistical processing of such an ensemble using the Monte Carlo
method to bring it to the desired numerical characteristics.

2. Models and Methods
2.1. Statement of the Research

Evaluation based on data that represent parametric signals or phenomena of physical,
medical, economic, biological and other sources of origin is the functional purpose of
evaluation theory as a branch of mathematical statistics. To solve the problem of evaluation,
parametric and non-parametric approaches are used. In recent decades, the latter has
noticeably dominated the former, which has become possible thanks to the “reactive”
progress in the field of machine learning and artificial intelligence. At the same time,
the focus of researchers’ interest is shifting from the study of the processes represented
by Big Data to that of those processes about which the amount of data small, and the
data itself contains errors. Such a preamble encourages the perception of the parameters
of the small data evaluation model as stochastic quantities. Accordingly, we will call
such a model a stochastic model for small data evaluation. The characteristics of such
a model are the probability density functions of the stochastic parameters. The primary
task in identifying a stochastic estimation model for specific small data is to estimate the
parameters of these probability density functions. If this step is passed, then the identified
stochastic evaluation model can be taken as a basis for forming moment models of small
data, generating an ensemble of random vectors of the initial parameters and carrying
out the statistical processing of such an ensemble using the Monte Carlo method [6-8] to
bring it to the desired numerical characteristics. The formalization of the way to solve the
primary problem formulated above has scientific potential and applied value.

Let there be a stochastic parameterized research object represented by the results of
measurements, in which the matrix of values of the input parameters X with the dimension
[0 X n] (entity “input”) is matched by a vector of values of the output parameter y with the
dimension [0 x 1] (entity “output”), where o is the number of censored observations, and n
is the number of input characteristic parameters of the research object.

The process of measuring the values of matrix X and vector y is characterized by errors,
which are represented by the symmetrical matrix N = (vj;) (variability of the measurement
process), i = 1,n, j= 1,0, and vector v = (v;), where vji, U; are independent stochastic

values, Vi, j. The value of these stochastic quantities belongs to the intervals N;; = [v];, v]f}

— |y o :
and Y; = {vj Y ], respectively.

The stochastic model of the (X, y) data evaluation is represented by an expression
s=F(X+N,a)+v, 1)

where F is a defined o-dimensional vector function, « is a random n-dimensional vector
formed by independent stochastic parameters a;, i = 1,1, Vo; € A; = [a;, ;"]

Let us assume that the parameters of the stochastic model and the variability of the
measurements are continuous stochastic quantities, the values of which belong to the
corresponding intervals of the tuple <Nji, Y,,A;) (hereinafter—the “genuine” version of
the stochastic Model (1) or GvSM).

In this case, the probability density functions of the stochastic parameters of GvSM
(variability of measurements P(«), input W(N) and output Q(v) parameters) (Independent
Stochastic Parameters of the Small Data Estimation Model) are described by the expressions:

P(a) = H pi(a;i), 2)

W(N) = | ﬁwji (vii), ®3)
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0
Q(v) = 1_{17/ (v)), 4)

=
where a; € A;, vii € Njj and v i €Yy, respectively. Formulating Expressions (2)—(4),
the authors implied a priori that the measurement results were obtained in accordance
with the provisions of the experiment planning theory. The corresponding variables are

statistically independent.

Functions (2)—(4) will be evaluated based on data (X, y) according to Model (1), taking into
account the available a priori information summarized by the tuple (P°(x), WO(N), Q°(v)).
The stochastic Model (1) generates an ensemble of random vectors s, which can be
compared with the vector v obtained as a result of measurements. To carry out such

an estimation of the probability density Functions (2)—(4), we will use k moments of the
stochastic components of the vector s:

0 = (M)}, =75

where (Numerical characteristics for estimating these stochastic parameters)

M(s) = / (F(X + N, &) + v)) dP(a) AW (N)dQ(v).
a €A,
v EeN,
vey

Next, we will use moments of the first order (k = 1). In accordance:

M(s) =5 = / (E(X +N, &) +0)dP(a)dW(N)dQ(v). )
n €A,
v EN,
vey

Another version of the implementation of the Model (1) will be one in which the
parameters of the stochastic model and the variability of the measurements are continu-
ous stochastic values, the belonging of which to the corresponding interval of the tuple
(Nji, Y, A;) will be characterized by a certain probability (hereinafter—the “quasi” version
of the stochastic Model (1) or QuSM). In this case:

(1) the parameters «; take values in A; intervals with probabilities p; € [0,1],i =1, n;
(2) the parameters vj; take values in intervals Nj; with probabilities w;; € [0,1],j =
i=1,n;

(3) the parameters v; take values in intervals Y; with probabilities g; € [0,1],j = 1, 0.

