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Abstract: In this study, we present a novel approach to estimating the Hurst exponent of time series
data using a variety of machine learning algorithms. The Hurst exponent is a crucial parameter in
characterizing long-range dependence in time series, and traditional methods such as Rescaled Range
(R/S) analysis and Detrended Fluctuation Analysis (DFA) have been widely used for its estimation.
However, these methods have certain limitations, which we sought to address by modifying the
R/S approach to distinguish between fractional Lévy and fractional Brownian motion, and by
demonstrating the inadequacy of DFA and similar methods for data that resembles fractional Lévy
motion. This inspired us to utilize machine learning techniques to improve the estimation process.
In an unprecedented step, we train various machine learning models, including LightGBM, MLP,
and AdaBoost, on synthetic data generated from random walks, namely fractional Brownian motion
and fractional Lévy motion, where the ground truth Hurst exponent is known. This means that we
can initialize and create these stochastic processes with a scaling Hurst/scaling exponent, which is
then used as the ground truth for training. Furthermore, we perform the continuous estimation of
the scaling exponent directly from the time series, without resorting to the calculation of the power
spectrum or other sophisticated preprocessing steps, as done in past approaches. Our experiments
reveal that the machine learning-based estimators outperform traditional R/S analysis and DFA
methods in estimating the Hurst exponent, particularly for data akin to fractional Lévy motion.
Validating our approach on real-world financial data, we observe a divergence between the estimated
Hurst/scaling exponents and results reported in the literature. Nevertheless, the confirmation
provided by known ground truths reinforces the superiority of our approach in terms of accuracy.
This work highlights the potential of machine learning algorithms for accurately estimating the Hurst
exponent, paving new paths for time series analysis. By marrying traditional finance methods with
the capabilities of machine learning, our study provides a novel contribution towards the future of
time series data analysis.

Keywords: scaling exponent; Hurst exponent; machine learning; artificial intelligence; complexity;
regression analysis

1. Introduction

The Hurst (or scaling) exponent, a key parameter in time series analysis, quantifies the
long-range dependence and persistence in the underlying processes [1]. Accurate estimation of
the Hurst exponent is crucial for understanding and modelling various phenomena in diverse
fields, such as finance [2], geophysics [3], and biomedicine [4]. Traditional methods, such
as R/S analysis [5] and Detrended Fluctuation Analysis (DFA) [6], have been extensively
employed for this purpose. However, these techniques have certain limitations, such as
sensitivity to non-stationarity and estimation biases [7,8], which has motivated researchers
to explore alternative approaches to improve estimation accuracy and robustness [9].
Further, these techniques do not apply well to short time series data or when studying
small sliding window sizes to obtain a dynamic estimate of the scaling exponent. As a rule
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of thumb, when we talk about short time series data, we mean a dataset with around 100
or fewer samples.

Machine learning algorithms have shown remarkable success in various domains, includ-
ing time series prediction [10] and feature extraction [11], presenting an intriguing opportunity
to address the challenges associated with estimating the Hurst exponent. Therefore, the research
question we aim to address in this paper is: can machine learning models outperform traditional
methods in estimating the Hurst exponent of time series data?

In this paper, we investigate the application of several machine learning models,
including LightGBM [12], MLP, and AdaBoost [13], to predict the Hurst exponent of
time series data. We train these models on synthetic data generated from random walks,
i.e., fractional Brownian motion [14] and fractional Lévy motion [15], where the ground truth
Hurst/scaling exponent is known. This allows us to rigorously evaluate the performance
of the machine learning-based estimators in comparison to traditional methods/algorithms
such as R/S analysis [5] and Detrended Fluctuation Analysis (DFA) [6].

Our experimental results demonstrate that the proposed machine learning models
outperform the traditional techniques in estimating the Hurst exponent. Furthermore,
we apply our trained models to real-world financial data and observe that the estimated
Hurst exponents are contradictory with the values reported in the literature. However we
also provide evidence, that the data under study rather follows a fractional Lévy than a
fractional Brownian motion, which in simple terms means that it allows for extreme events
and, further, that the fluctuations are not uniform across different scales [16]. We further
show that the trained machine learning models are particularly well suited to estimating
the scaling exponents of these stochastic processes. These findings suggest that machine
learning algorithms have the potential to serve as effective tools for estimating the Hurst
exponent, providing new insights into the analysis of time series data, and are capable of
outperforming traditional methods.

The present study contributes to the existing body of knowledge in the following ways:

• We present a novel modification to the R/S approach, highlighting the distinctions
between fractional Lévy motions, fractional Brownian motions, and stock market data.

• We introduce a method for continuously estimating a scaling parameter via machine
learning from time series data without employing sophisticated preprocessing methods.

• We propose a new technique for estimating the scaling exponent of fractional Lévy
motion using machine learning models, demonstrating its effectiveness through ex-
tensive experiments.

• We show that traditional techniques like DFA and other traditional methods do not
accurately depict the scaling parameter for time series that are close to fractional Lévy
motion, emphasizing the potential for machine learning approaches in this realm.

The organization of this article is as follows:
Section 2 offers an overview of approaches similar to ours and discusses related works

to the present article.
Section 3 gives a quick introduction to the Hurst exponent, traditional methods of

estimation, and the machine learning algorithms used in this study.
Section 4 presents a detailed description of the training and validation process of

the machine learning models used in this work. Furthermore, we outline the process of
synthetic data generation and discuss the pros and cons of the trained machine learning
models for estimating the scaling parameter of a time series. We then apply these trained
machine learning models in Section 5 to estimate the scaling exponent of three different
financial time series data, comparing our results with those found in the literature.

In Section 5.3, we provide a summary and discussion of our experiments and ideas.
Our findings are then concluded in Section 6. To maintain the focus of the main text
and to provide additional results that further emphasize our findings, we have included
Appendices A and B.
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2. Related Work

There is a limited number of publications on the estimation of the Hurst exponent
through machine learning. Ledesmann et al. [9] initially proposed estimating the Hurst
exponent via Artificial Neural Networks (ANN), employing a feature extraction method
based on the power spectra of the data series used for network training. To do this,
the authors generated a training dataset consisting of five classes with 1000 training in-
stances each, where each class corresponds to a Hurst exponent value within the range of
0.5 < H < 1.0. They computed the relative power values Pi from the training datasets to
construct the network’s training set. A comparative analysis with other standard prediction
methods reveals that using ANN produces accurate predictions of the Hurst exponent.
However, the authors do not specify whether the datasets were generated using Brownian
or Lévy motion, nor do they explain their decision to exclude Hurst exponents below 0.5 in
their study.

Subsequent studies by Mukherjee et al. [17] and Sadhukhan et al. [18] also adopt this
method, where the later applying it to earthquake dataset analysis. They utilize moving
average smoothing to extract features from input time series data. The estimated Hurst
exponent results are compared with other signal processing methods, exhibiting similar
outcomes. Mukherjee et al. [17] apply the method to two datasets, one comprising national
stock exchange data and the other consisting of network traffic statistics. They employ an
exponentially weighted moving average filter to extract features from input time series,
yielding ten features, one from each filter. These feature vectors are then used for network
training. The Hurst exponent of each time series in the dataset is predicted by feeding it
into the network. The Hurst exponent values are first estimated through standard statistical
signal processing methods, followed by the neural network’s determination of the mapping
between the time series and corresponding Hurst exponent. Their datasets contain Hurst
exponents within the range of 0 < H < 1. The ANN-derived Hurst exponent values closely
resemble those obtained through DFA and RS methods, with the authors noting that ANN
proves faster than alternative techniques.

Tarnopolski [19] explores a distinct approach to estimating the Hurst exponent through
machine learning. They identify a correlation between the maximal Lyapunov exponent
and the Hurst exponent, subsequently employing the former quantity to predict the latter
via Nearest Neighbour. This requires several thousand values of both exponents for
training, followed by the use of 2× 105 Lyapunov exponents for prediction. This finding
is intriguing, as the interpretation of these two values would intuitively point in opposite
directions: Lyapunov exponent measures sensitivity to initial conditions, while the Hurst
exponent quantifies persistency.

Tyralis et al. [20] apply random forest and linear regression algorithms to compute
the Hurst exponent based on real-world precipitation data, and also found that the
machine learning methods yield similar results as the standard methods. Meanwhile,
Bulkah et al. [21] compare classification against regression trees for predicting the Hurst
exponent, working with artificially generated time series. The training time series are
obtained through the generation of multifractal cascades with weights, containing Hurst
exponents within the range of 0.5 < H < 1 and partitioned into classes according to H values.
Each training sample ranges in length from 512 to 4096 data points. The results indicate
that the correct class determination probability increases with input length. The highest
accuracy is achieved for a training set of 4096 data points using regression trees.

3. Methodology

This paper synergistically integrates a variety of methodologies and concepts to yield
innovative insights. Firstly, it delves into stochastic processes, such as fractional Brownian
motion, a prominent example of random walks. Secondly, it explores estimation techniques,
specifically focusing on the determination of the probability characteristics, such as the
Hurst exponent, for random walks and, by extension, arbitrary time series data. Lastly,
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the study harnesses the power of Machine Learning to further enhance the analytical
capabilities of the aforementioned methods.

3.1. Random Walks

Stochastic processes are a fundamental concept in probability theory and statistical
analysis, representing the evolution of random variables over time or space. As opposed to
deterministic processes, which follow a fixed set of rules or equations, stochastic processes
are characterized by their probabilistic nature, allowing for a rich and flexible modelling
framework. These processes encompass a wide range of phenomena, from natural systems
to financial markets, where inherent randomness and uncertainty give rise to complex
behaviors and patterns.

Here, we focus on the parametrization of two specific stochastic processes, the frac-
tional Brownian motion (fBm), and fractional Lévy motion (fLm), which extend the well-
known Brownian motion and Lévy motion by introducing self-similarity and long-range
dependence, capturing more complex behaviors observed in various fields. For a detailed
discussion of these stochastic processes, the interested reader is referred to the work of
Liu et al. (2020) and Huillet (1999) [22,23].

Starting with the fBm, it is important to note that it is an extension of standard
Brownian motion where increments, while still Gaussian, are no longer independent.
Instead, they can be correlated, with the degree of correlation captured by the Hurst
parameter, H. The autocorrelation function of fBm can be given by:

γ(k) =
σ2

2

[
|k− 1|2H − 2|k|2H + |k + 1|2H

]
. (1)

Here, σ is the width of the Gaussian distribution of increments, and H is the Hurst
parameter. When H = 0.5, we recover standard Brownian motion with independent
increments. Increments are negatively correlated when H < 0.5, and positively correlated
when H > 0.5.

On the other hand, we have the fLm, which extends upon fBm by replacing Gaussian-
distributed increments with Lévy stable distributions, thus accommodating a wider range of
increment distributions to better model certain complex systems. A Lévy stable distribution
is characterized by its Fourier transform:

pα,β(k; µ, σ) = exp[iµk− σα|k|α(1− iβk sign(k)ω(k, α))] , (2)

where

ω(k, α) =

{
tan
(

πα
2
)

if α 6= 1, , 0 < α < 2,
− 2

π ln |k| if α = 1.
. (3)

Here, α is the Lévy index determining the thickness of the tails of the distribution
(0<α ≤ 2), β is the skewness parameter, µ is the shift parameter, and σ is a scale parameter.