1,

~

The available a priori information is summarized by the vector ( p?, w%, q?) j
i=1,n
At the same time, Expressions (2)—(4) retain their legitimacy. We generalize the initial

numerical characteristics of QvSM in the form of a vector of quasi-momentums of the
first order:

=)
~

a:ai‘kPLa,V:Vi—’_W@LV/UZU?_"QLU/ (6)
where L, = diag(a} —na;|i=1,mn), L, = diag(v].f—v]ﬂj:l,o,i:l,in),

Ly = diag (v]+ — v lj = 1,70) and the ® sign represents the element-by-element multi-

plication operation. Expressions (6) declare the replacement of the elements of the tuple
(a,v,v) with their quasi-average values.
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The analytical expression for the first-order quasi-momentum of the stochastic vector
s can be obtained by substituting numerical Characteristics (6) into Expression (1):

§=F@ +X+W®Ly,a” +PLy) + v + QL. 7)

In the context of the proposed statement of the research, we specify its aim
and objectivities.

The research aims to formalize the process of finding the best estimates of the prob-
ability density functions for the (p,q) parameters of GvSM and QuSM represented by
Expressions (5) and (7), respectively.

The objectives of the research are:

(1) To formalize the process of calculating the variable entropy estimation of the proba-
bility density functions of characteristic parameters of GvSM represented by
normalized probabilities;

(2) To formalize the process of calculating the variable entropy estimation of the proba-
bility density functions of characteristic parameters of QuSM represented by
interval probabilities;

(3) To justify the adequacy of the proposed mathematical apparatus and demonstrate
its functionality with an example.

2.2. Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon
Entropy Basis

Let us formulate the corresponding probability functionals for the available informa-
tion about the values of the input and output parameters of the stochastic Model (1).

Taking into account the independence of the parameters of the “input” and “output
entities in the stochastic Model (1) and the variability of their measurement procedure, we
determine the compatible probability density function ®(a, v, v) and the corresponding
logarithmic likelihood ratio ¢ (&, v, v) as

7

P(a,v,v) =Pla)W(v)Q(v), 8)
¢(a,v,v) =1n 50((0;)) +1In VV\X](E;/)) +1In go((l;)) )

Based on Expressions (8) and (9), we formulate the likelihood functional

L(P(a), W(v),Q(v)):

L(P(x), W), Q(v))= [ ®(a,v,0)¢p(x,v,v)dadvdv = [ P(a)ln Ii((“a))duc
x €A, aEA
Ve N, (10)
veyY
+ [ W )dv+ f Q(v ))dv.
veN

Expression (10) presented in the —L(P(«), W(v), Q(v)) format is the Shannon entropy
functional [34,35]. According to its purpose, such a functional is a measure for evaluating
the degree of variability of the elements of a tuple (P(a), W(v), Q(v)). This fact determines
the perspective of using such a functional for evaluating Functions (2)—(4). In the context of
this motivation, let us transform Expression (10) into the form

H(5) :—2 [ pila ( drxl Zji J w],(v]l)lnwj’gjzgdvﬁ

i=1lg;eA, j=li= Tvj;eN;;

; 0(5) v
g fY (vj)lnq]«)dv].
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The Functional (11) is defined for estimating the probability density functions of
stochastic parameters of GvSM. For QuSM, based on Expression (10), we obtain:

H(E):—ipilnpl ZZwﬂln Yii iq]-lnq—(])
=1 j=1

i j=li= ]z j

Based on Definition (11), we formulate the problem of finding the optimal estimate of
the probability density functions of stochastic parameters of GvSM, taking into account
the fact of their variability, i.e., Es.

We define the objective function of such an optimization problem as:

H(5) — max. (12)
We define the restrictions of the Es optimization problem as
E=PUWUQ, (13)

that is, the probability distribution density of the variability of measurements P(«a) € P,
input W(N) € W and output Q(v) € Q parameters of GvSM must belong to the space E
defined by Expression (13), and

1
= , 14
I MEO (X +v,0) 1 o) -

that is, the elements of the vector with the results of measurements y are equal to the
elements of the kth moment of the vector s raised to the k~!th power.

By analogy with the formulation of the optimization Problem (12)—(14), we formulate
the problem of finding the optimal estimate of the probability density functions of stochastic
parameters of QuSM, taking into account the fact of their variability, i.e., E;.

We define the objective function of such an optimization problem as:

H(5) — max. (15)

Recall that the complex parameter s generalizes a tuple of interval controlled parame-
ters (P(a), W(v),Q(v)) (see Expressions (10) and (5)), and the complex parameter s focuses
on the variability of measuring these characteristic parameters (see Expression (7)).

Considerations regarding the formulation of restrictions for finding the extremum of
the objective Function (15) are identical to those embodied in Restrictions (13) and (14).
At the same time, Restriction (13) fully satisfies the statement of the Problem (15), while
Restriction (14) can be written in terms of the definition of QuSM:

y=F((X+v™ +WLy),(a” +PLy)) + v + QLy. (16)

Let us pay attention to the situation when the measurement errors v(f) and the values
of the vector of the initial parameters of the stochastic model s(t) are characterized by
non-linearity of the rth degree:

+v()

o-Lid

] M:

where & = (#;) is a vector of parameters, the independent stochastic elements of which
take values from the ranges A; = [a; , ;"] with the probability distribution densities p;(«;),
i=1,n.
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The measurement of the components of the entities “input” and “output” of the
investigated process takes place at moments ¢;, j = 1, 0. The entity “input” is represented
by a set of r-matrices, r = 1, R, of the form

S R YU ) AN £ B S
X(r): . . = .
x%r) (to) ... x,(f) (o) xgrl) ... ngn

and the entity “output” is represented by stochastic elements of the vector s = (s(t;)),
j=10.

Denoting a(") = (al(r)),i = Ln v = (v(t)) = (vj), j = 1,0, we present the

Expression (17) in the form
R
s = Z X))
r=1

where the independent elements of the vector of the variability of measurements of the
entity “output” v take values in intervals Y; = [v]f,vﬂ with the probability density
functions Q(v) = (g;(v;)),j =1,0.

Let us identify and investigate the variable entropy estimate of the probability density

functions P(a) = (p;(;)),i =1,n,and Q(v) = (g;(v})),j =1,0.
We present the objective function of the optimization Problem (12)—(14) in the form

Z / pi(a;) Inp;(a;)de; — 2 / q;(vj) Ing;(vj)dv; — max.
uceA ]_zxeA

We present the system of Restrictions (13) and (14) in the form

Pi(pi(a;)) =1— [ pi(a;)da; =0,

a;EA;

Qi(9i(vj)) =1— [ qj(vj)dv; =0,
U[GYJ_
®;(P(a),Q(v)) = —y; + Z Zx [ afpi(ai)da; + [ vjq;(vj)dv;,
r=1i— ;€A UEYJ

wherei=1,n,j=1,0.

Based on the necessary conditions of stationarity of the Lagrange functional [6-8], we
will assert that the entropy estimates ES@ of the probability density functions P(«) and
Q(v) belong to continuously differentiable functions, respectively:

p- ~ a; exp( szr“ > (17)

q7 (vj) ~ cjexp(—djv;), (18)

where a;, b;, ¢, d; are fixed coefficients, i = 1,n,j=10.
The conclusion generalized by Expressions (17) and (18) can be interpreted as follows:
(1) For a linear stochastic model of estimation of variable small data: entropy esti-

(1)

mates E; * are always exponential functions. The results of measuring the entities “input”
and “output” of the investigated process determine the form, and not the type, of the
(1)

E;’-functions of the corresponding linear stochastic model;
(2) For a non-linear stochastic model for evaluating variable small data: the nomencla-

ture of the types of functions of entropy estimates Eél) of the “input” and “output” entities
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of the investigated process is wider and includes both exponential and power types. The
type of Eél)-functions depends on the organization of the measurement process of these
“input” and “output” entities.