In fLm, the Hurst parameter H is introduced via a deterministic kernel function in the
following stochastic integral, capturing the dependence structure of increments:

LH(t) =
∫ t

0
KH(t, s)dL(s) . (4)

In this equation (stochastic integral), KH(t) is the deterministic kernel function de-
pending on the Hurst exponent H and the characteristic exponent Ψ(u) of the underlying
Lévy process. When H = 0.5, the process shows independent increments. When H < 0.5,
increments of opposite signs are more likely to cluster together. When H > 0.5, increments
of the same sign are more likely to cluster together.

Overall, both H and α play significant roles in the characterization of fBm and fLm:
The Hurst parameter H, common to both fBm and fLm, captures the correlation or the

memory effect between increments in these processes. The behavior of the process changes
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from independent increments at H = 0.5, to anti-persistent at H < 0.5, and persistent at
H > 0.5.

The Lévy index α is specific to fLm and governs the thickness of the tails of the
underlying increment distribution. For α = 2, the increment distribution is Gaussian,
reducing the process to fBm. When 0 < α ≤ 2, the distribution has infinite variance
and a heavy tail, with lower α leading to heavier tails and more frequent extreme events.
For α = 2 The Lévy distribution reduces to the Gaussian case.

However, in the definition of the fLm via the stochastic integral (Equation (4)), the Lévy
increments directly enter the picture without explicit reference to their characteristic function.
This is somewhat similar to how one defines a Brownian motion by integrating Gaussian
increments, without directly referring to the Gaussian distribution in the integral [24].

To summarize, the distribution of Lévy increments (including their characteristic
function) and the kernel function enter the picture in different places when dealing with
a fLm. The kernel function is part of the definition of the fLm, modulating how incre-
ments of the underlying Lévy motion contribute to the fLm. The distribution of Lévy
increments is, of course, crucial for determining the properties of the underlying Lévy
motion, and it also comes into play when one computes quantities related to the fLm (like
its autocorrelation function).

With the capability to modulate H and α, both fBm and fLm offer a comprehensive
framework to model a variety of complex behaviors observed in real-world phenomena,
including finance (e.g., modeling stock prices), physics, geophysics, and network traffic
analysis. As such, understanding and tuning these parameters is crucial to successfully
harnessing these stochastic processes for practical applications.

For our simulations we used the Pyhton package hurst to simulate fractional Brownian
motions and the code provide by [25], which is based on the algorithm from [26]. for our
purposes we varied only the Hurst/scaling parameter for the fractional Brownian motions
and the Hurst/scaling parameter and the Lévy index α for the fractional Lévy motions.
Apart from that we went with the default values of the employed code.

3.2. Estimating the Hurst Exponent

The Hurst exponent, denoted as H, is a key parameter in time series analysis, as it
quantifies the long-range dependence and persistence in the underlying processes [1].
Fractional Brownian motion (fBm), introduced by Mandelbrot and Van Ness [14], is a widely
used model for processes exhibiting long-range dependence, and the Hurst exponent is a
crucial parameter in characterizing fBm. Estimating the Hurst exponent from time series
data can provide valuable insights into the nature of the data and the underlying process.

To estimate the Hurst exponent from time series data, several methods have been
proposed, with Rescaled Range (R/S) analysis [5] and Detrended Fluctuation Analysis
(DFA) [6] being two of the most popular techniques. Both methods are based on the idea of
analyzing the scaling behavior of the data at different time scales, and the Hurst exponent
is then inferred from the relationship between the analyzed quantities and the time scales.

3.2.1. R/S Analysis

The R/S analysis, introduced by Harold E. Hurst, calculates the range of cumulative
deviations of the time series data, rescaled by the standard deviation of the data. This
process is repeated for various time scales, and the Hurst exponent is estimated from the
slope of the log–log plot of the rescaled range versus the time scale.

Rescaled Range (R/S) analysis is a widely used method for estimating the Hurst
exponent (H) from time series data, which characterizes the long-range dependence and
persistence in the underlying processes. R/S analysis was introduced by Harold E. Hurst
in his seminal work on the long-term storage capacity of reservoirs [5].

To perform R/S analysis, the following steps are taken:
Given a time series Xt of length N, compute the mean X. Calculate the mean-adjusted

time series Yt by subtracting the mean from each data point: Yt = Xt − X. Compute the
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cumulative deviation series Zt by summing the mean-adjusted time series up to time t:
Zt = ∑t

1(Yi). For each non-overlapping subseries of length n (n < N), compute the range
R(n) as the difference between the maximum and minimum values of the cumulative devi-
ation series within that subseries. Calculate the standard deviation S(n) for each subseries
of length n. Compute the rescaled range R(n)

S(n) by dividing the range R(n) by the standard
deviation S(n) for each subseries of length n. For various values of n, calculate the average
R(n)
S(n) across all subseries of length n. Plot the log–log relationship between the average R(n)

S(n)
and the subseries of length n. Estimate the Hurst exponent (H) as the slope of the linear
regression line fitted to the log–log plot. The R/S analysis is based on the assumption
that the rescaled range R(n)

S(n) scales with the subseries of length n through a power–law

relationship: R(n)
S(n) ≈ nH . Therefore, the Hurst exponent can be estimated from the slope of

the log–log plot of R(n)
S(n) versus n. The estimated Hurst exponent provides insights into the

long-range dependence and persistence of the time series data, with 0 < H < 1.
For our analysis we used the Python packages nolds and hurst, whereas the hurst

package also provides a simplified version of the R/S analysis.

3.2.2. Detrended Fluctuation Analysis(DFA)

Detrended Fluctuation Analysis (DFA) is a widely used technique for detecting long-
range correlations in non-stationary time series data. The method was initially proposed
by Peng et al. in their 1994 paper titled “Mosaic Organization of DNA Nucleotides” [6].
The main idea of DFA is to investigate the scaling behavior of a time series by analyzing
the fluctuation function after detrending the data.

Here is an outline of the DFA procedure:

1. Integrate the time series: Calculate the cumulative sum of the deviations of the data
points from their mean.

2. Divide the integrated time series into non-overlapping segments of equal length n.
3. Detrend the data: In each segment, fit a polynomial function (usually a linear function)

and subtract it from the integrated time series.
4. Calculate the root-mean-square fluctuations for each segment.
5. Average the fluctuations over all segments and obtain the fluctuation function F(n).
6. Repeat steps 2–5 for various time scales (segment lengths) n.
7. Analyze the scaling behavior of F(n) by plotting it against the time scale n on a log–log

scale. A linear relationship indicates the presence of long-range correlations in the
original time series.

8. The Hurst exponent can be estimated from the slope of the log–log plot, providing
information about the persistence or anti-persistence in the time series.

In this article, we employed the detrended fluctuation analysis from the python
package nolds.

3.3. Machine Learning

In this section, we provide an overview of the machine learning algorithms utilized in
our experiments, encompassing a diverse array of approaches to ensure a comprehensive
assessment. The algorithms we implement can be categorized into three primary classes:
linear models, boost regressors, and multi layer perceptrons.

By leveraging these distinct machine learning approaches, we aim to provide a thor-
ough investigation of their efficacy in estimating the Hurst exponent for time series data,
ultimately informing the development of a reliable and robust estimation method.

3.3.1. Linear Models

In our study, we used two linear models, i.e., extensions to the classical linear regres-
sion, i.e., Lasso and Ridge regression.
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Lasso (least absolute shrinkage and selection operator) and ridge regression are two
regularization techniques used to improve the performance of linear regression models
and prevent overfitting. They introduce penalty terms to the linear regression objective
function, effectively constraining the magnitude of the model’s coefficients. The main
difference between Lasso and Ridge regression lies in the penalty terms they use.

Ridge regression, in Ref. [27], adds an L2-norm penalty term to the linear regression
objective function, which is the sum of the squared coefficients. This encourages the model
to have smaller coefficients, reducing the complexity of the model and making it less prone
to overfitting. The objective function of Ridge regression is:

L(w) = ∑(yi − wT ∗ xi)
2 + λ ∗ ||w||2 . (5)

Here, L(w) is the objective function, yi represents the actual target value, xi is the feature
vector, w is the coefficient vector, and λ is the regularization parameter controlling the
strength of the penalty term. The term ||w||2 denotes the squared L2-norm of the coefficient
vector w.

Lasso regression, in Ref. [28], adds an L1-norm penalty term to the linear regression
objective function, which is the sum of the absolute values of the coefficients. This not
only encourages smaller coefficients but also promotes sparsity in the model, effectively
performing feature selection by driving some coefficients to zero. The objective function of
Lasso regression is:

L(w) = ∑(yi − wT ∗ xi)
2 + λ ∗ ||w||1 . (6)

Here, L(w) is the objective function, yi represents the actual target value, xi is the feature
vector, w is the coefficient vector, and λ is the regularization parameter controlling the
strength of the penalty term. The term ||w||1 denotes the L1-norm of the coefficient vector
w, which is the sum of the absolute values of the coefficients.

3.3.2. Boost Regressors

Boosting in machine learning is an ensemble technique used to improve the perfor-
mance of weak learners (models) by combining them into a single, more accurate, and ro-
bust model. The main idea behind boosting is to iteratively train a series of weak learners
on the data, with each learner focusing on correcting the errors made by its predecessor.
This process encourages the models to learn from each other and compensate for their
individual weaknesses, ultimately leading to a stronger, more accurate ensemble model.

• AdaBoost:
AdaBoost, short for “Adaptive Boosting”, is a popular ensemble learning algorithm
used in machine learning. It was developed to improve the performance of weak clas-
sifiers by combining them into a single, more accurate and robust classifier. The main
idea behind AdaBoost is to iteratively train a series of weak classifiers on the data,
assigning higher weights to misclassified instances at each iteration. This process
encourages the subsequent classifiers to focus on the more challenging instances,
ultimately leading to an ensemble model with an improved overall performance [13].

• CatBoost:
CatBoost is a gradient boosting algorithm specifically designed to handle categorical
features effectively. It was developed by Yandex researchers and engineers, and it
is known for its high performance and accuracy in various machine learning tasks.
CatBoost addresses the common challenges associated with handling categorical
features, such as one-hot encoding, by employing an efficient, target-based encoding
scheme called “ordered boosting”. This method reduces overfitting and improves
generalization, leading to better results in many applications [29].

• LightGBM:
LightGBM (Light Gradient Boosting Machine) is a gradient boosting framework
developed by Microsoft that is designed to be more efficient and scalable than tra-
ditional gradient boosting methods. It is particularly well-suited for large-scale and
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high-dimensional data. LightGBM incorporates several key innovations, such as
Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB),
which significantly reduce memory usage and computational time while maintaining
high accuracy [12].

3.3.3. Multi Layer Perceptron

This research uses a Multi Layer Perceptron as a fully connected feedforward artificial
neural network for regression from scikit-learn [30]. It consists of an input layer, hidden
layer, and output layer that vary in size based on the hyperparameter settings. The per-
ceptrons in the hidden and output layer inhibit a nonlinear activation function that are
used to update the weights of the neurons through backpropagation. Backpropagation is
activated based on the stochastic gradient descent which minimizes the loss function of the
respective outputs of the Multi Layer Perceptron through the training process.