Therefore, it remains to formalize the variable entropy estimates ES) (E§1)> of the

probability density functions p and g of the parameters of GvSM(QvSM), respectively.
Let us investigate the linear GvSM without taking into account the variability of the
measurement of the “input” entity:

§= XpLa+qLy + E(a™,v7), (19)

where E(a,v™) = Xa~ + v~ . We define the a priori probabilities by the elements of the

tuple (p°, 4°).
Let us present the objective function of the optimization Problem (15) and (16) in the
form

n ) 0 )
H(s) = —Zpilnp—é— qulnq—é — max, (20)
i=1 i1 i

and the system of restrictions we present in the form

xipilh +q;L}, + &;, Vj = 1,0, (21)
1

n
1=

1 0
at y pi=1 Y g;=1
i=1 =1

In terms of the Lagrange function, we present the solution of the mathematical pro-
gramming Problem (20) and (21) as
n 0 0 n ) j
L(s) = H(s) +5<1 =2 pi | Ful =g |+ il v — o xipile — gL — & |,
i=1 j=1 j=1 i=1

(22)

where B y are fixed coefficients and = (91, ..., 9, ) is a set of Lagrange multipliers.

Entropy estimates Eél) = {(plu(lp),i =1,n), (q]U(l/J), j= 1,70)} are determined based
on Expression (22):

0 .
Pl exp <—Zl x/ilefo)
=

0<pi(y) =~ . <L
Y eXP(* ) xji‘/’jUx)
i=1 =1
0 _ -L{, 23
0<qP(p) = o) g )

= ]él q? exp(*lijJl‘J

@) = gt L i) (9L + ) (P)LL = 1.

Now let us investigate how the formulation and solution of the optimization Problem
(20) and (21) will change if interval restrictions 0 < p; < 1, Vi € [I,n], 0 < g; < 1,
Vj € [1,0], are respectively imposed on the values of the elements of the stochastic
vectors (p, q).

Under such conditions, the variable entropy estimate Esg) of the probability density
functions of the parameters p and g of QUSM can be obtained by solving the problem of

finding the extreme generalized entropy of the form
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(pl In &% pl + (1= p;)In(1 - p;) ) Z (q] In =%+ (1—¢;) In(1— qj)) — max, (24)
‘7]‘

Pi

~0
where p;=p%/(1-1%), q /(1— )zfln]flo
The objective Functlon (24) is supplemented by the adapted balance Equation (21):

n . .
Y xjipili 4 qilh + Ei = yj, (25)
i=1
where0 < p; <1,0<¢; <1,i=1,n,j=T10.
Applying the method of Lagrange multipliers [7,8,36], the extreme entropy estimates

Eé(}) for the optimization Problem (24) and (25) will be obtained as a result of solving the
system of equations

0<p(y)=pl/ (pl (1=pl)exp fl xw/y%) <1,
]: .
0 < q7(p) = 4 /( + (1 - q?) exp(—lij{,)) <1, (26)
@j(y) = ﬁg xip? (@) + a7 ()L = 1,

wherei=1,n,j=1,0.

The starting point for calculating the variable entropy estimate Esg) of the probability
density functions of the parameters p and q of QuSM, both in the Interpretation (20) and
(21), and in the Interpretation (24) and (25), is the calculation of the Lagrange multipliers ¢
as a result of solving the systems of equations represented by Expressions (23) and (26),

respectively. This process can be arranged, for example, according to the multiplicative
algorithm [36]:
k+1 _ k k
P =9 (90 )

where ¢; = exp(—1;) are exponential Lagrange multipliers, go? >0,j=1,0.

3. Experiments

Let us demonstrate the functionality of the mathematical apparatus proposed in
Section 2 using the example of calculating the variable entropy estimate of the probability
density functions of the characteristic parameters of the linear stochastic small data estima-
tion model with the dimension of the entities “input” x “output” of [5] x [2]. The matrix of
the measurements of the “input” entity looks like this:

X — 1.805 2.103 3.310 2.007 1.505
-~ \4.992 3800 2996 2.812 1.899)°

The vector of the measurements of the “output” entity, taking into account variability,
looks like this:
y = (21.091 32.814).

Quasi-moments of the first order are described by the expressions:

a; = 3.333}71', n; € Ai/ VAZ' eEA= [O, 10], i= ﬁ,‘
v1=—1+2q1, vy =—-2+4q, v1 € Y1 = [-3,3], v2 € Y2 = [-6,6].