3.3.4. Error Analysis
For each prediction, i.e., consisting of Np different generated random walks labeled

with i for each different Hurst exponent h, we calculated the mean and the standard
deviation as

X̂(h) =
1

Np

Np

∑
i=1

X̂i(h) , σ(h) =

√√√√ 1
Np

Np

∑
i=1

(X̂i(h)− X̂(h))2 , (7)

where X̂i(h) is a single observation, X̂(h) is the averaged observation for a single Hurst
exponent, σ(h) is the corresponding standard deviation and Np is the number of different
random walks for each Hurst exponent.

Next, to compare it to the ground truth, we calculated the root-mean-square error
(RMSE) as

ERMSE =

(
1

Nh

Nh

∑
h=1

[
X̂(h) − X(h)

]2) 1
2

, (8)

where X(h) is the ground truth of the Hurst exponent for each random walk and Nh is the
number of validation data points, i.e., different tested Hurst exponents and, consequently,
random walks. Using error propagation, the corresponding error of the root-mean-square
error is found as

∆ERMSE =

√(
∂ERMSE

∂X̂(1)

)2
σ2(1) +

(
∂ERMSE

∂X̂(2)

)2
σ2(2) + · · · , (9)

thus yielding:

∆ERMSE =

√√√√ ∑Nh
h=1

[
X̂(h) − X(h)

]2
σ2(h)

(Nh) ∗∑Nh
h=1

[
X̂(h) − X(h)

]2 . (10)

4. Machine Learning Training/Validation

In this section, we present a comprehensive overview of our experimental approach,
detailing the generation of training data, the application of machine learning algorithms,
and the evaluation of their accuracy in estimating the Hurst exponent for time series data.

Our experimental design encompasses several key steps, beginning with the genera-
tion of training data, which includes both fractional Brownian and fractional Lévy motion.
We incorporate varying random walk lengths and utilize the known or defined scaling
parameter as ground truth. Subsequently, we train a diverse array of machine learning
algorithms using these datasets, encompassing all three scenarios: fractional Brownian
motion, fractional Lévy motion, and a combination of both.

Upon completing the training phase, we evaluate the performance of each trained
algorithm using newly generated random walks—ensuring that these walks were not part
of the training data. To guarantee the reliability of our findings, we provide a sufficiently
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large statistical sample and the corresponding variability for each algorithm, encompassing
each type of data and the associated Hurst exponents.

Lastly, we compare our results with well-established classical algorithms from various
software packages designed to estimate the Hurst exponent, or scaling parameter, of the
data under investigation. This comparison enables us to assess the effectiveness of our
machine learning-based approach relative to traditional methods.

We provide all program code, an application to estimate the Hurst exponent using our
best models and all data in the author’s GitHub repository (https://github.com/Raubkatz/
ML_Hurst_Estimation) (accessed on 13th December 2023) [31].

4.1. Training Data

In generating our training data, we utilized fractional Brownian and fractional Lévy
motions, which we initialized with varying parameters. For the fractional Brownian mo-
tion (described in Section 3.1), we adjusted the Hurst exponent to be within the range of
H ∈ [0.001, 0.999]. For the fractional Lévy motion, we varied the Lévy index, α, and the
scaling parameter, here referred to as H, as it exhibits similarities to the Hurst expo-
nent, though not entirely the same. In this case, α ∈ [0.1, 1.999] and H ∈ [0.001, 0.999].
The Lévy index, α, serves as an essential parameter in understanding and controlling the
heavy-tailedness of the fractional Lévy motion, shaping the properties of the resulting
stochastic process.

For both fractional Brownian and fractional Lévy motions, we generated 50,000 ran-
dom walks, each consisting of 100,000 equidistant data points. We randomly selected
excerpts from each of these random walks with a probability of p = 0.15 to be used as train-
ing samples. These sampled excerpts are a time series of different lengths—i.e., 10, 25, 50,
100—which then served, normalized to the unit interval [0, 1], directly as the input for our
machine learning algorithms. These samples were then saved alongside their correspond-
ing Hurst/scaling exponent, which serves as the ground truth and, consequently, the value
to be predicted. Consequently, we obtained three datasets for each signal length: one
containing only fractional Brownian motion, one with only fractional Lévy motion, and one
comprising both types of motion. Since we randomly selected excerpts from each gener-
ated random walk, the number of samples slightly fluctuated, resulting in approximately
743,000 unmixed random walk data points, i.e., consisting of either fractional Brownian or
Lévy motion, and approximately double the number of samples in the combined dataset.
To ensure the reproducibility of our experiments, we provide the complete datasets in our
GitHub repository (https://github.com/Raubkatz/ML_Hurst_Estimation) (accessed on
13th December 2023) [31].

4.2. Training the Machine Learning Models

In order to train our models, we leveraged the well-established scikit-learn library [30],
employing a 5-fold cross-validation along with an r2 score to indicate good or bad fits.
We combined this with a random parameter search, specifically the RandomizedSearchCV,
with 40 iterations. A detailed discussion of all hyperparameters for each model and the
training process is not provided here, as we have made the complete program code, as well
as the trained models, available in the linked Github repository. The cross-validation scores
for all models can be found in Table 1. We conclude from our cross-validation for training
the various machine learning models that CatBoost is the preferred algorithm because it
performs overall well and rather stable. Overall, the two advanced Boosting-Regressors,
LightGBM, and CatBoost, delivered the best performance.

https://github.com/Raubkatz/ML_Hurst_Estimation
https://github.com/Raubkatz/ML_Hurst_Estimation
https://github.com/Raubkatz/ML_Hurst_Estimation
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Table 1. The CV-r2 scores for all trained machine learning models and various types of training data
are presented, with the best results for each type of training data emphasized in bold font. It should
be noted that we have not included the errors for both Ridge and Lasso regression, as these regressors
yield very low scores across all datasets. Furthermore, as will be demonstrated later, these regressors
are unable to produce meaningful values for the Hurst exponent.

Window Length
and Type of

Training Data

CV-Score
Ridge

Regressor

CV-Score
Lasso

Regressor

CV-Score
AdaBoost
Regressor

CV-Score
CatBoost
Regressor

CV-Score
LightGBM
Regressor

CV-Score
MLP

Regressor

10, fBm <0.0001 <0.0001 0.29876 0.47271 0.47396 0.45155

25, fBm <0.0001 <0.0001 0.53221 0.73295 0.72234 0.69416

50, fBm <0.0001 <0.0001 0.66082 0.84480 0.84369 0.82256

100, fBm <0.0001 <0.0001 0.73564 0.91811 0.91329 0.90260

10, fLm <0.0001 <0.0001 0.29913 0.41482 0.42049 0.41858

25, fLm <0.0001 <0.0001 0.36256 0.53270 0.52886 0.52027

50, fLm <0.0001 <0.0001 0.40205 0.60694 0.59713 0.56785

100, fLm <0.0001 <0.0001 0.42368 0.65468 0.64698 0.60597

10, both <0.0001 <0.0001 0.29751 0.41519 0.41749 0.41090

25, both <0.0001 <0.0001 0.43414 0.59296 0.58660 0.55943

50, both <0.0001 <0.0001 0.51247 0.69218 0.68393 0.64834

100, both <0.0001 <0.0001 0.56500 0.76081 0.75103 0.73408

4.3. Validating the Trained Models

This section outlines the methodology used to evaluate all the trained models. To make
sure the validation procedure did not include parts of the training data, we created all
random walks for validation separately. The validation process was executed as follows:

First, we defined a range of equidistant Hurst exponents for model evaluation. This
discrete list of Hurst/scaling exponents includes 0.025, 0.05, 0.075, 0.1, . . . , 0.975. Moreover,
we selected three different values for the Lévy index of the included fractional Lévy motion,
i.e., α ∈ 0.5, 1.0, 1.5. Next, for each of these Hurst exponents, we generated a random walk
with a length of 200,000 data points. From these random walks, we extracted 1000 excerpts
of varying lengths that matched the model inputs, i.e., 10, 25, 50, 100, along with a window
length of 200 and 350 data points.

To estimate the Hurst exponent for the window sizes of 200 and 250, we calculated
sliding windows of 100 data points over the 200 and 350 data points and then averaged
the results, as we did not train models with inputs larger than 100 consecutive data points.
These two input window lengths are chosen in alignment with the findings of this article,
specifically, the experiments on financial time series data from Section 5, and the work done
by [32].

We evaluated all techniques for estimating the scaling exponent of a time series data by
calculating an RMSE showing the difference from the ground truth of the sample, i.e., how
much the employed technique to estimate the scaling exponent of a random walk is off
in the “Hurst” scale. Additionally, we obtained a corresponding error to characterize the
variability of these results, which is discussed in detail in Section 3.3.4.

The results of these experiments are shown in the following tables. First, we tested
our trained models on only fractional Brownian motions (Tables 2 and 3). For the “classical”
algorithms, we found that DFA outperforms everything else. However, DFA suffers from a
large variability compared to other algorithms and trained machine learning models for
small window lengths. For the trained machine learning models, we found that CatBoost,
trained on data obtained only from fractional Brownian motions, performs best for all
window lengths except for 10 input data points where LightGBM performs best. Also,
except for a window length of 10, the best-trained machine learning models outperform all
tested “classical” algorithms.
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Next, for fractional Lévy motion with α = 0.5 (Tables 4 and 5), we observe that the R/S
analysis from the nolds Python package performs best for window lengths up to 50 data
points. Beyond this threshold, the R/S analysis from the Python package hurst performs
best. We conclude from these results that DFA, despite its reputation, is a very unreliable
tool to estimate the scaling exponent of non-fractional-Brownian-processes. For the trained
machine learning models, we note that LightGBM and CatBoost perform best for input
windows of below 100 data points, whereas above this threshold, the best results come
from the multi-layer perceptron. For these datasets, the trained machine learning models
outperformed all classical algorithms. Furthermore, we obtained the best results from
machine learning models trained only on fractional Lévy time series data.

Next, for fractional Lévy motion with α = 1.0 (Tables 6 and 7), DFA performs best for
the window lengths of below 100 data points, and the simplified R/S analysis from the
Python package hurst performs best above this threshold for the classical algorithms. What
is interesting here is that, except for an input window of 25 data points where the MLP
performs best, CatBoost outperforms all of the other machine learning models. Furthermore,
the simplified R/S analysis outperforms the machine learning models for a length of 200
and 350 data points, whereas for other input lengths, trained machine learning models
perform best. Interestingly, for these random processes, the machine learning models
trained with fractional Brownian motion perform best, contrary to fractional Lévy motion
with α = 0.5.

For the fractional Lévy motion validation dataset with α = 1.5 (Tables 8 and 9), we
observe that DFA performs best for samples with lengths below 100 data points, and the
R/S analysis from the Python package hurst performs best for the remaining window
lengths for the classical estimation methods. For the machine learning models, we note
that LightGBM performs best for window lengths of 10 and 25, whereas MLP performs
best for the remaining sample sizes. Surprisingly, we obtain the best results for the trained
machine learning models only for models trained with fractional Brownian motions, which
is not what one would expect. This might be due to the drastic differences of fractional
Lévy motion with varying α. Still, the trained machine learning models outperform all
classical algorithms to estimate the scaling parameter of this time series data. However,
the MLP algorithms trained on both fractional Brownian and Lévy motions are very close
to the ones trained on only fractional Brownian motions for a sample size of 100, 200, and
350 consecutive data points.

In conclusion, trained machine learning models generally outperformed classical
algorithms in estimating the scaling exponent across all types of data. Machine learning
models trained on fractional Brownian motion showed unexpected advantages even when
applied to fractional Lévy motion data.

4.3.1. Fractional Brownian Motion

This section contains the results for the case of the classic fractional Brownian motion.
We depicted the results from Tables 2 and 3 for a window length of 100 data points in
Figure 1. This figure depicts what the information that we condensed into the following
tables means: We check for a range of Hurst exponents on how well we can approximate
the ground truth, which in this Figure is the black line from (0.0/0.0) to (1.0,1.0). The RMSEs
and corresponding variabilities refer to the distance to this ground truth. This figure shows
that, given that we interpret it visually, the machine learning algorithms, except for Lasso
and Ridge, do a good job in predicting the correct Hurst value compared to the classical
algorithms, such that they are close to the ground truth. Further, the RMSE-errors given
in the regarded, and in all following tables (Tables 4–9), indicate the variability of the
employed technique to predict the correct scaling exponent. This means that an algorithm
that, on average, has a low RMSE but suffers from a large variability provides highly
fluctuating results on predicting scaling exponents and/or that it could be very off for large
or small scaling exponents, just as shown for, e.g., alg_hurst_hurst in Figure 1.
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Table 2. RMSE for each of the non-machine-learning algorithms for 1000 analyzed fractional
Brownian motions for varying input window sizes. We highlight the lowest errors for each window
size by using a bold font type.

Window Length Alg. Nolds Hurst Alg. Nolds DFA Alg. Hurst Hurst Alg. Hurst Hurst
Simplified

10 0.2916 ± 0.01531 0.0751 ± 0.24194 - -
25 0.3302 ± 0.01983 0.09547 ± 0.04252 - -
50 0.36642 ± 0.01355 0.10151 ± 0.02645 - -
100 0.40063 ± 0.01175 0.10392 ± 0.019 0.21317 ± 0.01494 0.114 ± 0.01291
200 0.41373 ± 0.00816 0.06301 ± 0.01224 0.19125 ± 0.01136 0.10718 ± 0.00966
350 0.42249 ± 0.00697 0.04495 ± 0.0069 0.18045 ± 0.01012 0.10363 ± 0.00875

Table 3. RMSE for the trained machine learning models for 1000 analyzed fractional Brownian
motions for varying input window sizes. We highlight the lowest errors for each window size by
using a bold font type.

Window Length Ridge fBm Ridge fLm Ridge Both

10 0.28137 ± 0.00024 0.28134 ± 0.00071 0.28136 ± 0.00045
25 0.28157 ± 0.00033 0.28144 ± 0.0004 0.28161 ± 0.00022
50 0.28125 ± 0.00051 0.28137 ± 0.00056 0.28124 ± 0.00043

100 0.28144 ± 0.00088 0.28123 ± 0.00122 0.28138 ± 0.00089
200 0.28126 ± 0.00011 0.28131 ± 0.00071 0.28122 ± 0.00053
350 0.2814 ± 0.00012 0.28132 ± 0.0005 0.28137 ± 0.00038

Window Length Lasso fBm Lasso fLm Lasso both

10 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
25 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
50 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0

100 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
200 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
350 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0

Window Length AdaBoost fBm AdaBoost fLm AdaBoost Both

10 0.22244 ± 0.01316 0.2262 ± 0.013 0.21941 ± 0.01388
25 0.16691 ± 0.01471 0.19494 ± 0.00965 0.17723 ± 0.01186
50 0.14028 ± 0.01172 0.17266 ± 0.00652 0.14778 ± 0.00961

100 0.11962 ± 0.01022 0.16265 ± 0.00337 0.13449 ± 0.00574
200 0.12036 ± 0.00652 0.16359 ± 0.00161 0.1346 ± 0.00317
350 0.12079 ± 0.00461 0.16256 ± 0.00117 0.13533 ± 0.00224

Window Length CatBoost fBm CatBoost fLm CatBoost Both

10 0.16014 ± 0.02044 0.21121 ± 0.01504 0.1782 ± 0.01751
25 0.08767 ± 0.01857 0.1851 ± 0.01472 0.11832 ± 0.01546
50 0.05087 ± 0.01546 0.16244 ± 0.01481 0.07659 ± 0.0142

100 0.02484 ± 0.01112 0.13197 ± 0.01461 0.04776 ± 0.01179
200 0.026 ± 0.00839 0.13222 ± 0.0105 0.04831 ± 0.00879
350 0.0257 ± 0.00625 0.13197 ± 0.00765 0.0479 ± 0.00651

Window Length LightGBM fBm LightGBM fLm LightGBM Both

10 0.16011 ± 0.02052 0.21073 ± 0.01527 0.17831 ± 0.01753
25 0.09248 ± 0.01834 0.18331 ± 0.01444 0.12301 ± 0.01514
50 0.05323 ± 0.01538 0.15624 ± 0.01414 0.08313 ± 0.01379

100 0.02802 ± 0.01073 0.12563 ± 0.01423 0.05224 ± 0.01161
200 0.02904 ± 0.00821 0.12482 ± 0.01025 0.05178 ± 0.00821
350 0.02863 ± 0.00605 0.12465 ± 0.0075 0.05151 ± 0.00608

Window Length MLP fBm MLP fLm MLP Both

10 0.1656 ± 0.02182 0.21432 ± 0.01481 0.17702 ± 0.01761
25 0.09959 ± 0.01788 0.17948 ± 0.01469 0.1326 ± 0.01475
50 0.06085 ± 0.01463 0.14635 ± 0.01535 0.08806 ± 0.01467

100 0.03473 ± 0.00988 0.12899 ± 0.01635 0.05588 ± 0.01101
200 0.03578 ± 0.00755 0.12915 ± 0.01183 0.05784 ± 0.00798
350 0.03586 ± 0.00541 0.12858 ± 0.00873 0.05516 ± 0.00615
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Figure 1. This figure presents a correlation plot illustrating the relationship between predicted and
actual values in estimating the Hurst exponent for fractional Brownian motion data. The horizontal
axis represents the true Hurst values, while the vertical axis shows the predicted values by various
algorithms. These are the results for a window length of 100 data points from Tables 2 and 3.

4.3.2. Fractional Lévy Motion, α = 0.5

This section contains the results for the case of fractional Lévy motion with α = 0.5.

Table 4. RMSE for each of the non-machine learning algorithms for 1000 analyzed fractional
Brownian motions for varying input window sizes. We highlight the lowest errors for each window
size by using a bold font type.

Window Length Alg. Nolds Hurst Alg. Nolds DFA Alg. Hurst Hurst Alg. Hurst Hurst
Simplified

10 0.28517 ± 0.01622 0.42035 ± 0.2706 - -
25 0.26316 ± 0.02612 0.47115 ± 0.0471 - -
50 0.26357 ± 0.01986 0.45586 ± 0.03011 - -
100 0.28779 ± 0.01684 0.45104 ± 0.02172 0.21913 ± 0.01621 0.24127 ± 0.01786
200 0.31121 ± 0.01129 0.46071 ± 0.01456 0.22713 ± 0.01267 0.24231 ± 0.01428
350 0.33902 ± 0.00942 0.44371 ± 0.01141 0.23226 ± 0.01066 0.24178 ± 0.01233

Table 5. RMSE for the trained machine learning models for 1000 analyzed fractional Brownian
motions for varying input window sizes. We highlight the lowest errors for each window size by
using a bold font type.

Window Length Ridge fBm Ridge fLm Ridge both

10 0.28139 ± 0.0003 0.28116 ± 0.00077 0.28123 ± 0.00053
25 0.28133 ± 0.00053 0.28131 ± 0.00052 0.28135 ± 0.00032
50 0.28134 ± 0.00085 0.28135 ± 0.00079 0.28131 ± 0.00057
100 0.28141 ± 0.0015 0.28124 ± 0.00148 0.28122 ± 0.00111
200 0.28136 ± 8 ×10−5 0.28122 ± 0.00079 0.28121 ± 0.00058
350 0.28133 ± 6 ×10−5 0.28109 ± 0.00055 0.28109 ± 0.00041

Window Length Lasso fBm Lasso fLm Lasso Both

10 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
25 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
50 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
100 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
200 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
350 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
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Table 5. Cont.

Window Length AdaBoost fBm AdaBoost fLm AdaBoost Both

10 0.28501 ± 0.00965 0.27944 ± 0.00736 0.28093 ± 0.0092
25 0.2994 ± 0.0117 0.27436 ± 0.00838 0.2817 ± 0.01012
50 0.30762 ± 0.01202 0.26953 ± 0.00996 0.28504 ± 0.01142
100 0.32061 ± 0.01262 0.26418 ± 0.01149 0.28198 ± 0.01247
200 0.3201 ± 0.00709 0.26357 ± 0.00652 0.28126 ± 0.00638
350 0.31737 ± 0.00536 0.26173 ± 0.0047 0.27918 ± 0.00468

Window Length CatBoost fBm CatBoost fLm CatBoost Both

10 0.29105 ± 0.01685 0.26013 ± 0.01451 0.27373 ± 0.01506
25 0.31954 ± 0.02005 0.22098 ± 0.01589 0.25413 ± 0.01666
50 0.32883 ± 0.01971 0.19311 ± 0.01505 0.22873 ± 0.01656
100 0.32947 ± 0.01705 0.18257 ± 0.01354 0.21623 ± 0.01513
200 0.3283 ± 0.01265 0.18206 ± 0.00866 0.21506 ± 0.01052
350 0.3265 ± 0.00934 0.18128 ± 0.00607 0.21404 ± 0.00751

Window Length LightGBM fBm LightGBM fLm LightGBM Both

10 0.28999 ± 0.01713 0.25899 ± 0.01505 0.2733 ± 0.01536
25 0.31583 ± 0.02002 0.22418 ± 0.016 0.25836 ± 0.01676
50 0.32294 ± 0.02003 0.1996 ± 0.01483 0.23572 ± 0.01697
100 0.30969 ± 0.01737 0.18867 ± 0.01346 0.2209 ± 0.01607
200 0.30965 ± 0.0128 0.1884 ± 0.00876 0.22123 ± 0.01096
350 0.30776 ± 0.00946 0.18759 ± 0.00615 0.22019 ± 0.00783

Window Length MLP fBm MLP fLm MLP Both

10 0.30555 ± 0.01746 0.26038 ± 0.01426 0.27412 ± 0.0149
25 0.33234 ± 0.01994 0.23591 ± 0.01552 0.25557 ± 0.01708
50 0.33114 ± 0.02127 0.20713 ± 0.01606 0.23219 ± 0.01847
100 0.29554 ± 0.01763 0.18192 ± 0.01455 0.23114 ± 0.01596
200 0.29431 ± 0.01297 0.18123 ± 0.00948 0.2301 ± 0.01107
350 0.29222 ± 0.00954 0.18008 ± 0.00668 0.22919 ± 0.00788

4.3.3. Fractional Lévy Motion, α = 1.0

This section contains the results for the case of fractional Lévy motion with α = 1.0.