The fixed parameters of the reference model are described by the vector
o’ = (1011 2212 1918 3.986 0.99).
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H(S)

The deviations from the values specified in the vector 4’ caused by the variability of
the measurements are characterized by an error e = [|a® — a||/ (||a®|| + [|a])-
Summarizing the given initial information in the format of Expression (19), we obtain:
—

XLIXP ‘|— qu - 1,
0249 0 0.747 0873 1366 0.834 0622\ =
where L, = ( 0 0.312>’XL"‘ - (1.065 0982 0.767 0.721 0.449)’ L=

A priori information about the initial values of the vectors p° = (p?),i = 1,5, and
g’ = (q?), j = 1,2, is summarized in the corresponding named sets: p = {1;1;1;1;1},

p% = {0.1;0.2;0.3;0.3;0.1}, p2 = {0.3;0.4;0.1;0.05;0.15}, 4% = {0.2;0.8}, 4% = {1;1}.

The tuple (pY, 4%) implies a uniform distribution of the characteristic parameters p
and disturbing influences causing measurement variability, g, respectively. Tuples (p%,4%)
and (p2,4%) imply uneven distributions of the characteristic parameters and influences,
while the latter represents the variant combined according to the a priori probabilities of
the corresponding entities.

We obtain optimization problem Statements (20) and (24) for the initial parameters
presented above.

The formulation of the optimization Problem (20) and (21) for the above-mentioned
initial data has the form:

5 2 ;
HGE) =—-Y pilnfi — ¥ qjlnq—{, — max,
i=1 Pio =1 Ui

0.747py + 0.873p; + 1.366p3 + 0.834p, + 0.622p5 + 0.249g; = 1,

1.065p1 + 0.982p; + 0.767p3 4 0.721p4 + 0.449p5 + 0.312g1 = 1; 27)
5 2

'lei =1, pi > 0; le/]] =1, q; > 0.
i= j=

The formulation of the optimization Problem (24) and (25) for the above-mentioned
initial data has the form:

pi j=1 q;
0.747p1 + 0.873p, 4 1.366p3 + 0.834p4 + 0.622ps5 + 0.2499; =1,

1.065p; + 0.982p5 + 0.67p3 + 0.721py + 0.449ps + 0.312g; = 1;
~0

~0 . )
pi=r/(1-p)), qj:q?/(l—q?),z:1,5,]:1,2;
0<pi<1,0<q;<1,i=15j=12

- % <Pi In £5 + (1 —p;)In(1 - Pi)) - i (‘1]‘ In 25+ (1 q;) In(1 - ‘1;‘)) — max,
i=1

(28)

Such optimization problems can be solved by methods of non-linear mathematical
programming [36]. In particular, for the above optimization problems, the extremum

point is analytically identified as (pl* = 0.36p?, q;f = 0.36q?), i=1,5,j=1,2. So, for our
example, the entropy H(5) reaches its maximum at the point (p*, %), where p* = f(i, p?),
9= f(j,q?), i=15j=12

Let us examine these dependencies, taking into account that we previously defined
schemes for a priori values: p° = {p%, p%, p2}, ¢° = {49,4%}. For clarity, we present

the dependences p* = f(i, p?A,B,C}) and g* = f(], q?DIE}) in the form of diagrams
(Figures 1 and 2, respectively).
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Figure 2. Visualization of dependence ¢* = f (j, q({) D E}>.

More detailed information on the values of the characteristic parameters of the investi-
gated linear stochastic model of the small data evaluation presented in Section 3 can be
seen in Figures 3 and 4 (for GvSM and for QvSM, respectively).

(pC,qE)
H(s-)
(pB.gE)
® qu2
£ qu1
2 (pAgE) pU5
ﬁ pu4
2 (pC.aD) puU3
[S] pu2
= pU1
(pB.,qD)
(pA,aD)
-2 -1 0 1 2 3 4

value

Figure 3. Visualization of dependence E(1> <plu,q]U,H(§)) = f(P?A,B,C}’q({)D,E}>’ i=15j7=12

s
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qu1
(PB.qE) puU5
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S (PAGE) pu3 }
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= pU1
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=
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(PA.qD)

T T
00 05 10 15 20 25 30 35 40 45
value

Figure 4. Visualization of dependence ES) <piu, q]U,H(§)> = f(p?A,B,C}, q({)D’E}>, i=15j=12

These figures visualize the values at the extremum point (p*,q*) of E (1)_estimates
of such characteristic parameters as plu, i=1,5 q]L-J, j= 1,2, and H*(3) (calculated by
Expression (20) adapted to form (27)) and H*(5) (calculated by Expression (24) adapted
to form (28)). At the same time, the schemes of the initial values of the vectors p° = (p?),
i=1,5and ¢" = (q?) ,j = 1,2, are taken into account.