Table 6. RMSE for each of the non-machine learning algorithms for 1000 analyzed fractional
Brownian motions for varying input window sizes. We highlight the lowest errors for each window
size by using a bold font type.

Window Length Alg. Nolds Hurst Alg. Nolds DFA Alg. Hurst Hurst Alg. Hurst Hurst
Simplified

10 0.28169 ± 0.01582 0.14867 ± 0.24577 - -
25 0.26134 ± 0.02507 0.16672 ± 0.04256 - -
50 0.29846 ± 0.01826 0.15482 ± 0.02765 - -
100 0.34383 ± 0.01472 0.15946 ± 0.01826 0.11358 ± 0.01295 0.09771 ± 0.0146
200 0.37387 ± 0.00979 0.15343 ± 0.01281 0.09689 ± 0.00983 0.09633 ± 0.01395
350 0.40277 ± 0.00817 0.14777 ± 0.00979 0.08666 ± 0.0082 0.08423 ± 0.01146

Table 7. RMSE for the trained machine learning models for 1000 analyzed fractional Brownian
motions for varying input window sizes. We highlight the lowest errors for each window size by
using a bold font type.

Window Length Ridge fBm Ridge fLm Ridge Both

10 0.28117 ± 0.00027 0.28126 ± 0.00072 0.28145 ± 0.00048
25 0.28131 ± 0.00043 0.28134 ± 0.00046 0.2813 ± 0.00027
50 0.2812 ± 0.00069 0.28136 ± 0.00067 0.28124 ± 0.00051
100 0.28138 ± 0.00121 0.28139 ± 0.00133 0.28141 ± 0.00101
200 0.28127 ± 0.00013 0.28133 ± 0.00081 0.28124 ± 0.0006
350 0.28129 ± 0.00011 0.28135 ± 0.00052 0.28129 ± 0.00039
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Table 7. Cont.

Window Length Lasso fBm Lasso fLm Lasso Both

10 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
25 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
50 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
100 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
200 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
350 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0

Window Length AdaBoost fBm AdaBoost fLm AdaBoost Both

10 0.22433 ± 0.0129 0.22269 ± 0.01196 0.21992 ± 0.01335
25 0.18802 ± 0.01813 0.20001 ± 0.01125 0.19137 ± 0.01486
50 0.18038 ± 0.0187 0.19031 ± 0.0111 0.17882 ± 0.01649
100 0.17227 ± 0.01964 0.1828 ± 0.00976 0.17062 ± 0.01527
200 0.19107 ± 0.01682 0.19405 ± 0.00888 0.18627 ± 0.01331
350 0.1832 ± 0.01297 0.18972 ± 0.00662 0.17945 ± 0.01015

Window Length CatBoost fBm CatBoost fLm CatBoost Both

10 0.16251 ± 0.0228 0.1735 ± 0.0155 0.16663 ± 0.01876
25 0.10053 ± 0.02435 0.12608 ± 0.01514 0.11452 ± 0.01884
50 0.08678 ± 0.0223 0.10853 ± 0.0148 0.09634 ± 0.01796
100 0.0805 ± 0.01776 0.09093 ± 0.0143 0.08429 ± 0.01576
200 0.09697 ± 0.01578 0.11339 ± 0.01109 0.10593 ± 0.01341
350 0.08847 ± 0.01262 0.10591 ± 0.009 0.09767 ± 0.01095

Window Length LightGBM fBm LightGBM fLm LightGBM Both

10 0.16298 ± 0.02281 0.17226 ± 0.0156 0.1669 ± 0.01887
25 0.10358 ± 0.02465 0.12709 ± 0.01515 0.11801 ± 0.01879
50 0.08901 ± 0.02287 0.11128 ± 0.01457 0.0991 ± 0.01792
100 0.08219 ± 0.01884 0.09293 ± 0.01406 0.08662 ± 0.01601
200 0.10263 ± 0.01659 0.11551 ± 0.01118 0.10916 ± 0.01362
350 0.09302 ± 0.01335 0.10787 ± 0.00902 0.10049 ± 0.01107

Window Length MLP fBm MLP fLm MLP Both

10 0.16992 ± 0.02453 0.17416 ± 0.01483 0.1626 ± 0.01924
25 0.0989 ± 0.02508 0.12536 ± 0.01521 0.11192 ± 0.01802
50 0.087 ± 0.02189 0.10809 ± 0.01586 0.09365 ± 0.01821
100 0.08741 ± 0.01875 0.09523 ± 0.01581 0.09705 ± 0.01728
200 0.10958 ± 0.01624 0.11189 ± 0.01236 0.12114 ± 0.01475
350 0.10021 ± 0.01313 0.10521 ± 0.00936 0.11197 ± 0.01189

4.3.4. Fractional Lévy Motion, α = 1.5

This section contains the results for the case of fractional Lévy motion with α = 1.5.

Table 8. RMSE for each of the non-machine learning algorithms for 1000 analyzed fractional
Brownian motions for varying input window sizes. We highlight the lowest errors for each window
size by using a bold font type.

Window Length Alg. Nolds Hurst Alg. Nolds DFA Alg. Hurst Hurst Alg. Hurst Hurst
Simplified

10 0.27084 ± 0.01484 0.23363 ± 0.21841 - -
25 0.28817 ± 0.02327 0.23679 ± 0.0342 - -
50 0.33359 ± 0.01618 0.25416 ± 0.01981 - -
100 0.3782 ± 0.01311 0.25933 ± 0.01619 0.21506 ± 0.01824 0.21175 ± 0.02937
200 0.40683 ± 0.00869 0.23166 ± 0.01267 0.20716 ± 0.01488 0.20741 ± 0.02327
350 0.43147 ± 0.00722 0.21754 ± 0.01074 0.20099 ± 0.01288 0.20322 ± 0.02032
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Table 9. RMSE for the trained machine learning models for 1000 analyzed fractional Brownian
motions for varying input window sizes. We highlight the lowest errors for each window size by
using a bold font type.

Window Length Ridge fBm Ridge fLm Ridge both

10 0.28124 ± 0.00023 0.2811 ± 0.00061 0.28131 ± 0.00042
25 0.28142 ± 0.0004 0.2813 ± 0.0004 0.28145 ± 0.00026
50 0.28148 ± 0.00062 0.28155 ± 0.00058 0.28168 ± 0.00045
100 0.28118 ± 0.00108 0.28203 ± 0.00117 0.28168 ± 0.00088
200 0.28143 ± 0.00013 0.28202 ± 0.00069 0.28194 ± 0.00052
350 0.28158 ± 9 ×10−5 0.28202 ± 0.00046 0.28208 ± 0.00034

Window Length Lasso fBm Lasso fLm Lasso Both

10 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
25 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
50 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
100 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
200 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0
350 0.28137 ± 0.0 0.28137 ± 0.0 0.28137 ± 0.0

Window Length AdaBoost fBm AdaBoost fLm AdaBoost Both

10 0.17954 ± 0.00739 0.17841 ± 0.00603 0.17501 ± 0.0072
25 0.13308 ± 0.00729 0.16829 ± 0.00594 0.15288 ± 0.00664
50 0.11901 ± 0.00597 0.16298 ± 0.00575 0.13967 ± 0.00629
100 0.10492 ± 0.00603 0.16836 ± 0.0062 0.13647 ± 0.00699
200 0.10557 ± 0.00475 0.1677 ± 0.00428 0.13728 ± 0.00471
350 0.10388 ± 0.00248 0.16646 ± 0.00301 0.13614 ± 0.00312

Window Length CatBoost fBm CatBoost fLm CatBoost Both

10 0.12585 ± 0.01533 0.13493 ± 0.01381 0.12543 ± 0.01354
25 0.09966 ± 0.02066 0.11572 ± 0.01648 0.10284 ± 0.01716
50 0.09861 ± 0.01676 0.10646 ± 0.0161 0.09885 ± 0.0167
100 0.11132 ± 0.01521 0.10493 ± 0.01517 0.10261 ± 0.01542
200 0.10422 ± 0.01406 0.10233 ± 0.01111 0.09901 ± 0.01235
350 0.10423 ± 0.01236 0.10089 ± 0.00847 0.09761 ± 0.00979

Window Length LightGBM fBm LightGBM fLm LightGBM Both

10 0.12474 ± 0.01531 0.13449 ± 0.01421 0.12653 ± 0.01365
25 0.09164 ± 0.02074 0.11827 ± 0.01639 0.10419 ± 0.01662
50 0.09421 ± 0.01709 0.1128 ± 0.01605 0.1014 ± 0.01649
100 0.10036 ± 0.01603 0.10926 ± 0.0156 0.10413 ± 0.01581
200 0.09374 ± 0.0143 0.10574 ± 0.01141 0.09917 ± 0.01238
350 0.0929 ± 0.01228 0.10395 ± 0.00866 0.09765 ± 0.00978

Window Length MLP fBm MLP fLm MLP Both

10 0.10349 ± 0.01432 0.13397 ± 0.01323 0.12935 ± 0.01348
25 0.09597 ± 0.02127 0.11178 ± 0.01572 0.11672 ± 0.01739
50 0.08883 ± 0.01777 0.11371 ± 0.0167 0.12015 ± 0.018
100 0.09425 ± 0.01593 0.13946 ± 0.01676 0.09106 ± 0.01621
200 0.08884 ± 0.01365 0.13815 ± 0.01241 0.0876 ± 0.01283
350 0.08686 ± 0.01138 0.1367 ± 0.00935 0.08641 ± 0.01017

5. Finance Experiments

The dynamics of stock market analysis have been gaining considerable attention from
both researchers and practitioners for a long time. This interest is primarily directed towards
understanding the underlying patterns and structures present in financial time series data.
A popular approach to characterizing stock market behavior involves estimating the Hurst
or scaling exponent. This measure indicates the long-range dependence and persistence
in time series data [1,5]. This concept has been implemented in more recent studies,
thereby enhancing our understanding of stock market dynamics. Previous research by [32],
for instance, utilized Detrended Fluctuation Analysis (DFA) to estimate the Hurst or scaling
exponent in the Dow Jones and S&P 500 daily indices. This approach unveiled significant
insights into the time-varying nature of these markets. Additionally, DFA, and/or the
estimation of the scaling exponent of a time series data can also be applied to analyze the
volatility of stock market data [33].
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Building on this foundational work, the present study aims to expand upon the
analysis by incorporating a machine learning approach to estimate the Hurst or scaling
exponent for financial time series data. This introduces a more scalable and robust method
for studying the multifractal structure of stock market data. By leveraging the power of
machine learning algorithms, we are able to reliably employ smaller sliding windows for
analysis, thereby capturing more nuanced and detailed variations in the Hurst exponent
over time.

We perform our analysis in a manner similar to the work by [32], to evaluate the
capabilities of the developed method. However, our study expands the scope of this
analysis by incorporating daily closed values from not only the Dow Jones and S&P 500 but
also NASDAQ. The used daily closing value time series data are depicted and described in
Figure 2. It is important to mention here that, unlike the data from [32], we use only daily
closed values due to data availability, not the mean between open and closed values.

In this section, we provide a brief discussion of related literature on stochastic pro-
cesses and financial data. We then employ a slightly modified version of R/S analysis to
determine the stochastic process the data under study is related to, i.e., fractional Brownian
or fractional Lévy motion, and thus adjust our model and algorithm selection accordingly.
Following this, we apply traditional algorithms and trained machine learning models to
estimate the scaling exponent of the data under study in a sliding window over several
decades to show the changes in fractality and scaling behavior. Finally, we conclude our
findings and compare them to the work undertaken by [32], and analyze how the different
methods employed to estimate the scaling exponent of financial time series data correlate
with each other.
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Figure 2. Time series plots for the daily closing values of the assets used in our study, i.e., Dow Jones,
S&P 500 and NASDAQ. On the left side, we see regular plots, and on the right side, the y-axis is in
a logarithmic scale, illustrating the relative changes in the value of the assets. We studied the Dow
Jones from 12 December 1914 to 15 December 2020, S&P500 goes from 30 December 1927 to the 4
November 2020 and for the NASDAQ the studied period starts on the 5 February 1972 and ends on
the 16 April 2021.

5.1. The Scaling Exponent of Financial Data

The study of financial data in the context of fractional Brownian motion (fBm) and
fractional Lévy motion (fLm) has revealed a multifractal nature rather than a simple
monofractal one [16,34–37]. Both of these processes allow for dependency in increments,
characterized by the Hurst parameter H. It is understood that financial time series often
exhibit long-range dependence and volatility clustering, which can be captured by fBm
when H > 0.5.

However, when comparing the behavior of fractional Brownian motions to that of
financial markets, Ivanova et al. [37] found that the behavior of financial markets, e.g., Dow
Jones, is rather multifractal than that of a monofractal Brownian motion. In terms of the
Hurst exponent for multifractal data, one observes fluctuations even on data where the
Hurst exponent should be constant, i.e., monofractal data [38], hinting that the employed
algorithms might not be capable of reliably determining the scaling exponent of stochastic
data on small intervals. This observation aligns with our findings from previous sections,
i.e., the Hurst exponent looks locally, sometimes very different from the ground truth. This
serves as further evidence that the estimation of the Hurst exponent needs to be scaled
down to smaller intervals because of the multifractality of stochastic and financial data.
Another factor to consider is that stochastic data (e.g., fractional Brownian motion) with a
given Hurst exponent, e.g., H = 0.3 (heavily fluctuating), might look on small intervals
like stochastic data with an increased Hurst exponent, e.g., H = 0.7, if the observed data
locally exhibits the behavior of a mostly straight line, which sometimes happens due to the
probabilistic nature of these processes.

Interestingly, when examining the properties of financial data in relation to fBm and
fLm, it appears that financial data, such as European option data, align more closely with
fLm [23]. This is further investigated by the work of Barunik et al. [16]. In their study, they
observed an interesting phenomenon where an apparent increase in multifractality was
measured in time series generated from shuffled returns, even when all time-correlations
were destroyed and only return distributions were conserved. Their investigation into this
phenomenon included the simulation of time series via the Markov switching multifractal
model, autoregressive fractionally integrated moving average processes with stable innova-
tions, fBm, and Lévy flights. Their conclusion was that multifractality observed in financial
time series was primarily a consequence of the characteristic fat-tailed distribution of the
returns. To be specific, Barunik et al. [16] argue that the multifractality of financial time
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series data partly results from a heavy-tailed α-stable Lévy distribution, suggesting that
the observed financial time series data behave more like a fractional Lévy motion than
a fractional Brownian motion. Thus, one might ask, what does it mean if one calculates
the scaling exponent, theoretically derived from fractional Brownian motion for data that
inherently disagrees with this model. Further, the observed multifractality of these datasets
might be due to the fact that traditional algorithms, e.g., R/S analysis, cannot deal with
α-stable fractional Lévy motions. Thus, we argue that one should aim for determining the
scaling exponent of α-stable fractional Lévy motion rather than that of fractional Brownian
motion to argue for behavior changes in financial data.

To further clarify this discussion: The term “α-stable” is used to describe a class of
probability distributions that has heavy tails and exhibits skewness. It’s the “α” in the
“α-stable” that controls the thickness of the tails of the distribution. The lower the “α”,
the thicker the tail. When “α = 2”, you have a normal distribution, i.e., fractional Brownian
motion, which is the only stable distribution with finite variance. Financial data often
exhibits “α-stability” due to the “fat tails” observed in return distributions—that is, extreme
events occur more frequently than would be predicted by a normal distribution.

However, it is important to note that while fractional Lévy motion might offer a more
accurate representation, it does not fully capture the complexities of financial markets.
Real-world financial data are influenced by a multitude of factors, many of which might not
be accounted for in the current mathematical models. Nevertheless, in the following, we
still aim to show that the stock market data under study is better described by a fractional
Lévy motion, and further, that fractional Lévy motion produces different scaling behavior
because of its multifractal and/or α-stable aspects. For this reason, we employ the following
slightly altered R/S analysis to show this:

The Hurst exponent is a measure for the long-term memory of a time series data and
is calculated by R/S Analysis [5]. Following [5,39]:

the R/S analysis (Rescaled Range analysis) identifies long-run correlations in time
series, yielding one parameter, the Hurst exponent “H”.

We start with a given signal [x1, x2, . . . , xN ], we then dissect this signal into sliding
windows of length n, labeled using the index l ∈ 0, 1, 2, 3, . . ., such that [xl+1, xl+2, . . . , xl+n].

One finds the average over a period τ (a sub-interval of the sliding window, i.e.,
1 ≤ τ ≤ n), with kl as l + 1 ≤ kl ≤ l + n (labeling all possible all elements in each sliding
window) and elements j in this interval such that kl ≤ j ≤ kl + τ and kl + τ ≤ l + n (all
possible periods τ starting with an element kl):

〈x〉τ,kl
=

1
τ

kl+τ

∑
j=l+k

xj . (11)

Next, an accumulated departure δx(i, τ, kl) over a period i ∈ 1, 2, . . . , τ is calculated as:

δx(i, τ, kl) =
kl+i

∑
j=kl

(
xj − 〈x〉τ,kl

)
. (12)

The range Rl , which is the difference between maximal and minimal values of the accumu-
lated departure is:

Rl(τ, kl) = maxi[δx(i, τ, kl)] − mini[δx(i, τ, kl)] ,

satisfying kl ≤ i ≤ kl + τ .
(13)

And finally, the standard deviation for each subinterval is:

Sl(τ, kl) =

√√√√ 1
τ

kl+τ

∑
j=kl

[
xj − 〈x〉τ,kl

]2
. (14)



Entropy 2023, 25, 1671 21 of 47

The range and the standard deviation are then averaged over all possible (The algorithms
that perform R/S analysis find a subset of possible intervals and perform the procedure on
this subset.) kl such that:

Rl(τ) =
∑kl

Rl(τ, kl)

number of different kls
,

and

Sl(τ) =
∑kl

Sl(τ, kl)

number of different kls
.

(15)

And further, we get the averages over all sliding windows:

R(τ) =
∑l Rl(τ)

number of different ls
,

and

S(τ) =
∑l Sl(τ)

number of different ls
.

(16)

We then obtain the R/S ratio and the corresponding Hurst exponent as:

R(τ)
S(τ)

∝ τH , (17)

whereas we only use the this averaged R/S-ratio for the following analysis. Summing up
this idea:

We begin our analysis by implementing the Rescaled Range (R/S) analysis over sliding
windows across the time series, each containing 1000 consecutive data points. Then, we
average the R/S ratio over these sliding windows, as discussed above. We focus on the
R/S ratio’s behavior as depicted in the double logarithmic plot in Figure 3 rather than
the resulting Hurst exponent. This tactic allows for a comparative study of the scaling
behaviors of fractional Lévy motion, fractional Brownian motion, and the financial data
under study.

The average range and standard deviation over various sliding windows are modifica-
tions that ought to generate a smoother curve. We did this for two reasons:

Firstly, the R/S analysis, applied over numerous τ values on long time series (i.e.,
classical R/S analysis), is a trusted technique for estimating the scaling exponent. However,
comparisons in the log–log space can be challenging due to the R/S ratio’s frequent
fluctuations, resulting in occasional deviations even from the theoretical ground truth for
known or predefined Hurst exponents associated with fractional Brownian motions.

Secondly, smoother curves allow us to observe the multifractal characteristics of our
data, which are often blurred by the fluctuating R/S ratio values. This means we do not see
a bent or straight curve when everything fluctuates. Although these multifractal properties
and the corresponding fluctuations are inherent to stochastic processes, theory expects
a straight and (somehow) smooth line for fractional Brownian motions, indicative of a
typical monofractal time series. Further, we expect bent curves for multifractal time series,
meaning that the scaling is not the same on all scales but slightly varies from micro to
macro scales.

Underpinning our analysis is the Efficient Market Hypothesis (EMH), which posits
that financial data, reflecting all available information, is on average unpredictable. This
unpredictability infers a Hurst exponent of 0.5—a central value for financial time series
behavior under the weak form of EMH [2,40,41]. Following this rationale, the logarithmic
price series of security prices should conform to a geometric Brownian motion, transforming
into a random walk for the return series [42]. Thus we compare our datasets to fractional
Brownian and Lévian motions with scaling exponents of H = 0.5.
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We illustrate our results on the scaling behavior using the previously discussed modi-
fied R/S-approach in Figure 3. The plot displays a linear behavior for fractional Brownian
motion, which matches our expectations. Notably, we did not use any smoothing techniques
or polynomial fits; we merely connected the points. However, the fractional Lévy motion,
despite possessing the same Hurst exponent, exhibits a distinctly different behavior—bent
curves indicative of multifractal behavior and a lower scaling exponent than expected.
This implies that the curves are not as steep as those of the fractional Brownian motion.
Intriguingly, all three financial datasets under analysis align more closely with the fractional
Lévy motion, showcasing bent curves and, in the case of the Dow Jones and S&P500, closely
matching the curves for fractional Lévy motions (For consistency, our data are restricted to
the timeframe from 3 January 1972, to 30 October 2020, which is common to all datasets.).

Therefore, for subsequent analysis, we employ the models from our previous ex-
periments (Section 4) that performed best for fractional Lévy motion. This limits us to
the trained CatBoost and MLP models, which performed strongly over all different Lévy
motions with window lengths of 200 and 350. CatBoost also topped performance for the
fractional Brownian motion within these window lengths.

In Appendix A, we present additional plots illustrating how the scaling behavior and
multifractality of fractional Lévy motions change with varying α values.
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Figure 3. The scaling analysis in the graph offers a comparative view between the three asset
datasets: Dow Jones, NASDAQ, and S&P500, as well as fractional Brownian motion. Furthermore,
three distinct fractional Lévy motions with a scaling exponent of H = 0.5 are also presented. Each
fractional Lévy motion depicted has a unique α value (refer to Section 3.1 for more specifics). Note
that the R/S ratio displayed is the average R/S ratio, as outlined in Equation (17). To better illustrate
the distinctions among the various time series data, we have also provided a zoomed-in view of the
final section of the analysis (in terms of the scale τ) in the upper left corner. While this close-up does
not include the fractional Brownian motion, it successfully emphasizes the slight differences between
the financial time series data, which are otherwise densely clustered.