Comparing the symmetrical values visualized in Figures 3 and 4, it can be concluded
that the parameter estimates calculated for interval probabilities (i.e., for QvSM) are charac-
terized by a larger value of the conditional maximum entropy than that inhered for GvSM
(i.e., for the normalized probabilities). The theoretical justification of this empirical fact is
presented in Section 4.

Information about the state of the linear stochastic models, summarized by Expressions
(27) and (28), is supplemented by such calculated data as:

(1) the value at the point of extremum (p*, ¢*) of the quasi-moments of the characteris-
tic parameters of GvSM and QvSM (af,i = 1,5),

(2) estimates of the variability of the above-mentioned parameters caused by interfer-
ences (v]’f,j =1,2),

(3) the errors € and €, which characterize the deviation of the measured parameters
(a, v) from the reference (a°,1%) for GvSM and QvSM, respectively.

These data are visualized in Figures 5 and 6.

(PC.GE) Suz
uU1
(pB,qE) au5s
é aU4
8 (pAGE) aus3
9 au2
= au1
S (pC.aD)
=
K
(pB,aD)
(PA.qD)

-2 0 2 4 6 8 10 12 14
value

Figure 5. Visualization of dependence <oc’.k vt E) = f(p?A/B,C},q?D,E}),i =15j=12

ir7j
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Figure 6. Visualization of dependence <ocf,v]’?,5) = f<p?A,B,C}'q({)D,E})’ i=15j7=12

From the information shown in Figures 5 and 6 (in addition to the information pre-
sented in Figures 3 and 4), it can be concluded that the reference parameters and a priori
probabilities are correlated. That is, the closer the values in the scheme of a priori proba-
bilities are to the values of the reference parameters, the smaller the value of the error .
This interpretation, in particular, explains the superiority of the scheme (pg, qp) over the
scheme (pc,gp), because €gp < €cp.

4. Discussion

Let us begin the analysis of the results presented in Section 3 of the applied use of
the mathematical apparatus proposed in Section 2 with the fact that the estimates of the
parameters (p, q) obtained as a result of solving optimization Problems (27) (derived from
Problem (20), (21) and (28)) (derived from Problem (24) and (25)), turn out to be different in
terms of the value of the generalized entropy (Expressions (20) and (24), respectively). We
will explain this fact on the theoretical basis of the models presented in Section 2.

To simplify the formulations, we will introduce several renovations. Let us redefine
entropy H(s) as H(e) = H(s), where e = (p, q). Accordingly, e; will be the optimal estimate
of the parameters (p*,q*) represented by normalized probabilities (H(s) variant) and e;
will be the optimal estimate of the parameters (p*, %) represented by interval probabilities
(H(S) variant). Let us denote é = argmaxH/(e) and define the sets

E={e:(p,1),(q 1)} CE={e:0<e<1}. (29)

Summarizing what has been entered, we formulate the following: if & € (R(fﬂ) \E)
then H(ej) < H(e}). The equality H(ej) = H(ej) holds when ej = é. Let us explain
our conclusions. The analysis of the function described by Expression (20) shows that it
is a concave function with a single maximum at the point é. The value of entropy H(e)
depends on the distance of a point e from the extreme point é. In this context, we denote
as A(¢,¢;) the distance between the extreme point & and the point e}, the coordinates of
which we obtain as a result of solving optimization Problem (20) and (21). Accordingly,
the parameter A(¢,e}) characterizes the distance between the extreme point é and the
point e3, the coordinates of which we obtain as a result of solving optimization Problem
(24) and (25). Since Function (20) is strictly concave, based on the Relation (29) we can
conclude that A(é,e}) < A(é,¢3). The equality A(é,e}) = A(é,e3) holds only when e} = é.
The presented theoretical explanations explain the discrepancy between those presented
in Figures 3 and 4 empirical values of ESQ) (H(5)) and Es@ (H(5)) for the same schemes

(p({) ABCY q({) D E})' Comparing the symmetrical values visualized in Figures 3 and 4, it can
be concluded that parameter estimates calculated for the interval probabilities (i.e., for
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QuSM) are characterized by a larger value of the conditional maximum entropy estimate
than that characteristic of the normalized probabilities of GvSM. Thus, the mathematical
apparatus presented in Section 2 was empirically confirmed in Section 3.