5.2. Results

We analyze the stock market data from three indices in a manner similar to the
methodology employed by Alvarez et al. [32], aiming to observe patterns analogous to
their study. That is, we use sliding windows over asset data to estimate a time-varying
Hurst/scaling exponent.

In addition to their chosen assets, we incorporate NASDAQ data into our analysis.
As indicated in the previous Section 5.1, we focus on the models that most accurately
portray the scaling behavior of fractional Lévy motions, namely the trained MLP and
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CatBoost models. Coincidentally, CatBoost also excels in identifying the scaling exponent
of fractional Brownian motions. Our findings are illustrated in Figures 4–6, which bear
resemblance to Figures 6 and 7 from [32], indicating a similar (or the same) shift in the
DFA “scaling exponent” around 1972. However, the other methods used to detect this
shift or similar behavior did not reproduce the shift observed in [32], which we also
observe for all the other configurations (sliding window sizes and in-between steps) in
Appendix B. Considering our earlier experiments and validation from Section 5.1 and from
the literature [16], suggesting that the stock market follows a fractional Lévy motion rather
than a fractional Brownian motion, we conclude that DFA may not accurately represent
the scaling exponent of stock market data. The interested reader is referred to Appendix B,
where we show the plots for the full range of our experiments, all available years, and all
three assets. In the current section, we only used an excerpt from the Dow Jones from 1960
to 1980 to emphasize trends and correlations of the time-varying scaling exponents.

Furthermore, we examine the correlations between DFA and the trained machine
learning models used to estimate the scaling exponent of time series data for the Dow Jones
Index in Figure 7 (This correlation matrix takes into account all available years for the Dow
Jones index, not only the interval 1960 to 1980). Notably, the machine learning models show
strong intercorrelations, while their correlation with the employed “classical” algorithms
is weak. Meaning that the trained machine-learning models display similar patterns as
shown in Figure 6. What is interesting here is that the simplified R/S algorithm from the
python package hurst (denoted as alg_hurst_hurst_simplified) is closer to the results
from the trained machine learning models than the other classical algorithms. We see
this in both the plot depicting all sliding window scaling exponents of all algorithms and
machine learning models (Figure 4) and the correlation matrix (Figure 7). This simplified
R/S analysis correlates stronger with the machine learning algorithms’ estimates than the
other classical algorithms. We also observe this or very similar behavior for all the other
configurations and assets in Appendix B.

Moreover, we conduct an analogous analysis on the S&P500 and NASDAQ, including
results for various input window lengths and step sizes (350-day window and 10, 50-day
step sizes) in Appendix B. The results for these assets align with our findings for the Dow
Jones, showing that DFA does not correlate well with the trained machine learning models
and that these models offer a different perspective on the estimated scaling exponents. It is
worth mentioning that we observed an increased correlation between machine learning
algorithms and DFA in estimating a scaling parameter for NASDAQ data. This concurs
with our earlier discussion from Section 5.1 and Figure 3, where the discussed NASDAQ
data are closer to that of a fractional Brownian motion than the other datasets. Therefore,
this increased correlation for NASDAQ suggests that its data are indeed more akin to a
fractional Brownian motion, leading to greater alignment between DFA and the machine
learning models’ estimates, given that classical methods perform better for data resembling
fractional Brownian motion.
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Figure 4. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions from
all trained machine learning models, using a 200-day input window and a 10-day step size between
windows, close up for the years 1960–1980.
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Figure 5. Plot depicting the time-varying DFA and Hurst exponents, using a 200-day input window
and a 10-day step size between windows, close up for the years 1960–1980.
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Figure 6. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 200-day input window and a 10-day step size between windows, close up for the
years 1960–1980.

al
g_
hu

rs
t_
hu

rs
t

al
g_
hu

rs
t_
hu

rs
t_
sim

pl
ifi
ed

al
g_
df
a_
no

ld
s

M
LP
_b
ot
h

M
LP
_f
Lm

M
LP
_f
Bm

Ca
tB
oo
st
_b
ot
h

Ca
tB
oo
st
_f
Lm

Ca
tB
oo
st
_f
Bm

alg_hurst_hurst

alg_hurst_hurst_simplified

alg_dfa_nolds

MLP_both

MLP_fLm

MLP_fBm

CatBoost_both

CatBoost_fLm

CatBoost_fBm

1.00 0.11 0.41 0.11 -0.01 0.15 0.17 0.04 0.22

0.11 1.00 0.22 0.71 0.60 0.78 0.73 0.56 0.75

0.41 0.22 1.00 0.31 0.32 0.30 0.38 0.39 0.40

0.11 0.71 0.31 1.00 0.93 0.94 0.97 0.88 0.91

-0.01 0.60 0.32 0.93 1.00 0.80 0.88 0.95 0.78

0.15 0.78 0.30 0.94 0.80 1.00 0.95 0.75 0.97

0.17 0.73 0.38 0.97 0.88 0.95 1.00 0.88 0.95

0.04 0.56 0.39 0.88 0.95 0.75 0.88 1.00 0.74

0.22 0.75 0.40 0.91 0.78 0.97 0.95 0.74 1.00

Correlations - DowJones - 200 - 10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 200-day rolling window size and a step size of 10 days, close up for the years 1960–1980.
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5.3. Summary & Discussion

In this article, we discuss how machine learning models can be used to estimate
the scaling exponents of time series data. We showed and validated our ideas with two
experiments, the first one was to show how well-trained machine learning models can
estimate the scaling exponent of stochastic processes, in our case for fractional Brownian
and fractional Lévy motions, compared to classical algorithms to estimate the scaling
exponent of a time series data. The second one uses well-performing machine learning
models to estimate the Hurst/scaling exponents of financial time series data and compares
the results to well-known algorithms and results from the literature.

Our first experiment on estimating the scaling exponent of stochastic processes shows
that classical algorithms are outperformed by the trained machine learning models, espe-
cially by sophisticated boosting algorithms such as LightGBM or CatBoost or just a plain
neural network approach in the form of a Multi-Layer Perceptron. Reflecting on this ex-
periment’s results, i.e., showing consistent evidence that machine learning algorithms can
estimate the scaling exponent of time series with more accuracy than classical algorithms
in most cases, we conclude that the latter may not provide reliable scaling exponents for
stock market data. This conclusion is based on the result, that classical algorithms do not
particularly perform well for the case of fractional Lévy motions, and further evidence,
that the stock market under study follows rather a fractional Lévy motion than a fractional
Brownian motion.

Admittedly, these classical algorithms to estimate the scaling exponent of time series
data, and modified versions of them [32,43–47], have long been employed to analyze
stock markets, and undoubtedly, they have offered valuable insights over time. However,
with the advent and rise of artificial intelligence, finance professionals may benefit from
augmenting their scaling exponent estimates by incorporating machine learning models
into their analytical repertoire alongside traditional methods.

We further need to discuss results from the literature to estimate a Hurst/scaling
exponent using machine learning approaches. We observe that results from the past do
not explicitly state how they generated their training data or performed the training [9].
Further, to the best of our knowledge, there is no study incorporating the scaling exponent
of other stochastic processes than fractional Brownian motions, and/or obtained from real
life data via a classical algorithm. Moreover, many articles are not using a regression but
a classification approach, thus these approaches cannnot estimate a continuous scaling
exponent [9,21], and oftentimes the estimation is restricted to scaling exponents of only
0.5 and above, thus leaving out the part of heavily fluctuating time series data. Thus we
consider our approach and the corresponding code, the trained models and all training
datasets, a big contribution to the research on stochastic processes and related real life
data [31].

The simplified R/S analysis seems to more accurately reflect the scaling behavior
learned by the machine learning algorithms, as demonstrated by the correlation plots
in Section 5.2 and Appendix B. Coinciding with this result: The simplified algorithm
outperforms other traditional algorithms in identifying the scaling exponent for fractional
Lévy motion with a Lévy index of α = 1.0. Further, in the experiment discussed in
Section 4.3.3, the simplified Hurst exponent also slightly surpasses the performance of
the best machine learning algorithms for window lengths of 200 and 350 (We should
note that for this comparison, we disregarded the variability of the error and compared
only the average errors. When considering the corresponding variability, we find that
the best machine learning algorithms and the simplified version of R/S analysis perform
very similarly.).

In the case of fractional Brownian motion, the simplified R/S analysis ranks well
among the traditional algorithms. While it does not perform as well as DFA for lengths
of 100, 200, and 350, it is the second best. Furthermore, the increased correlation with the
machine learning algorithms used for the analysis of financial data in Section 5.2 leads us
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to conclude that this simplified version of R/S analysis is best suited among the classical
algorithms for analyzing stock market data in a sliding window manner.

And finally, we need to mention an odd discovery: The models that were trained
exclusively on fractional Lévy motions did not perform optimally when applied to fractional
Lévy motions with tested Lévy indices α > 0.5 (Sections 4.3.3 and 4.3.4). This may be
attributable to the increased frequency of extreme events within these datasets, and the fact
that these datasets are closer to fractional Brownian motions than, e.g., the fractional Lévy
motion with an α = 0.5. As a result, models trained on fractional Brownian motion might
provide better estimates of the scaling exponent since their training data are not obscured
by these extreme events.

6. Conclusions

Our article presents a machine learning approach to identify the Hurst or scaling
exponent of time series data. We employed both artificial datasets and real-life datasets to
demonstrate the applicability of our ideas. The following steps were performed to train
and validate our models and ideas:

1. We trained a range of machine learning models on both fractional Brownian and
fractional Lévy motions with different Hurst/scaling exponents and different Lévy
indices. We used the known scaling exponent as the ground truth for the value
to be predicted by the machine learning algorithms, i.e., the output of the models.
The features, or the input, are time series data from the discussed stochastic processes
scaled to the unit interval [0; 1].

2. We validated the trained models for different lengths of input windows using, again,
fractional Brownian and fractional Lévy motions. The results show that in most cases
the trained machine learning models outperform classical algorithms (such as R/S
analysis) to estimate the scaling exponent of both fractional Brownian and fractional
Lévy motions.

3. We then took three asset time series, i.e., Dow Jones, S&P500, and NASDAQ, and ap-
plied a slightly modified version of R/S analysis to these datasets to show that these
data signals are more akin to fractional Lévy motions than fractional Brownian mo-
tions in nature. The reason for doing this was to argue that certain classical algorithms
cannot correctly estimate the scaling exponents of these datasets because, as shown in
the previous step, compared to the trained models, they suffer from large errors in
estimating the scaling exponent of fractional Lévy motions.

4. In a final step, we analyzed the scaling exponent of the previously named three assets
in a sliding window manner, to show and discuss the applicability of the trained
models and classical algorithms to estimate the scaling behavior of time series data.
Our research shows that results from the literature might be wrong in estimating the
scaling exponent using detrended fluctuation analysis (DFA) and drawing conclusions
from it. To do this, we first reconstructed the scaling behavior using DFA, which
coincides with the results from the literature. We then found that the trained machine
learning algorithms do not reproduce the scaling behavior from the literature, even
though we showed that the assets under study are closer to a fractional Lévy motion,
and that our trained models can better estimate the scaling exponent of stochastic
processes like these.