In addition, the results of the experiments presented in Section 3 confirmed the conclu-
sion generalized by Expressions (17) and (18) that, for a linear stochastic model of variable

small data estimation, entropy estimates Esgl) are always exponential functions. The results
of measuring the “input” and “output” entities of the investigated process determine the

form, and not the type, of the Es@
of small data estimation.

The results shown in Figures 3 and 4 showed that a priori information about the

-functions of the corresponding linear stochastic model

initial values of the vectors p° = (p%), i = 1,5, and ¢° = (q?), j = 1,2, summa-
rized in the corresponding named sets of p({) ABCY q?D/E}, has a significant effect on the

E%)g} (piu, q]u, H({s, 5})) estimates.

In this context, the fact that the author’s mathematical apparatus allows the calculation
of the quasi-momentums of the characteristic parameters a7, i = 1,5, of both the GvSM
and QuSM, as well as the taking into account of their variability v]’f,j = 1,2, caused by the
measurement errors, is very relevant. From those visualized in Figures 5 and 6 of the data,
it can be seen that the ¢ deviations from the values indicated in the vector a® caused by
the variability of the measurements are most pronounced for the schemes (p%,4%) and
(p2,4%). These schemes are characterized by the fact that the essential parameters of the
models are characterized by an uneven distribution (see Figure 1, “C”), and the influence
parameters are characterized by both uneven (see Figure 2, “D”) and uniform distributions
(see Figure 2, “E”). For both schemes, we obtained: écp = 0.30, &cp = 0.36; €cp = 0.33,
€cr = 0.36. Therefore, for the considered example, the unevenness of the distribution of
parameters p;, i = 1,5 provided a significant contribution to the high value of errors e.
Reliable a priori information turned out to be very important in the entropy estimation of
variable small data.

5. Conclusions

The article analytically summarizes the idea of applying the Shannon entropy max-
imization principle to sets that represent the results of observations of the “input” and
“output” entities of the stochastic model for evaluating variable small data. To formalize this
idea, a sequential transition from the likelihood function to the likelihood functional and the
Shannon entropy functional is analytically described. Shannon’s entropy characterizes the
uncertainty caused not only by the probabilistic nature of the parameters of the stochastic
data evaluation model but also by influences that distort the results of measurements of
the values of these parameters. Accordingly, based on the Shannon entropy, it is possible to
determine the best estimates of the values of these parameters for maximally uncertain (per
entropy unit) influences that cause measurement variability. This postulate is organically
transferred to the statement that the estimates of the probability distribution density of the
parameters of the stochastic model of small data obtained as a result of Shannon entropy
maximization will also take into account the fact of the variability of the process of their
measurements. In the article, this principle is developed into the information technology of
the parametric and non-parametric evaluation on the basis of Shannon entropy of small
data measured under the influence of interferences.

The article also examines the structural properties of stochastic models for variable
data evaluation, the parameters of which were represented by normalized or interval
probabilities. At the same time, the inherent non-linearity of these models and errors in
measuring the values of the “output” entity was taken into account.

The functionality and adequacy of the created mathematical apparatus are proven
based on the empirical results obtained during the investigation of the linear stochastic
model of evaluating specific variable small data.
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The authors acknowledge that the research presented in the article is formulated in
academic form. This circumstance complicates the applied use of the obtained results. At
the same time, the developed methodological approach can be useful in various important
applications. In particular, it concerns the assessment of software reliability, when the
sample of data is usually not large due to the difficulties of reliably assessing them during
the testing and operation of the system. In this case, the lack of testing data or information
about failures during pilot software operation can be compensated for by analyzing the
assumptions that are specific to the software and selecting appropriate models using
assumption matrices [37]. Thus, studies that combine the analysis of small data and expert
methods are interesting.

Another important application is in safety critical systems, which, due to multi-level
reserving, have as a rule a low failure rate and small data about them. On the other hand, it
is extremely important for such systems to have accurate or at least interval estimates of
indicators with an acceptable range. For that, the described method could be combined
with the traditional methods of reliability analysis and risk oriented assessing of safety
indicators using formal and semi-formal methods [38].

In this regard, further research is proposed to formalize the obtained information tech-
nology on a UML basis. This will allow the future work to reach the stage of implementing
the profile framework. In addition, it would be very interesting and useful from a practical
point of view to combine Big and Small Data analysis to create universal or adaptable
framework focusing on the assessment of data quality and their selection according to the
quality indicator.
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