However, since our results show that classical methods to estimate the scaling behavior
of fractional Lévy motions and financial data might be inherently flawed, we recommend
using the developed ideas and trained models (All our trained models are available in a
corresponding GitHub repository using Python.). In the authors’ opinion, finance analysts
will not stop using classical tools and algorithms to estimate the scaling behavior of assets
and their predictability in the foreseeable future. Thus, we want to emphasize that using
our trained models might provide a benefit for doing so. Furthermore, given a larger set of
assets and different experimental designs, one should further test our ideas for their validity.
However, the authors are confident that the presented ideas will continue to outperform
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classical algorithms since classical algorithms are almost always based on the concept of
fractional Brownian motions, and real-life time series data are hardly ever a perfect case of
a theoretical concept.

Our trained machine learning algorithms apply to any process where one can calculate
a scaling exponent from time series data and thus can be used as a substitute for calculating
the Hurst exponent in environmental applicationss [48,49] or engineering [50].

Finally, we want to state that in the authors’ opinion, the presented machine learning
approach might be improved by employing a sophisticated recurrent neural network
architecture based on LSTM [51] or GRU [52] neural network cells. Further, as done in an
earlier work of the corresponding author, one might test how the trained machine learning
models used to estimate the scaling behavior of time series might effectively ascertain the
predictability of time series data at different points in time [53].
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Appendix A. Fractional Lévy Motion and Its Scaling Behavior

This appendix provides several plots that demonstrate how the parameter α in frac-
tional Lévy motions alters the scaling behavior, thereby producing more multifractal signals.
We utilized the modified R/S analysis (see Section 5.1) to illustrate this, by plotting the
scaling behavior of the fractional Lévy motions under consideration, for three different
scaling exponents.
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Figure A1. Plots depicting the different scaling behaviors of fractional Lévy motion with varying α, for a fixed
scaling exponent of H = 0.25.
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Figure A2. Plots depicting the different scaling behaviors of fractional Lévy motion with varying α, for a fixed
scaling exponent of H = 0.5.
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Figure A3. Plots depicting the different scaling behaviors of fractional Lévy motion with varying α, for a fixed
scaling exponent of H = 0.75.

Appendix B. Additional Plots, Finance Experiments

This appendix provides the additional plots for all discussed assets for the results
from Sections 5 and 5.2.

Appendix B.1. Additional Plots Dow Jones
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Figure A4. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from trained machine learning models, using a 200-day input window and a 10-day step size
between windows for the Dow Jones daily close values.
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Figure A5. Plot depicting the time-varying DFA and Hurst exponents, using a 200-day input window
and a 10-day step size between windows for the Dow Jones daily close values.
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Figure A6. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 200-day input window and a 10-day step size between windows for the Dow Jones
daily close values.
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Figure A7. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 200-day input window and a 50-day step size
between windows for the Dow Jones daily close values.

192
0

194
0

196
0

198
0

200
0

202
0

0.3

0.4

0.5

0.6

0.7

0.8

DowJones - 200 - 50

alg_dfa_nolds
alg_hurst_hurst
alg_hurst_hurst_simplified

Figure A8. Plot depicting the time-varying DFA and Hurst exponents, using a 200-day input window
and a 50-day step size between windows for the Dow Jones daily close values.
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Figure A9. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 200-day input window and a 50-day step size between windows for the Dow Jones
daily close values.
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Figure A10. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 200-day rolling window size and a step size of 50 days for the Dow Jones daily close
values.
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Figure A11. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 350-day input window and a 10-day step size
between windows for the Dow Jones daily close values.
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Figure A12. Plot depicting the time-varying DFA and Hurst exponents, using a 350-day input
window and a 10-day step size between windows for the Dow Jones daily close values.
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Figure A13. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 350-day input window and a 10-day step size between windows for the Dow Jones
daily close values.



Entropy 2023, 25, 1671 32 of 47

al
g_
hu

rs
t_
hu

rs
t

al
g_
hu

rs
t_
hu

rs
t_
sim

pl
ifi
ed

al
g_
df
a_
no

ld
s

M
LP
_b
ot
h

M
LP
_f
Lm

M
LP
_f
Bm

Ca
tB
oo
st
_b
ot
h

Ca
tB
oo
st
_f
Lm

Ca
tB
oo
st
_f
Bm

alg_hurst_hurst

alg_hurst_hurst_simplified

alg_dfa_nolds

MLP_both

MLP_fLm

MLP_fBm

CatBoost_both

CatBoost_fLm

CatBoost_fBm

1.00 0.11 0.50 0.24 0.15 0.27 0.27 0.18 0.31

0.11 1.00 0.26 0.66 0.57 0.74 0.69 0.54 0.69

0.50 0.26 1.00 0.44 0.39 0.44 0.52 0.47 0.56

0.24 0.66 0.44 1.00 0.93 0.92 0.97 0.89 0.89

0.15 0.57 0.39 0.93 1.00 0.78 0.89 0.96 0.75

0.27 0.74 0.44 0.92 0.78 1.00 0.94 0.72 0.97

0.27 0.69 0.52 0.97 0.89 0.94 1.00 0.88 0.94

0.18 0.54 0.47 0.89 0.96 0.72 0.88 1.00 0.71

0.31 0.69 0.56 0.89 0.75 0.97 0.94 0.71 1.00

Correlations - DowJones - 350 - 10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure A14. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 350-day rolling window size and a step size of 10 days for the Dow Jones daily close
values.
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Figure A15. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 350-day input window and a 50-day step size
between windows for the Dow Jones daily close values.
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Figure A16. Plot depicting the time-varying DFA and Hurst exponents, using a 350-day input
window and a 50-day step size between windows for the Dow Jones daily close values.
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Figure A17. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 350-day input window and a 50-day step size between windows for the Dow Jones
daily close values.
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Figure A18. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 350-day rolling window size and a step size of 50 days for the Dow Jones daily close
values.
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Appendix B.2. Additional Plots S&P500
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Figure A19. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 200-day input window and a 10-day step size
between windows for the S&P500 daily close values.
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Figure A20. Plot depicting the time-varying DFA and Hurst exponents, using a 200-day input
window and a 10-day step size between windows for the S&P500 daily close values.
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Figure A21. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 200-day input window and a 10-day step size between windows for the S&P500 daily
close values.



Entropy 2023, 25, 1671 35 of 47

al
g_
hu
rs
t_
hu
rs
t

al
g_
hu
rs
t_
hu
rs
t_
sim

pl
ifi
ed

al
g_
df
a_
no
ld
s

M
LP
_b
ot
h

M
LP
_f
Lm

M
LP
_f
Bm

Ca
tB
oo
st
_b
ot
h

Ca
tB
oo
st
_f
Lm

Ca
tB
oo
st
_f
Bm

alg_hurst_hurst

alg_hurst_hurst_simplified

alg_dfa_nolds

MLP_both

MLP_fLm

MLP_fBm

CatBoost_both

CatBoost_fLm

CatBoost_fBm

1.00 0.11 0.47 0.14 0.02 0.20 0.24 0.10 0.29

0.11 1.00 0.20 0.69 0.57 0.77 0.71 0.52 0.73

0.47 0.20 1.00 0.30 0.32 0.31 0.41 0.43 0.42

0.14 0.69 0.30 1.00 0.92 0.93 0.96 0.86 0.89

0.02 0.57 0.32 0.92 1.00 0.77 0.87 0.95 0.74

0.20 0.77 0.31 0.93 0.77 1.00 0.94 0.70 0.97

0.24 0.71 0.41 0.96 0.87 0.94 1.00 0.86 0.94

0.10 0.52 0.43 0.86 0.95 0.70 0.86 1.00 0.70

0.29 0.73 0.42 0.89 0.74 0.97 0.94 0.70 1.00

Correlations - SP500 - 200 - 10

0.2

0.4

0.6

0.8

1.0

Figure A22. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 200-day rolling window size and a step size of 10 days for the S&P500 daily close
values.
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Figure A23. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 200-day input window and a 50-day step size
between windows for the S&P500 daily close values.
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Figure A24. Plot depicting the time-varying DFA and Hurst exponents, using a 200-day input
window and a 50-day step size between windows for the S&P500 daily close values.
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Figure A25. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 200-day input window and a 50-day step size between windows for the S&P500 daily
close values.
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Figure A26. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 200-day rolling window size and a step size of 50 days for the S&P500 daily close
values.
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Figure A27. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 350-day input window and a 10-day step size
between windows for the S&P500 daily close values.
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Figure A28. Plot depicting the time-varying DFA and Hurst exponents, using a 350-day input
window and a 10-day step size between windows for the S&P500 daily close values.
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Figure A29. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 350-day input window and a 10-day step size between windows for the S&P500 daily
close values.
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Figure A30. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 350-day rolling window size and a step size of 10 days for the S&P500 daily close
values.
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Figure A31. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 350-day input window and a 50-day step size
between windows for the S&P500 daily close values.
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Figure A32. Plot depicting the time-varying DFA and Hurst exponents, using a 350-day input
window and a 50-day step size between windows for the S&P500 daily close values.
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Figure A33. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 350-day input window and a 50-day step size between windows for the S&P500 daily
close values.
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Figure A34. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 350-day rolling window size and a step size of 50 days for the S&P500 daily close
values.
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Appendix B.3. Additional Plots NASDAQ
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Figure A35. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 200-day input window and a 10-day step size
between windows for the NASDAQ daily close values.
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Figure A36. Plot depicting the time-varying DFA and Hurst exponents, using a 200-day input
window and a 10-day step size between windows for the NASDAQ daily close values.
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Figure A37. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 200-day input window and a 10-day step size between windows for the NASDAQ
daily close values.
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Figure A38. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 200-day rolling window size and a step size of 10 days for the NASDAQ daily close
values.
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Figure A39. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 200-day input window and a 50-day step size
between windows for the NASDAQ daily close values.
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Figure A40. Plot depicting the time-varying DFA and Hurst exponents, using a 200-day input
window and a 50-day step size between windows for the NASDAQ daily close values.
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Figure A41. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 200-day input window and a 50-day step size between windows for the NASDAQ
daily close values.
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Figure A42. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 200-day rolling window size and a step size of 50 days for the NASDAQ daily close
values.
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Figure A43. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 350-day input window and a 10-day step size
between windows for the NASDAQ daily close values.
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Figure A44. Plot depicting the time-varying DFA and Hurst exponents, using a 350-day input
window and a 10-day step size between windows for the NASDAQ daily close values.
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Figure A45. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 350-day input window and a 10-day step size between windows for the NASDAQ
daily close values.
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Figure A46. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 350-day rolling window size and a step size of 10 days for the NASDAQ daily close
values.
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Figure A47. Plot depicting the time-varying DFA and Hurst exponents, as well as the predictions
from all trained machine learning models, using a 350-day input window and a 50-day step size
between windows for the NASDAQ daily close values.
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Figure A48. Plot depicting the time-varying DFA and Hurst exponents, using a 350-day input
window and a 50-day step size between windows for the NASDAQ daily close values.
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Figure A49. Plot depicting the time-varying DFA and predictions from all trained machine learning
models, using a 350-day input window and a 50-day step size between windows for the NASDAQ
daily close values.
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Figure A50. Correlation plot showing the relationships between the DFA, various Hurst exponent
estimation methods, and the predictions of all trained machine learning models for the Dow Jones
index, using a 350-day rolling window size and a step size of 50 days for the NASDAQ daily close
values.
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